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Chapter 1

Executive summary

Deliverable D19: Vocabulary of human and robot actions presents the third year developments within WP2 -
“Representations and Ontology for learning and Abstraction of Grasping”. According to the Technical Annex,
deliverable D19 presents the activities in the context of Tasks 2.1-2.3:

• [Task 2.1] - Definition of the ontology: definition of sensory-motor control for action and object-action
learning

• [Task 2.2] - Vocabulary of human and robot actions/interactions

• [Task 2.3] - Evaluation of representation: Evolving ontology through modeling of the perception-action
cycle

The work in this deliverable relates to the following third year Milestones:

• [Milestone 7] - Observing consequences of grasping; vocabulary of robot action/interactions and defini-
tion of a hierarchical structure of features.

• [Milestone 9] - Integrating contextual representation in the ontology and development of the attention
system with view planning; implementation on active head.

The progress in WP2 is presented in the below summarized scientific publications, attached to this deliverable.

• In Attachment A we present work on pre-grasp planning. In manipulation tasks that require object acqui-
sition, pre-grasp interaction such as sliding adjusts the object in the environment before grasping. This
change in object placement can improve grasping success by making desired grasps reachable. However,
the additional sliding action prior to grasping introduces more complexity to the motion planning process,
since the hand pose relative to the object does not need to remain fixed during the pre-grasp interaction.
Furthermore, anthropomorphic hands in humanoid robots have several degrees of freedom that could
be utilized to improve the object interaction beyond a fixed grasp shape. We present a framework for
synthesizing pre-grasp interactions for high-dimensional anthropomorphic manipulators. The planning
is tractable because information from pre-grasp manipulation examples narrows the search to promising
hand poses and shapes. In particular, we show the value of organizing the example data according to ob-
ject category templates. The template information further focuses the search based on the object features,
which increases the success of adapting a template pose and decreases the planning time.

• In Attachment B, we present a grasp representation in task space exploiting position information of the
fingertips. We propose a new way for grasp representation in the task space, which provides a suitable
basis for grasp imitation learning. Inspired by neuroscientific findings, finger movement synergies in
the task space together with fingertip positions are used to derive a parametric low-dimensional grasp
representation. Taking into account correlating finger movements, we describe grasps using a system
of virtual springs to connect the fingers, where different grasp types are defined by parameterizing the
spring constants. Based on such continuous parameterization, all instantiation of grasp types and all
hand preshapes during a grasping action (reach, preshape, enclose, open) can be represented. We present
experimental results, in which the spring constants are merely estimated from fingertip motion tracking
using a stereo camera setup of a humanoid robot. The results show that the generated grasps based on
the proposed representation are similar to the observed grasps.
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• In Attachment C, we study visual servoing in a framework of detection and grasping of unknown objects.
Classically, visual servoing has been used for applications where the object to be servoed on is known to
the robot prior to the task execution. In addition, most of the methods concentrate on aligning the robot
hand with the object without grasping it. In our work, visual servoing techniques are used as building
blocks in a system capable of detecting and grasping unknown objects in natural scenes. We show how
different visual servoing techniques facilitate a complete grasping cycle.

• Attachment D, present the work related to Task 2.2 and Task 2.3. In year two, Attachment D in deliverable
D12, our work was limited in an expert-fixed network structure for BNs, and the training data was in
the original space of the modeled variables. These constrains BNs from modeling large range of sensory
streams, and scaling to a large number of objects and manipulation tasks. These problems motivated the
work for the third year. Here, we adopted a Gaussian process based latent variable model (GPLVM) to
specifically explore the possible latent structure of the task-related sensory input. The aim is to select a
reduced set of variables that most efficiently disambiguates the tasks, and at the same time allow accurate
reconstruction of individual features. Such a reduced set of variables can then be used to efficiently
construct and train the BN-based task constraint models.

• Attachment E, presents the work related to Task 2.2 and Task 2.3. The work introduces a novel multivari-
ate discretization approach based on sparse, non-parametric, probabilistic dimensionality reduction. The
new approach opens up the possibility of using Bayesian networks (BN) for scenarios where the complexity
of the data have previously made BN inapplicable. In robot grasping, a major challenge in modeling with
BNs is learning the structure from both discrete and multivariate continuous data. A common approach
in such situations is to discretize continuous data before structure learning. However efficient methods to
discretize high-dimensional variables are largely lacking. This paper presents a novel method specifically
aiming at discretization of high-dimensional, high-correlated data. The model is fully probabilistic and
capable to facilitate structure learning from discretized data, while at the same time retain the contin-
uous representation. Compared with traditional discretization schemes, our model excels both in task
classification and prediction of hand grasp configurations.
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Appendix A

Attached Papers

[A ] Templates for pre-grasp interaction; L. Chang, D. Kappler, N.S. Pollard, T. Asfour, R. Dillmann;
Robotics and Autonomous Systems, submitted

[B ] Towards a Unifying Grasp Representation for Imitation Learning on Humanoid Robots; M.
Do, T. Asfour, R. Dillmann; IEEE International Conference on Robotics and Automation, IEEE ICRA;
Shanghai, 2011.

[C ] Visual Servoing on Unknown Objects; X. Gratal, J. Romero, J. Bohg and Danica Kragic; Journal
of Mechatronics, (submitted)

[D ] Task modeling in imitation learning using latent variable models, C.-H. Ek, D. Song, K.
Huebner and D. Kragic, 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN,
US, December 2010.

[E ] Multivariate Discretization for Bayesian Network Structure Learning in Robot Grasping;
C.-H. Ek, D. Song, K. Huebner and D. Kragic; IEEE International Conference on Robotics and Automa-
tion, IEEE ICRA; Shanghai, 2011.
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anthropomorphic hands in humanoid robots have several degrees of freedom that could be utilized to 
improve the object interaction beyond a fixed grasp shape.   
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anthropomorphic manipulators.  The planning is tractable because information from pre-grasp 
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Research Highlights  
================================================ 
 
We present a framework and a system implementation for robot manipulation of objects on a flat 
surface.  Our method incorporates the advantages of pre-grasp interaction with direct grasping.  The 
primary parts of our framework are the organization of examples in object-based template categories 
and the representation of the hand poses by components which can be modified to adapt to new object 
scaling and rotation.   
 
We show that our method makes pre-grasp interaction planning tractable by quickly narrowing the set 
of examples to promising templates for adaptation.  Our data is based on examples observed in a 
human motion capture study.  Our validation includes both simulation experiments with our proposed 
framework as well as robustness testing for variations without template organization or template mis-
classification.  In addition, we show that the generated plans are physically plausible with physical 
demonstration on multiple humanoid robots.  We also introduce some evidence that the pre-grasp 
strategy is more natural looking with a user perception evaluation. 
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Templates for pre-grasp sliding interactions
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Abstract

In manipulation tasks that require object acquisition, pre-grasp interaction such as sliding adjusts the object in the
environment before grasping. This change in object placement can improve grasping success by making desired grasps
reachable. However, the additional sliding action prior to grasping introduces more complexity to the motion planning
process, since the hand pose relative to the object does not need to remain fixed during the pre-grasp interaction.
Furthermore, anthropomorphic hands in humanoid robots have several degrees of freedom that could be utilized
to improve the object interaction beyond a fixed grasp shape. We present a framework for synthesizing pre-grasp
interactions for high-dimensional anthropomorphic manipulators. The planning is tractable because information from
pre-grasp manipulation examples narrows the search to promising hand poses and shapes. In particular, we show
the value of organizing the example data according to object category templates. The template information further
focuses the search based on the object features, which increases the success of adapting a template pose and decreases
the planning time.

Keywords:
pre-grasp interaction, object manipulation, humanoid, pushing, sliding

1. Introduction

In service tasks involving object fetching or transport,
an autonomous manipulator must acquire the object be-
fore delivery. When the desired contact surfaces for
grasping are within reach, a direct reach-to-grasp mo-
tion is sufficient to achieve object acquisition. However,
in unstructured environments such as the home or of-
fice, object placement may change day-to-day and not
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always convenient for reaching the desired grasp. In
these scenarios, pre-grasp interaction with a movable
object can adjust the object placement to improve the
reachability of good grasps. Human examples of pre-
grasp interaction include sliding flat objects such as a
credit card to a table edge to grasp it, pushing a heavy
box near the body mass center for easier lifting, or ro-
tating a handled object such as a water pitcher.

In this paper, we present a method for synthesiz-
ing pre-grasp sliding interactions for an anthropomor-
phic manipulator. Many service robots have a hu-
manoid form designed to perform manipulation tasks
with human-like motions [1–3]. The multi-fingered
hands of these robots have several degrees of freedom
for achieving a wide range of hand shapes to accommo-
date different object geometries. However, the manipu-
lator’s kinematic freedoms as well as additional object
motion introduce more complexity to the planning pro-
cess for pre-grasp interactions.

To make the planning tractable, our framework makes
use of human pre-grasp manipulation examples to nar-
row the search to promising hand poses for the push-
ing interaction. We have observed that in human pre-

Preprint submitted to Robotics and Autonomous Systems January 28, 2011
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2. Preshape Adaptation 3. Pre-grasp manipulation 4. Final grasp1. Object Classi�cation

Figure 1: Overview of the pre-grasp strategy, where an object is slid
on the table before the final grasp.

grasp interaction of objects on a tabletop, the manip-
ulation tended to include pre-grasp sliding toward the
body if the object is out of reach or inconvenient to
grasp. These sliding manipulations also tended to ex-
hibit similar hand shapes and poses relative to the object
according to object categories based on object shape and
weight. These patterns form the basis of our framework,
where pre-grasp interaction examples are organized into
templates based on object categories.

In our framework, example hand preshapes for pre-
grasp sliding are stored in the example database accord-
ing to object category to retain the context information
of the template. The information stored for one ob-
ject template includes the hand preshape—composed of
both the starting hand pose relative to the object and
the finger joint configurations, the associated preshapes
suitable for the final grasp to achieve object acquisi-
tion, and the constraints on the related pre-grasp interac-
tion strategies. Constraints on the pre-grasp interaction
strategies include context information such as final goal
regions for the object relocation, as well as constraints
on the object motion or robot joint motion.

These preshape templates enable efficient automatic
generation of hand poses for pre-grasp object interac-
tion, which ultimately improve the success of grasping
for object acquisition. In particular, we show the value
of organizing the example data according to object cat-
egory templates. The template information further fo-
cuses the search based on the object features, which in-
creases the success of adapting a template pose and de-
creases the planning time.

In the following, we first review related work on
grasping templates and manipulation planning. We then
describe the collection of human pre-grasp interaction
examples. The remainder of the paper presents our
template-based framework for planning pre-grasp slid-
ing motions, our experimental results and validation
tests, and a discussion of future steps to generalize this
framework for an even broader set of manipulation ac-
tions.

2. Related Work

Our framework for planning pre-grasp interactions is
composed of four main phases (Fig. 1): (1) object clas-
sification to determine the template category, (2) adap-
tation and evaluation of candidate hand preshapes from
the initial template, (3) simulation of the pre-grasp in-
teraction that adjusts object placement, and (4) planning
the final grasp which acquires the object. We describe
here the previous work related to the different compo-
nents of our framework.

The first phase of object classification determines a
category based on object features such as shape and
weight. This category narrows the set of candidate hand
preshapes to those associated with similar objects. Pre-
vious investigation of human grasps has explored how
a set or taxonomy of prototypical hand shapes can de-
scribe the space of hand configurations for grasping
tasks [4–6]. In imitation learning, several researchers
have presented methods of learning the classification of
a human demonstration of a grasp, which can then be
mapped to a robot hand configuration [7–11]. In our
work, the classification is on object features rather than
the hand shape itself. In this regard, it is most simi-
lar to the learning methods in [12–14] where features
of an object’s component sub-shapes are used to learn
which sub-shape is a handle or suitable handshapes for
grasping the sub-shape. Our method does not use object
decomposition for determining grasp contacts. The con-
tact surfaces on the object are determined in later phases
of our framework based on the preshape examples asso-
ciated with each object category.

Both the second phase of preshape adaptation and
the fourth phase of final grasp planning involve mod-
ification of template hand shapes to fit a new object
geometry. A method to refine a prototype hand shape
has been developed [15] to fit a static hand preshape to
the surface of a new object. Our method for adapting
hand configurations for pre-grasp interactions is similar
in the adjustment of the finger joints to achieve more
contact with the object. In our framework, though, the
preshape adaptation is evaluated for non-grasping (non-
prehensile) hand poses by how well the contact forces
contribute to the desired object adjustment in pre-grasp
interaction. Other methods of grasp template refine-
ment to new object shapes have also been developed for
synthesizing new contact points on the object surface
[16, 17], from image analysis instead of 3-D geometry
[18], and grasp synergy subspaces [19].

Grasp synthesis without template context has also
been investigated from several aspects. Berenson et al.
[20] proposed a method to precompute a set of possible
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grasps offline for later online evaluation against envi-
ronmental constraints. Przybylski et al. suggested in
[21] to use the medial axis to reduce the number of pos-
sible grasp candidates. Finding model-based analytical
grasps is discussed by Bicchi and Kumar in [22]. For
evaluating the stability of a possible lifting grasp, Fer-
rari and Canny [23] proposed the force closure metric,
which measures the force exerted on the object at the
contact points. More recent research about grasp qual-
ity is presented by Miller and Allen [24].

The third phase of planning the object interaction mo-
tion is related to the field of manipulation planning.
There are several strategies of pre-grasp interaction ma-
nipulation for adjust the object on the support surface.
Our framework is intentionally designed to accommo-
date multiple modes of interaction, and this paper pri-
marily discusses pre-grasp interaction by planar push-
ing as a widely applicable action. The simplest form
of pushing is single-freedom reorientation in the plane,
which has been used in pre-grasp rotation to grasp hard-
to-reach object handles [25–27]. Planning techniques
for more general pushing and sliding actions using non-
prehensile manipulation are discussed in [28–30]. Re-
cent work [31] uses a short push or push-grasp as a type
of pre-grasp action primitive for bringing objects into
the hand after a reaching motion. Toppling as well as
tumbling presented by Lynch et al. [32] are also pos-
sible pre-grasp manipulations. For humanoid robots,
multi-modal interaction combining locomotion and ob-
ject pushing has been been developed by [33]. A whole-
body manipulation strategy for pivoting large, heavy ob-
jects has been presented by [34] as the primary manipu-
lation task that avoids completely grasping or lifting the
object.

Our presented framework also builds upon multiple
concepts of motion planning for synthesizing arm ac-
tions. Our templates for pre-grasp interaction hand
shapes store context information about the hand shape
and the hand pose relative to the object. The examples
do not include arm posture configurations, which would
be specific to a particular base placement of the robot
relative to the desired hand pose. Thus, it is necessary to
not only synthesize hand shapes but also collision-free
arm postures to reach the desired hand pose. Many hu-
manoid robots have at least 7-DoF arms which leads to
redundant inverse kinematics problems to achieve hand
poses. This is an extensively studied topic in the com-
puter graphics and robotics community [35–37]. These
approaches enable computation of manipulator configu-
rations for grasping, sliding and rotating manipulations.
For a complete motion, a path between the initial pose
and the calculated one has to be planned. Additional

constraints for such a path are obstacle avoidance and
joint limitations. Latombe [38] discusses traditional ap-
proaches to this problem and Rapidly-exploring Ran-
dom Tree (RRT) methods by Lavalle [39].

Current methods [13][20][21] for planning object
fetching search direct grasp solutions based on a known
object pose. Our pre-grasp strategy augments such
methods by a preliminary step which reconfigures the
object pose through a suitable pre-grasp manipulation
actions. This strategy not only results in higher suc-
cess rates for finding stable grasp solutions, but it also
increases the final grasp stability for grasping. Also,
even when a direct grasp solution is available, our ap-
proach enables faster online planning based on the fo-
cused search from context knowledge.

3. Human examples of pre-grasp interaction

In many scientific fields, successful techniques have
been inspired by studying solutions provided by nature.
Pre-grasp interaction is a huma-inspired manipulation
strategy that has been observed in many typical house-
hold activities [40]. Previously, detailed study [41] of a
specific type of interaction, pre-grasp rotation, has led
to the development of similar techniques for object ori-
entation for robot manipulators [27, 42].

In this work, we use examples from human actions
for more general interactions during the grasping pro-
cess, not just pre-grasp rotation. Our initial survey
provided insight into possible underlying patterns for
pre-grasp interaction with objects on a cluttered sur-
face. Our follow-up observations instrumented the ob-
jects and people to capture specific examples of their
hand motions relative to the object. These examples
form the basis of our database for preshapes templates
for the pre-grasp interaction.

Both studies of human pre-grasp interaction were
conducted with participants who provided their volun-
tary consent, in accordance with the Carnegie Mellon
Institutional Review Board policies.

3.1. Video survey
We first conducted an informal video survey to in-

vestigate different human strategies and possible object-
based patterns. For each participant various objects such
as a stapler, books, and CDs were randomly placed on
a table. The participants were instructed to remove the
objects from the table and place them on a nearby chair.
They sat at the table while performing the task and were
permitted to use only one hand. The major strategy we
observed was that people tend to perform pre-grasp ma-
nipulation, especially sliding the object on the table, to
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pick up the object. Furthermore, they used similar hand
poses for pre-grasp manipulation when grasping objects
of similar shapes.

3.2. Motion capture

We then ran a motion capture experiment to record
two sets of data from human examples of pre-grasp ma-
nipulation:

1. the hand positions relative to the object and
2. the hand preshape configuration,

both just before contact with the object. We expected
that both the position and preshape will change for
different object categories and different environmental
conditions. By environmental conditions, we mean the
object pose relative to the robot pose.

The setup consisted of a table with randomly-placed
objects, and the participants were instructed to move all
objects to another table. The setup required participants
to walk few meters between the tables, which was in-
tended to implicitly force the use of stable object grasps
for acquisition. Unlike the video survey, there was no
constraint for one-handed grasps in this experiment, be-
cause we preferred to capture the natural grasping be-
havior as much as possible.

We captured examples of hand positions and configu-
rations from 4 adult participants. In some cases, the par-
ticipants held multiple objects in one hand while acquir-
ing the next object with the other hand. We hypothesize
this may be an effort to reduce the number of walks to
the second table. All participants used pre-grasp manip-
ulation to slide or reorient a few objects, and three used
it for most objects. The grasp shapes and positioning on
the object were similar between different participants.

4. Pre-grasp strategy

We present a data-driven strategy which is designed
to automatically perform pre-grasp manipulation ac-
tions to fetch an object from a surface. That is, given
an object in an initial pose on a surface, our method
plans a solution for a robot to adjust the object to a
final pose, within a distinct final region, using a suit-
able pre-grasp manipulation strategy. This data-driven
approach is based on context knowledge consisting of
look-up structures for object categories, hand configu-
rations and poses, discrete actions, constraints, goal re-
gions, and grasp-types which are described in the fol-
lowing sections.

4.1. Representations

At the high level, the context knowledge is organized
by object categories O. For each object category, there
are multiple entries for different pre-grasp manipulation
contexts which allow successful pre-grasp manipulation
for a given object within this category with a high prob-
ability. The context per object category consists of two
parts, a set of preshapes S and a set of pre-grasp manip-
ulation data structures M.

O = (S,M) (1)

The next sections describe the preshape S and pre-grasp
manipulation M data structure.

4.1.1. Preshape
The idea behind the preshape data structure is, that a

hand configuration in a distinct pose relative to an ob-
ject, used for pre-grasp manipulation actions, can be ef-
ficiently adapted to other objects within the same cate-
gory to perform the similar actions. Hence, only a small
set of example preshapes is needed to be able to find
suitable hand configuration and poses to perform pre-
grasp manipulation actions for an object. In that con-
text, we introduce the preshape data structure S as:

S = (c,P,C,G,M) (2)

Every preshape provides a hand configuration c, which
is defined by the joint values of the given robot hand. A
preshape also supplies a set of starting poses P, which
describe the hand position and orientation. This set P
should be invariant in terms of rotation and scaling for
objects within the same category. Therefore, we pro-
pose to compute P at runtime to provide appropriate
starting poses p with respect to a given object. Hence,
different preshape definitions are likely for different or
even the same pre-grasp manipulation actions. To be
able to perform the pre-grasp manipulations M possi-
ble for a preshape, the hand configuration ca and poses
Pa adapted to the object have to satisfy constraints C,
for example finger contact with the object or mechani-
cal joint limits. Additionally, the selection of a distinct
preshape permits the selection of subset of grasp-types
G available by the robot platform which are reasonable
for final grasping.

4.1.2. Pre-grasp manipulation
The goal for pre-grasp manipulation strategy is to re-

locate an object into a final region where the object is
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Figure 2: The proposed pre-grasp strategy architecture with the four phases: “Preshape Starting Pose Computation, Pre-grasp Adaptation and
Evaluation, Pre-grasp Manipulation, Final Grasp” embedded in the grasp planning context.

more likely to be successfully grasped. For that pur-
pose, we propose the pre-grasp manipulation M data
structure:

M = (a,C, F) (3)

A pre-grasp manipulation is defined by an action a,
which in this context may be for example toppling,
tumbling, rotating, pushing, and sliding. In general
an action a has to satisfy constraints C during ma-
nipulation, for example constant object contact, force
limitations to the robot joints as well as to the object
surface, or object orientations like ensuring that a cup
is not spilling. Additionally for particular grasp-types
G and object categories O there are constraints C for
the object within the final region F such as whether
the handle of a pan is reachable. The final region F
is defined by the intersection of the region in which
grasp-types G, provided by the selected preshape S,
are feasible in the current robot workspace, the surface
region, and the region an action is likely to succeed to
relocate the object to.

To summarize, we introduced representations for
our proposed data-driven pre-grasp strategy to readjust
an object on a surface prior to grasping, which allows
us to select preshapes S and pre-grasp manipulations M
based on the object category O. These data structures
build the foundation for general usage of pre-grasp
strategies to increase the success rate of stable grasp
acquisition.

4.1.3. Preshape and pre-grasp manipulation for sliding
The introduced representation for pre-grasp strategies

is capable of providing solutions for different kinds of
pre-grasp manipulations. Here, we demonstrate the ben-
efit based on sliding pre-grasp manipulation and the cor-
responding preshapes optimized for this task.

We informally observed in the video survey men-
tioned in Section 1 that preshapes for sliding pre-grasp
manipulation have similar initial offsets to the object
surface and similar distances to object edges. Hence,
a set of starting poses P can be efficiently determined
for each object within a certain category based on the
following quantities in the object coordinate system, il-
lustrated in Fig. 3:

• The initial position xs on the object surface,

• the offset f of the hand to the object surface,

• the dimension d of the original object’s bounding
box,

• and the hand orientation stored by the roll axis r
and yaw axis y

The separation of the starting poses into the three parts,
surface position, free-space offset, and orientation, en-
sure scale-invariant and rotation-invariant adaptation to
objects of the same object category O as described in
Section 4.3. The assigned pre-grasp manipulation M is
always sliding manipulation. Constraints C in our con-
text are fingertip contact with the object and collision
free arm configuration for the pose. Every preshape has
a set of grasp-types G which are reasonable based on
the preshape knowledge, for example a large object is
preferably grasped with two hands if it is reachable for
both hands.

Sliding is the pre-grasp manipulation action a used in
this paper. Constraints C for this M are that the fingers
are in contact during the whole sliding manipulation,
and continuous arm configurations for the whole path
can be found. Object pose constraints are not considered
due to the fact that no special grasps for objects such as
handled ones are available.
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structure. These components allow for automatic determination of
the starting hand poses relative to the object. The left side shows the
original object from the preshape example. The right side shows one
possible starting pose made with absolute distance m and relative dis-
tance n for the two visible sides.

4.2. Architecture

Based on the presented data structures we propose a
data driven framework which performs pre-grasp strate-
gies to grasp an object located on a surface. The general
procedure is visualized in Fig. 2. The method takes
an object category O described in detail in Section 4.1
as input which can be gathered through a classification
step to find the best matching O for a given object.

At first, the pre-grasp strategy computes the set of
starting poses P for the preshapes affiliated with O. This
step enables starting pose computation that is invariant
to object scaling and rotation as demonstrated by our
sliding preshape representation.

In the second step kinematic template preshapes of
O are adapted to the object surface. The adapted pre-
shapes are evaluated with a rating function such as
Qp(c,p,q, F,C) to find the best adapted preshape in
terms of Qp which then is propagated to the pre-grasp
manipulation phase. The rating function Qp described
in Section 5.2 checks finger contact with the object, the
arm pose, the size of the final region F, and the compli-
ance with constraints.

The next step performs a corresponding pre-grasp
manipulation M to the best rated S. A successful pre-
grasp manipulation plan is achieved if the object is
within the final region F satisfying the constraints C.
If no successful plan is found the best manipulation re-
garding Qm(p f , F,C, g) is performed and the search is
restarted at the previous step. Qm described in Sec-
tion 5.2 determines which manipulation will be per-
formed based on the object pose, the distance to the final
region, the observed constraints, and the grasp success.

Finally, the grasp-types G usable for a object pose p f

are selected and adapted to the object. If no successful

solution respecting force closure metric can be found,
the previous step is repeated to manipulate the object to
another location. If no grasp solution can be found for a
certain amount of trials another pre-grasp manipulation
available by the adapted preshape is chosen to success-
ful find a final grasp.

In the following Sections 4.3 to 4.6 we describe
the four individual parts of the proposed pre-grasp
strategy: start pose computation, pose adaptation,
pre-grasp manipulation, and final grasping.

4.3. Preshape Starting Pose Computation

As described in Section 4.1 every preshape has to
have the ability to serve a set of starting poses P. We
present in this paper an efficient way to provide P for
sliding pre-grasp manipulation based on the preshape
optimized for sliding introduced in Section 4.1. In the
remainder of this section we refer to this distinct pre-
shape.

To regain the starting poses P we divided the stor-
age into three parts. Only the first part, surface position
xs generates a set of points. For every surface point an
offset f is added and the orientation of the hand is set
based on the roll axis r and yaw axis y. The latter two
ensure that the hand orientation is independent of the
object rotation using a right-handed coordinate conven-
tion, the orientation is additionally generated correctly
regardless if it is a right or left hand. To generate start-
ing poses regardless of the object pose we transform the
object coordinate system so that the robot shoulder po-
sition is expressed by a positive vector.

In our implementation a preshape for sliding pre-
grasp manipulation is always related to three object
sides. We determine the three sides with respect to the
new object coordinate system. There are two ways an
example position can be retargeted to a new object’s
side: either the absolute or the relative distance to the
side can be preserved. The absolute and relative dis-
tance either does not or does change with scaling, re-
spectively. The absolute relative distance can be mea-
sured regarding to the positive or negative side of the
coordinate system, thus there are always two possibili-
ties for absolute distances. Hence, there is one starting
position if the relation to all three sides is relative. If the
relation to one side is measured absolute, there are 6 dif-
ferent solutions one shown in Fig. 3, for every side two
distances. For two absolute distances there exist 12 pos-
sible solutions and if all sides distances are retargeted
as absolute 8 possible starting positions are available.
In total 27 starting positions xs are necessary to express
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all possible relations of the surface point with the object
sides.

Thus, multiple surface positions are available, and
this overhead is acceptable in order to store a set which
contains a promising relative pose for a new object.

4.4. Preshape Adaptation and Evaluation
The second phase, preshape adaptation (Fig. 2),

builds upon the set of preshapes selected by the object
category and P determined by the previous step. The
key aspect is that preshapes enable efficient computation
of hand configurations suitable for pre-grasp manipula-
tions considering environmental, robot, and object con-
straints.

Hence, the goal of this phase is to find suitable hand
poses and configurations for the current object to per-
form related pre-grasp manipulations. Several solutions
for this subtask are available in literature. For example
Hsiao [17] proposed a solution for template grasp adap-
tation for direct grasping using starting position map-
ping on related objects. Kim [43] suggested a grasp
adaption algorithm based on mapping grasp positions
from an example to a new object. Another grasp adap-
tation method from generic prototypes is discussed by
Pollard [16].

Since we need a grasp position for pre-grasp manipu-
lation and not only for direct grasping, we present a new
adaptation algorithm using additional context knowl-
edge provided by the preshape structure. The data rep-
resentation provides starting poses and corresponding
hand configurations with a high probability for suc-
cessful adaptation. The starting poses are checked for
reachability to generate collision-free arm IK solutions.
Hence, we do not initially search for starting preshapes,
but we evaluate the preshapes which are reachable. To
evaluate them, we need to adapt the preshapes to the cur-
rent object. The adaptation process has two parts, one
for adapting hand configurations – changing the hand
configuration c to get fingertip contact, and another one
to relocate the hand if no solution regarding Qp can be
determined (Fig. 4).

Now we describe the fingertip contact calculation.
Due to the configuration c given by preshape S, the
hand is already in a promising configuration for con-
tacts. Therefore, we individually search for finger con-
tact with the object surface based on an iterative in-
verse kinematics approach for the current finger chain.
This approach prevents awkward hand configurations
because the initial finger configuration is used if no con-
tact solution can be found. This method is described in
detail in Fig. 4. Once the preshapes have been adapted
to the object, we then compare them to select the best

Move Hand Along 
Approaching Direction 

Till Collision

Rate The Adapted
Con�guration With Q

Preshapes

A Adapted Preshape With 
Rating Q  > Threshold ExistspAdapted Preshapes

New Starting Poses

Find New 
Starting Poses

Adapt 
Preshapes

Find Surface Finger Tip
Contact Points

Calculate Inverse 
Finger Kinematic

For All Fingers

Yes

No

Move To New Pose 
Till Collision

Calculate New 
Starting Pose

Find Surface Finger Tip
Contact Points

Set Hand To Preshape
Start Con�guration c

Figure 4: The left side of our proposed algorithm adapts a hand con-
figuration of a given preshape to the object surface. If no adapted
preshape with a high enough rating Qp is available, the right side of
the algorithm computes new starting poses.

adapted preshape for the pre-grasp manipulation phase.
The adapted preshapes are scored by a rating function
Qp(c,p,q, F,C) regarding the pre-grasp manipulations
they correspond to and the best is propagated to the pre-
grasp manipulation phase.

Although the initial hand pose p ∈ P is likely to be in
a promising spot for finding a successful solution with
high value of Qp, it may occur that no finger contacts
can be found. If no preshape is successfully adapted, a
new P has to be found to achieve successful solutions
with respect to Qp. In these cases, we use the original
preshape configuration c, and then we search for a new
hand pose p based on the closest surface points to the
active finger tips. After the hand is iteratively moved
to the new pose, the process of finding fingertip contact
restarts (Fig. 4).

4.5. Pre-grasp Manipulation

Currently, the pre-grasp strategy has achieved the fol-
lowing goals. A set of preshapes have been adapted to
the object and the best adapted preshape relative to a
quality function Qp has been selected. Only pre-grasp
manipulations related to the object category and adapted
preshape are available at this stage. In addition to that
the adapted preshape has to respect the constraints for
the pre-grasp manipulation.

The goal of the pre-grasp manipulation phase is to
find a path such that the object is relocated to the final
region and respects the pose constraint of the selected
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preshape, manipulation, and grasp. The kind of pre-
grasp manipulation used for readjusting the object lo-
cation is specified within the selected and adapted pre-
shape S and the selected object category O.

Pre-grasp strategies in general have two aspects in
common. First, they use the benefit that the object rests
on a surface, such that it is often it is easier to ad-
just the object pose than to grasp the object. Second,
they solve the problem of finding successful and stable
grasps if the object is not within a certain reachable area
or pose by relocating the object to more easier plan lift-
ing grasps.

The general idea of this paper to provide a represen-
tation that enables to use multiple pre-grasp manipula-
tions such as sliding manipulations proposed by Lynch
et al. [30], rotating manipulations discussed by Chang
et al. [25], for a pre-grasp strategy to adjust the object
prior to grasping.

With completion of this phase, the object is located
within the final region and is satisfying the pose con-
straints, and thus the grasping action can be planned
more easily.

4.6. Final Grasp

The final grasp is planned once the pre-grasp manip-
ulation has successfully located the object within a final
region F respecting constraints C. Finding grasp can-
didates for an object located in such a region has been
well explored in robotics and computer graphics. Liter-
ature such as [13][20][21][16][17] about this topic was
introduced in Section 2. If a successful grasp solution
respecting force closure metric is found the pre-grasp
strategy is finished. But if no stable solution can be
found (Fig. 2), either the object has to be relocated
based on the previous step, or the manipulation strategy
has to be changed.

5. Implementation

We implemented our framework as a plugin in
OpenRAVE [44] which provides collision checking, IK
solutions and RRT planning to our simulation. The RRT
motion planner is used to find a continuous motion be-
tween two distinct hand configurations in a certain pose.

For the sliding preshapes and pre-grasp manipula-
tion the following assumptions are made. First, surface
geometry models are available for all objects. Object
weight is known a priori, and objects have an initial
coordinate system with a known upright axis indicating
how it rests on the surface. Additionally, our sliding

implementation does not support obstacles on the
surface. Other pre-grasp manipulation strategies as
well as a more sophisticated sliding implementation are
envisioned.

5.1. Object Classification
Mapping an input feature vector, e.g. weight and di-

mension of a given object, to an output label, e.g. box or
cylinder, is a standard classification problem. There are
many different solutions to solve this problem, for ex-
ample neural networks [45] or support vector machines
[46]. It is possible to use offline, online, supervised or
unsupervised learning in our framework, which allows
for flexible implementations.

In our implementation we use the dimensions, weight
and curvature as input vector for a multilayer neural net-
work. The dimensions and curvature are computed on-
line based on the object trimesh. This classification re-
sults in assigning an object category. The classifier was
trained offline with two manually selected object exam-
ples for every object category.

The goal of the object classification is to select the
best matching object category for a given object so that
the proposed pre-grasp strategy can prepare the object
pose for final grasping. Also note that our method will
not necessarily fail in response to misclassification of
objects, due to the adaptation process that is described
in Section 4.4. The object category is described in detail
in Section 4.1.

5.2. Rating Function
As introduced in Section 4.4 the adapted preshapes

are evaluated by the corresponding rating function
Qp(c,p,q, F,C). We propose a rating function which
prefers more finger contacts, a large final region size, as
many pre-grasp manipulations as possible, and uncon-
strained arm solutions regarding joint limits:

Qp(c,p,q, F,C) = α1
∑n

i=1 bi + α2 size(F) + α3 sat(C)

+ α4
∑a

i=1

(
(mini −qi)2+(maxx −qi)2

(mini −maxi)2

)−1

(4)

where n is the number of fingers, a the number of arm
joints, bi is a binary indicator expressing whether the
finger i made contact. The relative size of the final
region F is determined by size(F). The constraints
C are checked to determine if a related pre-grasp
manipulation can be performed, for example if the
force on the object is sufficiently away from the limit
force. The joint limits are mini and maxi, the current

8



joint value is qi. The different parts of the equation are
weighted by αi.

A second rating function Qm introduced in Sec-
tion 4.5 is designed to determine the pose p f for
unsuccessful pre-grasp manipulation which is the best
starting pose for a new adaptation set.

Qm(p f , F,C, g) = α1 d(p f , F) + α2 d(p f ,C) + α2 g (5)

where the distance to the final region F is measured as
well as to object pose constraints. In addition if the ob-
ject was within the final region and not graspable deter-
mined by g, the final region for this grasp-type has to be
removed for later trials.

5.3. Pre-grasp Manipulation
As mentioned in Section 4.1 sliding is the only pre-

grasp manipulation implemented for evaluation in this
paper. This is based on the observation within the video
survey mentioned in Section 1 where sliding manipu-
lation has been the most common pre-grasp manipula-
tion strategy for the given objects. For other pre-grasp
strategies like pre-grasp rotation we refer to the work of
Chang et al. [25, 27, 40]; pre-grasp toppling and tum-
bling to Lynch at al. [32]; sliding by Dogar et al. [47].

For a successful sliding manipulation we try to find a
continuous trajectory from the initial adapted preshape
pose to a manipulation end pose so that the object is
within the final region without losing the hand/object
and the object/surface contacts. For sliding manipula-
tion we have no pose constraint within the final region
due to the fact that the manipulating hand is already in
contact with the object during the whole manipulation.
Due to the definition of the final region (Section 4.1) it
is assumed that after successful pre-grasp manipulation
the object is more likely to be graspable after successful
pre-grasp manipulation.

When the hand is in contact with the object during
sliding pre-grasp manipulation, we require that the fin-
ger object friction is high enough such that the object
moves along with the hand movement on the surface,
which is assumed to be true as long as contact between
the finger and the object is maintained.

5.4. Final Grasp
The benefit in our framework is that object knowl-

edge is already available through selected template
grasps and, more importantly, the object is in a better
location for grasping. Berenson et al. [20] propose a
pre-computation of possible grasp candidates sampling
the object surface to gather starting positions to adapt

Table 1: Objects and object categories*.

O0 flat shape O1 lightweight box O2 heavy box O3 cylinder

CD baseball bat dictionary cookie tin
credit card stapler keyboard box sugar canister
15-cm ruler tape dispenser VGA-splitter plant pot
house key cassette tape food storage water jug

bed linen box container/box
portable hard-drive

*All objects were manipulated in the human study. Objects in the first
row, and other objects, were tested in the simulation validation. The
objects in the second and third rows provided the examples for
preshape and manipulation information in the database.

template grasp. Due to the better location and provided
template grasps based on object knowledge given by the
selected preshape S we sample the object surface and
adapt the provided template grasps to the object surface
with the algorithm described in Fig. 4.

After grasp candidates are found the stability has to
be determined. A stable solution in this context has to
satisfy the force-closure metric proposed by Ferrari et
al. [23].

6. Experiments and Results

We compared our method in simulation to a tradi-
tional planner for direct object grasping. We evaluated
the success rate of finding a feasible object acquisition
plan, and the computation time.

6.1. Scenario
In the test scenario, there is a single table in front of

the robot. The robot is a bi-manual humanoid model
from OpenRAVE [44] with 7-DoF arms and 15-DoF
hands (Fig. 1). In our implementation, the right hand
has been replaced with the ShadowHand with 23 DoFs.

Two objects from each of the four sliding manipu-
lation preshape sets were tested (Table 1). Each pre-
shape set consists of five preshapes from two objects
in the same category, which were manually extracted
from human examples gained with a motion capture ex-
periment. The tested objects were not included in the
database examples. For the final grasps we provide
12 grasp-types to both planners. Our method selects
suitable grasp-types corresponding to the selected and
adapted preshape. The direct grasp planner randomly
selects one out of the 12 grasp-types and tries to find a
stable lifting grasp, until a solution is found or all 12
are tried. We limited the search for a stable solution for
each grasp-type to 20s.

Each object is placed at a random position and plane
orientation on the table within a 1.2m×0.6m region in
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front of the robot, shifted 0.4 m right of the robot cen-
ter. We discard the random position if the object is not
within the reaching radius of the robot’s right arm. We
generate poses in this manner to obtain 15 reachable
poses per object. Both planners attempt an object ac-
quisition solution for the same 15 starting object poses.

6.2. Direct Grasp Planner

For direct grasp planning the implementation de-
scribed in Section 4.6 was used but because no object
context is available, grasp-types available for the robot
are randomly selected and adapted.

6.3. Simulation Results

Table 2 presents the results, separated for each object
category and planning phase. The “Pre-grasp” column
for our approach includes the object classification, cal-
culation of the preshape starting poses, preshape adap-
tation and evaluation, and pre-grasp manipulation. The
“Grasp” column contains the final grasp adaptation for
both our method and the direct grasp planner. The “Tra-
jectory” column consists of the trajectory plan from the
initial position to the adapted final grasp for both meth-
ods: direct grasp planning, as well as for our approach
if the object is initially in the final region F of the pre-
shape. If not, in our approach the trajectory consists
of two separate trajectories, one from the initial pose to
the adapted sliding preshape and a second one from final
sliding to the final grasp pose.

Our strategy increases the success rate for object ac-
quisition for all tests as shown in Table 2. In addition,
our approach reduces the computation time for grasp
adaptation significantly regardless of whether the object
is directly graspable or not. Furthermore median of the
planning time for the grasp pose with our method was
about 2s whereas the direct grasp planned took about
200s. The long computation time for the direct grasp
planner results through the exhaustive and in the most
cases not successful search for stable final grasp candi-
dates.

Figure 5 shows example simulation results for differ-
ent object categories.

6.4. Perceptual Evaluation

We also evaluated human response to the pre-grasp
manipulation plans and direct grasping plans. In
our survey, 21 participants viewed pairs of simulation
videos showing the humanoid agent using, in a random
order, either pre-grasp manipulation or direct grasping.
Participants selected the preferred video in each pair.
Table 3 shows that pre-grasp rotation was preferred by

Table 2: Simulation results for the method comparison.

Successes Mean planning times (seconds)

out of 36 Pre-grasp Grasp Trajectory

O0: CD, ruler
Pre-grasp push 36 1.5 2.0 15.0
Direct grasp 1 – 53.4 0.4

O1: bat, stapler
Pre-grasp push 34 3.4 15.2 16.7
Direct grasp 25 – 15.8 11.8

O2: book, food box
Pre-grasp push 36 1.5 3.2 17.7
Direct grasp 26 – 16.5 8.4

O3: tin, jug
Pre-grasp push 36 2.1 2.6 18.6
Direct grasp 25 – 33.6 8.9

Total out of 144 Pre-grasp Grasp Trajectory

Pre-grasp push 142 2.1 5.6 17.0
Direct grasp 77 – 22.3 9.6

Table 3: The number of participants who preferred either pre-grasp
interaction or direct grasping in the video survey.

Manipulation method

Object Direct grasp Pre-grasp push

Cookie tin 3 18
Dictionary 10 11
Baseball bat 6 15
CD 9 12
Linen box 5 16

Overall preference (≥ 3/5 objects) 5 16

more people for the cookie tin, baseball bat, and linen
box objects. A chi-square test on the number of partici-
pants preferring pre-grasp manipulation or direct grasp-
ing for at least 3 of the 5 video pairs rejected that the ra-
tio was balanced 50-50 (p(X2 = 5.76, d f = 1) = 0.02).

6.5. Physical Demonstration

We demonstrated the physical plausibility of our sim-
ulated pre-grasp strategy plans on a multi-fingered robot
manipulator. The system consists of a 7-DoF Motoman
arm and an attached Shadowhand robot with 5 fingers.
In our example demonstration, the object is a CD, which
is is difficult to grasp from a table because of its thin
edge. However, the Motoman with Shadowhand was
able to grasp the CD after first using a sliding pre-grasp
manipulation planned with our method.

The CD was manually placed on the table to match
the simulated task scene. The Motoman arm trajec-
tory produced by our simulation method was executed
open-loop on the robot. Due to limitations of the
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Figure 5: Example simulation results.

control synchronization, the hand preshapes for the
Shadowhand were selected from our simulated plan
but were manually pre-set to match the arm trajectory
timing. The video at http://his.anthropomatik.
kit.edu/english/532.php shows the comparison
between the simulated Motoman plan and the physical
execution for the CD object.

7. Validation of template classification

The experiments in the previous section demonstrate
the utility of augmenting the grasping process with
pre-grasp interaction for object acquisition. Using
our framework for planning pre-grasp sliding interac-
tions, we were able to synthesize plausible and natural-
looking actions that improved the reachability of the ob-
ject for grasping.

We now examine how both the initial template clas-
sification and the later template adaptation are critical
for finding pre-grasp interaction plans within a tractable
time. To validate these stages, we consider experiments
with two modified versions of the method presented in
Section 4.

First, we test the value of organizing examples ac-
cording to the object context. We modify our framework
by eliminating object classification while retaining the
information from the same examples of pre-grasp hand
shapes and poses relative to the objects. In essence,
this reduces the classification step to predicting a single
class that includes all of the example data. Thus we still
use the examples to find promising hand pre-shapes, but
the selection is agnostic to the object features.

Second, we test the robustness to misclassification of
the object class. In this set of experiments, the examples
are organized according to the same four object classes
described in Table 1. However, we deliberately mis-
assign the classification result in order to investigate the
response of the hand adaptation process.

7.1. Example organization in a single-class

In this experiment, we keep our original framework
but instead input a database consisting of a single class
which includes all example hand preshapes. This is
equivalent to omitting the classification of the object
features into an object category to determine a subset of
the examples. Thus the candidates for initial hand poses
and preshapes are selected by evaluating and attempt-
ing adaptaption with all examples in the database in a
random order. The final grasp shape and final region
for object location are selected in the same manner as
before, that is according to the corresponding preshape
that is attempted during the pre-grasp pushing manipu-
lation.

Due to the increase in the number of examples to test,
an additional termination criterion is included to con-
strain the length of the experiment. The planning pro-
cess was terminated at a total time of 15 minutes if no
successful grasp for object acquisition is found. This
prevents the experiment from testing every example to
exhaustion. Only the pre-grasp interaction strategy was
tested, without the direct grasping comparison.

The results in Table 4 indicate that the lack of orga-
nizing examples by object class decreased the success of
finding feasible grasping plans by 9% compared to the
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Table 4: Simulation results using a single class template.

Successes Mean planning times (seconds)

out of 36 Pre-grasp Grasp Trajectory

O0: CD, ruler
Pre-grasp push 27 75.7 124.0 11.6

O1: bat, stapler
Pre-grasp push 36 16.0 10.6 189.7

O2: book, food box
Pre-grasp push 31 3.2 83.0 17.8

O3: tin, jug
Pre-grasp push 35 5.8 25.3 22.4

Total out of 144 Pre-grasp Grasp Trajectory

Pre-grasp push 129 22.7 55.7 65.7

original framework results in Table 2. In addition, the
average computational time required for planning the
manipulation action increased by 11-fold, 10-fold, and
4-fold for the pre-grasp interaction pushing, the final
grasp planning, and the arm trajectory planning. These
results show the benefit of having examples organized
in a manner that allows the identification of promising
candidate configurations.

7.2. Results for object category misclassification

In this second validation experiment, we test the
adaptation phase of our framework.

The previous validation experiment demonstrated the
need for example organization into template categories.
In our original experiments presented in Section 6, the
classification results appeared reasonable even for ob-
jects that did not necessarily fit the semantic labels we
used in Table 1. For example, the water jug object has
a square cross section in the bottom half of its the base,
but it was classified in the “cylinder” category O3 not
the “heavy box” category O2. This resulted in natural-
looking pre-grasp interaction where the hand contact the
side surfaces of the jug similar to the lateral surfaces of
a cylinder, instead of interaction with hand contact at
the edge between the top and side faces of a box.

For additional novel objects or a different object
classifier, however, it is possible that the classification
method may result in a low confidence between two or
more classes that would be similarly appropriate for the
object. Here we test how the adaptation phase in our
framework can be used to robustly modify the hand pre-
shapes to new objects when the classification results are
different.

In this experiment, our framework remains un-
changed except the output of the classification result.

We force the classification result to swap between two
pairs of categories:

• if the original classification result would have been
O0 for thin objects, the mis-classified result is out-
put as O1 for light weight boxes, and vice versa.

• if the original classification result would have been
O2 for heavy boxes, the mis-classified result is out-
put as O3 for cylinders, and vice versa.

We did not consider the extreme mis-classification re-
sults of swapping, e.g., O0 for thin objects with O2 for
heavy boxes, since this result is unlikely if the classifier
has been trained on sufficient examples.

The results in Table 5 for the misclassification tests
indicate that there was a decrease in the success rate
for finding feasible grasp plans, compared to the “cor-
rect” classification results in Table 2 (125 successful
plans overall instead of 142). Interestingly, the direct
grasp successes increased for the mis-classification re-
sults. This was due to the fact that the final region for the
object grasping is associated with the mis-classified ob-
ject class. Thus, sometimes a partial pushing interaction
is initiated that moves the object from the starting loca-
tion. For direct grasping, there is no object motion from
the start location, and the misclassification in some ex-
amples resulted in different hand preshapes being used
for successful grasping.

The comparison for the timing results (Table 5) with
the original computation time averages (Table 2) indi-
cates that the main increase in planning time occurs
in the grasp planning phase, along with an increase in
the pre-grasp push planning time. This is due to the
association of the final grasp hand shapes with a se-
lected pushing preshape. This association leads to time-
efficient selection and natural-looking manipulation ac-
tions when the object is “correctly” classified. How-
ever, in the mis-classification case, the associated final
grasp shapes would not be appropriate for the object.
This point in fact demonstrates the utility of using pre-
grasp interactions because the hand shapes for pushing
or other pre-grasp interactions are usually less restricted
than the final grasps required for lifting an object. That
is, the adaptation of a pushing shape primarily needs to
make contact with the object to exert forces in the right
direction, but the grasping shape must satisfy more con-
straints to be a feasible lifting grasp. In systems where
the classification confidence is low, pre-grasp template
adaptation using the selected class may still be reason-
able, but the final grasping phase could be altered to
consider hand shapes from similar grasp classes instead
of only the selected class.
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Table 5: Simulation results for mis-classified template examples.
Note the changes in object class label Oi compared to Table 2.

Successes Mean planning times (seconds)

out of 36 Pre-grasp Grasp Trajectory

O1: CD, ruler
Pre-grasp push 22 7.4 220.8 8.8
Direct grasp 1 – 111.3 0.4

O0: bat, stapler
Pre-grasp push 31 16.6 12.2 18.2
Direct grasp 30 – 12.5 8.8

O3: book, food box
Pre-grasp push 36 3.3 2.8 17.2
Direct grasp 28 – 22.7 8.8

O2: tin, jug
Pre-grasp push 36 2.1 2.6 19.7
Direct grasp 24 – 30.0 8.9

Total out of 144 Pre-grasp Grasp Trajectory

Pre-grasp push 125 7.0 43.4 16.7
Direct grasp 83 – 22.2 8.7

8. Discussion

In this paper we presented a framework for repre-
senting and re-synthesizing examples of pre-grasp in-
teraction, particularly sliding actions, that can improve
grasping success. Our approach was based on patterns
observed in human demonstration of pre-grasp interac-
tion, where the choice of hand position relative to the
object and hand shape were similar for similar object
features. These examples simplify the high-dimensional
search for candidate hand configurations but providing
promising templates for a new object based on its ob-
ject category. With this reduction of candidate configu-
rations, the search becomes tractable for articulated ma-
nipulators with multi-fingered hands.

The basis of our framework is the representation of a
pre-grasp interaction that includes context information
including the hand preshape and pose as well as other
constraints such as the final region suitable for the final
grasp. Another key component of our method is the rep-
resentation of the candidate preshape poses relative to
the object, which are stored and regenerated to account
for changes in object scaling and rotation. Altogether,
these pre-grasp manipulation actions, which includes all
kinds of prior adjustments to object acquisition, and fi-
nal grasping can be computed online. The whole strat-
egy results in more robust and stable object grasping.

8.1. Organization of examples

Our validation of the proposed framework focused on
the importance of organizing examples for efficient re-

use. In particular, when there are several examples of
candidate hand preshapes, it is not sufficient that the ex-
amples exist in the reference database. Instead, orga-
nization — in this case by object categories – allowed
our method to quickly determine a subset of examples
that were suitable for the simulation tasks. The effi-
ciency of identifying promising templates is an aspect
of example-based planning that will be even more criti-
cal for larger databases of manipulation actions.

In our current implementation, the database of pre-
shape examples was manually organized based on our
observation from the human motion capture studies. We
found that examples from a small set of 8 objects and 4
participants provided a promising templates that could
be adapted successfully to new objects. An extension
that is beyond the scope of the current work is to extend
the system to include automatic learning or updates of
the object classes and examples. This can be done with
both new human-demonstrated examples as well as ex-
amples that come directly from the robot’s manipulation
that result from our syntheis method.

8.2. Directions for future extensions
In future work, we plan to extend our database and

representations to accommodate additional types of pre-
grasp manipulation such as tumbling or topping. While
other action modes and preshape data structure to sup-
port the thesis and to update the sliding one to a more
sophisticated version which is capable of avoiding ob-
stacles on the surface.

Future steps may explore reducing the assumptions
about the friction coefficients in the environment. Ini-
tially planning with friction assumptions, but then using
feedback during the pre-grasp manipulation to obtain
new object parameters such as inertia and friction co-
efficients would increase the stability of the final grasp
due to the extra knowledge gained.

Another interesting idea is to parallelize different
planning steps. As soon as the object representation is
selected, all possible preshapes are available. Hence,
one approach is to evaluate final grasp poses in paral-
lel which is done in [20] by Berenson et al. as offline
precomputation. Preshape adaptation can also be paral-
lelized due to orthogonal usage. This would speed up
final grasp planning because it is only a selection of
possible grasp solutions with respect to environmental
restrictions.

Overall, the proposed unified representation of pre-
grasp strategies for object manipulation significantly in-
creases the object acquisition success rate. This under-
lines the great potential of using human behavior knowl-
edge to develop new planning strategies.
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Towards a Unifying Grasp Representation for Imitation Learning on
Humanoid Robots

Martin Do, Tamim Asfour and Rüdiger Dillmann

Abstract— In this paper, we present a grasp representation in
task space exploiting position information of the fingertips. We
propose a new way for grasp representation in the task space,
which provides a suitable basis for grasp imitation learning.
Inspired by neuroscientific findings, finger movement synergies
in the task space together with fingertip positions are used
to derive a parametric low-dimensional grasp representation.
Taking into account correlating finger movements, we describe
grasps using a system of virtual springs to connect the fingers,
where different grasp types are defined by parameterizing the
spring constants. Based on such continuous parameterization,
all instantiation of grasp types and all hand preshapes during
a grasping action (reach, preshape, enclose, open) can be
represented. We present experimental results, in which the
spring constants are merely estimated from fingertip motion
tracking using a stereo camera setup of a humanoid robot. The
results show that the generated grasps based on the proposed
representation are similar to the observed grasps.

I. INTRODUCTION

The acquisition of novel grasping skills plays an essential
role in enabling humanoid robots to fully interact with the
environment and the human. Considering the variety of
objects and the different ways that an object can be dealt
with, grasping strategies have to be developed which go
beyond simple closure grasps towards a complete projection
of the numerous possible grasps associated with each object.
In order to bootstrap this process, imitation learning provides
a fast alternative in terms of acquisition of new skills.
Learning from human demonstration features the possibility
of generating a representation of a demonstrated action which
encodes human-likeness and subtle characteristics such as
constraints which are satisfied during the execution of a
specific task by a human.

Therefore, an essential issue in imitation learning that
has to be addressed, is the question of what features have
to be stored and processed and how, in order to obtain a
generalized representation, which can be adapted and applied
to new objects and situations. This issue becomes even more
evident, when we look at the grasp problem for a robot hand
where the motion of a highly complex system with several
degrees of freedom (DoF) has to be controlled.

In [1], an early attempt of a generalized grasp repre-
sentation in joint space is given by the concept of the
grasp taxonomy which describes the assignment of grasp
hand postures to a finite number of classes. Based on this
grasp taxonomy [2] provides an extension which additionally
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as members of the Institute for Anthropomatics, e-mail:
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incorporates a number of hand posture patterns common in a
manufacturing environment. This concept suggests that given
a class, represented by an exemplary posture, for a specific
object, an instance in the vicinity of the posture can be found
which forms a good grasp. In previous works such as [3]
and [4] grasp taxonomies are applied to grasp synthesis.
However, due to large number of DoF being involved, the
configuration space remains huge.

Neuroscientific studies (see [5]) demonstrated that a lesser
number of DoF needs to be actively controlled to cover the
range of possible human hand postures during daily grasping
activities, due to consistent covariations between the finger
joints, known as postural hand synergies. In previous works
([6],[7],[8]), this concept has been applied to control the
entire hand by a lower dimensional set of base postures
commonly extracted by applying dimensionality reduction
algorithms such as Principal Component Analysis. A similar
approach is proposed in [9] where a grasp representation is
generated in the form of manipulation manifolds consisting
of hand postures and a mapping from joint space onto
manipulation parameter in task space.

Nevertheless, these approaches operate in joint angle
space, respectively in its projection to a lower dimensional
subspace, which features unfavorable characteristics in terms
of imitation learning through the observation by a humanoid
robot. One major issue lies in the high complexity of observ-
ing and tracking human hands in joint space. Vision-based
tracking algorithms which can be used with a stereo camera
setup of a humanoid head do not provide the necessary
performance and accuracy, while highly accurate motion
capture systems involve high costs and time-consuming
operation. Furthermore, the question arises how and whether
the continuous reach movement in task space can be prop-
erly aligned with discrete hand postures in joint space. As
stated in [10] and [11], the preshape and the enclose phase,
respectively the final grasp phase, are accompanied by the
reaching movement. Therefore, from the kinematic point of
view, it seems to be reasonable to treat the whole grasping
process as a single unit in which the three phases persist in
permanent correlation to each other. Hence, attaining human-
likeness is contradictory to the decoupled processing of the
preshape, reach, and enclose phase. Ordinary task space
representations (see [12], [13]) considering merely contact
points and fingertip positions do not address this issue, while
representations in the form of separate finger trajectories
neglect correlating finger movements.

Hence, this work proposes a task space representation
which incorporates synergies between the fingers by means



Fig. 1. Visualization of the bodies representing the fingertips. The virtual
springs are visualized in black and denoted by the corresponding spring
constant ki j . VF describes the virtual finger while thumb (T), index (I),
middle (M), ring (R) and pinkie (P) are indexed with 0, 1, 2, 3, 4.

of mass-spring-damper systems whose parameters form the
representation of a grasp. Furthermore, we will show that this
representation can be an initial building block for a grasp
imitation learning framework which allows the parameter
estimation from human observation, mapping to a humanoid
platform, and the execution by reaching and grasping.

The paper is organized as follows. Section II describes the
proposed representation of a grasp consisting of the model of
the fingertip motion and the reach movement. In Section III,
the experimental setup is explained containing a description
of the humanoid platform, the observation mechanism and
mapping to the robot platform. Finally, experimental results
are given in IV. In conclusions, the work is summarized and
notes to future works are given.

II. REPRESENTATION OF A GRASP

A. Concept

In this work, we suggest a representation which exploits
synergies in task space by exploring and modulating fingertip
movements during the grasp process. To establish synergies,
one has to ensure that the trajectory of each fingertip is
influenced by the motion of the remaining fingers, especially
the neighboring ones. To model these relationships, ordinary
mass-spring-damper systems are introduced as virtual springs
between the fingertips as depicted in Fig. 1. The motion at
time t of finger i at position pi ∈Rdim connected to a finger j
at position pj ∈Rdim via a virtual spring can be inferred from
following second order system of differential equations:

ẍij(t) =−ki j

mi
xij(t)− d

mi
ẋij(t), (1)

with
xij(t) =

pi−pj

‖pi−pj‖ (‖pi−pj‖− li j), (2)

describing the displacement concerning the equilibrium
length li j along the spring direction and ẋij(t) and ẍij(t)
representing the corresponding velocity and acceleration. mi

denotes the mass of the physical body which represents
the fingertip i while ki j denotes the spring constant and d
the damping constant. Auxiliary springs, which link each
finger to its supposed contact position ci are added to the
system reducing oscillations in order to maintain stability
and to retain the system centered around the contact points.
The forces of each auxiliary spring can be determined by
following equation:

ẍci(t) =−kcxci(t)−dẋci(t), (3)

where xci(t) is obtained by replacing pj with ci in Eq. 2. kc
is constant and holds the same value for all auxiliary springs.
In order to grasp an object, we desire a smooth, simultaneous
movement of all finger towards their corresponding contact
points. According to neuroscientific studies (see [14]), during
the grasp process humans tend to focus on a mainly fixed
spot on the object surface which corresponds to the thumb
contact position. Therefore, the thumb is assumed to lead the
reaching movement of the end effector towards the object.
Following a concept introduced in [15], the remaining fingers
form the virtual finger whose forces are supposed to build
up an opposition force to the force exerted by the thumb
in order to achieve a stable grasp. Based on these findings,
to attain balanced, simultaneous finger movements, a central
force fcen(t) is applied on the entire system, which exerts a
force fi,ext(t) on each auxiliary spring resulting in:

fi,ext(t) =


fcen(t) , i = 1(

∑N
i=2 ‖xci (t)‖

(N−1)‖xc1 (t)‖

)2

fcen(t) ,else,
(4)

with finger i = 1 indexing the thumb. For the description
of the entire system, we introduce a connection matrix K
with K(i, j) = ki j and a damping matrix D with D(i, j) = di j
where ki j > 0, di j = d if two fingers are connected by virtual
spring, and ki j = 0, di j = 0 otherwise. Furthermore, a vector
c is introduced indicating whether a finger is involved in a
grasp by setting c(i) = 1, and c(i) = 0 otherwise. To obtain
the complete equation for the motion of the body i, Eq. 3 and
Eq. 4 are added to Eq. 1 which leads to following equation:

ẍi(t) =−Kxij(t)−Dẋij(t)+ cT(ẍci(t)+ fi,ext(t)). (5)

By solving Eq. 5 one obtains the displacements xi(t) by
which the position pi is updated. Due to stability reasons
the implicit fourth-order Runge-Kutta method is used as a
solver.

In case contact points are not available, the proposed
system can be applied on simple shaped objects by modifying
the xci(t). Replacing each contact point with the object center
co and introducing the mean distance d̄({ps},co) between
relevant surface points {ps} and co as equilibrium length
one obtains:

x̄ci(t) =
pi− co

‖pi− co‖ (‖pi− co‖− d̄({ps},co)). (6)

Applying Eq. 6 to Eq. 5 instead of Eq. 3 leads to the desired
system equations. Relevant surface points can be extracted
e. g. from a silhouette which one obtains when intersecting
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Fig. 2. Blue line, starting from positive, describes the acceleration for a
reaching movement towards the object. The red line is the derived force
trajectory. Left: Grasp from above the object. Right: Grasp from the side of
the object.

a plane orthogonal to the reach direction of the end effector
with a volumetric object representation.

Most of the parameters within the system are assumed to
be constant or can be calculated except for the central force
fcen(t) whereas fcen(t) plays a crucial role in the modulation
of the system. For fcen(t) < 0 finger movements are generated
which lead the fingertips away from the object whereas
this process can be considered as the preshaping of the
hand. The enclosing movement is initiated when fcen(t) > 0,
causing the system to progress towards the final grasp pose.
Therefore, fcen = {fcen(0) . . . fcen(t)} can be interpreted as a
force trajectory which controls the execution and transition
of the different grasp phases. The trajectory can be inferred
from the acceleration profile of the reach movement as
follows:

fcen(t) =
{ −‖a(t)‖ , t < tamin

‖a(t)‖ ,else, (7)

where tamin denotes the moment where the acceleration
magnitude becomes minimal. The force trajectories for two
different reach movements are depicted in Fig. 2.

B. Parameterization

The shape of the the finger trajectories emerging from the
modulation of the system mainly depends on the spring con-
stants of the virtual springs. For M springs the constants are
collected in a vector k = (k1, . . . ,kM)T . A major advantage of
the proposed representation is that k can be estimated from
the observation of the fingertip motion. For N fingers given
their observed trajectory {pi = {pi(0) . . .pi(t)}|i = 1 . . .N}
and the force trajectory fcen of the human hand, in order
to estimate the springs constants, one has to rewrite Eq. 5
resulting in:

Xtk =−ẍi(t)−Dẋij(t)+ cT(ẍci(t)+ fi,ext), (8)

where matrix Xt ∈ R(N·dim)×M describes the displacements of
each fingertip along the spring m:

Xt(i∗dim+1,m) = xmi(t)
...

Xt(i∗dim+dim,m) = xmi(t), (9)

with n = 1, ...,dim · N and xmi(t) = xi j(t) if body i is
connected to j via spring m, and xmi(t) = 0 otherwise.
ẍi represents the accelerations of the fingers in task space

calculated from the observed finger trajectories. Since Eq. 8
forms a linear regression problem, we apply Singular Value
Decomposition to produce X̂−1

t , the generalized inverse
matrix of Xt. Subsequently, by multiplying X̂−1

t on both sides
an estimation for k is obtained.

C. Representation of the reach movement

For a complete grasp representation, the reach movement
extracted from human observation has to be represented in
a way, which allows the adaptation of learned action to new
situations. We investigated different approaches for the rep-
resentations of movement primitives based on splines [16],
Hidden Markov Models [17] and applied dynamic motor
primitives (DMP) as proposed in [18]. A DMP provides
a representation of a movement segment by shaping an
attractor landscape described by a second order dynamical
system. In [19], a motion representation based on DMPs
is applied to represent pick-and-place actions. Similar to a
linear spring system, using second order dynamics the basic
point attractive system can be written as follows:

τ v̇ = k(g−x)−dv− k(g−x0)s+ k f (s) (10)
τ ẋ = v, (11)

where x and v are position and velocity of the system;
x0 and g are the start and goal position; τ is a temporal
scaling factor; k acts like a spring constant; the damping
term d is chosen such that the system is critically damped.
To enable the encoding of arbitrarily complex movements,
the non-linear function f is introduced which is defined as
follows:

f (s) = ∑i wiψi(s)s
∑i ψi(s)

, (12)

where ψi(s) = exp(−hi(s− ci)2) are Gaussian basis func-
tions, with center ci and width hi, and wi are adjustable
weights. The function f depends on a phase variable s, which
monotonically changes from 1 towards 0 during a movement
and is obtained by following equation:

τ ṡ =−α s , (13)

where α is a pre-defined constant. Eq. 13 is referred to as
canonical system. Based on a demonstrated movement x(t)
with time steps t = 0, . . . ,T and its corresponding velocity
and acceleration profile v(t) and v̇(t), a DMP can be adapted
to a movement by adjusting the weights wi within f . Since f
can be computed from Eq. 11 with the demonstration param-
eters and s can be obtained through integrating the canonical
system, the adjustment of wi is reduced to a linear regression
problem. The DMP formulation features several advanta-
geous properties such as guaranteed convergence towards the
goal, spatial and temporal invariance and robustness against
perturbations. However, the most important property lies in
the simple adaption towards a new situation, which is mainly
accomplished by specifying new start and goal positions.
Once specified, the execution of the movement is attained
through integration and evaluation of s(t). The obtained



Fig. 3. Left: The humanoid robot ARMAR-IIIb. Right: Position-controlled
right hand with 8 DoF.

phase variable then drives the non-linear function f which in
turn perturbs the linear spring-damper system to compute the
desired attractor landscape. Regarding the concept introduced
in Section II-A, the acceleration profile v̇(t) of the DMP can
be used to derive the force trajectory fcen as defined in Eq. 7.
For each specific grasp type a DMP is generated and stored
in motion library along with the parameters of the grasp
representation.

III. EXPERIMENTS

A. Experimental Platform

The humanoid robot ARMAR-IIIb, which serves as the
experimental platform in this work, is a copy of the humanoid
robot ARMAR-IIIa [20]. From the kinematics point of view,
the robot consists of seven subsystems: head, left arm, right
arm, left hand, right hand, torso, and a mobile platform.
The head has seven DoF and is equipped with two eyes,
which have a common tilt and can pan independently. Each
eye is equipped with two digital color cameras, one with a
wide-angle lens for peripheral vision and one with a narrow-
angle lens for foveal vision. The upper body of the robot
provides 33 DoF: 2·7 DoF for the arms and three DoF for
the torso. The arms are designed in an anthropomorphic
way: three DoF for each shoulder, two DoF in each elbow
and two DoF in each wrist. Each arm is equipped with a
pneumatic-actuated five-fingered hand with eight DoF. The
locomotion of the robot is realized using a wheel-based
holonomic platform.

B. Observation

In the following, a method for capturing the human
fingertip motion is presented. Based on [21] and [22],
we implemented a real-time tracking algorithm combining
particle filter and mean shift based on color information.
The input to the system is a stereo color image sequence,
captured with the built-in wide-angle stereo pair of the
humanoid robot ARMAR-IIIb. To obtain accurate and robust
position estimations of the fingertips, markers in the form of
green caps are attached to the fingers. In the first frame,
the color information of the markers is exploited to segment
the images in order to determine the regions of interest
surrounding the N fingertips. These regions are labeled and a
color histogram model in HSV space is calculated. A single

particle filter instance is applied to obtain an estimation
for all fingertip positions based on the previous observation
and the weighted particles. Each particle represents a set of
N candidate regions whereas the corresponding weight is
calculated by comparing the regions color histograms to the
histogram model and the posture of these candidates to the
one in the previous frame. The estimation is refined using an
ordinary mean shift algorithm driving each region towards
the maxima of the density distribution within the color
histogram. Since the markers are of the same color, overlaps
and false labeling might occur. For grasp observation, the
assumption is made that the palm is facing towards the
camera where in most cases the finger order Thumb →
Index→ Middle→ Ring→ Pinkie is valid. By representing
the coordinates in polar space, it can be checked easily if
this order is violated. If so, a search for candidate regions
for the false estimated fingers is initiated in the vicinity
of the previous configuration. Since this algorithm operates
on monocular images, for each view a tracking instance is
created whereas the 3D positions of the fingers are calculated
by exploiting epipolar geometry. The presented framework is
capable of online tracking of fingertip motion with a frame
rate of 23 Hz on a 2 GHz dual core CPU. Sample images
during the tracking process are depicted in Fig. 4.

C. Mapping and Execution

The grasp reproduction on ARMAR-IIIb is performed in
several stages. In the first stage, the DMP for the reaching
movement is adapted to position and the orientation of the
object to be grasped. Subsequently, the force trajectory is
derived to modulate the grasp representation resulting in
the fingertip trajectories. The trajectories are mapped and
scaled to fit the coordinate system of an intermediate hand
model. For this purpose, the Master Motor Map (MMM),
introduced in [23] and extended in [24], is used. The core
feature of this framework is a reference kinematic model
which facilitates the mapping from a human motion capture
system to the kinematic structure of a robot. The model
incorporates a biomechanical hand model with 21 DoF. By
solving the inverse kinematics problem for the MMM hand
model, one obtains the joint angle configuration respective to
the given fingertip positions. Due to different measurements
and less DoF of the robot hand, in order to attain a goal-
directed reproduction, which additionally features a high
similarity to the demonstrated human hand movement, joint

Fig. 4. Left camera views of the tracking method. Red denotes thumb
region, light blue the index, blue the middle, pink the ring finger, and red
pinkie region



angles as well as the desired fingertip positions have to
be considered during execution. In [25], we developed an
approach, which supports reproduction of observed human
motion on the robot using non-linear optimization methods.
To formulate an optimization problem for each finger which
comprises displacements in Cartesian space regarding the
fingertip position as well as the finger joints, a similarity
measure is defined as follows:

S(σ) = 2−
1
n

n
∑

i=1

(
σ̂i

t −σi
)2

π2 −
1
3

3
∑

k=1
(p̂k

t − pk)
2

(
2 · l f inger

)2 (14)

with n representing the number of finger joints, σi, σ̂i
t ∈ [0,π]

and pk, p̂k
t ∈ [−l f inger, l f inger

]
, whereas l f inger describes the

considered finger length. The reference joint angle config-
uration is denoted by σ̂ ∈ Rn, while p̂ ∈ R3 stands for the
desired fingertip position. The current fingertip position p
can be determined by applying the forward kinematics of the
robot to the joint angle configuration σ . Based on Eq. 14 and
the joint constraints {(Cmin,Cmax)} of a robot with n joints,
one obtains following constrained optimization problem:

minS′(σ) = 2−S(σ) (15)
subject to Cimin ≤ σ̂i ≤Cimax (16)

For solving Eq. 15, we apply the Levenberg-Marquardt
algorithm. Following this optimization approach a trade-off is
attained, which on the one hand results in an accurate finger
positioning with small displacement error while it provides
on the other hand a feasible robot joint angle configuration
resembling the observed human configuration.

D. Results

The N-body system of the grasp representation is im-
plemented in 2D. Therefore, currently only planar grasps
which only require fingertip contact can be represented. For
the reproduction of grasp, the force trajectory defined in
Eq. 7 is applied to modulate the systems. The trajectories
emerging from this modulation describe a fingertip posture in
x,y direction in task space of the hand. The pose of the hand
needed for grasping is obtained from the DMP movement
and represented in the robot’s platform coordinates. The
proposed grasp representation is evaluated for a pinch, tripod,
power, and lateral grasp. Based on image sequences captured
by the humanoid robot, in addition to the fingertip trajectories
the hand movement was determined by segmenting and
tracking the hand by means of skin color information. From
the resulting trajectory, a DMP is generated which, due
its properties, allows the adaptation to new targets and the
reproduction of smooth trajectories. The results of the motion
reproduction of are depicted in Fig. 5.

Based on the fingertip trajectories, it is possible to estimate
the spring constants of each virtual spring. The constants
of the remaining springs are fixed independently of the
considered grasp type. To maintain stability and avoid os-
cillation during the modulation, the system is assumed to be
over-damped. For our experiments, the trajectories emerging
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Fig. 5. Top: From a DMP reproduced reach trajectories towards different
goals. Bottom: From a DMP reproduced place trajectories starting from
different start points towards different goals.

from a grasp instantiations are compared to the observed
movements. Due to the small number of contact points, the
fingertip movements during a pinch grasp reproduction are
highly informative in terms similarity to the human demon-
stration. As depicted in Fig. 6, using the virtual spring grasp
representation, for thumb, index, middle, and ring finger,
fingertip movements could be generated which are similarly
shaped as the observed trajectories. Due to noisy motion
data regarding the pinkie movement, the spring constants
linked to the pinkie could not be estimated accurately enough
leading to a slightly diverse trajectory. Furthermore, it could
be observed that due to the integration of springs, we were
able to produce smooth finger trajectories. To complete the
specification of the grasp representation, the equilibrium
lengths between the fingers were measured at a human
subject whereas the hand is to be maintained in a very
relaxing posture. On the platform, we were able to reproduce
grasping movements where the hand preshapes and contact
with the object is made at the end of the reaching movement.
However, due to small number of DoF of the ARMAR-
IIIb hand and its unstable pneumatic control mechanism, the
optimized joint angle configuration could not be accurately
reproduced. Results of the grasp reproduction for a pinch
and power grasp are depicted in Fig. 8 and Fig. 7.

IV. CONCLUSION

In this work, we have presented a grasp representation
which exploits finger movement synergies in task space and,
hence, allows the formulation of grasps in a goal-directed and
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Fig. 6. Plots showing the trajectory of each finger during observation (red) and reproduction (green) of a pinch grasp. The star symbol denotes the start
of each trajectory, whereas the box symbol represents the end. The measurements are given in mm. From left to right: index finger; middle finger; ring
finger; pinkie.

low dimensional fashion facilitating several processes such as
the observation of the human hand, which is a cumbersome
task in joint space. Along with the parameter estimation
procedure, a grasp can be learned and represented from
human demonstration, even online. In order to reduce the
dimensions of the control variables for trajectory generation,
synergies on task space level were successfully established
by means of the virtual springs. The result is a continuous
grasp representation, which unifies the different grasp stages
(preshape, reach, and enclose) leading to a smooth, human-
like movement reproduction. In the near future, we focus on
extending our implementation of the dynamical system from
2D to 3D in order to represent grasps which require addi-
tional contact areas besides the fingertips. Furthermore, we
will extend our library of represented grasps and investigate
how complex object representations can be integrated.
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Fig. 7. Top: Image sequence depicting the capture human fingertip motion for a power grasp. Middle: The MMM hand model maintaining a hand posture
that matches the fingertip motion. Bottom: Reproduction of the represented power grasp.

Fig. 8. Top: Image sequence depicting the capture human fingertip motion for a pinch grasp. Middle: The MMM hand model maintaining a hand posture
that matches the fingertip motion. Bottom: Reproduction of the represented pinch grasp.
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Abstract

We study visual servoing in a framework of detection and grasping of
unknown objects. Classically, visual servoing has been used for applications
where the object to be servoed on is known to the robot prior to the task
execution. In addition, most of the methods concentrate on aligning the
robot hand with the object without grasping it. In our work, visual servoing
techniques are used as building blocks in a system capable of detecting and
grasping unknown objects in natural scenes. We show how different visual
servoing techniques facilitate a complete grasping cycle.

Keywords: visual servoing, object grasping, calibration, active vision

1. Introduction

Object grasping and manipulation stands as an open problem in the area
of robotics. Many approaches assume that the object to be manipulated is
known before hand [1, 2, 3, 4]. If the object bears some resemblance to a
known object, experience can be used for grasp synthesis [5, 6, 7, 8]. An
unknown object needs to be analyzed in terms of its 3D structure and other
physical properties from which a suitable grasp can be inferred [9, 10, 11, 12].

Realistic applications require going beyond open-loop execution of these
grasps and the ability to deal with different type of errors occurring in an
integrated robotic system. One kind of errors are systematic and repeatable,
introduced mainly by inaccurate kinematic models. These can be minimized
offline through precise calibration. The second kind are random errors intro-
duced by a limited repeatability of the motors or sensor noise. These have
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to be compensated through online mechanisms.
In this paper, we show how Visual Servoing (VS) can be used at different

stages in a grasping pipeline to correct errors both offline and online. One
of the contributions is the application of VS for automatic calibration of the
hardware. We follow the classical approach of applying VS for aligning the
robot hand with the object prior to grasping it [13]. This requires tracking
of the manipulator pose relative to the camera. Instead of the common ap-
proach of putting markers on the robot hand, we use a model based tracking
system. This is achieved through Virtual Visual Servoing (VVS) in which
the systematic and random errors are compensated for. An additional con-
tribution is the generalisation of VVS to CAD models instead of using object
models tailor-made for the application.

The remainder of this paper is organised as follows. Section 2 formalises
the systematic and random errors inherent to the different parts of the robotic
system. In Section 3, related work in the area of offline calibration as well
as closed-loop control is presented. The approach proposed in this paper is
described in detail in Section 4. Its performance is analysed quantitatively
on synthetic data and qualitatively on our robotic platform. The results of
these experiments are presented in Section 5.

2. Problem Formulation

Object grasping in real world scenarios requires a set of steps to be per-
formed prior to the actual manipulation of an object. A general outline of
our grasping pipeline is provided in Figure 2. The hardware components
of the system as shown in Figure 1 are (i) the Armar III robotic head [14]
equipped with two stereo camera pairs (wide-angle for peripheral vision and
narrow-angle for foveal vision), (ii) the 6 DoF Kuka arm KR5 sixx R850 [15]
and (iii) the Schunk Dexterous Hand 2.0 (SDH) [16].

2.1. Grasping Pipeline

The main pre-requisite for a robot to perform a pick-and-place task is
to have an understanding of the 3D environment it is acting in. In our
pipeline, we perform scene construction by using the active head for visual
exploration and stereo reconstruction as described in detail in our previous
work [17]. The resulting point cloud is segmented into object hypotheses and
background.

2
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Figure 1: Hardware Components in the Grasping Pipeline. 1(a) Armar III Active Head
with 7 DoF. 1(b) The Kinematic Chain of the Active Head. The upper pitch is kept static.
Right and left eye yaw are actuated during fixation and thereby change the vergence angle
and the epipolar geometry. All the other joints are used for gaze shifts. 1(c) Kuka Arm
with 6 DoF and Schunk Dexterous Hand 2.0 (SDH) with 7 DoF.

The scene model then consists of the arm and the active head positioned
relative to each other based on the offline calibration as described in Sec-
tion 4.4. Furthermore, a table plane is detected and the online detected
object hypotheses are placed on it.

Grasp inference is then performed on each hypothesis. For given grasp
candidates, a collision-free arm trajectory is planned in the scene model and
applied to the object hypothesis with the real arm.

2.2. Error Formalisation

The aforementioned grasping pipeline relies on the assumption that all
the parameters of the system are perfectly known. This includes e.g. internal
and external camera parameters as well as the pose of the head, arm and hand
in a globally consistent coordinate frame.

In reality however two different types of errors are inherent to the system.
One contains the systematic errors that are repeatable and arise from inaccu-
rate calibration or inaccurate kinematic models. The other group comprises
random errors originating from noise in the motor encoders or in the camera.
These errors propagate and deteriorate the relative alignment between hand
and object. The most reliable component of the system is the Kuka arm
that has a repeatability of less than 0.03 mm [15]. In the following, we will
analyse the different error sources in more detail.
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2.2.1. Stereo Calibration Error

Given a set of 3D points QW =
[
xW yW zW

]T
in the world reference

frame W and their corresponding pixel coordinates P =
[
u v 1

]T
in the

image, we can determine the internal parameters C and external parameters
[RC

W |tC
W ] for all cameras C in the vision system. This is done through stan-

dard methods by exploiting the following relationship between QW and P :

wP =

wuwv
w

 = CPC with PC =

zC

yC

zC

 = RC
W

[
PW − tC

W

]
(1)

Once we have these parameters for the left camera L and right camera R,
the epipolar geometry as defined by the essential matrix E = RR

L [tR
L ]× can

be determined. Here tR
L defines the baseline and RR

L the rotation between
the left and right camera system.

Our calibration method, which uses the arm as world reference frame,
will be described in Section 4.4. The average reprojection error is 0.1 pixels.
Since peripheral and foveal cameras are calibrated simultaneously, we also
get the transformation between them.

Additionally to the systematic error in the camera parameters, other
effects such as camera noise and specularities lead to random error in the
stereo matching.
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2.2.2. Positioning Error of the Active Head

We are using the robot head to actively explore the environment through
gaze shifts and fixation on objects. This involves dynamically changing the
epipolar geometry between the left and right camera system. Also the camera
position relative to the head origin is changed. The internal parameters
remain static.

The kinematic chain of the active head is shown in Figure 1(b). Only
the last two joints, the left and right eye yaw, are used for fixation and
thereby affect the stereo calibration. The remaining joints are actuated for
performing gaze shifts.

In order to accurately detect objects with respect to the camera, the
relation between the two camera systems as well as between the cameras and
the head origin needs to be determined after each movement. Ideally, these
transformations should be obtainable just from the known kinematic chain
of the robot and the readings from the encoders. In reality, these readings
are erroneous due to noise and inaccuracies in the kinematic model.

Let us first consider the epipolar geometry and assume that the left cam-
era system defines the origin and remains static. Only the right camera
rotates around its joint by φ at time k. According to the kinematic model
this movement can be expressed by

[Rk
k−1|tk

k−1] with Rk
k−1 =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 and tk
k−1 =

[
0 0 0

]T
(2)

which is a pure rotation around the z-axis of the joint. The new essential
matrix would then be

Ek = RkR
R
L [tR

L ]×. (3)

Inaccuracies arise in the manufacturing process influencing the true cen-
ter and axis of joint rotations and in the discrepancy between motor encoder
readings and actual angular joint movement. This is illustrated in Figure 3

showing the translational component δ =
[
δx δy δz

]T
and rotational com-

ponent ε =
[
εx εy εz

]T
of the error between the ideal and real joint posi-

tions. Under the assumption that only small angle errors occur, the error
matrix can be approximated as [18]

[Re|te] with Re =

 1 −εz εy
εz 1 −εx
−εy εx 1

 and te =
[
δx δy δz

]T
(4)
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Based on this, the true essential matrix can be modelled as

Ek = ReRkR
R
L [Ret

R
L + te]×. (5)

Leaving this specific error matrix unmodelled will lead to erroneous depth
measurements of the scene.

Similarly to the vergence angle, error matrices can be defined for every
joint modelling inaccurate positioning and motion. Let us define Jn−1 and Jn

as two subsequent joints. According to the Denavit-Hartenberg convention,
the ideal transformation Tn

n−1 between these joints is defined as

Tn
n−1 = zT

n
n−1(d, φ) xT

n
n−1(a, α) (6)

where zT
n
n−1(d, φ) describes the translation d and rotation φ with respect

to the z-axis of Jn−1. xT
n
n−1(a, α) describes the translation a and rotation

α with respect to the x-axis of Jn. While d, a and α are defined by the
kinematic model of the head, φ is varying with the motion of the joints and
can be read from the motor encoders.

The true transformation eT
n
n−1 will however look different. Modelling the

position error Tpe and motion error Tme as in Equation 4 yields

eT
n
n−1 = zT

n
n−1(d, φ)Tme xT

n
n−1(a, α)Tpe. (7)

These errors propagate through the kinematic chain and mainly affect the x
and y position of points relative to the world coordinate system.
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Regarding random error, the last five joints in the kinematic chain achieve
a repeatability in the range of ±0.025 degrees [14]. The neck pitch and neck
roll joints in Figure 1(b) achieve a repeatability in the range of ±0.13 and
±0.075 degrees respectively.

2.2.3. Positioning Error of the Cameras with Respect to the Arm

As will be described in Section 4.4, we are using the arm to calibrate the
stereo system. Therefore, assuming that the transformation from the head
origin to the cameras is given, the error in the transformation between the
arm and cameras is equivalent to the error of the stereo calibration.

3. Related Work

3.1. Closed-Loop Control in Robotic Grasping

In the previous section, we summarised the errors in a grasping system
that lead to an erroneous alignment of the end effector with an object. A
system that executes a grasp in closed loop without any sensory feedback is
likely to fail.

In [19, 20] this problem is tackled by introducing haptic and force feedback
into the system. Control laws are defined that adapt the pose of the end
effector based on the readings from a force-torque sensor and contact location
on the haptic sensors. A disadvantage of this approach is that the previously
detected object pose might change during the alignment process.

Other grasping systems make use of visual feedback to correct the wrong
alignment before contact between the manipulator and the object is estab-
lished. Examples are proposed by Huebner et al. [2] and Ude et al. [21], who
are using a similar robotic platform to ours including an active head. In [2],
the Armar III humanoid robot is enabled to grasp and manipulate known
objects in a kitchen environment. Similar to our system [17], a number of
perceptual modules are at play to fulfill this task. Attention is used for scene
search. Objects are recognized and their pose estimated with the approach
originally proposed in [4]. Once the object identity is known, a suitable grasp
configuration can be selected from an offline constructed database. Visual
servoing based on a wrist spherical marker is applied to bring the robotic
hand to the desired grasp position [22]. Different from our approach, ab-
solute 3D data is estimated by fixing the 3 DoF for the eyes to a position
for which a stereo calibration exists. The remaining degrees of freedom con-
trolling the neck of the head are used to keep the target and current hand
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position in view. In our approach, we reconstruct the 3D scene by keeping
the eyes of the robot in constant fixation on the current object of interest.
This ensures that the left and right visual field overlap as much as possible,
thereby maximizing e.g. the amount of 3D data that can be reconstructed.
However, the calibration process becomes much more complex.

In the work by Ude et al. [21], fixation plays an integral part of the vision
system. Their goal is however somewhat different from ours. Given that an
object has been already placed in the hand of the robot, it moves it in front
of its eyes through closed loop vision based control. By doing this, it gathers
several views from the currently unknown object for extracting a view-based
representation that is suitable for recognizing it later on. Different to our
work, no absolute 3D information is extracted for the purpose of object
representation. Furthermore, the problem of aligning the robotic hand with
the object is circumvented.

3.2. Calibration Methods

In [23], the authors presented a method for calibrating the active stereo
head. The correct depth estimation of the system was demonstrated by let-
ting it grasp an object held in front of its eyes. No dense stereo reconstruction
has been shown in this work.

Similarly, in [24] a procedure for calibrating the Armar III robotic head
was presented. Our calibration procedure is similar to the one described in
those papers, with a few differences. We extend it to the calibration of all
joints, thus obtaining the whole kinematic chain. Also, the basic calibration
method is modified to use an active pattern instead of a fixed checkerboard,
which has some advantages that we outline in Section 4.4.

3.3. Visual and Virtual Visual Servoing

For the accurate control of the robotic manipulator using visual servoing,
it is necessary to know its position and orientation (pose) with respect to
the camera. In the systems mentioned in Section 3.1, the end effectors of
the robots are tracked based on fiducial markers like LEDs, colored spheres
or Augmented Reality tags. A disadvantage of this marker based approach
is that the mobility of the robot arm is constrained to keep the marker
always in view. Furthermore, the position of the marker with respect to
the end effector has to be known exactly. For these reasons, we propose to
track the whole manipulator instead of only a marker. Thereby, we alleviate
the problem of constrained arm movement. Additionally, collisions with the
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object or other obstacles can be avoided in a more precise way. In this paper
we track the pose of the robotic arm and hand assuming their kinematic chain
to be perfectly calibrated, although the system can be adapted to estimate
deviations in the kinematic chain.

Tracking objects of complex geometry is not a new problem and ap-
proaches can be divided into two groups: appearance-based and model-based
methods. The first approach is based on comparing camera images with a
huge database of stored images with annotated poses [25]. The second ap-
proach relies on the use of a geometrical model (3D CAD model) of the
object and perform tracking based on optical flow [26]. There have also been
examples that integrate both of these approaches [27].

Apart from the tracking itself, an important problem is the initialization
of the tracking process. This can be done by first localizing the object in the
image followed by a global pose estimation step. In our previous work, we
have also demonstrated how the initialization can be done for objects in a
generic way [28]. In the case of a manipulator, a rough estimate of its pose
in the camera frame can be obtained from the kinematics of the arm and the
hand-eye calibration. In [29], it has been shown that the error between this
first estimate and the real pose of the manipulator can be corrected through
virtual visual servoing, using a simple wireframe model of the object. In our
work, a synthetic image of the robot arm is rendered based on a complete
3D CAD model and its initial pose estimate is compared and aligned with
the real image.

In our recent work [30], we demonstrate how pose estimation can be per-
formed for a complex articulated object such as a human hand. The major
contribution of that work is the use of a discriminative machine learning
approach for obtaining real-time tracking of an object with 27 degrees of
freedom. The problem considered in this paper has a lower dimensionality
and a more accurate guess of the initial pose. This makes it possible to
adopt a real-time generative approach that renders the last pose of the ob-
ject in each frame and estimates the new pose through a process of error
minimization.

4. The Proposed System

For overcoming the problem of lacking a globally consistent coordinate
frame for objects, manipulator and cameras, we introduce visual servoing into
the grasping pipeline. This allows us to control the manipulator in closed
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Figure 4: A Grasping Pipeline With Closed Loop Control of the Manipulator through
Visual Servoing that is initialised through Virtual Visual Servoing. Armar III Head Model
adapted from [31].

loop using visual feedback to correct any misalignment with the object online.
We then use the camera coordinate frame as the global reference system in
which the manipulated object and robot are also defined.

For accurately tracking the pose of the manipulator, we use virtual visual
servoing. The initialisation of this method is based on the known joint values
of hand and arm and the hand-eye calibration, which is obtained offline.

The adapted grasping pipeline is summarised in Figure 4. What follows
is a more detailed description of all the components of this pipeline.

4.1. Vision System for Constructing the Scene Model

As described earlier, the scene model in which grasping is performed
consists of a robot arm, hand and head as well as a table plane onto which
object hypotheses are placed. The emergence of these hypotheses is triggered
by the visual exploration of the scene with the robotic head. In the following,
we will give a brief summary of this exploration process. More details can
be found in our previous work [3, 32, 33, 17].

The active robot head has two stereo camera pairs. The wide-field cam-
eras of which an example can be seen in Figure 5(a) are used for scene search.
This is done by computing a saliency map on them and assuming that max-
ima in this map are initial object hypotheses (Figure 5(b)). A gaze shift is
performed to a maxima such that the stereo camera with the narrow-angle
lenses center on the potential object. An example of an object fixated in the
foveal view is shown in Figure 5(c). In the following we will label the camera
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(a) (b) (c)

(d) (e) (f)

Figure 5: Example Output for Exploration Process. 5(a) Left Peripheral Camera. 5(b)
Saliency Map of Peripheral Image. 5(c) Left Foveal Camera. 5(d) Segmentation on Over-
layed Fixated Rectified Left and Right Images. 5(e) Disparity Map. 5(f) Point Cloud of
Tiger.

pose when fixated on the current object of interest as C0. Once the system
is in fixation, a disparity map is calculated and segmentation performed (see
Figure 5(e) and 5(d)). For each object, we then obtain a 3D point cloud (an
example is shown in Figure 5(f)).

4.2. Grasp and Motion Planning

Once a scene model has been obtained by the vision system, a suitable
grasp can be selected for each object hypothesis depending on the available
knowledge about the object. In our previous work, we presented grasp plan-
ners on known, familiar or unknown objects [2, 5, 31, 17]. In [2, 31] resulting
grasp hypotheses are tested in simulation on force closure prior to execution.
The set of stable grasps is then returned to plan corresponding collision free
arm trajectories.

The focus of this paper is the application of visual servoing and virtual
visual servoing in the grasping pipeline. We have therefore selected a simple
top-grasp selection mechanism that has been proven to be very effective for
pick-and-place tasks in table-top scenarios [17]. For this, we calculate the
eigenvectors and centre of mass of the projection of the point cloud on the
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table plane. An example of such a projection can be seen in Figure 5(f)
(left). The corresponding grasp is a top grasp approaching the centre of
mass of this projection. The wrist orientation of the hand is determined
such that the vector between fingers and thumb is aligned with the minor
eigenvector. A grasping point GC0 =

[
zx zy z

]
in camera space C0 is then

formed with the x and y coordinates of the center of the segmentation mask
as obtained during fixating on the object. The depth of this point, i.e, the
z coordinate is computed from the vergence angle as read from the motor
encoders. The goal is then to align the tool center point of the end effector
with this grasping point. Using more sophisticated grasp planners that can
deal with more complex scenarios is regarded as future work.

4.3. Object Localisation in Different Viewing Frames

The robotic head moves during the grasping process for focusing on dif-
ferent parts of the environment (different objects, the robotic hand and arm).
In each of these views the object to be grasped should remain localized rela-
tive to the current camera frame Ck to accurately align the end effector with
it. The new position of the object can be estimated given the new pose of
the head, which is determined based on the motor reading and the forward
kinematics of the head as depicted in Figure 1(b). However, we cannot com-
pletely rely on this estimate due to inaccuracies in the kinematic model and
motor encoders. For this reason we perform a local refinement of the object
position in the new view of the scene based on template matching.

A template is generated for each object when the head is fixated on it.
Based on the segmentation mask in the foveal view as shown in Figure 5(d)
and the calibration between the peripheral and foveal cameras, we generate
a tight bounding box around the object in the peripheral view. Each time
the head moves, the new position of this template can be estimated based on
the old and new pose of the head. We create a window of possible positions
of the object by growing this initial estimate by a fixed amount of pixels. We
perform a sliding window comparison between all possible locations of the
object template within this window and the object template. The location
which returns the lowest mean square error is the one suggested as x and y
coordinates of the object position in the new view.

4.4. Offline Calibration Process

In Section 2.2, we analysed the errors that got introduced by the different
parts of the system. The group of systematic errors can be minimised by
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(a) Movement pattern of the end effector for of-
fline calibration.

(b) Three viewing directions of a camera ro-
tated around one axis.

Figure 6: Offline Calibration procedure (video available at http://www.youtube.com/
watch?v=dEytfUgmcfA).

offline calibration. In the following, we will introduce our method for stereo
and hand-eye calibration as well as the calibration of the kinematic chain of
the robotic head.

4.4.1. Stereo Calibration

One of the most commonly used methods for finding the transformation
between two camera coordinate systems is the use of a checkerboard which is
observed by two cameras (or the same camera before and after moving) [34].
The checkerboard defines its own coordinate system in which the corners of
the squares are the set of 3D points QA in the arm coordinate system A as
in Section 2.2.1. The detection of these corners in the left and right images
gives us the corresponding pixel coordinates P from which we can solve for
the internal and external camera parameters. Given these, we can obtain the
transformation between the left and right camera coordinate frame.

We used a modified version of this method. Instead of a checkerboard
pattern, we used a small LED rigidly attached to the end effector of the
robotic arm, which we can detect in the image with subpixel precision. Be-
cause of the accuracy and repeatability of the KUKA arm (< 0.3mm), we can
move the LED to a number of places for which we know the exact position
in arm space, which allows us to obtain the transformation between arm and
camera space.

This method has several advantages over the use of a traditional checker-
board pattern:
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• Instead of an arbitrary checkerboard coordinate system as intermediate
coordinate system, we can use the arm coordinate system. In this way
we are obtaining the hand-eye calibration for free at the same time that
we are performing the stereo calibration.

• In the checkerboard calibration method, the checkerboard ought to be
fully visible in the two calibrating cameras for every calibration pose.
This may be difficult when the two camera poses are not similar or
their field of view is small. With our approach, it is not necessary
to use exactly the same end effector positions for calibrating the two
cameras since all points are defined in the static arm coordinate system
that is always valid independently of camera pose.

• For these same reasons, we found empirically that this approach makes
it possible to choose a pattern that offers a better calibration perfor-
mance. For example, by using a set of calibration points that is uni-
formly distributed in camera space (as opposed to world space, which
is the case for checkerboard patterns), it is possible to obtain a better
characterization of the lenses distortion parameters.

The main building block for this system is a visual servoing loop that
allows us to bring the LED to several predefined positions in camera space.
In this loop, we want to control the position of the LED (3 DOF) using only
its projection in the image (2 DOF). Therefore, we introduce an additional
constraint by limiting the movement of the LED to a predefined plane in arm
space.

We define SA
0 as a point on this plane and SA as its normal vector.

Additionally, we need a rough estimate of the arm to camera coordinate
transformation AC

A, and of the camera matrix C. They are defined as follows:

AC
A =

[
RC

A|tC
A

]
,C =

 f 0 0
0 f 0
0 0 1

 (8)

We can then find the plane in camera space:

SC
0 = RC

AS
A
0 + tC

A SC = RC
AS

A (9)

The process of moving the LED to a position in the image is then as
follows: we define a target point in the image Pt = (ut, vt) (specified in
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pixels) where we want to bring the LED. For each visual servoing iteration
we detect the current position Pc = (uc, uc) (again in pixels) of the LED in
the image. We can then use the camera matrix to convert these points to
homogeneous camera coordinates:

PC
t = C−1

[
xt yt 1

]T
=
[

1
f
xt

1
f
yt 1

]T
(10)

PC
c = C−1

[
xc yc 1

]T
=
[

1
f
xc

1
f
yc 1

]T
(11)

Then, we can project these homogeneous points into the plane defined
by SC

0 and SC . A point Q is in that plane if Q · SC = SC
0 · SC . Therefore,

the projection of the homogeneous points PC
t and PC

c into the plane can be
found as

QC
t =

SC
0 · SC

PC
t · SC

PC
t QC

c =
SC

0 · SC

PC
c · SC

PC
c (12)

From these, we can obtain the vector

dC = QC
t −QC

c (13)

which is the displacement from the current to the target LED positions in
camera space, and then

dA = RC
A

−1
dC (14)

which is the correspondent displacement in arm space.
We can easily see that the displacement obtained in arm space is within

the given plane since

dC · SC = (QC
t −QC

c ) · SC = QC
t · SC −QC

c · SC = 0 (15)

dA · SA = dAT
SA = (R−1dC)T(R−1SC) = dCT

RR−1sC = dC · SC = 0 (16)

We can then use this displacement to obtain a simple proportional control
law

u = kdA (17)

where u is the velocity of the end effector and k is a constant gain factor.
Once we have the system which allows us to bring the LED to a certain

position in the image we can start generating our calibration pattern. First,
we bring the LED to the center of the image in two parallel planes, which are
located at different distances from the camera, and record their positions CA

0

and CA
1 in arm space. From this, we can obtain the vector SA = CA

0 − CA
1
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Algorithm 1: Pseudo Code for Defining the Calibration Pattern
Data: Number of points n on each depth plane, number of depth planes m
Result: Set of Correspondences

[
QA

i , Pi

]
with (0 < i ≤ m · n)

begin
// Initialising the principal axis of the camera in arm space
// VisualServoing(P,S) is a function that brings the LED to
// the point P in image space within the plane S in arm space
S0 = Some plane at a distance d0 from the camera
CA

0 = VisualServoing((0, 0),S0)
S1 = Some plane at a distance d1 from the camera
CA

1 = VisualServoing((0, 0),S1)
d = (CA

1 − CA
0 )/(m− 1)

i = 0
foreach l ∈ [0 . . .m− 1] do

S = plane with normal d which contains CA
0 + ld

foreach Pk with (0 < k ≤ n) do
QA

i = VisualServoing((xk, xy),S)
i+ +

end
end

end

which is parallel to the principal axis of the camera. Any plane perpendicular
to this vector will be parallel to the image plane. We can then bring the LED
to some fixed positions along these planes, thus generating points which are
uniformly distributed both in the image and in depth (by using planes which
are separated by a constant distance). The generated pattern looks like the
one shown in Figure 6(a). Algorithm 1 shows the method in more detail. In
our system, we used 6x6 points rectangular patterns in 6 different depths,
for a total of 216 calibration points. With this, we achieved an average
reprojection error of 0.1 pixels.

4.4.2. Head-Eye Calibration

For a static camera setup, the calibration process would be completed
here. However, our vision system can move to fixate on the objects we ma-
nipulate. Due to inaccuracies in the kinematic model of the head, we cannot
obtain the exact transformation between the camera coordinate system be-
fore and after moving a certain joint from the motor encoders.

In Section 2.2.2, we modelled the transformation error that arises from the
misalignment of the real and ideal coordinate frame of a joint. In our method,
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we are minimising this error by finding the true position and orientation of
the real coordinate frame as follows:

1. Choose two different positions of the joint, that are far enough apart
to be significant, but with an overlapping viewing area that is still
reachable for the robotic arm.

2. For each of these two positions, perform the static calibration process
as described above, so that we obtain the transformation between the
arm coordinate system and each of the camera coordinate systems.

3. Find the transformation between the camera coordinate systems in
the two previously chosen joint configurations. This transformation
is the result of rotating the joint around some roughly known axis
(it is not precisely known because of mechanical inaccuracies), with a
roughly known angle from the motor encoders. From the computed
transformation, we can then more exactly determine this axis, center
and angle of rotation.

This is illustrated in Figure 6(b).
In our case, the results showed that while the magnitude of the angles

of rotation differed significantly from what could be obtained from the kine-
matic chain, the orientation and position of these axes were quite precise
in the specifications. To avoid overly complicating the model, we decided
to correct only the actual angles α in Equation 6 , except for the vergence
joint. For this joint, the orientation was also corrected, since here small er-
rors have a large impact in the accuracy of depth estimation. Therefore, we
minimised the discrepancy between the true and estimated essential matrix
in Equations 3 and 5 respectively.

4.5. Virtual Visual Servoing

As mentioned in Sections 1 and 3.3, our system uses Virtual Visual Ser-
voing to refine the position of the arm and hand in camera space provided
by the calibration system. In Figure 8, the difference between the estimated
arm pose and the corrected one is visualised. In this section we will formalize
the problem and explain how we solved it.

The pose of an object is denoted by M(R, t) where t ∈ R(3), R ∈ SO(3).
The set of all poses that the robot’s end–effector can attain is denoted with
TG ⊆ SE(3) = R(3) × SO(3).
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Figure 7: Outline of the proposed model-based tracking system based on Virtual Visual
Servoing.
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Figure 8: Comparison of robot localization with (right) and without (left) the Virtual
Visual Servoing correction.
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Pose estimation considers the computation of a rotation matrix (orienta-
tion) and a translation vector of the object (position), M(R, t):

M =

 r11 r12 r13 TX

r21 r22 r23 TY

r31 r32 r33 TZ

 (18)

The equations used to describe the projection of a three–dimensional model
point Q into homogeneous coordinates of the image point [x y]T are: X

Y
Z

 = R [Q− t] with [wx, wy, w] = P

 X
Y
Z

 (19)

where P represents the internal camera parameters matrix including focal
length and aspect ratio of the pixels, w is the scaling factor, R and t represent
the rotation matrix and translation vector, respectively.

Our approach to pose estimation and tracking is based on virtual visual
servoing where a rendered model of the robot parts is aligned with the current
image of their real counterparts. The outline of the system is presented in
Fig. 7. In order to achieve the alignment, we can either control the position
of the part to bring it to the desired pose or move the virtual camera so
that the virtual image corresponds to the current camera image, denoted
as real camera image in the rest of the paper. Using the latter approach
has the problem that the local effect of a small change in orientation of
the camera is very similar to a large change in its position, which leads to
convergence problems. Therefore, in this paper, we adopt the first approach
where we render synthetic images by incrementally changing the pose of the
tracked part. In the first iteration, the position is given based on the forward
kinematics. Then, we extract visual features from the rendered image, and
compare them with the features extracted from the current camera image.
The details about the features that are extracted are given in Section 4.5.2.

Based on the extracted features, we define an error vector

s(t) = [d1, d2, . . . , dn]T (20)

between the desired values for the features and the current ones. Based on s,
we can estimate the incremental change in pose in each iteration e(s) follow-
ing the classical image based servoing control loop. This process continues
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until the difference vector s is smaller than a certain threshold. Each of the
steps is explained in more detail in the following subsections. Our current
implementation and experimental evaluation is performed for the Kuka R850
arm and Schunk Dexterous hand, shown in Fig. 9

Figure 9: The Kuka R850 arm and Schunk Dexterous Hand in real images and CAD
models.

4.5.1. Virtual image generation

As we mentioned before, we use a realistic 3D model of the robotic parts
as input for our system. This adds the challenge of having to render this
model at a high frame rate, since our system runs in real time, and several
visual servoing iterations must be performed for every frame that we obtain
from the cameras.

To render the image, we use a projection matrix P , which corresponds
to the internal parameters of the real camera, and a modelview matrix M ,
which consists of a rotation matrix and a translation vector. The modelview
matrix is then estimated in the visual servoing loop.

One of the most common CAD formats for objects such as robotic hands
are Inventor files. There are a number of rendering engines which can deal
with such models, but none of them had the performance and flexibility that
we needed. For that we developed a new scenegraph engine, specific for this
application, which focused on rendering offline images at a high speed. It
was developed directly over OpenGL. We can obtain about 1000 frames per
second with this engine. At the moment the speed of the rendering engine
does not represent a bottleneck to our system.
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We render the image without any texture or lighting, since we are only
interested in the external edges of the model. We also save the depth map
produced by the rendering process, which will be useful later for the estima-
tion of the jacobian.

4.5.2. Features

The virtual and the real image of the robot parts ought to be compared in
terms of visual features. These features should be fast to compute, because
this comparison will be performed as many times per frame as iterations are
needed by the virtual visual servoing for locating the robot. They should
also be robust towards non-textured models.

Edge-based features fulfill these requirements. In particular chamfer dis-
tances [35] modified to include the alignment of edge orientations [36] are
well suited for matching shapes in cluttered scenes, and are used in recent
systems for object localization [37]. This feature is similar in spirit but more
general than other ones used in the field of Virtual Visual Servoing. Comport
et al. [38] computes distances between real points and virtual lines/ellipsis
instead of virtual points. Klose et al. [39], Drummond and Cipolla [40] search
for real edges only in the perpendicular direction of the virtual edge.

The mathematic formulation of our features is the following. After per-
forming a Canny edge detection on real image Iu and virtual image Iv we
obtain a set of edge points U ,V with their correspondent edge orientations
OU ,OV (from the horizontal and vertical Sobel filter). The sets U ,V are split
into overlapping subsets Ui,Vi according to their orientations:

ou (mod π) ∈ [
2πi

16
,
2π(i+ 1)

16
]⇒ u ∈ Ui (21)

Then for each channel Ui we compute the distance transform [41] which
will allow us to perform multiple distance computations for the same real set
U in linear time with the number of points in each new set V . Based on the
distance transform we obtain our final distance vector s = {dcham(v,U)} =
[d1, d2 · · · dn]T composed by distance estimations for each edge point from our
virtual image Iv.

dtransf (p) = min
u∈Ui

||p− u||, p ∈ Iu (22)

dcham(v,U) = dtransf (v), v ∈ Vi, u ∈ Ui (23)

s = {dcham(v,U)}, dcham(v,U) < δ (24)
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The points v ∈ V whose distance is higher than an empirically estimated
threshold δ are considered outliers and dropped from s.

4.5.3. Pose correction

Once the features have been extracted, we can use a classical visual ser-
voing approach to calculate the correction to the pose, [42]. There are two
different approaches to vision-based control: Position-based control uses im-
age data to extract a series of 3D features, and control is performed in the 3D
Cartesian space. In image-based control, the image features are directly used
to control the robot motion. In our case, since the features we are using are
distances between edges in an image for which we have no depth information
in the real image, we are using an image-based approach.

The basic idea behind visual servoing is to create an error vector which
is the difference between the desired and measured values for a series of
features, and then map this error directly to robot motion.

As discussed before, s(t) is a vector of feature values measured in the
image, composed by distances between edges in the real and synthetic images
Iu, Iv. Therefore ṡ(t) will be the rate of change of these distances with time.

The movement of the manipulator (in this case, the virtual manipulator)
can be described by a translational velocity T (t) = [Tx(t), Ty(t), Tz(t)]T and

a rotational velocity Ω(t) = [ωx(t), ωy(t), ωz(t)]T. Together, they form a
velocity screw:

ṙ(t) =
[
Tx, Ty, Tz, ωx, ωy, ωz

]T
(25)

We can then define the image jacobian or interaction at a certain instant
as J so that:

ṡ = Jṙ (26)

where

J =

[
∂s

∂r

]
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 (27)

which relates the motion of the (virtual) manipulator to the variation in the
features. The method used to calculate the jacobian is described in detail
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below.
However, to be able to correct our pose estimation, we need the opposite:

we need to compute ṙ(t) given ṡ(t).
When J is square and nonsingular, it is invertible, and then ṙ = J−1ṡ.

This is not generally the case, so we have to compute a least squares solution,
which is given by

ṙ = J+ṡ (28)

where J+ is the pseudoinverse of J , which can be calculated as:

J+ = (JTJ)−1JT. (29)

The goal for our task is to have all the edges in our synthetic image match
edges in the real image, so the target value for each of the features is 0. Then,
we can define the error function as

e(s) = 0− ṡ (30)

which leads us to the simple proportional control law:

ṙ = −KJ+s (31)

where K is the gain parameter.

4.5.4. Estimation of the jacobian

To estimate the jacobian, we need to calculate the partial derivatives of
the feature values with respect to each of the motion components. When
features are the position of points or lines, it is possible to find an analytical
solution for the derivatives.

In our case, the features in s are the distances from the edges of the syn-
thetic image to the closest edge in the real image. Therefore, we numerically
approximate the derivative by calculating how a small change in the relevant
direction affects the value of the feature.

As we said before, while rendering the model we obtained a depth map.
From this depth map, it is possible to obtain the 3D point corresponding to
each of the edges. Each model point v in Iv is a projection of its corresponding
3D point in the model vm. The derivative of the distance described before
dcham(v,U) , can be calculated for a model point vm with respect to Tx by
applying a small displacement and projecting it into the image:
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dcham

(
PM(vm + εx),U)−D(PMvm,U

)
ε

(32)

where ε is an arbitrary small number and x is a unitary vector in the x
direction. P and M are the projection and modelview matrices, as defined in
Section 4.5.1. A similar process is applied to each of the motion components.

4.6. Object grasping

In this section we will combine the grasping point computed in Section 4.2
and the arm pose calculated in Section 4.5 in order to move the arm so that
it can grasp the object.

After finding the grasping position as a point GC0 in camera space, we
move the head to a position where the whole arm is visible, while keeping
the object in the field of view. Then, the object position (x, y) is found in
this new viewpoint using the method in Section 4.3. We assume that the
z coordinate did not change with the gaze shift. Therefore, we use the one
calculated previously in GC0 . The grasping point in camera space for the
current viewpoint is then GC1 =

[
zx zy z

]
.

After this, virtual visual servoing allows us to obtain the transformation
AA

C1
that converts points from camera to arm space, so we can obtain the

grasping point in arm space as GA = AA
C1
GC1 . To account for small errors in

the measurements, we do not move the arm there directly, but take it first to
a position which is a few centimeters (15 cm in our experiments) above GA.

Then, the final step is to bring the arm down so that the object lies
between the fingers of the hand. We do this using a simple visual servoing
loop. The movement to be performed is purely vertical. Therefore, we only
use a single visual feature to control that degree of freedom: the vertical
distance between the arm and the grasping point in the image which will
be roughly aligned with the vertical axis of the arm. In each iteration, we
measure the vertical distance d between the arm and the grasping point in
the image, and use this as input for a simple proportional control law:

ṙy = −kd (33)

where ṙy is the vertical velocity of the arm and k is a gain factor.
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5. Experiments

5.1. Robustness of Virtual Visual Servoing

In order to evaluate the performance of the virtual visual servoing, we
needed a setup where ground truth data was available, so that the error
both for the input (edge detection and initial estimation) and the output
(estimated pose) is known. Lacking such a setup, we decided to conduct the
experiments using synthetic images as input. These images were generated
using the same 3D model and rendering system that we use in the visual
servoing loop.

The process used in these experiments was as follows:

• Generate a rendered image of the model at a known pose.

• Add some error in translation and rotation to that pose, and use this
as the initial pose estimation.

• Run the virtual visual servoing loop with the rendered image as input.
In some of the runs, noise was added to the detection of edges, to assess
the robustness with respect to certain errors in the edge detection.

• After each iteration, check whether the method has reached a stable
point (small correction) and the difference between the detected pose
and the known pose is below a certain threshold. If this is the case,
consider it a succesful run and store the number of iterations needed.

• If the system does not converge to the known pose after a certain
number of iterations, stop the process and count it as a failed run.

We ran three sets of experiments, each of them focusing on the following
kind of input error:

• Translational error. We evaluated which range of errors in the trans-
lational component of the initial pose estimation allows the system to
converge. To that effect, we added, in each run, a translational error
of known magnitude and random direction.

• Rotational error. We also evaluated the range of errors in the rotational
component of the initial pose estimation for which the system converges
to the correct result. For each run, we added a rotational error of known
magnitude and random direction.
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• Error in edge detection. To simulate the effects of wrongly detected
edges in the performance of the system, we added random errors to the
edge detection of the input synthetic image. In each run, the detection
of a number of pixels was shifted a random amount. An example of
the result can be seen in Fig. 10.

Figure 10: Edge detection with artificially introduced error (in 30% of the pixels).

The performance of the VVS system is measured in (i) the number of
runs that failed and (ii) , for the runs that succeeded, the average number of
iterations it took to do so. We plot these with respect to the magnitude of
the input error. For each value of the input error, we ran 500 visual servoing
loops. In each of these runs, the magnitude of the error was kept constant,
but the direction (or the particular pixels that were affected in the case of
edge detection) was chosen randomly. Also, the whole process was repeated
for five different configurations of the joints of the arm.

The rest of the parameters of the process were set as follows:

• The threshold for deciding that the algorithm had converged to the
correct pose was 10 mm in translation and 0.5◦ in rotation.

• The number of iterations after which the run was considered a failure
was set to 200.
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• For the experiments that evaluate robustness with respect to edge de-
tection, a translation error of 100 mm and a rotation error of 10◦ was
used for the initial pose estimation.

Figure 11 shows the result of increasing the translational component of
the error in the estimated initial pose. As we can see, the failure rate is close
to 0 for distances below 100 mm, and then starts increasing linearly. This is
probably due to 100 mm being in the same order of magnitude as the distance
between different edges of the robot which have the same orientation, so the
system gets easily lost, trying to follow the wrong edges. We can also observe
an increase in the iterations needed for reaching the result.

In Figure 12 we can observe a similar behaviour for the tolerance to
errors in the rotational component of the estimated initial pose. Here, the
threshold is around 10◦ and the reason is probably the same as before: this
is the minimum rotation that bring edges to the position of other edges.

With respect to the error in edge detection, we can see in Figure 13 that
when less than 50% of the pixels are wrongly detected, the system performs
almost as well as with no error, and after that the performance quickly de-
grades. It is also significant that for the runs that converge successfully, the
number of iterations is almost independent of the errors in edge detection.
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Figure 11: Effects of translational error

5.2. Qualitative Experiments on the Real System

For our experiments with the real robot, we set up a table-top scenario
with two randomly placed objects, as can be seen in the last picture in
Figure 14. The head was initially looking towards the table, where it could
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Figure 13: Effects of errors in edge detection

see the objects and find them in the saliency map of the attention system.
However, the arm was not fully visible.

We ran the system several times with this setup. In most of these runs,
the virtual visual servoing loop did not converge because it could only see a
small part of the arm. Therefore, we decided to run virtual visual servoing
only after the object is found and after shifting the gaze away from it and
towards the arm. With this change, even if the initial estimation for the
pose of the arm was significantly different, the pose estimated through visual
servoing quickly converged. In Figure 14 we can see, outlined in green, the
estimated pose for the arm and hand over the real image.

The segmentation of the object and detection of the grasping point worked
well. When running virtual visual servoing with the full arm in view, the
hand could be aligned with the object with high accuracy and grasping was
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Saliency detection
Object segmentation

Grasping pose calculation
VVS robot localization

Search object localization

Hand-object alignmentClose hand
Move arm open loop

Release hand

Figure 14: Grasping system diagram. A video with the whole sequence can be found at
http://www.youtube.com/watch?v=e-O3Y8_cgPw

performed successfully in most of the runs.
However, even if they did not affect the performance of the system, there

are some problems that arise with the use of virtual visual servoing in real
images. For example, as we can see in the upper-right picture of Figure 14,
the upper edge of the reconstructed outline does not match exactly with
the upper edge of the arm. There are two main reasons for this. First, the
illumination of the scene can lead to some edges disappearing, because of the
low contrast. This is usually not a problem, because the correct matching
of other edges will compensate for this. But in this case, there is a second
problem: because of the orientation of the arm with respect to the camera,
the outer silhouette has really few edges. As we can see in the picture below
that, once the pose of the arm changes, the system can recover and show
the correct pose again. As future work, we are considering the possibility of
using not only the outer contour, but also try to match some of the internal
edges of the model. While this can lead to a less robust system, since outer
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edges are more likely to appear as edges in the real image, it can increase
performance where the number of edges is low.

6. Conclusions

Grasping and manipulation of objects is a necessary capability of any
robot performing realistic tasks in a natural environment. The solutions re-
quire a systems approach since the objects need to be detected and modelled
prior to an agent acting upon them. Although many solutions for known
objects have been proposed in the literature, dealing with unknown objects
stands as an open problem.

Our research deals with this problem by integrating the areas of active
vision and sensor based control where visual servoing methods represent im-
portant building blocks. In this paper, we have presented several ways in
which these methods can add robustness and help minimizing the errors in-
herent to any real system.

First, we showed how visual servoing can be used to automate the offline
calibration process. The robot can, without human intervention, generate a
pattern to collect data that can then be used to calibrate the cameras and
the transformations between the cameras and the arm.

Then, we demonstrated a virtual visual servoing approach to continuously
correct the spatial relation between the arm and the cameras. Though in
its current state the system works well and is useful in the context of the
system, some ideas for future work arise from the experiments we performed.
Using the edges as the only feature in the visual servoing loop works well
with objects which have a complex outline, such as our arm. However, for
other kinds of object, or even some viewpoints of the arm, having a wider
range of features might help. These features may include adding textures to
the models, or using 3D information obtained via stereo or structured light
cameras.

Finally, the last step that brings the arm to the place where the object
can actually be grasped also uses visual information to move the arm down
to the position where the hand can be closed to grasp the object. There is
also room for future improvements here, such as integrating the system with
a more complex grasp planner, which could determine the optimal points
where the fingers should contact the object. Then, visual servoing could be
used to visually bring the fingers to the correct position.
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Task Modeling in Imitation Learning using Latent Variable Models

Carl Henrik Ek, Dan Song, Kai Huebner and Danica Kragic

Abstract— An important challenge in robotic research is
learning and reasoning about different manipulation tasks from
scene observations.

In this paper we present a probabilistic model capable of
modeling several different types of input sources within the
same model. Our model is capable to infer the task using only
partial observations. Further, our framework allows the robot,
given partial knowledge of the scene, to reason about what
information streams to acquire in order to disambiguate the
state-space the most.

We present results for task classification within and also rea-
son about different features discriminative power for different
classes of tasks.

I. INTRODUCTION

A major challenge in robot grasping is to automatically
plan a grasp on an object that affords a specific task. Though
proved to be an effective approach, learning by imitation
[1], presents significant challenges to the robot sensory
system. To observe a human demonstration, robots need to
obtain the state of the entire scene, not only the objects,
but also the human actions [2]. The problem becomes even
harder when the goal is to perceive these features through
vision systems [3]: human hands have many fingers that
are often blocked by the grasped object, and objects are
also mostly occluded by the hands. Understanding the scene
from this huge range of noisy and uncertain sensory data
is a formidable challenge, both in terms of computational
resources and real-time applications. On the side of the motor
system, another challenge in imitation learning is how to map
a human grasp to a robot grasp, particularly when their hands
are very different.

These challenges are not new in the field of robotics.
To cope with the uncertainty in the sensorimotor systems,
[4] proposed a coherent control, trajectory optimization, and
action planning architecture. They applied the probabilistic
inference-based methods and the dynamic Bayesian networks
to integrate across all levels of representations. Another
work [5] addresses the challenges in the robotics application
with high degrees of freedom. They identified, from high-
dimensional movement data, a latent space representation
for tasks, such as drawing on a table plane. A control policy
learned in this latent space is powerful to regenerate new
movements.

The authors are with KTH – Royal Institute of Technology,
Stockholm, Sweden, as members of the Computer Vision &
Active Perception Lab., Centre for Autonomous Systems, www:
http://www.csc.kth.se/cvap, e-mail addresses:
{chek,dsong,khubner,danik}@csc.kth.se. This work
was supported by EU IST-FP7-IP GRASP, EU IST-FP6-IP-027657
PACO-PLUS, and Swedish Foundation for Strategic Research.

For the robot manipulation task, a recent work [6], adopt
a self-supervised, developmental approach where the robot
first explores its sensory motor capabilities, and then interacts
with objects to learn their affordances. A discrete Bayesian
network (BN) [7] is used to capture the statistical depen-
dencies between actions, object features and the observed
effects of the actions. Our recent work [8], extended this
idea by incorporating task information. The work propose a
task constraint model based on a mixed BN, which links
the symbolic task requirements to continuous real robot
sensory data of attributes on both objects and grasping
actions. The framework successfully realizes goal-directed
imitation in robot grasping tasks. The limitation, however,
lies in the inability of the BNs to model high dimensional,
multi-channeled sensory data. When the number of nodes
which model the sensory streams is high, the training of BNs
becomes intractable. Further, the complexity in the structure
of the conditional dependencies modeling significantly limits
the flexibility of the model.

In current framework, we focus on building a latent task
observation model (see the Latent Variable Model in Fig.
1). The work relates to that of [5] in that, we want to
model a reduced dimensional representation of task. The
difference, however, lies in the problem domain: we do not
address the movement regeneration as in [5], rather focusing
on modeling the task related affordances of objects and
robot embodiments. The work can be integrated with the
embodiment-specific BNs, as presented in [8] and Fig. 1, to
realize goal-directed imitations.

In this paper, we employ the Shared Gaussian Process
Latent Variable Model (SGP-LVM) [9], which assumes a fac-
torization of the joint distribution of the data into independent
conditional distributions given a shared latent variable. The
advantage of such a simple structure is that it allows us to
model the conditional dependencies using flexible Gaussian
Process mappings (GP) which can be viewed as infinite
mixture models whereas in the BN approach we are limited
to a fixed set of mixture components. Further, using the SGP-
LVM we are not forced to limit the observation space but
can leverage the advantage of using the full observed data.

A. Notation
Upper-case letters identify set variables, where Y specifies

the full set of all observed variables Y = {O,A,C}. Super-
script S is used to refer to a sub-set of the variables, Y S ⊆ Y ,
the letter MS is the cardinality of the feature subset, MS =
|Y S |. We use letter v to refer to individual variables within
a set or a sub-set of the variables. For example Yv ∈ Y can
be size, one of the object features. We use bold letters to
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Fig. 1. Schematic System Diagram for the imitation learning framework. The block of Training Task Constraint Models shows the learning process of the
task constraints from data generated in a simulation environment. This process include 1) a Latent Variable Model that evaluates the underlying structure of
the sensory data; and 2) the embodiment-specific Bayesian Networks that model task constraints [8]. The focus of current paper is on the Latent Variable
Model. It is a Graphical model for learning latent space of three observation streams – {O, A, C}, capable to reason about the task given any available
subset of the input streams. The block of Applying in Imitation shows the two-stage imitation using the learned task constraint model. In the first stage
the robot observes the scene with the aim of classifying the specific task that the human instructor is performing. Having determined the class posterior
given the observed data the robot aims to mimic the action of the instructor.

imply instantiations of a specific variable, where upper-case
refers to “all” (or N ) instantiations and lower-case refers to
a specific instantiation identified by the sub-script index i.
For example, Y = (y1, . . . ,yN )T represent N cases of
instantiations of all the variables in the set Y . Then, all the N
instantiations of variable Yv will be Yv , and the ith specific
instantiation of Yv will be yv

i . The ith specific instantiation
of all the variables in Y will be a concatenation of all the
variables yi = [y1

i ; . . . , ; yM
i ], where M = |Y |. Last, we

introduce D to be the dimensionality of an instantiation. Note
that D ≥ M , since M represents the number of possibly
multi-dimensional variables.

II. DATA GENERATION

In this subsection, we will briefly introduce how our
variables, i.e . real feature values, are practically extracted in
our system. As it is out of the focus of the paper, we will not
describe our grasp planner and the implementation of feature
extraction, but refer the reader to [8]. In the notation and Fig.
1 we distinguish between three different types of observed
variables defining the training data: object features (O) are
directly extracted from the object representation, action fea-
tures (A) are directly extracted from the grasp planner, and
constraint features (C) emerge from the complementation
of both, e.g . from the resulting contacts. We note that we
shortcut the problem of using real world perception for all
our features by using a simulation-based architecture and

grasp planner. For details on those modules and the tutor-
based task labeling process see [8].

For each good grasp i provided by the grasp planner,
one training dataset yi is generated. While in [8], we used
a small network with M=7 features to analyze Bayesian
Network learning, we here use M=21 features. This increase
of features is not only accompanied by a drastic increase in
the dimensionality of the whole feature vector (from D=15
to D=293), but also with strong redundancy in the data.
For instance, size (size), eccentricity (ecce) and shape (zern)
keep redundant information. These two characteristics (high
dimensionality and redundancy) allow us to evaluate our
models in terms of dimensionality reduction, dependency
detection, and structure learning.

III. GAUSSIAN PROCESS LATENT VARIABLE MODELS

In generative dimensionality reduction the observed data
Y is assumed to have been generated from a low-dimensional
latent variable Z through a mapping f , yi = f(zi). Assum-
ing the observed data to have been corrupted by additive
noise leads to the likelihood of the data,

p(Y) = p(Y|Z, f)p(Z)p(f). (1)

The Gaussian Process Latent Variable Model (GP-LVM)
[10] is a generative model for dimensionality reduction
where the generative mapping f is modeled as a product
of independent Gaussian Processes (GP) which leads to the



following marginal likelihood,

p(Y|Z, φ) =
∫
p(Y|f)p(f |Z, φ)df, (2)

where φ is the hyper-parameters specifying the GP.
In the GP-LVM framework we wish to find the latent loca-

tions and the hyper-parameters that maximizes the posterior
distribution of the data,

p(Z, φ|Y) ∝ p(Y|Z, φ)p(Z)p(φ). (3)

However, as estimating partitioning function is intractable
we in practice proceed to minimize the negative log of the
product of the margin likelihood the latent prior and the
prior over the hyper-parameters. This leads to the following
objective,

L = Ldata +
∑

i

ln φi +
∑

i

1
2
||zi||2 + C, (4)

where Ldata = ln p(Y|Z, φ).
One advantage of the GP-LVM framework is that it is

straight-forward to include additional constraints and priors
on the latent representation to replace the uninformative prior
used in the original formulation Eq. 4.

1) Shared GP-LVM: The Shared GP-LVM (SGP-LVM)
[9] is an extension which learns a single latent representation
from which two observed data spaces are generated by
separate GP’s. In this paper, we extend the original SGP-
LVM to model the 3 different observation spaces Y =
{O,A,C}. This means that we assume each of the observed
data spaces being independent given the latent representation
resulting in the following factorization,

p(Y) = p(Y|Z,Φ) =
p(O|Z, φO)p(A|Z, φA)p(C|Z, φC). (5)

Being a generative model with a data-term reflecting re-
construction all the variance in the observed data needs to be
represented within the model. The SGP-LVM model models
each of the observed data-spaces to have been generated
from the same underlying latent variable, this implies an
assumption that all the variance in each of the observation
spaces is shared, variance which is not needs to be “explained
away” as Gaussian noise using the noise model. However,
for many data-sets it is unlikely for the non-shared variance
to be well described using this model leading to a bad fit of
the model to the data.

In order to proceed in such situations it was suggested in
[9] to extend the SGP-LVM model to also include “private”
latent spaces. These spaces models variance in a single
observation space which is not shared by the others can
be interpreted as “structured noise models”. Including such
private spaces into our model leads to the following marginal
likelihood,

p(Y) = p(Y|ZS,ZA,ZO,ZC,Φ) =
p(A|ZS,ZA, φA)p(O|ZS,ZO, φO)p(C|ZS,ZC, φC).(6)

In this model the variance which is shared between
{A,O,C} will be represented using ZS while the non-shared

variance in each space will be represented by ZA, ZO and
ZC for A,O and C respectively.

In this project we are not just interested in factorizing the
latent representation into variance that is shared from such
which is private. Specifically we are interested in variance
which is shared and that contains task correlated informa-
tion. Such a factorization can be found by replacing the
uninformative prior p(Z) with a distribution that encourages
class separation. Such an extension to the standard GP-LVM
model was suggested in [11] by including a term based on
Linear Discriminant Analysis (LDA).

By noting that our model factorises the latent prior into 4
distinct parts, p(Z) = p(ZS)p(ZA)p(ZO)p(ZC). We replace
the uninformative prior over the shared space with the LDA
prior from [11].

p(ZS) =
1
CS

exp− tr
(
S−1

w Sb

)
, (7)

where Sw and Sb are the within and between class scatter
matrices of the latent representation respectively. In this way
we will encourage the shared space to contain information
which is shared between the observation spaces and contains
class correlated information. Figure shows the graphical
model.

2) Training: The objective function above is non-convex
and as the solution is sought through gradient based opti-
mization we are dependent on a good initialization of the
latent spaces. Further, the dimensionality of the latent spaces
are free variables which needs to be estimated from data.
These two characteristics of the model poses significant
limitations as it for many types of data is non-trivial to
estimate the dimensionality and a initialization, specifically
for factorized models such as ours.

In recent work [12] a set of regularizers to the SGP-
LVM framework has been suggested referred to as FOLS.
The FOLS regularizer reduces the demands on the initial-
ization (in practice the latent space is initialized with the
observed data) and is capable of learning the dimensionality
in addition to factorizing the latent space into non-redundant
subspaces. It does so by encouraging solutions with a low-
rank covariance matrix and penalize solutions where the
shared and the private spaces are non-orthogonal. For a more
complete description of the model see [12]. We add the
FOLS regularizers to our model which leads to the following
objective,

LLDA-SGP-LVM-FOLS = LSGP-LVM + λ · LLDA + β · LFOLS. (8)

The scalar λ controls the trade-off between reconstruction
and class separation and β controls the relative scale of the
FOLS regularizer.

The term LLDA will encourage a latent representation with
large class separation and low within class variance. As noted
in [11], the model can be interpreted from two different
views. One interpretation is to see LLDA as a regularizer on
the data-term. However, an equally valid view is to see the
data-term as a regularizer on the LDA term. In this paper,
we take the later view. By setting λ to a large value we



A O C A, O A, C O, C A, O, C
NN 78 47 94 88 90 95 92
SVM-Linear 73 81 77 81 82 81 83
SVM-RBF 85 80 93 94 92 94 94
LVM 78 70 89 84 74 92 81

force the shared latent representation to strongly reflect the
shared class correlated information in the data. This allows
us to evaluate the relative amount of the variance in each
observation space which is task correlated.

3) Inference: Training the above presented model
means that we have learnt the latent representation
Z = {ZS,ZA,ZO,ZC} and the hyper-parameters Φ =
{φA, φO, φC} specifying the three generative mappings.

The factorization of joint probability of the observations
specified by the model allows us to specify a distribution
over any input space given the known latent representation.
This means that given any subset of the observation spaces
YS ⊆ Y of the observed features we can infer the latent
location by finding the location that maximizes the marginal
likelihood,

ẑ = argmax
MS∏
v

p(yv|z, φv). (9)

The maximum of (9) is found using gradient based methods.
This means that the latent locations need to be initialized.
In this paper, we initialize the latent location by taking
the nearest-neighbors (throughout the experiments in this
paper we use 10 neighbors) in the feature training data
and initializing using the associated latent location. Our
final estimate is the solution corresponding to the highest
likelihood solution.

We are interested in inferring the task label associated
with a specific subset of the feature observations. To do so,
we learn a Gaussian Mixture Model over the shared class-
constrained latent space from which the posterior distribution
over each class given a latent location can be evaluated.
This means that given a location zS we can evaluate the
conditional distribution for this point to be associated with
each task.

IV. EXPERIMENTAL RESULTS

For the experiments with the LDA-SGP-LVM model we
selected 900 randomly sampled observation instances Y
uniformly distributed over task. We used 450 instances for
training and the remaining to test the model.

A. Task Classification

We first test our models performance in classifying the ob-
served task, we use the MAP solution under the GMM model
over the latent space. To understand the effect of the clas-
sification performance with respect to different observation
domains we perform the classification on each permutation
of the observed features, the results are compared to a set of
baseline algorithms in Tab. IV-A.

Compared to the purely discriminative base-line algo-
rithms we expect our model to perform worse as it is both
learning a representation for task discrimination and for
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Fig. 2. Confusion matrices on classification of 3 tasks, hand-over, pouring,
tool-use, given observation on different sub-sets features in {O, A, C}. The
first two row are the results from the Latent Variable Model. The third row
is the results from the Mixed BN in previous work [8]. The superscript S

represent subset of the features, e.g . OS ⊂ O

reconstruction and generation. Further, in our model it is
possible to infer the task from any observed subspace while
for the base-line algorithms a separate model needs to trained
for each input combination.

Taking this into consideration we believe that our model
performs competitively.

In Fig. 2 the confusion matrices for task classification
for the proposed model and our previous BN based model
is shown. The first row shows the results using each of
the observed features in turn. We can see that the object
features are generally good at discriminating the hand-over
and pouring task but confuses tool-use with hand-over. The
action features in comparison provides a good indications
for each task but are worse than the object features in
discriminating pouring. This is to be expected as the objects
that are pour-able are quite specific while the pouring action
itself can be ambiguous. Finally, for the constraint features
we see that compared to object the are capable to clearly
discriminate the task of tool-use. This is also something we
would expect as this task poses quite specific constraints.

Comparing the result of the proposed model with our
previous work we can see that when we only have a lim-
ited available our model performs significantly better while
when given additional input features our models performance
drops. This is an indication of the mismatch between the
structure of the dependencies in our model compared to the
data, where the single layer model is too simplistic while the
more complex BN model is closer to the actual data.

B. Different Features Show Different Properties
By incorporating the FOLS regularizers into the learning

framework we are able to infer the dimensionality of the la-
tent factorization from data. In our experiments this resulted
in a model with 2 shared dimensions and 5,2 and 2 private
dimensions to represent A,O and C respectively.

In Fig. 3 we see the action features containing the largest
proportion of non-task correlated variance among our three
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Fig. 3. In the left-most plot shows the variance along each dimension of
the latent representation. The right plot shows the proportion of the variance
in each of the separate latent spaces which is contained in the shared space.

feature classes. This is not surprising as we expect there to
be a larger variability in the manner an action is performed
compared to the object and constraints for a specific task.

For imitation learning we are interested in learning what
features are relevant and what combination of features re-
duces the entropy of the task distribution the most. However,
this is clearly task dependent as say for example knowing the
object is not likely to be particularly discriminative between
the task of pouring and hand-over while providing very
useful knowledge for choosing between pouring and tool-
use. If such information could be extracted we would be
able to direct the robots perception in such manner to acquire
information to maximally reduce the entropy over tasks. Our
model being generative we can exploit the shared-private
latent structure to extract such information.

For an observed data point yv
i , we can evaluate the

marginal likelihood p(yv
i |zi,Z) of the latent location under

the model. In the model this factorizes as follows,

p(yv
i |zi,Z) = p(yv

i |zS
i , z

v,ZS,Zv). (10)

As the location in the shared latent sub-space zS
i represents

task correlated variance in the data we can by fixing the
location in the private subspace zv

i (which represents the non-
shared non-task correlated variance) evaluate the effect of
the marginal likelihood with respect to the shared variable
for different observation features.

In Fig. 4 the result of uniformly sampling the marginal
likelihood over the shared latent space while keeping the
private location fixed for the three different tasks and ob-
servation features are shown. The first row shows how the
likelihood varies for an instance of the hand-over task. In
the first column the likelihood for the objective features are
shown, it can be seen that the probability mass is distributed
over all training data locations. This is to be expected as the
task hand-over can be performed on every object. The middle
column shows the results for the action features, which have
a large region associated with a high and two regions with
low likelihood values. Identifying the training data location
we can see that the region of high-likelihood corresponds
to hand-over while the low-likelihood regions correspond
to pouring. This is sensible as the action performed when
pouring is significantly different to the one for hand-over.
In the last column the distribution for the constraint model
is shown. As we can see the distribution have a very high
entropy being nearly completely flat which implies that there
is very little information in the constraints for the task of
hand-over.

By similar reasoning, we can see in the second row that for
the task of pouring the object features are less discriminative
while the action features places a high-probability mass
around an area occupied by pouring and tool-use instances.
More importantly, here, the constraint features are very
discriminative with very dominant mode which identifies the
task as pouring.

Finally, in the third row, the results for tool-use is shown.
Here we can see that each of the three features are multi-
modal and all provide relevant information to reason about
the task.

Further, for each of the three examples shown above we
note that the distribution over the action features is a lot less
peaked in comparison with the object and action features.
This is to be expected as there is a much larger variability in
realizing a grasp compared to object and constraint features.

The above results clearly exemplifies the strengths of our
model, by learning a factorized model we can evaluate given
an observation in one feature space which feature we should
acquire in order to reduce the entropy in the decision of
task the most. Further, observing how the probability mass is
distributed over the shared latent space gives a notion of the
generative qualities of our model. The object and constraint
distributions are tightly centered around the data while for
the action features it is more broadly distributed. This is good
as the first two often poses next to hard constraints on the
grasp while for the action this shows that there are several
possible ways to realize a specific action.

V. CONCLUSION

In this paper we have presented an extension to the Shared
Gaussian Process Latent Variable model to more than two
observation spaces and by incorporating partial discrimina-
tive constraints. Further, we have including recently proposed
latent regularizers in order to learn a non-redundant latent
representation of the data.

The proposed model is applied to factorize the joint
distribution of a set of different features for the robotic task
of grasping. Our generative model performs comparatively to
purely discriminative methods for task classification. Further,
by exploiting the generative nature of our model we are able
to evaluate the discriminative power of different features
to different tasks, something which can be very useful in
scenarios with limited observations.

Robots and humans have significantly different embodi-
ments, this means that the features that are important for
humans and robots in order to perform a specific task
successfully are likely to be different. In our previous work
we bridge this gap by using separate models for the robot and
the human, where classification is done in the human model
and generation in the robotic model. However, given corre-
sponding instances of robot and human action, the framework
developed above is capable of simultaneously learning a
latent representation linking the two different embodiments
making it possible to contain the full framework whit-in a
single model. This is something we would to evaluate in
future work.
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Fig. 4. Samples of the likelihood under the model. Each images is generated by fixing the location in the private-non-task correlated latent subspace and
uniformly sampling over the shared-task correlated. Each row represents a specific task, top to bottom: Hand-Over, Pouring and Tool-Use. The columns
represents the three different observation spaces, left to right: Object,Action and Constraint. The location of the training data is shown over the plots, where
Magenta,Green and Blue indicates hand-over, pouring and tool-use respectively. Note due to the intractability in estimating the partioning functions the
actual value of the posterior should not be interpreted only the within observation space scale is relevant. For visualization purposes we have scaled and
normalized the plots for ease of interpretation.

In this paper we have for clarity of presentation focused on
the discriminative power of the model, however, the model is
generative and capable of reconstruction outside the training
data. As noted in the expremental section, there is indications
of the good generative qualities. This is something we will
evaluate in upcoming work.
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Multivariate Discretization for Bayesian Network
Structure Learning in Robot Grasping

Dan Song, Carl Henrik Ek, Kai Huebner and Danica Kragic

Abstract— A major challenge in modeling with BNs is
learning the structure from both discrete and multivariate
continuous data. A common approach in such situations is to
discretize continuous data before structure learning. However
efficient methods to discretize high-dimensional variables are
largely lacking. This paper presents a novel method specifically
aiming at discretization of high-dimensional, high-correlated
data. The method consists of two integrated steps: non-linear
dimensionality reduction using sparse Gaussian process latent
variable models, and discretization by application of a mixture
model. The model is fully probabilistic and capable to facilitate
structure learning from discretized data, while at the same
time retain the continuous representation. We evaluate the
effectiveness of the method in the domain of robot grasping.
Compared with traditional discretization schemes, our model
excels both in task classification and prediction of hand grasp
configurations. Further, being a fully probabilistic model it
handles uncertainty in the data and can easily be integrated
into other frameworks in a principled manner.

I. INTRODUCTION

In the research field of robot grasping and manipulation,
an important challenge is to automatically plan a grasp on
an object that affords an assigned manipulation task. This
requires a robot to integrate a large range of sensory streams
in order to estimate the state of the scene, understand the
task requirements, and reason about its ability to plan and
control in an uncertain, open-ended environment. In recent
years, learning by imitation has been one important approach
to these problems [1], [2], [3], [4]. The goal is to design a
system whereby a robot learns a task by imitating a human
teacher. In order to observe a human demonstration, the
robot needs to obtain the state of the entire scene, not only
the objects, but also the human actions which often are
characterized using many variables (e.g. hand kinematics).
In addition, the robot also needs to recognize the intention
of the human to be able to reproduce the grasp in a goal-
directed way. This poses a significant modelling challenge.

To correctly describe a manipulation task, both conceptual
high-level information and continuous low-level sensorimo-
tor variables are needed. In previous work [5], we have
applied Bayesian Networks (BN) [6] to model the grasping
scenario. The aim is to exploit the strengh of BNs in
modeling complex joint distribution of these variables, so
that the robot is able to reason at both high-level task
representations and low-level planning and control using its
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Institute of Technology, Stockholm, Sweden, as members of the Com-
puter Vision & Active Perception Lab., Centre for Autonomous Sys-
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sensorimotor systems. Though the results are promising, the
approach suffers from inheritant disadvantages of BN, being
able to use only a small sub-set of the available sensory
streams.

These difficulties arise from several sources. When many
nodes are included, manually encoding the structure of
the network is non-trivial and poses significant challenges.
Therefore, we are motivated to learn the BN structure au-
tomatically from the data. A large body of work exists (see
review in [7]) learns the structure of BN in scenarios where
all the variables are discrete. However, our observations are
represented using both discrete and multivariate continuous
variables. In such scenarios, no directly applicable method
for learning the structure exists. To learn structure from
continuous data, several approaches have sought to discretize
continuous data as a prestep (see reviews in [8]). However,
as data-dimensions increases discretisation becomes signifi-
cantly more challenging. Recently, a multivariate discretiza-
tion scheme was developed in [9]. However, the method
suffers from ineffective clustering in high-dimensional spaces
and slow convergence.

The contribution in this paper is to introduce a novel
multi-variate discretization approach, which makes use of
high correlation of the high dimensional data, combining
a non-parametric dimensionality reduction approach (Gaus-
sian process latent variable model (GP-LVM) [10]), with a
Gaussian mixture model. In addition, the GP-LVM being a
generative model, when combined with BNs, can improve
the data reconstruction in the high-dimensional continuous
space. We evaluate our proposed discretization approach by
examining its effect on learning BNs. When compared with
other alternative approaches, the GP-LVM-based method
significantly improves the task classification accuracy, and
intuitive data reconstruction in high-dimensional space.

II. RELATED WORK

Graphical models such as Bayesian networks [6] aim at
exploiting conditional independencies in the data in order to
factorize the joint distribution of the data. For interpretable
scenarios such as object manipulation, the factorization en-
codes the semantic relationships between groups of variables
that represents the entire scene of manipulation tasks. Fur-
ther, being a generative model, a BN can be directly applied
for reasoning and planning of new grasps outside the training
data. In [3] a discrete BN is applied to model affordances
of objects while a robot is interacting with them in simple
manipulation tasks to explore its sensorimotor capabilities.
In our recent work [5], we extended the domain to complex,



task-oriented grasp planning problems, and tackled chal-
lenges in both object/task recognitions and grasp selection
under uncertain environments. The model allows not only to
reason about high-level task representations, but also to make
detailed decisions on which object to use and which grasp
to apply in order to fulfill the requirements of an assigned
task. However, the BN models both discrete and continuous
variables, which presents the limitations when a large number
of variables are to be modeled, and when the structure of the
network is to be learned.

Learning BN structure from both continuous and discrete
data is difficult, particularly when continuous data is high-
dimensional and has complex distributions. Most algorithms
for structure learning only work with discrete variables.
Therefore, a common approach is to convert the mixed
modeling scenario into a completely discrete one by dis-
cretizing the continuous variables [8]. In data discretization,
most techniques are based on either heuristic evaluation
[3], or equal-frequency and equal-width binning methods
[7], [8], [11]. In latter, the data is divided into a set of
bins, and then the number and the location of the bins
are optimized based on some information criterion such as
Akaike’s criterion [7], [12]. However, the method is only
applicable for continuous variables with only one dimension.
Multivariate discretization has been explored for association
rule discovery in the field of data mining. A recent work
in [9] introduced a novel approach that is based on density-
based clustering techniques. The method assumes that high
density data clusters often occur when there are high associ-
ations between the continuous variables. Once these clusters
were identified, a genetic algorithm was applied to optimize
the cut points for the discretization intervals.

The idea behind the method in [9] is similar to ours
in that we also use the clusters discovered in the data as
the class information used for discretization. However, [9]
explored the clustering in the original observation space of
the data which will suffer when the variable is very high-
dimensional and thus density learning becomes inefficient.
In robotic applications, many variables of interest such as
hand joint kinematics are high-dimensional. However, the
intrinsic dimensionality or the number of degrees of freedom
are often much smaller due to significant between-dimension
correlation in the observed space. In dimensionality reduction
the aim is to exploit such correlation in order to find a more
compact and efficient representation.

The field of dimensionality reduction has received signif-
icant attention over the last decade. Originating from simple
linear algorithms such as Multi-Dimensional-Scaling [13]
and Principle Component Analysis, several non-linear ex-
tensions were suggested [14], [15]. However, these methods
often rely on assumptions that significantly limits their ap-
plication. Therefore more general, generative interpretations
such as Probabilistic PCA (PPCA) [16] were proposed. Of
particular success has been the GP-LVM being a non-linear
generalization of PPCA based on non-parametric regression
using Gaussian Processes (GP). In next two sections, we
will first introduce GPs and the GP-LVM. Based on this

background, we will proceed to explain our proposed dis-
cretization model.

III. GAUSSIAN PROCESSES

A GP [17] is defined as a collection of random variables,
any finite number of which follows a joint Gaussian dis-
tribution. GPs are commonly used to model distributions
over functional spaces making probabilistic treatment of such
possible.

Given a set of data X = [x1, . . . ,xN ]T, xi ∈ <q and
Y = [y1, . . . , yN ]T, yi ∈ <, we assume that yi are related
to xi through an underlying functional relationship f where
the observations Y have been corrupted by additive Gaussian
noise,

yi = f(xi) + ε, (1)

where ε ∼ N (0, σ2). We assume that the unknown function
values f can be modeled using a GP,

p(f(X)|X) = N
(
µ(X), k(X,X)

)
, (2)

where µ(·) is the mean and k(·, ·) the covariance function
respectively. Without loss of generality we can remove the
bias from the data and set the mean funtion to be constant
zero. The covariance function defines what types of functions
are more prominent in the prior, and are specified using a
set of parameters Φ which will be referred to as the hyper-
parameters of the GP. The hyper-parameters are difficult
to know a-priori, so we want to learn them from data.
Combining the prior with the likelihood, which is Gaussian
due to the noise assumption, and marginalizing,

p(Y|X,Φ) =

∫
p(Y|f(X))p(f(X)|X,Φ)df(X), (3)

leads to the marginal likelihood of the observed data. We
can then find the hyper-parameter Φ̂ that maximizes Eq.3.

Through the definition of a GP, the joint distribution of
X and a set of new input locations X∗ can be formulated.
Marginalization of the observed data X leads to the predic-
tive distribution,

p(f(X∗)|Y,X,Φ) = N
(
k(X∗,X)

(
k(X,X) + σ2I

)−1
Y,

k(X∗,X∗)− k(X∗,X)
(
k(X,X) + σ2I

)−1
k(X,X∗)

)
, (4)

from which inference can be performed.
As can be seen above, learning in the GP framework

requires invertion of a N× N matrix, an operation of cubic
complexity. This places significant constraints on the size
of the datasets for which the framework can be applied.
This has led to a significant amount of work on methods
which aim to reduce the computational cost associated with
the model. In specific, a set of methods which introduce an
additional set of input variables U referred to as the inducing
variables have been proposed. By assuming the observed
data to be independent given the inducing points, the prior
can be written as p(f(X)) =

∫
p(f(X)|U)p(U)dU. When

substituted into the derivation of the predictive distribution,
the inducing conditional takes the following form,

p(f(X)|U) = N
(
k(X,U)k(U,U)−1U,

k(X,X)− k(X,U)k(U,U)−1k(U,X)
)
. (5)



Note that the matrix inversion in Eq. 5 is only applied to
the covariance matrix on the inducing points.

By using a much smaller number of inducing points com-
pared to the original data, several different approximations
have been suggested. Explaining the different approximation
in detail is beyond the scope of this paper. However, we
briefly note that one kind of approximation method adds
the inducing points as parameters of the covariance func-
tion and estimates their location jointly with the remaining
hyper-parameters. Intuitive as this might be, it significantly
increases the number of parameters to be estimated which
makes such an approach prone to over-fitting. A recent work
by [18] suggested a variational framework to circumvent
this problem. The method treats the inducing points as pa-
rameters, and proceeds by minimizing the Kullback-Leibler
divergence between the exact posterior distribution and the
variational distribution. In this paper we will make use of
this variational approximation in [18].

The GP-LVM [10] is a generative model for dimension-
ality reduction based on GPs. We assume a set of observed
data Y = [y1, . . . ,yN ]T, with yi ∈ <D, is generated from a
low-dimensional variable X = [x1, . . . ,xN ], with xi ∈ <q ,
through a mapping f corrupted by additive Gaussian noise,
yi = f(xi) + ε, where ε ∼ N (0, σ2I). Each dimension of
the output is modeled as an independent GP,

p(f(X)|X) =
D∏
i

p(f(X)Tei|X)) (6)

where ei is standard basis vector. The GP-LVM proceeds
in analog with the regression framework with one significant
difference. In the GP-LVM the input variables X are treated
as random variables, and the solution to X is found together
with the hyper-parameters through maximum likelihood,

{Φ̂, X̂} = argmax{Φ,X}p(Y|X,Φ). (7)
This might seem non-sensical as clearly the combination of
mappings f and input locations X that could have generated
the observed data Y is infinite. However, by fixing the di-
mensionality of the latent space q to be significantly smaller
compared to the observed data, and by the regularizing effect
of the GP-prior, a solution can be found efficiently.

IV. GP-LVM DISCRETIZATION

In this section, we explain a novel descretization approach,
which, by exploiting recent advances in sparse GPs and the
GP-LVM, is able to compactly represent high-dimensional
continuous data using a low-dimensional discrete mixture
model in a principled way.

Our approach is a straight-forward two-stage framework,
as exemplified in Fig. 1. Given a set of observed high-
dimensional data Y, in this example the 20D feature fcon,
we wish to find a compact discrete representation of the data
which can be efficiently used in a BN. In the first stage
we use a GP-LVM model where the generative mapping is
formulated as a sparse GP from a small sub-set of inducing
points. Using the sparse variational approximation of [18],
the location of the inducing points (the red star markers
in Fig. 1 a) and the hyper-parameters of the generative
mapping can be found. Further, in order to avoid setting the

a) Step1: GP-LVM → 2D Latent Space b) Step2: GMM → Discretization

Fig. 1. GP-LVM-based discretization for fcon: a) 2D latent space learned
using sparce GP-LVM, b) discretization using GMM in the 2D latent space.

dimensionality by hand and reduce reliance on initialization,
we include the rank-regularization framework of [19].

In the second stage, one could directly use the inducing
points of the GP as cluster-centers to discretize the data.
However, when training GP-LVM, we use a spherical covari-
ance function in order to reduce the number of parameters
that need to be estimated from data. But this might lead to a
less compact representation since variances in the dimensions
with high correlation will be modeled as the same as those
with low correlations. Our solution is, in the second stage, to
learn a more compact representation using a mixture model
that allows full covarances therefore more flexible compo-
nent representations. More specifically, we learn a Gaussian
mixture model (GMM) explaining the latent locations X.
The inducing points are used as the initial centers of all
mixture components, and the model is optimized through the
standard Expectaion Maximization approach. Fig. 1 b) shows
the resulted mixture model, with the ellipsoids representing
one standard deviation of the Gaussian components, and the
colored data points being the resulted discretization.

For runtime evaluation, an unoptimized Matlab implemen-
tation with 1800 data points, it takes about 100 seconds to
train the discretization model for the worst case data.

V. DATA GENERATION

In this section, we will briefly introduce how the variables,
i.e. the feature values, are extracted. Tab. I shows the features
used in this work. The features describing each grasp are
divided into three sub-sets: object features (O) extracted from
the object representation, action features (A) extracted from
the planned grasps, and constraint features (C) resulting
from the complementation of both, i.e. the hand-object con-
figuration. Each grasp is visualized in GraspIt! to a human
tutor who associates it with a task label (T ).

Fig. 2 shows the schematic of the data generation process.
To extract those features, we first generate grasp hypotheses
using the grasp-planner BADGr [20], and evaluate them
as scenes of object-grasp configurations in a grasp simu-
lator, GraspIt! [21]. BADGr includes extraction and labeling
modules to provide the set of variables presented in Tab.
I. The interested reader is referred to [5], [20] for more
details on the feature extraction. We emphasize that the
grasp representation does not have to be non-redundant,
e.g. cvex and shcv are allowed variables to both represent
object shapes. Such an “over-representation” of the featured



TABLE I
USED FEATURES WITH THEIR DIMENSIONALITY D (FOR CONTINUOUS)

AND NUMBER OF STATES N AFTER DISCRETIZATION.

Name D N Description
T task - 3 Task Identifier
O1 obcl - 6 Object Class
O2 size 3 8 Object Dimensions
O3 cvex 1 4 Convexity Value [0, 1]
O4 shcv 3 7 Shape Class Vector (Zernike Similarity)
A1 fcon 20 20 Final Hand Configuration
A2 dir 4 20 Approach Direction (Quaternion)
A3 pos 3 14 Grasp Position
A4 egpc 2 6 Eigengrasp Pre-Configuration
A5 upos 3 11 Unified Spherical Grasp Position
C1 fvol 1 6 Free Volume
C2 gbvl 1 4 Volume of Grasped Boxes
C3 pshcv 3 7 Part Shape Class Vector (Zernike Similarity)
C4 pecce 1 3 Part Eccentricity [0, 1]
C5 g1bx 1 2 Grasped-1-Box Value [0, 1]
C6 qeps 1 5 Grasp Stability Measure (eps)
C7 qvol 1 3 Grasp Stability Measure (vol)

{Object}
{Hand} Plan

(BADGr) {Grasp} Generate
(GraspIt2) {Scene}

Label
(BADGr) Tutor

{Task}Extract
(BADGr){T,O,A,C}

Task-related
Grasp Database

Fig. 2. Schematic diagram for generating task-related grasp database.

variables allows us to use BNs to identify the importance of,
and dependencies between these variables in the scenarios
of robot grasping and manipulation.

VI. RESULTS

In this section, we will describe four experiments to
evaluate our framework. In order to compare the suggested
approach with other methods we also present results obtained
by discretizing using a mixture model in either the observed
data space (NoReduce), or in the space spanned by the dom-
inant principle components (PCA). To compare them under
the same level of model complexity, the dimensionality of
the mixture model and the number of principle components
are set to be the same as for those learned by the GP-LVM.

To generate data, the grasp hypotheses are produced on
24 object models evenly covering six object classes (obcl)
including knifes, hammers, screwdrivers, glasses, bottles and
mugs. The grasps are labeled according to three manipulation
tasks: hand-over, pouring and tool-use. The total data-set
consists of 1800 data points uniformly divided over the three
tasks. We use 80% of the data for training and the remainng
360 instances for testing.

In all the experiments, when feature set O is observed, all
object features except the object class obcl are observed. We
assume that obcl is unknown in order to simulate the real-
world scenarios where recognizing object categories from its
raw features is still a hard problem for robot sensor systems.

A. Experiment I: Structure Learning
The first experiment is to learn structure of BNs from the

discretized data by using the three different discretization

schemes. We use a greedy search algorithm to find the
structure, or the directed acyclic graph (DAG), in a neigbor-
hood of graphs that maximizes the network score (Bayesian
information criterion [22]). The search is local and in the
space of DAGs, so the effectiveness of the algorithm relies
on the initial DAG. As suggested by [7], we use another
simpler algorithm, the maximum weight spanning tree [23],
to find an oriented tree structure as the initial DAG. We
assume the task class variable is the ‘cause’ of the systems
thus the root node of the network.

Fig. 3 shows the results of learned DAGs from the
three models. We note that learning the structure from
data reveals complicated relationships among these large
pool of variables, which will otherwise be very difficult to
encode by human experts. From an initial inspection, the
DAGs associated with the different discretization schemes
share much of their structure. And they conform to our
intuitive knowledge of the dependency relations between
the variables. For example, the three action features – pos,
upos and dir – are fully connected because the unified
spherical grasp position upos is directly derived from the
grasp position pos and the hand orientation with respect to
the object dir. We also see that task has a direct connection
to obcl which in turn directly determines the other object
features. This make perfect sense as among the six object
classes, 3 classes are tools therefore afford the tool-use task,
and the other 3 classes are containers therefore afford the
pouring task.

When comparing the DAG of GP-LVM to those of PCA
and NoReduce models, the main difference lies in the
connections involving fcon. This is not surprising. As fcon
represents the final grasp configuration of the hand which
is high-dimensional and contains a lot of information, it is
therefore expected to be most affected by the discretization
methods. As we can see, fcon in the GP-LVM model has
more parents thus more family members than that of the
other two models. This indicates that the GP-LVM-based
discretization of fcon captured a different representation
in the continuous, high-dimensional space of the variable,
therefore, the dependencies of fcon with other variables are
different. In specific, in the GP-LVM model, fcon is con-
nected to pecce, the eccentricity of the grasped part, which
clearly has a big impact on the final grasp configuration.
This dependency is discovered when using GP-LVM-based
discretization scheme, but is lost by both PCA and NoReduce
models.

B. Experiment II: Task Classification
As we do not have the true structure of the BN to evaluate

the learned DAGs, in this section we evaluate the effec-
tiveness of the structure learning using the three different
discretization schemes by comparing their task classification
performance. As shown in Fig. 4, this task classification is
based on the inference of task variable given observation
of different set of other variables that form a complete
permutation of the 3 feature sub-sets: O, A and C.

There are three major observations from the result of this
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schemes. The differences in DAGs are highlighted by thick arrows. Square nodes represent discrete variables and circled nodes continuous. Continuous
nodes with thick boundaries identify high-dimensional variables onto which different discretization schemes have been applied.
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Fig. 4. Experiment II: Confusion matrices for task classification given different observations spaces: permutations of O,A,C features. For each 3 × 3
matrix, from left to right (top to down), the 3 tasks are: hand-over, pouring, tool-use.

experiment: i) Object features contain a lot information that
is task-relavant. By just observing O using GP-LVM model,
we see quite good classification rate. But A and C features
by themselves are close to random. When more information
is observed, the classification rate improves. Particularly, for
GP-LVM and PCA models, O and A compliments each
other and improve the classification rate significantly for
the pouring and tool-use tasks. When C is also added
in the observation space (O,A,C), the classification for
the hand-over task is improved in both models. However,
we notice that the accuracy on classifying pouring task
decreases from 95% to 85%. This may be explained by the
imbalanced training data in many of the C variables. For
example, when there is lack of data points for some states
of the C variables when the task is pouring, the conditional
probabilities learned in the BNs will be under-determined.
In such situations, clamping (observing) these C variables at
these states will certainly hurt the inference on the posterior
distribution on task. ii) When comparing the three models,

NoReduce, which discretizes the variables in original high-
dimensional space, has close-to-random classification rate.
The two models with dimensionality reduction (GP-LVM,
PCA) greatly outperform the NoReduce model. GP-LVM
is clearly the best in most of the observation conditions.
iii) When only A features are observed, we see quite high
classification rate only for tool-use (PCA: 88%, GP-LVM:
94%), while the other two tasks are random. This can
be explained by that since the tools are mostly very slim
compared to other objects, thus the fingers are very close to
each other when grasping them. As a result some A features
such as fcon contain much information to separate tool-use
from other tasks.

C. Experiment III: Prediction of Grasp Final Configuration
Since the Bayesian network is a generative model, in

addition to evaluate its performance in discrimitive power
(i.e. task classification) in the first experiment, we would also
like to see how well the model can sucessfully reconstruct
any variable given an assigned task. Particularly, we want



hand-over pouring tool-use
G

P-
LV

M
PC

A

True GP-LVM PCA NoReduce

ha
nd

-o
ve

r
po

ur
in

g

Fig. 5. Experiment III: Top panel shows the likelihood maps of fcon in
latent space given tasks and glass’s object features P (fcon|T,O); Bottom
panel shows prediction of fcon in original space, visualized in GraspIt!.

to show the strength of the proposed discretization scheme
GP-LVM on reconstructing the high-dimensional variables.
Due to the space limit of the paper, we choose the grasp
final configuration fcon as our target variable. But note that
the similer effects have been observed on other variables.
In this experiment, the goal is to demonstrate that using the
discretization scheme GP-LVM, as compared to PCA and
NoReduce, we can i) better model the constraining effect of
the manipulation tasks on fcon, and ii) predict more intuitive
fcon in the original hand configuration space.

To do so, we first obtain the likelihood maps of fcon in the
2D latent space for the GP-LVM and PCA models (see top
panel of Fig. 5). The light color of the map indicates that the
point has high likelihood for the task. The maps are generated
by evenly sampling the posterior distribution P (·|T,O) under
the BN model for each task using the same object (glass).
This object comes from the test data in order to investigate
performance on generalization outside the training data.

The main observations here include: i) for both GP-LVM
and PCA models, the tool-use task has much darker maps,
indicating that the glass is clearly not tool-usable; ii) when
comparing the maps between the two models, we see there
are clear differences between hand-over and pouring tasks
for GP-LVM, whereas for PCA the likelihood patterns are
almost same. This implies that the GP-LVM model has
captured the potential constraining effects of the tasks on
the final configuration of the hand. On the contrary, the PCA
model is almost ‘blind’ on the potential task constraints.

As the 2D latent space representation can not give us any
intuition about how good is the fcon predicted by the model,
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Fig. 6. Experiment IV: Likelihood of Grasp Position Given Tasks and
Object Features P (pos|T,O), resulted from the GP-LVM model.

we would like to project the prediction into the original 20D
space and visualize it in the simulator. This way, we can also
visualize the results from the NoReduce model. The bottom
panel in Fig. 5 shows the results with the same object, for the
hand-over and pouring tasks. From the left to right columns,
the images represent the ground truth fcon, predicted fcon
from GP-LVM, PCA and NoReduce models respectively. We
can see that the reconstruction of the GP-LVM model is
closer to true fcon, and importantly the hand configurations
are more natural compared to other models. Both the PCA
and NoReduce models have unintuitive, even ‘impossible’
hand configurations that are far away from the true data.

The reason lies on the foundamental differences in the
discretization schemes. The GP-LVM model provides a
generative discretization scheme, while PCA and NoReduce
models do not. As a result, GP-LVM-based BNs can model
P (fcon|T,O), where fcon represents the original 20D
continuous data, whereas the other models can not. In other
words, the proposed GP-LVM-based discretization scheme
allows us to construct a full generative framework that
includes BN, GP-LVM and GMM. This framework is very
powerful to model the constraints for robot grasping and
manipulation tasks.

D. Experiment IV: Inference on Grasp Position
From the first three experiments, we have shown that the

GP-LVM-based discretization scheme outperforms others in
both task classification and data reconstruction. The goal
of the last experiment is to confirm that GP-LVM model
can successfully encode some task constraint on different
objects and tasks. Notice that the constraint of a given task
is often encoded by a combination of multiple features, e.g.
one should not grasp this object from this position pos,
in this orientation dir, and with this joint configuration
fcon. However due to space limit and for the purpose
of easier evaluation by the readers, we choose a single



intuitive variable, the grasp position pos, to visualize the
task constraint.

Similar to obtaining the likelihood map of fcon in ex-
periment III, we sample 625 grasping positions evenly on
an ellipsoid around the object. The size of the ellipsoid is
determined by the training data so that the ellipsoid envelops
the outer surface of all the grasping positions. As shown in
Fig. 6, for each sampled position, the likelihood is obtained
given the 3 tasks, and the object features for 3 unknown
objects: a glass, a knife and a hammer, i.e. P (pos|T,O).

Fig. 6 shows that the model sucessfully rules out the glass
for tool-use, and the knife and hammer for pouring. For
pouring, the glass can not be grasped from the top as it will
block the opening of the glass; similarly, when using the
knife or hammer as a tool, the grasp should avoid the sharp
blade or the head of the hammer as functional parts. All the
3 objects afford the hand-over task, and the likelihood maps
of pos for hand-over also capture the intuitive constraints
for these objects. Similar results are also observed in PCA
model but not in NoReduce model. The reason is revealed by
previous task classification results as shown in Fig. 4: while
PCA model has good classification rate given the observation
on O,A features, the NoReduce model is almost random.

VII. CONCLUSION

In conclusion, the sparse GP-LVM-based discretization
method excels over other methods in learning and infer-
ence with Bayesian networks. The compact, efficient data
representation allows fast structure learning for BNs that
model a large number of variables. And the resulted BN per-
forms significantly better in both task classification and data
reconstruction. In addition, since GP-LVM is a generative
technique for dimensionality reduction, the model encodes
the likelihood of each point in the latent-space, which, when
combined with the prediction from BNs, can reproduce much
more accurate and intuitive high-dimensional variables such
as hand grasp configurations. This presents a major advan-
tage of our proposed discretization method in the field of
robotic applications, where many sensory and motor signals
are high-dimensional with complex distributions.

In this paper, we only used human hand model to present
the discretization techniques for learning Bayesian networks.
However, the framework can be generalized to any hands,
from which the training data should be generated. The goal
of the hand-specific Bayesian network is to allow the task
information to be transferred between different hands or
embodiments, therefore the goal-directed grasp imitation can
be performed [5].

There are some limitations in the current approach that
need further research. Firstly, the number of discrete states
are manually chosen to satisfy a trade-off between refined
data representation and complexity of BNs. In the future, we
would also like to learn this hyper parameter automatically
from data. Secondly, the inducing points create a sparse
model of the full GP, however, there is nothing in the model
that encourages the inducing points to be sparse themselves,
i.e. less inducing points. Sparseness among the inducing

points would reduce the amount of shared explanation, which
we believe can lead to better clustering.

We would also like to test our discretization based task
constraint model in the real robot platforms where sen-
sorimotor uncertainty is more prominant. We believe this
will further exemplify the benifits of using a probabilistic
model capable of dealing with uncertainty in real-world
applications.
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