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Chapter 1

Executive summary

Deliverable D20 presents second year developments within workpackage WP3 “Self-experience of Grasping
and Multimodal Grounding”. According to the Technical Annex of the project, D20 presents activities
connected to Tasks 3.1, 3.2, and 3.3. The objectives of these tasks are defined as

• [Task 3.1] - Control Architecture. Initially, a hierarchical control architecture will be defined
and developed such that it allows relating the concepts of the grasping ontology defined in WP2
to the immediate control. After the architecture has been defined, this task will continue with
the definition and development of the general control architecture components, mainly a Cartesian
controller and high-level supervisory and visual controllers.

• [Task 3.2] - Multimodal Grounding. The task aims for the definition and development of a
grounding mechanism connecting action primitives and attributes with uncertain sensor informa-
tion, including modelling of the uncertainties involved. Initially, the modelling of uncertainties of
the three sensor types (visual, tactile, proprioceptive) is studied considering the context of the at-
tributes of the grasping ontology. Later, the task will continue by studying the temporal grounding
problem as a state estimation problem with uncertain information, as the concepts and therefore
the symbol set are defined by the grasping ontology.

• [Task 3.3] - Robust action primitives. The task aims for the definition and evaluation of
adaptive and robust control approaches for individual action primitives. The main focus will be on
studying the possible grasp primitives for different hand kinematics (parallel jaw, three-fingered, five
fingered) and to identify robust parameterisable primitives through evaluation. Parameterisation
of the primitives allows self-experience to be used for improving the performance during future
attempts.

The work in this deliverable relates to the following third year milestone:

• [Milestone 8] - Implementation of hybrid controllers for on-line adaptive primitive grounding;
evaluation in the simulator and on experimental platforms.

The progress in WP3 is presented briefly below, and in more detail in the appendix containing attached
scientific publications and reports.

• Attachments A, B, and F present work in connecting tactile sensor measurements to grasp stability,
related to Task 3.2. Initial work in the topic was shown in Year 2 deliverable D13, and the work
is concluded in the attached publications, which demonstrate that the stability recognition using
tactile sensing is feasible, study the usefulness of different feature extraction and machine learning
approaches, and evaluate the contribution of different types of knowledge for inferring about the
grasp stability in both simulation and on real hardware. A preliminary version of Attachment A
was included in the second year deliverable.

• Attachment I presents initial work extending the results of grasp stability recognition to controlling
the grasping process. The work is thus connected to both Tasks 3.2 and 3.3. The main idea is

5



GRASP 215821 PU

that the whole sensor-based grasping process is considered in a probablistic context. Through this
viewpoint, we take into account the inherent uncertainty related to the measurements, the object
and the manipulator. Using the uncertain information, we produce a series of grasps leading to a
stable grasp.

• Attachment C presents work on the development of visual skills necessary to implement reactive
grasping using vision as one of the feedback sensors, related to adaptive primitive development in
Task 3.3. In the paper, a new approach is proposed for the visual tracking of a robot hand suitable
for observing the interaction between robot and object.

• Adding visual feedback to adaptive control requires the calibration of the camera position with
respect to the robot. Attachment G presents a simple yet robust and practical method for optimal
estimation of the calibration.

• Attachment D presents improvements on adaptive manipulation primitives. The primitives form a
complete set for transporting objects and include both hand and arm control. The work is part of
Task 3.3.

• As the primitives (Task 3.3) have been extended to arm motions, one option for learning these is
from physical interaction with a human. The work in Attachment E studies which kind of response
of a robot is preferable to a human user in the context of the human physically guiding the robot
through a motion. In addition, guidance based control primitives are described.

• Attachment H shows an application of the manipulation primitives paradigm (Task 3.3) solving a
complex manipulation task. The task consists of emptying a box whose location is barely known,
and which contains an undefined number of unknown objects. All the primitives are sensor based
and implement a reactive behavior that adapts to the uncertain and changing real environment.
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Attached papers
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Evaluation of Feature Representation and Machine Learning Methods
in Grasp Stability Learning

Janne Laaksonen, Ville Kyrki and Danica Kragic

Abstract— This paper addresses the problem of sensor-based
grasping under uncertainty, specifically, the on-line estimation
of grasp stability. We show that machine learning approaches
can to some extent detect grasp stability from haptic pressure
and finger joint information. Using data from both simulations
and two real robotic hands, the paper compares different fea-
ture representations and machine learning methods to evaluate
their performance in determining the grasp stability. A boosting
classifier was found to perform the best of the methods tested.

I. INTRODUCTION

Grasping a known object in a known environment with
a known robotic hand is a tractable problem. But immedi-
ately, when some of the facts are unknown, usually true in
humanoid robot environments, the problem becomes much
more difficult to solve. The problem studied here is how
to estimate grasp stability when only haptic information
is available. For example, in service robotics the models
of objects are usually unknown and must be constructed
from e.g. vision. Thus, there is no explicit object model,
but the system is learning from haptic images of stable and
unstable grasps. We show that it is possible to some extent to
recognize when a grasp is stable when given only the haptic
pressure and finger joint information.

A number of different sensor modalities can be used to
deal with the uncertainty from having an unknown object
during grasp. With sensors, we can determine when the
object is in contact with the hand, giving additional informa-
tion besides the kinematic configuration of the hand. Tactile
sensors are useful here, as they measure the force or pressure
inflicted on the sensor matrix, giving the area of the contact
as well as the total force.

To determine the grasp stability, the stability criteria must
be linked to the haptic data. This can be done either analyt-
ically or through learning. In this paper, we study the use of
learning for grasp stability evaluation where a system learns
the measure of stability based on a number of examples.
Through an experimental study, our aim is to assess the
suitability of different feature representations and machine
learning methods in the problem of learning grasp stability
from haptic input. The focus of the study is to evaluate the

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme under grant agreement
n◦ 215821.
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Kragic is with the Centre for Autonomous Systems, Computational Vi-
sion and Active Perception Lab, CSC-KTH, 10044 Stockholm, Sweden,
dani@kth.se

grasp stability from a single haptic data instance using both
discriminitive and generative classifiers and different feature
representations from data-driven dimensionality reduction
techniques to application specific feature extraction methods.
The approach taken in this paper gives the benefit of detect-
ing whether the grasp is stable or unstable at any instant
during grasping knowing neither perfect object information
nor the hand kinematics. The approach is also generalizable
to any configuration of tactile sensors in the hand which are
able to measure pressure level. Both simulated and real data
is used to determine the differences and similarities when
comparing simulation with real platforms.

The paper is divided into six sections: Section II is a
study of related work in the area of the paper, Section III
introduces the different features for the classification, Section
IV describes the machine learning algorithms used in the
experiments and Section V contains the actual performed
experiments. Finally Section VI concludes the paper with
discussion and future work.

II. RELATED WORK

Grasp stability analysis by analytical means is a well es-
tablished field. However, to analytically determine the grasp
stability, the kinematic configuration of the hand and the
contacts between the hand and the object must be perfectly
known. Previous studies on this subject are numerous and [1]
gives a detailed review. However, the references are useful
only in cases when conditions described above are true.
When this is the case, it is possible to determine if the grasp
is either force or form closure grasp [2], which ensures the
stability. Compared to this body of work, we wish to learn
the stability from existing data, i.e. the tactile data.

While there is currently little work directly comparable
to our work, many have studied the use of tactile and
other sensors in a grasping context. Felip and Morales [3]
developed a robust grasp primitive, which tries to find a
suitable grasp for an unknown object after a few initial grasp
attempts. However, only finger force sensors were used in the
study.

Apart from using tactile information as a feedback for
low level control [4], tactile sensors can be used to detect or
identify object properties. Jiméneza et al. [5] use the tactile
sensor feedback to determine what kind of a surface the
object has, which is then used to determine a suitable grasp
for an object. Petrovskaya et al. [6] on the other hand use
tactile information to reduce the uncertainty of the object
pose, upon an initial contact with the object. In their work, a
particle filter is used to estimate object’s pose, but the tactile



sensor used to detect contact with the object is not embedded
in the gripper performing the grasping.

Object identification has been studied by Schneider et al.
[7] and Schöpfer et al. [8] Schneider et al. show that it
is possible to identify an object using tactile sensors on a
parallel jaw gripper. The approach is very similar to object
recognition from images and the object must be grasped
several times before accurate recognition rates are achieved.
Schöpfer et al. use a tactile sensor pad instead of a gripper
or a hand which could be used to grasp the object. [8] is a
study on different temporal features which can be used to
recognize objects. Similar object recognition systems have
been presented in [9], [10].

Preliminary results using the method presented in this pa-
per have been published in [11]. However, this paper takes a
significantly broader look into different classifiers and feature
reprentations. Learning the grasp stability from examples
provides a good ground to cope with the uncertainty in
the process generally not studied in the case of analytic
approaches.

III. FEATURE REPRESENTATIONS

A haptic data instance, H = [t j], consists of the tactile
readings, t, and of the grasp joint configuration, j. Depending
on the hand used, the dimensionality of both t and j changes.
In this study, three different platforms are used:
• Simulated Schunk Dextrous Hand (SDH), 3 fingers each

with 12x6 tactile elements, t ∈ R216, j ∈ R7

• Schunk Dextrous Hand, 3 fingers each with 13x6 tactile
elements (Weiss tactile sensors), t ∈ R234, j ∈ R7

• Parallel Jaw Gripper, PG70, 2 fingers each with 14x6
tactile elements (Weiss tactile sensors), t ∈R168, j ∈R1

The dimensionality of H ranges from R169 to R241 with
the listed platforms. The number of features in H can be
considered large and potentially redundant. Thus, an effective
method to reduce the dimensionality precedes the subsequent
processing. Rest of the section describes the methods that are
used to achieve this.

To provide an overview of the effect features have on the
classification of the grasp stability, several types of feature
representations are studied for training and classification.
The features, denoted by f, are derived from the tactile
sensor data, t. The features represent a variety of approaches
from pure data-driven dimensionality reduction to application
specific features. The features are computed from the tactile
readings only while the joint configuration is used as is as a
part of the haptic features.

A. Principal Component Analysis

Principal component analysis (PCA) is commonly used
linear technique for dimensionality reduction. Here, PCA is
computed using the covariance of the haptic data, H1,...,n and
the resulting eigenvectors and eigenvalues,

C = cov(H1,...,n) , (1)

V−1CV = D . (2)

Here, V represent the eigenvectors and D the corresponding
eigenvalues. We chose the eigenvectors with the largest
eigenvalues that combined explain 90% of the data. This
results in ∼ 60 eigenvectors.

B. Image Moments

Raw image moments are defined as

mp,q = ∑
x

∑
y

xpyq f (x,y) . (3)

The moments are computed up to order two, that is (p+
q) = o, o = {0,1,2}, These are related to the total pressure,
the mean of the contact area, and the shape of the contact
area, indicated by the variance in x- and y-axes. Moments are
computed for all tactile sensors individually, thus f ∈ R18.

Raw image moments are used in the experiments as
normalized image moments did not produce better results.
This observation might be due to the fact that, e.g. rotation
invariant moments, are not useful for grasp stability learning,
as each grasp is unique.

C. Histogram

Histogram representation on the tactile data represents
binning of the force affecting each cell of the tactile matrix.
This operation also removes all spatial information. Thus,
the histogram only considers the distribution of the affecting
force. Using 10 histogram bins, f ∈ R10.

D. Spatial Partitioning

Spatial partitioning partitions the area of the sensor matrix
and sums the affecting force in every cell of the sensor
matrix in each of these partitions. In essence, this sub-
samples the tactile image of each sensor matrix. Partitioning
can be thought as opposite to the histogram operation, as
partitioning retains the spatial information but loses some
information of the force distribution. In the experiments, a
2x2 grid is used to partition the tactile image on each sensor,
f ∈ R12.

E. Local Binary Pattern

Local binary patterns (LBPs) [12] are used commonly for
texture classification but also on face recognition. As its
name suggests, local binary pattern codes local changes in
a binary code. The local changes are found by thresholding
the pixel neighbourhood by the value of the center pixel
and checking which pixels are above the threshold. These
binary codes are then added to a histogram, which is the
final feature representing the original data. Images from all
sensors are coalesced into one image and the LBP is applied
to this image in the experiments. In the experiments, LBP
produces a histogram where f ∈ R59.

F. Row and Column Sums

Row and column sums is another form of spatial feature
representation, where the colums and rows are summed
independent of each other, thus, the resulting dimensionality
of the feature representation is the sum of the tactile sensor
dimensions, i+ j, for each sensor,



sumci = ∑
j

ti j , (4)

sumr j = ∑
i

ti j , (5)

where sumci denotes the individual sensor columns and sumr j

denotes the sensor rows.

IV. CLASSIFIERS
From a classification point of view, the problem of classi-

fying grasp stability may be modelled as a classical two-class
problem. Thus, the stability is classified as either stable or
unstable. This is possible to implement with most of the basic
classifiers without extending the theories behind them.

In the work presented here, a number of classifiers have
been selected for the experiments. All the classifiers de-
scribed represent different types of machine learning algo-
rithms that help to understand the underlaying problem in
grasp stability classification. In particular, we study both
discriminative and generative approaches for classification.

A. Support Vector Machine

As the problem of grasp stability is binary, support vector
machine (SVM) classification [13], [14] is suitable for the
problem. Thus, here the focus is on the 2-class SVM. SVM
is a maximum margin classifier, i.e. the classifier fits the
decision boundary so that maximum margin between the
classes is achieved. This guarantees that the generalization
ability between the classes is not lost during the training of
the SVM classifier.

Another feature of the SVM is the ability to use non-linear
classifiers instead of the original linear hyper-plane classifier.
Non-linearity is achieved using different kernels and in this
study radial basis function (RBF) is used as the kernel for
SVM:

K(xi,x j) = e−γ‖xi−x j‖2 , f or γ > 0, (6)

In addition to the parameter γ , constant C, related to the
penalty applied to incorrectly classified training samples
[13], needs to be set. The parameters can be found by
searching the parameter space to find the optimal values.
In this study, as an extension to the basic two-class SVM,
probabilistic outputs for SVM by Platt [15] are used to
analyze the results given by the SVM. The implementation
of the SVM is by Chang and Lin [16].

B. Gaussian Mixture Model Classifier

As the naive Bayes classifier assumes that the data is
distributed according to some modelable distribution, it is not
optimal in cases where this assumption is not true. The haptic
data is distributed according to an unknown distribution,
thus it is reasonable to use Gaussian mixture model (GMM)
statistical classifier.

While GMM methods assume a Gaussian distribution,
GMM uses multiple Gaussian distributions to model the data
which enables the methods to model multi-modal and more
complex data. The implementation used in the experiments
is by Paalanen and Kämäräinen [17].

TABLE I
TABLE OF PARAMETERS FOR FEATURES.

Features Parameter Parameter
Raw - -
PCA - -

Histogram No. bins: 10 -
LBP Uniform LBP Samples: 8,1

Moments - -
Partitioning Grid: 2x2 -
R&C sums - -

C. k-Nearest Neighbour

k-nearest neighbour [18] classifier is a very simple algo-
rithm to implement. This classifier requires no training phase,
instead during the classification phase, the test samples are
compared to all given training samples. The test sample is
classified as the class with the most neighboring, i.e. closest,
training samples. The k denotes the number neighbouring
training samples that are used in the classification phase. k-
nearest neighbour also has a proven [18] error rate that is no
worse than two times the error rate of an optimal classifier
when the amount of data approaches infinity.

D. AdaBoost

AdaBoost or adaptive boosting is a meta-algorithm for
learning which was developed by Freund and Schapire [19].
Adaboost uses multiple weak classifiers, such as linear hyper-
plane classifiers, to classify the given training data. AdaBoost
has a good generalization ability, however AdaBoost is not
effective when outliers are present in the training data.

The AdaBoost-algorithm that is used in this study is based
on a decision tree classifier with a variable branching factor.
With a branching factor of 1, the tree classifier represents
a linear hyperplane classifier. The implementation is by
Vezhnevets [20].

V. EXPERIMENTS

The goal of the experiments is to study the effect of the
presented features in conjunction with multiple different clas-
sifier methods. A number of different datasets with different
assumptions are used in the experiments to determine what
type of data is suitable for classification.

A. Experimental Setup

The parameters for features and classifiers are shown in
tables I and II. The raw data from the tactile sensors is
also used as features in addition to the features presented
in Section III. The parameters were found by a parameter
search across reasonable parameter space. Schunk Dextrous
Hand hardware and objects used in the grasping experiments
are shown in Figure 1.

The following datasets have been chosen from simulated
data, which were generated using simulated SDH hand model
in a simulation environment described in [21]:
• D1, a cylinder, grasps sampled from the side
• D2, a bottle, grasps sampled from the side
• D3, a bottle, grasps sampled from the top
• D4, a cylinder, grasps sampled from a sphere



TABLE II
TABLE OF PARAMETERS FOR CLASSIFIERS.

Classifier Parameter Parameter
SVM C: 0.4 γ: 0.03
GMM max. clusters: 19 max. error: 0.016
KNN k: 3 -

AdaBoost Branch factor: 1 -

• D5, a bottle, grasps sampled from a sphere

The datasets D1,2,3 represent cases where we know the
pose of the object with some accuracy, and can plan for
a grasp. The datasets D4,5 are simulating situations where
the position of the object is known to some extent but the
orientation is highly uncertain, thus, the grasps are sampled
from a sphere around the object. In the simulated data, the
grasp stability computation is based on [22], but instead of
one convex hull W , two convex hulls, Wf and Wτ are used
to separate wrench space with respect to forces and torques,
and additional constraints are placed on Wf , so that

α(m ·g) ∈Wf ,α = 1.1 . (7)

This allows the grasp to remain stable even if some
additional forces are introduced in addition to the gravity.
Datasets generated with real hands are following:

• D6, a cylinder, grasps sampled from the side, SDH
• D7, a bottle, grasps sampled from the side, SDH
• D8, a bottle, grasps sampled from the top, SDH
• D9, a box, grasps sampled from the side, PG70
• D10, a shampoo bottle, grasps sampled from the side,

PG70
• D11, a shampoo bottle, grasps sampled from the top,

PG70

Datasets D6,··· ,11 represent cases where an estimate of the
object’s pose is known, for example, from a vision system.
This estimate is commonly noisy and thus we added the noise
to the hand pose. The objects in datasets D6,7,8,9 are rigid
and the objects in datasets D10 and D11 are non-rigid, i.e. the
objects are deformable. The grasp stability in these datasets
was determined by grasping an object. In datasets D6,··· ,8
the object was rotated [−120◦,+120◦] around the approach
direction and in datasets D9,··· ,11, the object was lifted and
rotated +90◦ around X and Y axes, where Z axis is the
direction of lift. If the object moved independently of the
hand, the grasp was unstable, otherwise it was stable.

The method used to evaluate the performance of the
classifiers was 10-fold cross validation. The dataset sample
size for each of the given datasets are shown in Table III with
the maximum classification rate summarized from Tables IV
and V. The sample size shown in the table is balanced, so
that each dataset has equal amount of stable and unstable
grasp samples. All other features were normalized to zero-
mean and unit variance, except the raw features which were
normalized to range [0,1]. The normalization parameters
were obtained from the training set and applied to both
training and test sets.

TABLE III
DATASET SAMPLE SIZES AND CLASSIFICATION RATES.

Dataset Sample size Max. classification rate
D1 6400 77.0%
D2 4906 61.4%
D3 4446 62.7%
D4 5302 80.4%
D5 8990 70.5%
D6 140 92.1%
D7 100 92.1%
D8 50 84.6%
D9 148 74.6%
D10 148 59.0%
D11 100 64.0%

B. Experimental Results

Result matrix with the described datasets is given in
Table IV and Table V. The table shows the classification
rate of each dataset with the indicated feature and classifier
combination. Each row shows the best classifier in bold font
and worst in italic font. The best and worst classifiers were
determined on a 95 % confidence interval using the Agresti-
Coull interval which approximates the binomial confidence
interval. Multiple classifiers are deemed best if there is no
statistically significant difference in the classification perfor-
mance between them. Some results for GMM are omitted
because of the training sample size requirements, thus, results
for datasets D6,...,11 are not shown.

The results in Tables IV and V show that there is a distinc-
tive performance difference between the datasets. Simulated
datasets, D1 and D4 perform usually better than the other
simulated datasets. This performance gap is caused, at least
partially, by the hand configuration, which allows the object
to touch other areas of the hand where there are no sensors.
This removes some of the important information about the
object to be used in determining the grasp stability. Thus,
it is important to set up the grasp sequence in a way that
allows the sensored part of the hand to grasp the object.

This procedure is evident in the dataset gathered from the
real hands, especially sets D6,7,8, where the classification
performance is above 75 % in some cases. However, the
object in the datasets were rigid, which is not the case in sets
D10,11. These sets show mostly poor performance, indicating
that further samples must be used to learn the grasp stability.

The best overall classifier is AdaBoost, which performs the
best out of the four classifiers, while SVM is close second.
Worst classifier is GMM, partially due to the extensive
amount of data needed to train GMM successfully with some
of the chosen features. Low amount of data available in
datasets D6,...,11 makes it difficult to determine within the
0.95 confidence interval the best classifier, but looking at the
results, AdaBoost has the highest mean in these cases. SVM
has some anomalies, these are suspected to be caused by the
parameter and feature combinations, and could be fixed by
adjusting the parameters of SVM.

C. Feature Study

To study the effect of the features on the classification rate,
tests with a 3-nearest neighbour classifier were conducted on



(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 1. Hardware and objects used in the datasets: (a) 3-finger SDH; (b) D1; (c) D2,D3; (d) D4; (e) D5; (f) D6; (g) D7,D8; (h) D9; (i) D10, D11.

Fig. 2. Classification rates on individual features.

each dimension of all the feature representations described in
Section III and also on the raw tactile data. The classification
rates are shown in Figure 2 for the dataset D1.

Classification rates of 0.5 or less in Figure 2 are a sign
that the feature used is not particularily useful in learning
as it has no correlation with the grasp stability. The figure
shows that there are quite many useful features in the set
of features that were tested. What is interesting is the raw
data as it has multiple spikes which are among the best
features for classifying the grasp stability. This indicates that
individual cells of the tactile sensors can be used to determine
the grasp stability to some extent. Also image moments,
histogram and row and column sums seem to have a number
of good features to use for classifying. The experiment was
also performed on the real data set D6, for which the results
were similar.

VI. CONCLUSIONS AND FUTURE WORK

The focus of the presented work was to investigate how
different machine learning methods and feature representa-
tions affect the ability to learn and assess the grasp stability
from haptic data. Both simulated and real world data was
used in an experimental comparison. Experiments indicated
that AdaBoost was the best performing classifier, suggesting
that boosting approaches would be likely candidates for
further studies in the context of grasp stability learning.

The classification performance varied significantly be-
tween different data sets. Results of the experiments showed

that deformable objects are more difficult to learn with a
similar sample size compared to rigid objects. A temporal
approach might be useful for deformable objects, as it could
extract more information from the grasp, as in [9]. Data
also show that if the grasped object has contacts with the
hand outside of the tactile matrices, the grasp stability can
not be learned effectively. It needs to be noted that perfect
classification performance is not necessary, since acceptance
threshold can be set such that for example regrasping is
triggered in ambiguous cases.

Future work will concentrate on expanding the presented
study. Especially the study on deformable objects is interest-
ing as currently there are no grasping simulators that are able
to do this, but many household objects have this property.
It is also possible to combine data from multiple objects
to produce a common classifier for all the objects. Further
research on this subject would help to identify the limits
of the presented learning approach on completely unknown
objects.
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TABLE IV
CLASSIFICATION RATES FOR DATASETS D1,··· ,11 .

Data, Feature SVM GMM KNN AdaBoost
D1 75.5% - 73.3% 76.7%
D2 59.1% - 56.6% 58.1%
D3 60.3% - 60.7% 62.1%
D4 69.7% - 63.1% 79.3%
D5, Raw 65.7% - 58.2% 68.9%
D6 82.6% - 90.7% 91.4%
D7 22.0% - 84.0% 91.0%
D8 49.3% - 84.6% 80.4%
D9 54.0% - 71.3% 71.1%
D10 49.3% - 48.6% 46.4%
D11 50.0% - 54.0% 56.0%
Mean 66.3% - 62.6% 69.6%
D1 77.0% 74.1% 72.5% 74.5%
D2 59.7% 56.5% 56.1% 57.0%
D3 61.3% 60.4% 59.7% 60.4%
D4 74.0% 68.7% 67.5% 77.6%
D5, PCA 67.6% 64.5% 60.4% 67.7%
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ject recognition using passive joints and haptic key features,” in In
Proceedings of the IEEE International Conference on Robotics and
Automation, 2010.

[11] Y. Bekiroglu, J. Laaksonen, J. A. Jorgensen, and V. Kyrki, “Learning

TABLE V
CLASSIFICATION RATES FOR DATASETS D1,··· ,11 .

Data, Feature SVM GMM KNN AdaBoost
D1 76.1% 65.6% 71.8% 75.8%
D2 57.3% 55.0% 56.2% 57.3%
D3 62.6% 53.2% 59.0% 60.8%
D4 80.4% 65.7% 73.0% 79.7%
D5,Partitions 69.0% 60.9% 64.7% 68.9%
D6 91.3% - 91.4% 92.1%
D7 91.0% - 89.0% 89.0%
D8 36.8% - 81.8% 67.5%
D9 63.0% - 60.6% 64.4%
D10 40.8% - 45.5% 48.8%
D11 56.0% - 48.0% 64.0%
Mean 69.6% 60.6% 65.5% 69.2%
D1 75.0% 64.4% 68.6% 74.9%
D2 54.8% 52.0% 51.4% 56.4%
D3 60.9% 58.0% 58.1% 61.3%
D4 75.2% 66.4% 64.0% 79.7%
D5, LBP 66.4% 58.7% 57.8% 68.4%
D6 84.3% - 79.3% 85.0%
D7 26.0% - 68.0% 74.0%
D8 47.1% - 68.2% 60.0%
D9 61.1% - 69.2% 73.4%
D10 50.2% - 45.8% 48.3%
D11 50.0% - 49.0% 51.0%
Mean 66.8% 60.1% 60.3% 68.7%
D1 76.8% 63.8% 72.1% 76.5%
D2 61.4% 58.6% 57.8% 58.3%
D3 62.7% 61.5% 61.5% 60.7%
D4 77.3% 58.9% 70.2% 79.6%
D5, R&C Sums 68.7% 63.4% 62.6% 68.8%
D6 92.1% - 92.1% 91.4%
D7 90.0% - 87.0% 91.0%
D8 30.7% - 72.1% 68.2%
D9 63.5% - 67.5% 74.6%
D10 55.1% - 50.3% 43.8%
D11 54.0% - 52.0% 64.0%
Mean 69.8% 61.6% 65.1% 69.5%

grasp stability based on haptic data,” in Robotics: Science and Systems
(RSS 2010) Workshop on Representations for Object Grasping and
Manipulation in Single and Dual Arm Tasks, 2010.
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Learning grasp stability based on tactile data and HMMs

Yasemin Bekiroglu, Danica Kragic and Ville Kyrki

Abstract— In this paper, the problem of learning grasp stabil-
ity in robotic object grasping based on tactile measurements is
studied. Although grasp stability modeling and estimation has
been studied for a long time, there are few robots today able of
demonstrating extensive grasping skills. The main contribution
of the work presented here is an investigation of probabilistic
modeling for inferring grasp stability based on learning from
examples. The main objective is classification of a grasp as
stable or unstable before applying further actions on it, e.g.
lifting. The problem cannot be solved by visual sensing which
is typically used to execute an initial robot hand positioning
with respect to the object. The output of the classification
system can trigger a regrasping step if an unstable grasp is
identified. An off-line learning process is implemented and used
for reasoning about grasp stability for a three-fingered robotic
hand using Hidden Markov models. To evaluate the proposed
method, experiments are performed both in simulation and on
a real robot system.

I. INTRODUCTION

For a general purpose service robot, operating in an
industrial or a domestic environment, object grasping and
manipulation skills are a necessity. Most of the today’s robot
systems, however, demonstrate only limited object grasping
and manipulation capabilities. The classical work in robotic
grasping assumes that the object parameters such as pose,
shape, weight and material properties are known. If precise
knowledge of these is available, grasp stability estimation
using analytical approaches is often enough for successful
grasp execution. However, in unstructured environments that
information is usually uncertain, which presents a challenge
for the current systems.

To cope with the uncertainty, one can rely on sensory
information for closed loop control [1]. For grasping and
manipulation, shape and pose of an object are important
inputs to the control loop. However, the accuracy of vision
is limited and small errors in object pose can cause failures.
These failures are difficult to prevent at the grasp planning
stage and need to be taken into account once the contact
with the object has been made. Visual servoing approaches
[2], [3] can solve these problems only to a certain extent
since they commonly need a desired pose with respect to
the object to be defined beforehand which is impossible for
unknown objects. While the tactile and force sensors can be
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used to reduce the uncertainty upon contact, a grasp may
fail even when all fingers have adequate contact forces. The
major issue is that for unknown objects, grasps need to be
evaluated from data the robot can extract on-line. Besides
the incomplete information about the environment and the
objects, there is also a lack of generalizable quality measures
for grasp stability assessment under uncertainty.

We present a learning system that infers grasp stability
based on tactile sensors. If an unstable grasp is detected,
a regrasping step can be initialized before, for example,
lifting the object. To achieve a good generalization perfor-
mance, machine learning approaches typically require large
amount of training data. As a solution to the problem of
acquiring enough training data, we propose to first simulate
the grasping process. Then, we evaluate the feasibility of
the approach both on simulated and real data. We have
implemented a time-series analysis based on a sequence
of tactile measurements with the purpose of investigating
the effect of the dynamic process of grasp execution on
grasp stability. The results show that the idea of exploiting a
learning approach is feasible. The additional contribution of
the work is a publicly available database of the experimental
sequences [4].

The paper is organized as follows. Related work is re-
viewed in Section II and the notation summarized in Sec-
tion III. Then, Section IV introduces the time-series recog-
nition approach using Hidden Markov models. In Section V,
the process of generation of the training data is described.
Section VI presents the experimental results. Finally, we
conclude and discuss directions for future research in Sec-
tion VII.

II. RELATED WORK

During the last few decades, there has been a significant
amount of work reported in robotic object grasping, see [5]
for a recent survey. In our previous work, we have integrated
vision based object recognition and tactile sensing for closed
loop grasp control [1]. Regarding vision based approaches,
a number of proposed solutions rely on object recognition
and/or shape registration. This commonly requires a database
of objects or shapes, as for example in [6], or even of objects
combined with grasps, as presented in [7].

The feedback from tactile sensors has been used to
maximize the contact surface for removing a book from a
bookshelf [8]. In [9], the integration of force, visual and
tactile feedback has been proposed for an application of
opening a sliding door. The main difference between the
above approaches and the work presented here is that we
concentrate on using the tactile sensors for assessment of



grasp stability. Thus, rather than using the tactile data for
control, we reason about the stability before starting to
actively manipulate the object.

There have been many examples of grasp planning demon-
strated in simulation. Their commonality is the use of a
strategy that relies on known object shape and/or pose.
Modeling object shape with a number of primitives such
as boxes and cylinders [10], or superquadrics [11] reduces
the space of grasp hypotheses. The decision about the most
suitable grasp is based on grasp quality measures given
contact positions. However, these techniques do not deal with
uncertainties that may arise in realistic scenarios.

The work of integrating learning with grasping is also
related to understanding human grasping strategies. In [12],
we have demonstrated how a robot system can learn grasping
strategies from human demonstration using a grasp experi-
ence database. The human grasp was recognized with the
help of a magnetic tracking system and mapped to the
kinematics of the robot hand using a predefined lookup-
table. More recent work uses vision based grasp recognition
in a learning-by-demonstration framework [13]. The recent
learning approaches using tactile sensors are focused on
either determining the shape properties of objects [14] or
object recognition [15], [16].

To our knowledge, the analysis of grasp stability using
Hidden Markov models and tactile sensors presented in this
paper has not been studied before.

III. FEATURE REPRESENTATION

As mentioned, the goal of the paper is to show how grasp
stability can be assessed based on temporal sequences of
tactile data using Hidden Markov models. The basic idea is
to position a hand with respect to an object so that a grasp can
be obtained by closing the fingers. A robot hand is equipped
with two-dimensional tactile patches at the fingertips. Tactile
measurements are recorded from the moment the first contact
with the object is obtained and until there is no change in the
measurements detected. The whole measurement sequence is
denoted by xi1, . . . , x

i
Ti

. For comparison reasons, we will
also present results of one-shot classification based only on
a single tactile measurements, xiTi

, taken at the end of a
grasping sequence. The data is generated both in simulation
and on real hardware and will be presented in more detail
in Section V. The notation used in this paper is as follows:
• D = [oi], i = 1, . . . , N denotes a data set with N

observation sequences.
• oi = [xit], t = 1, . . . , Ti is an observation sequence.
• xit = [M i,t

f ji,tv ], f = 1, . . . , F, v = 1, . . . , V is the
observation at time instant t given the i-th sequence; F
is the number of tactile sensors and V is the number of
joints of the robot hand.

• M i,t
f includes the moment features extracted from the

tactile readings Hi,t
f on the sensor f at time instant t

given the i-th sequence. Details about the extraction of
these features are given later in this section.

• ji,tv is a joint angle at time instant t given the i-th
sequence.

Fig. 1. An example grasping sequence of a cylinder and the corresponding
tactile measurements.

The acquired data consists thus of tactile readings Hi,t
f and

joint angles of the hand ji,tv . In simulation, the data originates
from three tactile sensors: one per finger given the Schunk
Dextrous Hand (SDH). Each sensor produces 12× 6 tactile
measurements and there are additionally seven parameters
representing the pose of the hand given the joint angles. For
the real world data, we used two different robot hands. For
the Schunk Dextrous Hand, we store 3×(14×6) readings on
proximal and 3×(13×6) on distal sensors. The second robot
hand is a parallel 2-fingered gripper that is equipped with the
same type of tactile sensors and thus delivers 2 × (14 × 6)
readings. Example images from the sensors are shown in
Figure 1. The tactile images in the figure represent a stable
grasp of a cylinder.

The tactile data is relatively high dimensional and to some
extent redundant. Therefore, we start by representing the
acquired data as features. Here, we borrow some ideas from
image processing and consider the two-dimensional tactile
patches as images. We employ image moments as a suitable
representation which also reduce the dimensionality. The
general parameterization of image moments is given by

mp,q =
∑

z

∑

y

zpyqf(z, y) (1)

where p and q represent the order of the moment, z and y
represent the horizontal and vertical position on the tactile
patch, and f(z, y) the measured contact. We compute mo-
ments up to order two, (p + q) ∈ {0, 1, 2}, for each sensor
array separately. These then correspond to the total pressure
and the distribution of the pressure in the horizontal and
vertical direction.

First and second order moments are included in the feature
vector according to Equation (1). Two additional features are
computed for each tactile sensor: the size of the contact area
(area) and the center of the contact (m1,0

m0,0
,
m0,1

m0,0
). We nor-

malize the zeroth order moment by calculating the average
pressure m0,0/area. Thus, there are in total nine features for
each sensor resulting in an observation xit ∈ R9F+V .

Normalizing the feature vector is a common step in
machine learning methods. In our case, moment features



and finger joint angles are normalized to zero-mean and unit
standard deviation. Normalization parameters are calculated
from the training data and then used to normalize the testing
sequences.

IV. THEORETICAL FRAMEWORK

This section presents the basics of the Hidden Markov
models (HMMs) [17] and their application in our work.
We train two HMMs: one that represents stable grasps
and one that represents unstable ones. Recognition is then
performed using the classical forward procedure: evaluating
the likelihood given both models and the final decision is
based on maximizing the estimated likelihood.

For the HMM, we use the notation λ = (π,A,B) where π
denotes the initial probability distribution, A is the transition
probability matrix

A = aij = P (St+1 = j|St = i), i = 1 . . . N, j = 1 . . . N
(2)

and B defines output (observation) probability distributions

bj(x) = fXt|St
(x|j) (3)

Here, Xt = x represents a feature vector for any given state
St = j. The structure of an HMM can be ergodic or left-to-
right, which determines the structure of A. In the following,
we present and evaluate both of these models.

A. Modeling Observations

The estimation of the HMM model parameters is based on
the Baum-Welch procedure. The output probability distribu-
tions are modeled using Gaussian Mixture Models (GMMs):

fX(x) =
K∑

k=1

wk
1

2πL/2
√
|Ck|

e−
1
2 (x−µk)

TC−1
k (x−µk) (4)

where
∑K
k=1 wk = 1, µk is the mean vector and Ck is

the covariance matrix for the k-th mixture component. The
unknown parameters θ = (wk, µk, Ck : k = 1...K) are
estimated from the training sequences o = (x1, ...xT ).

Initial estimates of the observation densities in (Eq. 4)
affect the point of convergence of the reestimation formulas.
Depending on the structure of the HMM, we employ different
initialization methods for the parameters of the observation
densities. The two initialization procedures are denoted by
Init1 and Init2:
• Init1: For an ergodic HMM, observations are clustered

using k-means. Here, k is equal to the number of
states in the HMM and each cluster is modeled with a
GMM using standard Expectation Maximization. Initial
parameters for the GMMs are found in the standard
fashion using the k-means algorithm.

• Init2: For a left-to-right HMM, each observation se-
quence is divided temporally into equal length subse-
quences. Then, each GMM is estimated from the collec-
tion of corresponding subsequences. Thus, the GMMs
represent the temporal evolution of the observations.
Initial parameters for the GMM estimation are found
identically to Init1.

Fig. 2. Example grasps on different objects from five simulated datasets
denoted by (DS1

), (DS2
), (DS3

), (DS4
), (DS5

) in the text.

V. DATA GENERATION

The data was generated both in simulation environment
and using real robotic hands. Both in real and simulated
setups, a grasping sequence is recorded from tactile readings
and corresponding joint configurations from the first contact
with an object is made until a static state is achieved. After
placing the hand in front of an object in a fully open position,
the fingers are controlled to a closing position with equal
velocity. By a static state, we consider a state when the
tactile sensors do not report any change or fully closed hand
configuration has been reached. The latter can occur only in
the case the object was dropped.

The simulated data was generated to investigate two as-
pects of grasp stability recognition: shape specific and shape
independent stability recognition. For the shape specific
recognition, the grasping strategies vary for each shape and
it is assumed that the system has the knowledge about the
shape prior to grasping from, for example, a vision system.
The type of grasps generated on objects of known shapes
can easily be generated by a grasp planning system.

For the shape independent approach, no knowledge of
the object except the approximate position of its center
of mass with respect to the hand is considered. Since the
knowledge of the object shape is unknown, there will be
larger variation in the contact space and therefore more
uncertainty in the learning process compared to the shape
specific case. The training data for this approach has been
generated by sampling the grasps on a unit sphere with the
origin in the object center. Example grasps are shown in
Figure 2.

For the shape specific approach, simulated datasets DS1
,

DS2 , DS3 are generated on a cylindrical object and a bottle.
Here, two types of grasps have been applied: a side and a top
grasp. DS1

and DS2
include side grasps (for both objects)

and DS3
includes top grasps (for the bottle). Simulated

datasets DS4
, DS5

are generated on a cylinder and a bottle
by applying approach vectors sampled from a sphere around
the object and including more than one preshape.

For labeling of the simulated grasp sequences we use a
grasp quality measure based on the radius of the largest
enclosing ball in the unit grasp wrench space (GWS) con-
structed as proposed in [18]. Two convex hulls, Wf and Wτ

are calculated to separate wrench space with respect to forces
and torques. Stable grasps are defined as those for which
both quality values are within a threshold which has been
set experimentally. The threshold for force is proportional to
the weight of the object so that the grasp remains stable even
in case of additional forces.



The main purpose of the real world experiments is to
demonstrate that the idea of grasp stability recognition is
applicable in real-world scenarios. Thus, the experiments
aim to serve as a proof-of-concept rather than assessing the
exact performance rates in different use cases. We believe
that performing real world experiments is important in order
to validate the theoretical formalization and modeling.

For the real experiments, we have generated training data
according to the shape specific strategy: the object shapes are
assumed known and side and top grasps are applied on them.
The objects are placed such that they are initially not well
centered with respect to the hand to investigate the capability
of the learning system to cope with potential uncertainties in
the objects’ pose. An example real grasp execution is shown
in Figure 3.

Fig. 3. A few examples from the execution of real experiments.

To generate the stable/unstable label for a grasping se-
quence, an object is lifted and rotated [−120◦, +120◦]
around the approach direction after a grasp has been applied
to it. The grasps where the object is dropped or moved in
the hand are labeled as unstable.

Training sequences DR2
1
, DR2

2
, DR2

3
are obtained by a

parallel 2-fingered gripper with a deformable box and a
deformable bottle shown in Figure 4. DR2

3
represents top

grasps while the other two are side grasps. The rest of real
data (DR3

1
-DR3

6
) are made on more rigid objects. DR3

1
, DR3

2
,

DR3
3

are from the three fingered SDH and include contacts
only on distal sensors: DR3

1
represents side grasps of a

cylinder, DR3
2

side grasps of a bottle and DR3
3

top grasps of
a bottle. DR3

4
, DR3

5
, DR3

6
are also side grasps for the same

three-fingered hand but measurements from all six sensors
are included.

Fig. 4. Objects from the real datasets denoted by (DR2
1

), (DR2
2

, DR2
3

),
(DR3

1
, DR3

4
), (DR3

5
), (DR3

2
, DR3

3
), (DR3

6
) in the text.

VI. EXPERIMENTAL RESULTS

Two HMMs, one for stable grasps and another for unstable
ones were trained with the stopping criteria being the conver-
gence threshold 10−4 with a 10 iteration limit. Both ergodic
and left-to-right HMMs were evaluated independently with
different structure parameters. The range of 2–6 for the
number of states and 2–5 for the number of components in a
mixture were evaluated. Diagonal covariance matrix structure
was chosen. By evaluating multiple temporal models we aim
at understanding whether the temporal sequence plays part
in the understanding of the grasp stability, or if only the final
observation is sufficient.

Experiments were performed both on simulated and real
data similarly. For simulated data 80% of the samples were
used for training and 20% for testing. For the real data 10-
fold cross validation was used to evaluate the performance
and the best parameters over all folds are presented. The
number of stable and unstable samples are equal in each
data set and the total number of samples are given in the
Table I.

TABLE I
NUMBER OF SAMPLES IN DATASETS

Data sets Object Grasp type Number of samples
DS1 cylinder side, 3-fingered 6400
DS2

bottle side, 3-fingered 4906
DS3

bottle top, 3-fingered 4446
DS4 cylinder spherical, 3-fingered 6240
DS5

bottle spherical, 3-fingered 2564
DR2

1
box side, 2-fingered 148

DR2
2

bottle side, 2-fingered 148

DR2
3

bottle top, 2-fingered 100

DR3
1

cylinder side, 3-fingered 140

DR3
2

bottle side, 3-fingered 100

DR3
3

bottle top, 3-fingered 50

DR3
4

cylinder side, 3-fingered 60

DR3
5

cylinder side, 3-fingered 60

DR3
6

bottle side, 3-fingered 120

Table II presents the classification rates on simulated data
for the ergodic and left-to-right HMMs with the correspond-
ing best parameter values. Ergodic and left-to-right HMMs
have comparable results.

To illustrate the difference on performance for different
objects, the distributions of logarithms of likelihood ratios
are presented for two objects for the same type, ergodic
HMM, in Figures 6 and 8. Let Ls be the log likelihood of
the stable HMM model and Lu be the log likelihood of the
unstable HMM model, then r = Ls − Lu shows the log of
the likelihood ratio. Figures 6 and 8 show the histograms
of these ratios (r) for stable and unstable samples. Blue
bars show the difference for stable samples and red bars
are for unstable samples. Figure 6 shows the distributions
for the cylinder side grasps, for which the performance was
relatively good, while in Figure 8 the distributions are given
for the bottle grasps with spherical approach directions, for
which the stability was more difficult to recognize. It is



TABLE II
RESULTS ON SIMULATED DATA

DS1
DS2

DS3
DS4

DS5

RatesERG 0.75 0.60 0.61 0.63 0.61
StableStatesERG 5 6 5 6 3

StableComponentsERG 4 4 4 4 3
UnstableStatesERG 4 5 6 5 2

UnstableComponentsERG 4 3 3 5 4
RatesLR 0.75 0.60 0.61 0.65 0.62

StableStatesLR 6 2 5 6 5
StableComponentsLR 4 5 4 2 2

UnstableStatesLR 4 4 5 3 4
UnstableComponentsLR 5 2 4 3 4

GMMclassifierRates 0.76 0.59 0.59 0.57 0.60
GMMclusters 3 4 3 4 3

Fig. 5. The ROC for Cylinder side grasps.

evident in the figures that the stable and unstable grasps differ
reasonably.

Figures 5 and 7 with receiver operating characteristic
(ROC) curves show how the HMM model parameters are
chosen after training with different parameters. Each point
in the figures indicates the performance of a trained HMM
pair and the red cross indicates the performance of the
selected HMM pair. Different HMM models were trained
with different number of mixture components and states
and finally the best HMM pair was chosen based on the
maximum classification rates for stable and unstable grasps.
The blue lines cross where the classification performance
gives equal number of false positives/negatives and the
chosen HMM models give a performance around this point
which is the best possible one among the trained models.

From Table III and Table IV, it is evident that the clas-
sification rates are reasonable for 2-fingered and 3-fingered
grasps with real robots. Table V shows the performance of
the HMM system for predicting the stability of the final
grasp using the first half of sequences of the sensor readings.
The HMMs were trained and tested with the first half of the
training sequences.

As shown, the HMM results for the simulated data is
similar to the one-shot approach. For the real data, one-shot

Fig. 6. The distribution of log-likelihood ratios for Cylinder side grasps.

Fig. 7. The ROC for Bottle spherical grasps.

and HMM results differ in Table V, which may indicate that
the process from the beginning to the end of the sequence has
additional information that makes the HMM classification
rate higher. We note that the real data includes readings
from six tactile sensors while the simulated data includes
the readings from only three. Therefore, the contacts on
the proximal sensors for the real experiments may hold
additional information to reason about the stability which
needs to be analyzed with more data.

Given the results, it is evident that the idea of using
the tactile feedback to evaluate the stability of a grasp is
applicable also in a real world scenario.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed the use of tactile sensing for esti-
mating grasp stability using learning from training data.
The experimental results show that tactile measurements
allow relatively good recognition of grasp stability, and that
the ideas studied in simulation are also applicable in real
robot systems. The aim of the paper was not a perfect
discrimination between successful and unsuccessful grasps
but rather a measure of certainty of grasp stability. This also
means that the system may reject some stable grasps while



Fig. 8. The distribution of log-likelihood ratios for Bottle spherical grasps.

TABLE III
RESULTS ON REAL DATA WITH A 2 FINGERED GRIPPER

DR2
1

DR2
2

DR2
3

RatesERG 0.84 0.71 0.81
S.StatesERG 2 4 6

S.ComponentsERG 3 2 5
U.StatesERG 2 4 5

U.ComponentsERG 3 2 5
RatesLR 0.85 0.70 0.73

S.StatesLR 4 2 4
S.ComponentsLR 4 4 3

U.StatesLR 2 3 6
U.ComponentsLR 5 5 5

having fewer unstable grasps classified as stable ones. We
showed how a one-shot classifier and an HMM classifier
perform with different datasets. Experiments showed that
using time-series data to evaluate grasp stability appears to
be beneficial during dynamic grasp execution.

Future work will be to first perform a more extensive
evaluation of the method on more objects with more samples
and also include all the sensors in simulation. We also plan to
investigate the proposed idea on completely unknown objects
by using data that includes multiple objects and then extend
the methodology to evaluate part-based grasps.
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Visual tracking of a jaw gripper based on articulated 3D models for
grasping

José J. Sorribes, Mario Prats and Antonio Morales

Abstract— Robust grasping of objects in uncertainty con-
ditions can be achieved with the visual monitoring of the
interaction between the robot hand and the object.

In this paper we propose a new approach for the visual
tracking of a robot hand suitable to observe the interaction
between robot and object. It consists on the continuous vision-
based recovery of the articular pose of the robot hand. It is
based on the principles of virtual visual servoing, which allows
to deal with articulated bodies and occlusions.

Its suitability is shown by tracking a parallel jaw gripper un-
der different conditions such as self-occlusion, articulated mo-
tion and important changes in the point-of-view. The potential
applications range from estimating the robot hand articulated
pose under poor hand-eye calibration and joint feedback, until
detecting deficient contact configurations, incipient slips, etc.

I. INTRODUCTION

Vision has a key role in robot grasping and manipulation
tasks. The process of grasping an object in low-structured
scenarios by a robot hand can be roughly divided in three
main stages: planning, approaching and execution. In the
planning stage, the robot decides how to grasp and approach
an object. This approaching is done in the next phase
while avoiding obstacles . Finally, in the execution stage the
fingers are closed over the object, according to the planned
grasp, and first contacts are made. Execution phase can also
include corrections with more contacts and releases until a
satisfactory grip on the object is reached.

Vision is used at different levels on this process. Firstly,
it has been used to locate and identify target objects on the
scene. The main approaches differ on whether there exists
previous information about the shape or appearance of the
object [1], [2], or not [3], [4].

Second, visual input from the objects has been used to
plan potential grasp on the target objects and approaching
paths to them. Some of these planners assume to have the
pose and shape of the object [5], [6]. Other approaches do
not rely on the whole shape of the object but use vision to
identify and extract specific features that allow the planning
of a grasp [7], [8].

And third, visual feedback is also used when the arm tries
to reach the object. For an instance, Murphy et al. uses visual
techniques to correct the orientation of four-finger hand while
approaching an object to allow better contact locations [9],
and Namiki et al. uses a fast control schema in combination
with tactile feedback to cage an object [10].

Authors are with the Computer Science and Engineering
Department, Jaume-I University, 12071 Castellón, Spain.
{jsorribe,mprats,morales}@uji.es

Little attention has been put on the use of vision when
the robot hand makes the first contacts on the objects. Most
closed-loop hand controllers simply rely on contact-based
sensors to obtain feedback at this stage [11], [12].

However, there are a number of reasons that motivate the
use of vision in the control-loop of grasp execution. First,
some arms and hands do not have suitable sensor feedback
for providing accurate position information. In other cases,
hand-eye calibration is poor and does not allow for open-loop
accurate hand-object alignment. In these cases, vision could
potentially provide the pose of the objects and the the pose
and configuration of the hand. Finally, when contacts occur
vision information could be combined with contact sensor
modalities to provide richer information about the grasp,
such as the contact configuration, object sliding, etc. Such
information is of great interest for exploration and learning
systems.

In this paper we propose a new approach for the visual
tracking of a robot hand based on the continuous vision-
based recovery of the articular pose of the hand by means
of Virtual Visual Servoing [13]. The main applications of
this method in the context of robotic grasping are (i) the
capability of tracking the hand/object interaction without the
need for special markers [14], (ii) the direct estimation of
the hand pose in sensor-less hands, and (iii) the possibility
to detect contact points from vision. The two main difficulties
that such a tracking solution must overcome are two. In the
first place, it must deal with occlusions, both self-occlusions
and those produced by the object. In the second place, it
must deal with articulated bodies.

Its suitability is shown by tracking a parallel jaw gripper
under different conditions such as self-occlusion, camera
motion, articulated motion and important changes in the
point-of-view.

A. Pose estimation work

The proposed approach is based on the pose tracking of
the robot hand. This technique has been mostly used in robot
manipulation to track target objects [1], [15], [4], but not
robot parts.

Pose estimation techniques can be classified in
appearance-based or model-based approaches [16].
Appearance-based methods work by comparing the
2D image of the object with those stored in a database
containing previously acquired views from multiple angles.
The main advantage of these methods is that they do
not need a 3D object model, although a previous process
must be performed in order to include a new object in



Fig. 1. A feature vector is built from the distances between the projected
edges and high-gradient points searched along the edge normals, at the
sampling interval. The goal of the non-linear minimization is to reduce all
the distances to zero.

the database. Model-based methods obtain better accuracy
and robustness, because of the use of model information
for anticipating events like object self-occlusions. Some
approaches consider a combination of both methods, like
[1], where an appearance-based method is used first for
getting an initial pose estimation, which is then used as
initialization for a model-based algorithm.

Although vision has been widely adopted for detecting and
tracking the objects to be manipulated, very few approaches
have considered the use of vision for tracking the robot hand.

II. ARTICULATED VIRTUAL VISUAL SERVOING

There are two main methods in the literature for model-
based pose estimation and tracking of articulated objects,
both based on full-scale non-linear optimization. The first,
developed by Drummond and Cipolla [17], is formulated
from the Lie algebra point of view, whereas the second,
proposed by Comport et. al. [18], [19], is based on the
Virtual Visual Servoing (VVS) method [13]. Both methods
implement robust estimation techniques and have shown to
be very suitable for real-time tracking of common articulated
objects in real environments. A comparison between both
approaches is reported in [20], where it is shown that both
formulations are equivalent, although some differences in
performance can appear at run time. In our system, the
VVS approach has been implemented [19], [13], mainly
for its computational efficiency and because it is based on
a solid background theory, i.e. 2D visual servoing, which
convergence conditions, stability, robustness, etc. have been
widely studied in the visual servoing community [21]. In
addition, almost any kind of visual feature can be used
and combined with this approach (points, lines, ellipses,
etc.), as long as the corresponding interaction matrix can
be computed. Different examples of the interaction matrix
for the most common features are shown in [22].

A. The concept

The concept of the VVS approach, developed in [13], is
to apply visual servoing techniques to a virtual camera, so
that a set of object features projected in the virtual image
from a model, match with those extracted from the real

image. Under this approach, the pose estimation and tracking
problem can be seen as equivalent to the problem of 2D
visual servoing [18], which has been extensively studied
in the visual servoing community [21]. Taking as input an
object model, and an initial estimation of the camera pose in
object coordinates, denoted as a pose vector, r, the idea is to
project a set of 3D features of the object model into a virtual
image of the object, taken from the virtual camera position,
r. This virtual image is compared with the real one, and a
vector of visual features is generated, denoted by s(r).

In our particular implementation, we make use of the
point-to-line distance feature, as in [18], although any kind
of geometric feature could be used as long as the interaction
matrix can be computed. The edges of the object model,
projected as lines in the virtual image, are sampled at regular
intervals, and a search for a strong gradient is performed in
the real image, in a direction perpendicular to the projected
line, as shown in Figure 1. For each match, the point-to-line
distance is computed and stored in the feature vector. The
desired feature vector is given by s∗ = 0, which represents
the case when all the edges of the object model are projected
on strong gradients, and, ideally, the virtual camera position
corresponds to the real one. The control law governing the
virtual camera motion is given by:

vr = −λ
(
D̂L̂s

)+
D̂(s(r)− s∗) (1)

where vr is the virtual camera velocity, λ is a control gain,
L̂s is the interaction matrix for the point-to-line distance
feature, and D̂ is a diagonal weighting matrix computed
by iteratively re-weighted least squares, which is a robust
estimator for dealing with outliers [18].

B. Virtual Visual Servoing on articulated objects

Comport et al. presented in [19] an approach for pose
estimation and tracking of articulated objects based on the
VVS method and the kinematic set concept. In their ap-
proach, the articulated pose is estimated directly from the
visual observation of the object parts, leading to an efficient
method that eliminates the propagation of errors through the
kinematic chain. The only condition is that joint parameters
must be decoupled in the minimization of the objective
function. This can be accomplished by performing the mini-
mization in object joint coordinates instead of in the camera
space. Let s1(r1) and s2(r2) represent the perceived visual
features on both parts of an articulated object composed
of two links and one joint, and s∗1 and s∗2 be the desired
values for those features, with L̂s1 and L̂s2 representing
the corresponding interaction matrices. Then, the articular
pose can be estimated by applying the following image-based
control law:

(
v1

v2

)
= −λÂ

(
D̂Ĥ

)+
D̂

(
s1(r1)− s∗1
s2(r2)− s∗2

)
(2)

Ĥ =

(
L̂s1 0

0 L̂s2

)
Â



(a) (b)

Fig. 2. The 3D model of the hand and its registration into a real view.

Â =

( ̂CWOS ̂CWOS
⊥ 0

̂CWOS 0 ̂CWOS
⊥

)

where ̂CWO represents the twist transformation matrix
from the camera frame to the object joint frame, and S⊥ is
a constraint matrix which depends on the type of joint [19].
Finally, the virtual camera velocities, one for each link, are
given by v1 and v2.

III. MODEL-BASED TRACKING OF A PARALLEL JAW
GRIPPER

A. Jaw gripper model

For this particular work, we consider a parallel jaw gripper
as the one shown in Figure 2b. It consists of a box-shaped
base containing the electronics, and two jaws actuated by a
single motor. The hand can receive commands for opening,
closing and stopping, and returns feedback only if the jaws
are completely opened or closed. However, it does not
contain sensors that provide the exact grip aperture, which is
one of the reasons that motivate the use of visual information.

We define a 3D model of the gripper composed of the
most distinguishable 3D edges, as shown in Figure 2a. The
model is composed of three different parts: the base and
the pair of jaws. The base and the pincers are kinematically
linked through a prismatic joint along the base X axis. This
joint is modeled with the holonomic constraint matrix S⊥ =
(1, 0, 0, 0, 0, 0)T , and, as the motion of the pair of jaws is
coupled and controlled by a single motor, the articulation
matrix takes the form of:

Â =




̂CWOS ̂CWOS
⊥ 0

̂CWOS ̂CWOS
⊥ ̂CWOS

⊥

̂CWOS ̂CWOS
⊥ − ̂CWOS

⊥




B. Tracking

The hand is tracked by iteratively applying equation 3
adapted to the case of three components and using the
previous articulation matrix, i.e.:




v1

v2

v3


 = −λÂ

(
D̂Ĥ

)+
D̂




s1(r1)− s∗1
s2(r2)− s∗2
s3(r3)− s∗3


 (3)

Ĥ =




L̂s1 0 0

0 L̂s2 0

0 0 L̂s3


 Â

The distance feature vector is computed by sampling
points in the projected edges at regular intervals and look-
ing for strong gradients in the perpendicular direction. An
oriented gradient search is thus performed, as in [18], by
applying a gradient convolution mask along a linear path
perpendicular to the specific edge on each sampled point.
The length of the search line depends on the expected
object variation between two consecutive frames. For slow
object/camera motion and/or high frame rates, little image
variation between two consecutive frames is expected. There-
fore, the search line can be of a few pixels around the
sampled point, thus increasing the tracker efficiency. On
the contrary, for low frame rate and/or high camera/object
velocity, the search space should be increased.

Points are sampled only on those edges that belong to
visible faces. Face visibility is computed at each iteration
by checking the position of the camera with respect to the
planes defined by each face normal. Being A, B, C and
D the parameters of the plane equation corresponding to a
specific face, with the face normal pointing towards outside,
the condition for face visibility can be computed as:

A · rx +B · ry + C · rz +D > 0

where rx, ry and rz are the translational components of
the pose vector r that contains the camera pose with respect
to the object.

This approach allows to check face visibility in a very
efficient way. However, object self-occlusions cannot be
detected. This is not a major problem in our experiments,
since outlier rejection via the weighting matrix D is able
to deal with these situations, as long as the occluded edges
are only a small part of the object. As future improvements,
we would like to deal with self-occlusions via binary space
partition trees, like in [18].

C. Camera motion

In grasping situations where the robot hand has to reach
for an object, it is important to adopt an active vision
approach in which the camera follows the hand motion. This
allows to obtain a detailed view of the robot hand at the same
time that it is always kept inside the image.

For this purpose, we attach the camera to a pan/tilt unit that
allows to point the viewing direction towards any interesting
point. The pan/tilt unit is a PTU-46-70 model from Directed
Perception Inc., and communicates with the host computer
via a RS-232 port. The camera is a standard Firewire camera
providing 30 frames per second at the resolution of 640×480.
The complete system can be seen in Figure 3.



Fig. 3. A pan/tilt unit used for keeping the hand inside the camera field
of view.

In order to keep the robotic hand inside the camera field of
view, an image-based controller has been implemented. At
each iteration the 3D center of the hand model is projected
into the image according to the estimated hand pose. Its 2D
distance to the center of the image is computed and fed
back to a simple proportional controller that sends a pan/tilt
velocity that moves the viewing direction towards the hand
center.

IV. RESULTS

The hand tracker has been validated with three different
experiments that reproduce real situations that will com-
monly occur during manipulation:

1) Hand rotation that involves self-occlusion and appear-
ance/disappearance of faces.

2) Articulated motion of the pincers.
3) Simultaneous motion of the hand and the robot camera.
In the first of the experiments, the robot end-effector

was placed at a fixed position, and the pan/tilt unit in a
configuration in which the robot hand was centered in the
image. A rotation velocity was set around the hand axis,
as shown in Figure 4a. This motion made some faces of
the hand appear and disappear, and also generated self-
occlusions, specially on the pincers. The hand tracker was
able to deal with these situations by dynamically selecting the
visible faces. Self-occlusions, not detected by the visibility
check described in the previous section, generate wrong
matches in the image. However, as long as the number
of wrong matches is a small amount compared with those
features correctly matched, the robust estimator implemented
with the tracker is able to classify them as outliers and reject
them.

In the second experiment, both the robot end-effector and
the pan/tilt unit were kept at a fixed position. The tracker was
initialized and the hand pincers were commanded to open

and close repeatedly. The tracker was able to follow this
articulated motion even in the presence of self-occlusions,
as shown in the top row of Figure 4b.

It is worth mentioning that this capability is specially
interesting for this particular robotic hand that does not
provide joint feedback. Therefore, vision can be used here in
order to provide a direct estimation of the opening distance,
and eventually control it to a desired configuration. Another
experiment dealt with the case in which the hand joints were
manually actuated by a human, as shown in the bottom row
of Figure 4b.

Finally, in the last experiment, a joint velocity was sent
to the manipulator elbow, generating both translational and
rotational motion of the robot hand. The pan/tilt controller
was activated in order to keep the hand inside the camera
view, even if part of the hand was outside the image limits, as
shown in Figure 4c. The tracker also performed successfully
in this situation where both robot and camera motion was
performed simultaneously. Finally, it is worth mentioning
that the tracker runs at video rate, as it can be observed
in the video accompanying this paper.

V. DISCUSSION AND FUTURE LINES

The approach proposed still presents several practi-
cal problems that need to be addressed before having a
full-working version. The first one is the robustness of
point matching. The current implementation requires small
changes between two consecutive captured images. This
can be accomplished either by a high capture rate or by
limiting the hand/camera relative velocity. If the change of
the object position between two sequential images is too
large, the search distance has to be increased, and the tracker
runs more slowly. In this case point tracking problems are
frequently experienced. Also, if the movement of the camera
or the robot hand is too fast, the tracker may lose the
reference. There are several solutions to improve the tracking
robustness. On one side is it possible to include forward
prediction either using signals coming from arm and hand
position controllers or simply using visual cues. A second
option is to use a more robust and efficient point matching
algorithm. In addition, the use of a kalman filter would also
improve considerably this method.

The method has not been yet tested with complex hands.
The parallel-jaw gripper that has been used has only one
joint that actuates two different parts. Advanced robot hands
usually have many more free joints. We have plans for
applying this approach into a Barrett Hand, which also lacks
position feedback on some joints. In general the method
requires a set of strong visual features that can be efficiently
tracked.

Finally, a crucial aspect of the tracking method is ini-
tialization. Currently, a human operator clicks on a camera
image to project the initial model of the gripper. However an
automatic method needs to be developed and implemented
to solve this issue. One possibility is to make use of an
initial estimation of the hand position, computed from a
coarse hand-eye calibration, in case it is available. If not, an



(a) Occlusions and new faces appearing

(b) Opening and closing the actuator

(c) Hand tracking via head motion

Fig. 4. Results of the model-based hand tracker.

appearance-based pose estimation method can be adopted in
order to provide a coarse initialization.

The approach proposed in this paper deals with a problem
that has not been successfully addressed yet in the literature.
The results presented in this paper are promising but still

some improvements are needed before a robust robot hand
tracker is obtained. Such a solution would allow a robust
control of the hand while contacting an object, and in the
last term allow robust grasping of objects under uncertainty.



VI. CONCLUSIONS

Visual tracking of a robot hand offers important potential
applications. First is that it allows to estimate the hand
configuration when the hand joints do not provide any
feedback, or it is inacurate. In addition, it potentially avoids
the use of external hand-eye calibration, thus being very
suitable in situations where the robot camera position is not
accurate, or the kinematics relating the camera and the hand
systems is poor. It also allows to detect and correct any hand-
object misalignment during and after the grasp execution.
This is particularly interesting for the detection of deficient
grasps or incipient slip. Finally, the tracking of the robot hand
while contacting and object allows the fusion with contact
sensor data (force/torque, tactile, pressure), and opens new
possibilities for robot control, object exploration and robot
learning.

This paper has described an approach for estimating and
tracking the articular pose of a robotic hand. This approach
is based on the method of virtual visual servoing, and allows
to estimate the articular 3D pose of an object from a model
and natural object features. It has been tested with a parallel
jaw gripper, and under several conditions that are normally
present in any manipulation task. Although the method can
be improved in many different ways, it already represents a
valid solution for simple hands like a parallel jaw gripper.
In the future we would like to validate this approach with a
more complex hand and during real grasping actions.
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Bancaixa (P1-1B2008-51; P1-1A2006-11; and P1-1B2009-
50).

REFERENCES

[1] D. Kragic and H.I. Christensen. Model based techniques for robotic
servoing and grasping. IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 1:299–304, October 2002.

[2] P. Azad, T. Asfour, and R. Dillmann. Combining appearance-based
and model-based methods for real-time object recognition and 6D-
localization. In International Conference on Intelligent Robots and
Systems (IROS), Beijing, China, 2006.

[3] Beata J. Grzyb, Eris Chinellato, Antonio Morales, and Angel P. del
Pobil. Robust grasping of 3D objects with stereo vision and tactile
feedback. In International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Machines (CLAWAR),
pages 851 – 858, Coimbra, Portugal, 2008.

[4] C. Dune, E. Marchand, C. Collewet, and C. Leroux. Active rough
shape estimation of unknown objects. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3622–3627, Nice,
France, September 2008.

[5] B. Wang, L. Jiang, J.W. Li, H.G. Cai, and H. Liu. Grasping unknown
objects based on 3D model reconstruction. In IEEE/ASME Interna-
tional Conference on Advanced Intelligent Mechatronics, Monterrey,
California, July 2005.

[6] A. Morales, P.J. Sanz, A.P. del Pobil, and A.H. Fagg. Vision-based
three-finger grasp synthesis constrained by hand geometry. Robotics
and Autonomous Systems, 54(6):496–512, June 2006.

[7] Daniel Aarno, Johan Sommerfeld, Danica Kragic, Nicolas Pugeault,
Sinan Kalkan, Florentin Wörgötter, Dirk Kraft, and Norbert Krüger.
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Abstract

This technical report shows the recent advances in manipulation primitives for
the UJI humanoid torso: Tombatossals. So far there are four basic primitives im-
plemented: transport, grasp, place, release and one specific: slide. This document
is also an update to the previous work done in the robust grasping primitive. More-
over we explain the main ideas for the forthcoming primitives: open/close and
push/pull objects.

1 Introduction
Controlling a robot with several degrees of freedom becomes a complex task. Some
controllers are developed to deal with this complexity such as cartesian controllers,
velocity controllers and so. This controllers help the user by abstracting the robot
specific joint configuration and dealing with the inverse kinematics and dynamics but
no external sensory data is used.

Even with this abstraction the control of robots is not easy. There are many pa-
rameters to take into account. But there is another level of abstraction that can be
considered,which can help making the robot control much more easy, that is what we
call manipulation primitives.

A grasp primitive is a specific controller designed to perform a particular indivisible
action such as move, grasp, place, release, etc... This primitives have few parameters
that made them able to adapt its behaviour to the desired one. Some parameters are
required by the primitive to work but other parameters are just information that can be
used to improve the performance of the primitive and the success ratio.

Actions can be described easily using a small set of manipulation primitives. For
instance, a pick and place task can be described with five primitives. Move close to
the object, grasp it, transport the object near the target position, place it and release.
For this example the only required parameters are the position of the object, and the
destination position where the object should be placed.

So far, we have already implemented 5 primitives: move/transport, grasp, place,
release and slide. This primitives have a general use and with the correct parameters a
∗J. Felip and A. Morales are with Robotic Intelligence Laboratory at the Department of Computer Science

and Engineering, Universitat Jaume I, 12006 Castellón, Spain {jfelip,morales}@uji.es



(a) Tombatossals.

F1 and F2 spread 
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(b) Detail of the Barrett hand.

Figure 1: Tombatossals: The UJI humanoid torso.

wide scope of tasks can be done. Not only pick and place but pushing buttons, using
handles, opening doors and so on. However for this tasks is useful to have more specific
primitives. This makes the parameter and primitive selection easier. Moreover it allows
to add special features to the primitive controller in order to deal with specific issues
for that action as we have already done with the slide primitive.

1.1 System description
Our robotic setup consists of two Mitsubishi PA-10 with 7 d.o.f. (Degrees of freedom),
and one pan-tilt-verge head TO40 from robosoft. The left arm is endowed with a three-
fingered Barrett Hand and a JR3 sensor mounted on the wrist, between the hand and the
end-effector (see Fig.1(a)). The hand has been improved by adding on the palm and
fingertips arrays of pressure sensors designed and implemented by Weiss Robotics.
The right arm has also a JR3 force-torque sensor and a parallel jaw gripper attached.

The Barrett hand is a 4 d.o.f., three-fingered hand. Each finger has one degree
of freedom thus phalanxes are not independent. Fingers F1 and F2 can rotate around
the palm and move next to Finger F3 (Thumb) or oppose to it, this d.o.f. is called
adduction. The reference frame of the hand and the adduction d.o.f. are depicted in
Fig. 1(b). Each finger of the hand has built-in strain-gauge sensor. The JR3 is a 12 d.o.f.
sensor that measures force, torque and acceleration in each direction of the space.

1.2 Paper outline
In this paper we will show the details of the four implemented primitives and outline
the main ideas for the implementation of some other specific manipulation primitives
such as open/close doors, push, pull and so on.
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2 Current primitives

2.1 Transport primitive
The aim of this manipulation primitive is to move the arm while it holds an object to
the specified target position. It can also be used to move the arm without any object.
The only required parameter is the target position.

Sometimes the trajectory to move the arm from the starting point to the target is a
straight line without orientation changes, but it also happens that the trajectory gener-
ated has orientation changes and curves due to kinematic or planning constraints. Thus
it is useful to constraint this primitive in order to prevent unexpected trajectories. This
movement can be constrained by some parameters:

• Position limits: List of convex-hull volumes forbidden for the robot’s end effec-
tor.

• Velocity limits: Cartesian end-effector velocity limits.

• Acceleration limits: Cartesian end-effector acceleration limits.

• Force-torque limits: Wrist force-torque limits.

• Follow torques: Force-torque compliancy mode.

For instance, if the robot grasps a mug full of water and wants to transport it without
pouring the liquid, acceleration should be constrained to a low value on all axes and
the rotation velocity of the table plane axes should be set to 0 to prevent tilting the
mug. Also force-torque limits can be specified to detect collisions, if the force-torque
exceeds the limits specified by the constraint, the movement stops immediately. If the
target position cannot be reached because it cannot satisfy the specified constraints,
the primitive informs about the constraint satisfaction problem. If the ’follow torques’
parameter is set to true, the controller will modify its velocity depending on the sensed
force and torque.

It is important to highlight that the controller only takes into account the end effec-
tor, it is possible to the other parts of the arm to move into the forbidden space.

2.2 Grasp primitive
The main features of the grasp primitive and its parameters are described in [felip09]
since the publication of that work, the grasp primitive has been improved with another
two correction methods:

• Translation error correction

• Sliding grasp

Moreover the discrete orientation corrections shown in [felip09] have been trans-
formed to control laws that perform the same sensor based corrections with smooth
movements.

The updated list of parameters for the robust grasp primitive are:

3



a

b

Figure 2: Example of execution of the constrained transport primitive from the starting
point (a) to the target point (b). Red line: Standard trajectory. Blue line: Position
constrained trajectory.

• Pregrasp size: Initial opening of the hand.

• Grasp preshape: cylindrical, spherical, hook.

• Translation alignment: Tells wether to use the translation correction or not.

• Rotation alignment: Tells wether to use the rotation correction or not.

• Parallel face detection: Tells wether to use the parallel face detection strategy or
not.

• Slide grasp: Tells wether to use the slide grasp strategy or not.

• Object centering: Tells wether to use object centering.

• Caging grasp: Tells wether to use a caging grasp instead of a rigid one.

All the parameters are optional, only the starting position of the hand is required
for the controller to attempt a grasp. Nevertheless the more parameters the better.

2.2.1 Translation correction

In some situations, the approach vector is not pointing to the center of the object,
thus when the grasp primitive approaches to it, the hand collides prematurely with the
object. This contact can be felt using the force-torque sensor as a torque force on the
wrist. Using that torque, the contact point is determined and a correction is performed
to center the object, a sample of this execution is depicted in Fig. 3.

4



(a) Arm moving towards the object.

Tn

Fn

(b) Contact generates torque in the
wrist.

(c) Correction movement is per-
formed.

Figure 3: Translation error correction strategy.
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(a) The fingers contact the table while
closing. Thus the controller sets
the velocity to move the hand back.

Vz

Fc Fc

(b) The fingers are closing and the
contact with the table is lost. Vz
is set forwards.

Vz

Fn Fn

Fc Fc

(c) The hand contacts the table again
but the object is already grasped.

Figure 4: Sliding grasp strategy.

2.2.2 Sliding grasp

The sliding grasp is an alternative strategy for the parallel face detection, already pre-
sented in [felip09]. The main idea is simple, the fingers are always closing and the
arm moves forward or backward depending on the force sensed along its Z axis (see
Fig. 1(b)). When the fingers are no longer able to close, the grasp control ends.

An example of execution is shown in Fig. 4(a). The hand starts closing and when
the fingers make contact with the surface, the force they are applying is felt in the wrist
Fig. 4(a), thus the arm moves back. The fingers continue closing and cause there is
no force felt, the arm moves forward Fig. 4(b). In Fig. 4(c) the fingers are not able to
close, the primitive ends successfully.

One drawback of the parallel face detection is that some objects have not parallel
faces to grasp but it is possible to apply good grasps on them. Another problem of
the parallel surface detection was that it failed for small objects because they have not
enough surface to apply two consecutive grasps. Moreover it had also problems when
trying to grasp handles or concave objects. The slide grasp solves all of these problems
because it tries to keep always hand-object or hand-surface contact.
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(a) Arm moving the object towards the surface.

Fn

Fn

(b) Contact is detected by force/torque sensor.

Figure 5: Place primitive.

2.3 Place primitive
The place primitive is the simpler one. Basically the arm moves down until a contact is
detected. Then the execution of the primitive ends. To detect the contact, the primitive
is monitoring the force sensor. When a force opposing the movement direction is felt
it assumes that the object is placed.

This primitive is also configurable by the next two parameters:

• Target position: Required parameter that determines the direction to place the
object.

• Contact threshold: Optional parameter, determines the force needed to detect a
contact. Default 8N.

2.4 Release primitive
Releasing an object is not as simple as opening the hand. Sometimes if the hand is
grasping a handle or is enveloping an object close to the surface (see Fig. 6(a)) the
hand cannot be opened because its fingers will collide with the surface. To handle
this problem, the release primitive opens the hand slowly while the arm moves back.
The movement of the arm is force-controlled and the arm only moves back if there
is a contact detected between the opening fingers and the surface. The sequence of
movements is shown in Fig. 6.

This primitive has also some optional parameters:

• Move away target: Optional parameter that determines the safe position where
the arm should go after releasing.

• Release size: Optional parameter, determines the target hand opening to release.
Default: Totally opened.
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(a) Hand before opening the fingers. (b) The hand cannot release the object,
the fingers are blocked by the sur-
face. The normal force in each fin-
ger propagates to the wrist.

(c) The hand moves back and contin-
ues opening the fingers. The object
is released successfully.

Figure 6: Release primitive.

• Release handle: Optional parameter, determines wether to use the force-controlled
release strategy shown in Fig. 6. Default: false.

2.5 Slide primitive
The aim of this primitive is to push the object from the top and slide it over a surface,
see in Fig. 7. Using force control the arm applies the desired force (Fn) to the object,
then starts moving towards the target, keeping the applied force constant, Fig. 7(a).
This links the arm and object movement allowing to slide the object over the table
from the starting to the target position, Fig. 7(b). Only the target position is a required
parameter, but the force that the hand has to apply on the object is also configurable.

Slide primitive parameters:

• Target position: Target position in homogeneous matrix form (w.r.t World)

• Minimum force: Minimum force needed to slide the object. Default: 3.5N

• Maximum force: Maximum force allowed to slide the object. Default: 6.5N

At some point it may happen that hand-object contact is lost, then the movement
towards the target stops and the hand moves down to find the object again. Unfortu-
nately there is no way to distinguish between the object and the surface using force and
tactile sensors, another sensorial input, like vision, is needed to supervise the execution
of this primitive and decide about success or failure.

3 Future primitives
The current set of primitives are able to deal with the basic movements, such as moving
the arm, transporting objects and grasping. It is possible to specify pick and place
tasks with these primitives but there are more manipulation tasks that can be done by
the robot (i.e. sliding objects, triggering buttons, opening doors, activating handles,
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(a) From the starting position with a hook preshape, the arm
moves down until it touches the object, then it starts moving
towards the target.
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V
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(b) The object slides over the table from Pi to Pf. The primitive
keeps the applied force stable.

Figure 7: Slide primitive.

etc...). Probably it is possible to use the current primitives to specify this tasks, but
implementing specific primitives allows us to focus on the typical problems of each
specific action, thus without increasing too much the amount of primitives we can deal
more accurately with more manipulation tasks.

The future primitives we have been thinking about are:

• Push/pull:

This is also a primitive to transport objects without lifting. The aim of this primi-
tive is similar to the slide primitive: To slide the object pushing or pulling from a
side using a non-prehensile grasp. For instance, this movement is useful to push
objects beyond the arm limits. The tactile sensors provide data about the con-
tacts, it should be enough information to detect the object while pushing (palm
sensor) or pulling (fingertips sensors) and adapt the motion to the object move-
ment.

• Open/close:

Doors, dishwashers, drawers, boxes, etc. There are a lot of objects that can be
opened or closed. Usually this task is to pull, push or slide a handle that is linked
to the object. Thus its movement is constrained, the arm using tactile and torque
data would be able to adapt to its constraints with few information.

These primitives are focused on tasks that change the object position. Triggering a
button or a handle is also a manipulation task that could be managed by a manipulation
primitive. Plugging-in task is another one that could have a primitive. After grasping
the connector the plugging-in task can be modeled using a constrained transport primi-
tive, but to deal with uncertainty in the detected plug position a sensor-based primitive
would make the task execution more robust.
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ABSTRACT
Learning from demonstration is an invaluable skill for a
robot acting in a human populated natural environment,
allowing the teaching of new skills without tedious and com-
plex manual programming. Physical human-robot interac-
tion, where the human is in a physical contact with the
robot, is a promising approach for teaching especially manip-
ulation skills. This paper studies the human side of physical
human-robot interaction, in the context of a human phys-
ically guiding a robot through the desired set of motions.
The paper addresses the question, which kind of response
of the robot is preferable for the human user. In addition,
different approaches for the guidance are described and rele-
vant technical challenges are discussed. The main finding of
the user study is that there is a need for a trade-off between
the conflicting goals of naturalness of motion and positioning
accuracy.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Human Factors

Keywords
physical human-robot interaction

1. INTRODUCTION
Robots acting in open-ended, natural environments need

a capability to learn and adapt to changes in their environ-
ment. Even though some completely autonomous learning
approaches have been proposed, their inherent pitfall is often
the lack of natural, task-driven feedback. Imitation learn-
ing, also known as Programming-by-Demonstration (PbD),
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seems a promising way of teaching new skills without the
need of complex manual programming [2].

Programming by Demonstration (PbD) was born as an al-
ternative to robot programming, solving the major problem
of providing a a programming interface for inexperienced
robot users. First PbD approaches were focused on task-
learning from observation. However, non-intrusive observa-
tion, for example by vision, is often insufficient for learning
manipulation tasks. To address this, recent efforts have been
oriented to imitation of manipulation using more natural
means. Physical human-robot interaction (HRI) is based on
a physical contact between the human and the robot during
their interaction[5].

Physical HRI allows goal-directed imitation, where actions
have a specific purpose determined by the human. It al-
lows programming a robot based on the human expertise
and knowledge of the task, providing to the robot a demon-
stration of how to accomplish it. Current state of the art in
describing the learned robot motions allows also some gener-
alization, for example, changing the target of the motion[13].
However, little experimental knowledge is available on the
human side of physical HRI.

This paper aims to address the question, which qualities
are preferable for a human in a physical HRI system. More
specifically, the scenario of a human physically guiding a
robot arm equipped with a force sensor through a set of
motions is studied. The study takes the form of a usability
study where the main question is, which type of response of
the robot is preferable for a novice human user. The question
is not straightforward, as different types of force controllers
have been proposed and can be implemented for the task.
While the virtual tool approach was proposed already in
1993[11], we are not aware of any works taking the usability
viewpoint, which we believe is critical. Moreover, few works
if any discuss the implementation details of active control
methods.

We begin by introducing in Sec. 2 relevant related work,
discussing the theory and practice of physical HRI. Partic-
ular emphasis is given to work presenting systems for force-
sensor based imitation learning. In Sec. 3 an overview tech-
nical description of a force sensor based control is presented.
Relevant technical challenges are discussed, particularly the
gravity compensation and singularity management, which
seem to have got little attention in the literature. Sec-
tion 4 describes the force control approaches used in the
study, which are then demonstrated in Sec. 5. Section 6 de-
scribes the design of experiments as well as presenting and
discussing the results of the experiments, with the main find-



ing that a solution to the problem is a trade-off between the
conflicting goals of naturalness of motion and positioning
accuracy. Finally, conclusions are drawn in Sec. 7.

2. RELATED WORK
Early work in physical HRI consists mainly of approaches

based on the operation in human-populated environments.
Some applications in this field are the collaborative work
between human and robot for complete industrial tasks[7,
8] and high-force interaction with humans[9]. High-force in-
teraction with human is based on a force controller that
regulates the force that the robot should apply to the envi-
ronment or object to increase the human force applied[9]. In
other studies, collaborative work between human and robot
for industrial tasks is based on regulating the motion of the
robot[7, 8].

The physical HRI scenario considered in this paper is
kinesthetic teaching, that is, manually guiding a robot through
a desired set of motions. A common approach is to use back-
drivable motors and joint encoders, for example, see [10, 1].
Due to inertia, this approach, however, only works well for
relatively small robots, even when active gravity compensa-
tion is used, as the human needs to move the mechanical
components manually. Moreover, the motions tend to be-
come artificial as moving individual motors is easier than
executing a coordinated movement [3].

An alternative to backdrivable robots is to use a force-
sensor mounted at the end-effector and actively control the
motion [4, 6], an approach also considered in this paper. The
approach allows to use powerful industrial robots. Ferretti
et al.[6] developed a system to teach tasks to a robot for
applications that require position accuracy, such as spray
painting. The authors present the exact dynamic equations
of a virtual tool. The concept of virtual tool was earlier
introduced in this field by [11]. Nevertheless, in the im-
plementation of the admittance force controller by Ferretti
et al., the virtual tool dynamics are simplified, limiting the
motion of the robot end-effector just to translations in the
Cartesian coordinates. The model of the force controller is
based on a gain for the input forces and a damping param-
eter related with the velocities.

Regarding the application of teaching motions to the robot,
Frigola et al.[4] implemented a system based on this purpose
to correct a robot programmed trajectory on-line by manual
guidance.The force controller used in this system regulates
the appropriate robot velocities modeled by the Stakes laws
in a viscous medium, using a virtual tool. This system is
based just on translation motions of the robot end-effector,
similar to the work presented above. In contrast to [4, 6],
the present paper proposes a force controller that regulates
both the position and orientation of the robot end-effector.

To our knowledge, the usability aspect of physical human-
robot interaction has not been addressed earlier to this pa-
per. However, Steinfeld et al.[14] present an excellent gen-
eral discussion on metrics for human-robot interaction. Al-
though the paper does not discuss metrics for physical HRI,
two types of metrics in the paper are especially relevant
here: effectiveness (in the sense of accuracy) and accuracy
of mental models (in the sense of naturalness of the mo-
tion and sense of being in control). However, there seems
to be a further need to study general metrics for physical
HRI in more detail. There have been relatively few studies
on usability in the robotic field. The available studies are

related to programming toolsets[12] or to specific robot ap-
plications such as urban research and rescue[16]. The results
from those studies can not be directly compared with this
study.

3. PHYSICAL HUMAN-ROBOT INTERAC-
TION

This section describes the basic framework for following
the physical demonstration of a human on a robot. The
framework is based on the following scenario: A human op-
erator grasps the robot end-effector, and the contact force
is measured by a force/torque (F/T) sensor located at the
wrist of the robot. An example of the interaction is shown
in Fig. 1.

Figure 1: 6 DOF robot

The F/T measurement at the wrist is then converted to a
velocity control signal for the velocity driven robot using a
controller. The framework can be easily generalized to other
control types, such as position controlled robots.

In a programming by demonstration application, the sys-
tem can run in interaction or reproduction mode. The in-
teraction mode corresponds to the teaching/learning phase
of the robot, while the reproduction mode is based on the
instantiation of the motion by the robot. In this paper, the
focus is on interaction, and the reproduction of the motion
will not be considered. The system structure on basic com-
ponent level is illustrated in Fig. 2.

Figure 2: System structure diagram

One of the main technical challenges in the use of a force/torque
sensor is that the measurements are not only influenced by
the external contact forces, but also by the forces related to
the robot hand attached to the sensor, including the grav-
ity and inertial forces. The quantity of especially the grav-
ity force is significant. Thus it needs to be compensated



in order to measure the forces applied by the human. An-
other challenge present in the system is the handling of the
singularities of the robot workspace. These both are next
discussed.

3.1 Gravity compensation
Figure 3 shows the location of the end-effector (tool at-

tachment point), robot hand and the force sensor at the
wrist. The gravity effect on the F/T sensor depends on the
orientation of the sensor in the gravity field. Thus simple
compensation schemes based on normalization, such as the
one proposed in [6], are not applicable to general motions in
six degrees of freedom. Next, we present the compensation
approach applicable to the general case, as we are not aware
of any other treatment. We begin by the compensation for
forces, followed by compensation for torques.

Figure 3: Robot hand structure

Assuming that the velocities in the system are small, al-
lowing us to ignore centrifugal and Coriolis forces, the mea-
sured force in the sensor frame sFm can be written as a sum
of the external human force Fh and gravity g as

sFm = sFh + sg. (1)

However, since the robot is controlled in the end-effector
frame instead of the sensor frame, the human force used as
an input needs to be presented in the end-effector frame.
In addition, the gravity can be written as a constant in the
world-frame. Thus, (1) can be rewritten using these as

sFm = sRee
eeFh + sRw

wg (2)

from which the desired human force can be solved as

eeFh = eeRs(
sFm − sRw

wg). (3)

In the above, eeRs is constant and sRw can be obtained
using forward kinematics.

For the calculation of the contact torque, a similar equa-
tion can be computed, where the human torque in the end-
effector frame eeTh can be obtained as a sum of the mea-
sured torque eeTm and the gravity torque of the hand eeTg

as

eeTh = eeTm − eeTg. (4)

The measured torque in the end-effector frame eeTm de-
pends on both the measured force and torque in the sensor
frame, and can be written

eeTm = eeRs
sTm + eeps × (eeRs

sFm) (5)

where eeps is the position vector of the origin of the sensor
frame in the end-effector frame.

The gravity torque of the hand eeTg can be obtained from
the gravity force as

eeTg = eeRs
sRw

wr× wg (6)

where r is the location of the center of mass of the hand in
the current pose of the robot in world coordinates.

Therefore, (4) can be rewritten using (5) and (6) as

eeTh = eeRs
sTm + eeps × (eeRs

sFm)− eeRs
sRw

wr× wg.
(7)

The transformation from the sensor frame to the end-
effector frame, eeRs and eeps, can be obtained from the
specifications of the robot and the F/T sensor. The config-
uration used in this study is shown in Fig. 3.

3.2 Singularity management
While guiding the robot end-effector, the user may in-

advertently move the robot towards a kinematic singularity,
where the behavior of the robot is unpredictable for the user.
Therefore, the behavior of the robot needs to be managed
near the singularities to avoid the user losing the control of
the robot.

An option for the management of singularities is the cre-
ation of a controller preventing the user to go guide the robot
to a singularity. This can be accomplished, for example, by
placing a repulsive force near the joint configurations where
the singularities occur, forcing the robot motion to recede
from the singular configuration area. This approach was im-
plemented for the system presented. In initial experiments,
however, it was found that this solution is not optimal for a
natural human-robot interaction because the repulsive force
will counteract the force applied by the human to the robot,
and if the user is not aware of the existence of singulari-
ties and the operation near them, the user experience will
be poor, because the user is not allowed to move the robot
in all six degrees of freedom. Because the study focuses on
novice users, in order to avoid the distortion of the results of
the user experience study by the singularities, in this study
the task area was designed to contain no singularities.

4. FORCE CONTROLLERS
Next, we present the two main approaches of force con-

trollers examined in this paper, a proportional force con-
troller and a virtual-tool based controller. The approaches
are based on reviewed literature, but details are presented
here for completeness, because these can not be found in the
related literature.

4.1 Proportional controller
In the proportional controller, the velocity of motion is lin-

early dependent on the forces/torques applied by the human
in the robot end-effector. The controller block diagram is
illustrated in Figure 4. The measured forces and torques af-
ter gravity compensation (input to the controller) are passed
through a proportional gain block, with gain K. After that,
the result is subject to a threshold, tF for the forces and tT
for the torques, which controls the minimum force causing
motion.

Thresholding is necessary because there is uncertainty in
the force measurement both due to measurement uncer-
tainty and uncertainty in the gravity compensation. The



Figure 4: Proportional controller basic diagram

choice of the threshold is done based on the norm of the force
or torque vector. Therefore, there is one unique threshold
value for the force and one unique threshold value for the
torque. If the threshold was used independently for each
component of force and torque, the result would not be ro-
tationally invariant.

The relationship between the input forces and torques and
the output translational velocities vt and rotational veloci-
ties vR is thus given by

vt =

{
K(‖F‖ − tF

F
‖F‖ ) if ‖F‖ ≥ tF

0 if ‖F‖ < tF
. (8)

vR =

{
K(‖T‖ − tT

T
‖T‖ ) if ‖T‖ ≥ tT

0 if ‖T‖ < tT
. (9)

The motion produced by this controller has specific char-
acteristics due to the absence of feedback and integration.
Especially, the output velocities change abruptly when the
input forces are changing rapidly, and thus the velocity can
be discontinuous, which is physically impossible. However,
the controller is valid in a physical system, as the system
itself acts as an integrator. As a positive characteristic of
the approach, it is likely that the proportional approach will
produce motion which is highly controllable by the human
operator due to the immediate relationship between applied
force and velocity. Nevertheless, the motion is not smooth
and the control strategy may produce stops in the robot
motion during the human-robot interaction, depending on
the values of gain and threshold. Another possible incon-
venience related to the approach is the need to maintain
constant force in order to produce motion at constant veloc-
ity.

4.2 Virtual-tool controller
The aim of the virtual-tool controller is to provide motion

in a physically familiar fashion to the user. The dynamics of
the robot motion are described using a virtual tool. Similar
to the literature, we model the robot end-effector is modeled
as a virtual point of a chosen mass at the robot end-effector
center of mass in a free space environment. The real mass
of the robot end-effector and hand needs not be considered
because the gravity of the hand only influences the com-
pensation of the forces. Thus, the acceleration is directly
proportional to the compensated forces. In addition, a fric-
tion/damping term is included to provide environment re-
sistance and deceleration in the absence of measured forces.
The approach is then equivalent to the proposed approach
using a spherical particle in a viscous medium as the virtual
tool.

A basic diagram block of the virtual-tool controller is
shown in Figure 5.

The compensated forces/torques measured by the F/T
sensor, F/T , pass first through a gain block and a threshold
block. The same block is used individually for each compo-
nent axis of force and torque. In the first block, the gain K1

is applied to the input forces/torques. The threshold is used

Figure 5: Virtual tool controller basic diagram

individually for each component to allow solving the resul-
tant velocities using an ordinary differential equation. After
thresholding, the negative damping is applied in a summa-
tion block, to obtain the acceleration values at and aR. The
damping gain is represented in the gain blockK2. It presents
the feedback, where the velocities calculated in the time in-
terval before, vt and vR, are used for the calculation of the
new ones.

To summarize, the translational acceleration at and the
rotational acceleration aR of the motion depend on the cur-
rent forces/torques and previous velocities as follows:

at ≡ v̇t =

{
K1(F ± tF )−K2vt if |F | > tF

−K2vt if |F | < tF
(10)

aR ≡ v̇R =

{
K1(T ± tT )−K2vR if |T | > tT

−K2vR if |T | < tT
. (11)

These equations of the acceleration of the motion are or-
dinary differential equations. To retrieve the commanded
velocities for the robot, the equation is solved numerically
using the Runge-Kutta method of order 4.

The virtual-tool controller is expected to provide a smooth
and natural motion with the use of less force for maintain-
ing the motion with the same velocities compared to the
proportional controller. These characteristics are due to the
physically valid virtual tool model. The parameter values of
the parameters will affect the characteristics considerably.

The gain and threshold applied to the force influence the
smoothness of the motion, since they regulate the acceler-
ation. A large gain causes highly sensitive motion, but the
choice is also influenced by the fact that a too large gain
can cause vibrations due to the latencies of the system. The
damping parameter represented by the gain K2 imposes a
resistance value for the motion in the environment. The
choice of the damping value will affect the smoothness of
the motion and time required for the robot motion to stop
after the human releases the robot end-effector. A high value
for the gain K2 involves a high impedance for the environ-
ment. Thus the user needs to apply more force and the robot
motion will stop almost instantly when the user releases the
robot end-effector. On the other hand, for a low value of the
gain K2 the impedance for the environment will be small,
requiring less force from the user and more time for the mo-
tion to stop. This can cause a loss of positioning accuracy
for the robot. The choice of parameters will be considered
experimentally in Sec. 6.

5. SYSTEM DEMONSTRATION
This section demonstrates the functionality of a practi-

cal physical human-robot interaction system. The aim is to
both introduce the setup of the experiments and to illustrate
the system in operation.



The robot system used in the experiments is MELFA RV-
3SB, a 6 DOF arm, equipped with a Schunk PG-70 parallel
gripper. In the wrist of the robot, between the end-effector
and the hand, a 6 DOF force/torque sensor by JR3 is at-
tached. The system is shown in Figs. 1 and 3.

The demonstrated scenario is as follows: The task is to
move the robot end-effector along the x-axis of the coordi-
nate system. In the final position, a rotation of the end-
effector of 90 degrees around the z-axis should performed.
Even though the desired motion in the task description given
to the human is along coordinate axes, the motion of the
robot is not limited to these axes, but full 6 degree-of-freedom
motion is available and the movement of the robot is based
on manually guiding the robot hand by the user, as shown
in Fig. 1. The virtual tool controller is used in the demon-
stration.

The task is composed of two phases for illustrative pur-
poses. First, the use of linear forces are studied for transla-
tion, and second, torques for the rotation of the end-effector
in the second phase of the experiment. However, as already
mentioned, all degrees of freedom are allowed to move during
the whole experiment.

A demonstration using the above task description was
performed by a competent human operator. The measured
forces and torques are shown in Figs. 6a and 7a, respectively.
The effect of gravity compensation is shown in Figs. 6b and
7b, which show the forces and torques after gravity com-
pensation, thus giving the estimates for the external human
induced forces. It can be seen that there are small residual
errors after gravity compensation, even after careful calibra-
tion of the compensation model. These are due to residual
errors in the sensor measurements in different orientations.

After obtaining the human forces, they are transformed
into velocities using the virtual tool controller. The com-
manded velocities are shown in Figs. 6c and 7c. It can be
seen that only forces/torques exceeding the threshold values
cause acceleration.

The resulting trajectory of the robot is shown in Figs. 6d
and 7d, where the position and angles of rotation are pre-
sented respectively. The position is represented in Cartesian
coordinates while the rotation is shown as the components
of axis-angle representation. The graphs show that while
the original force measurements are moderately noisy, the
system trajectory is smooth.

6. EXPERIMENTS
This section presents experiments aiming to address our

primary research question, which qualities are preferable for
a human in a physical HRI system. The approach taken
is based on usability testing using a group of test subjects.
Three characteristics were inspected: naturalness of the mo-
tion, sense of control of the robot and the positioning accu-
racy, henceforth denoted naturalness, control, and accuracy.
These characteristics were deemed important due to their
connection to both ease of use (accuracy of naturally avail-
able mental models) and effectiveness.

6.1 Experimental design
The group of test subjects included 20 participants. An

announcement for volunteers was posted at a university no-
tice board and all volunteers responding were accepted as
participants. The test subjects included both students and
university staff of both sexes, with age range from 20 to
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Figure 6: Forces: (a) Measured forces; (b) Human
forces; (c) Velocities; (d) Position trajectory
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Figure 7: Torques: (a) Measured torques; (b) Hu-
man torques; (c) Velocities; (d) Rotation angles

53. The test subjects did not have previous experience with
robotics.

The task performed was designed to correspond to a typ-
ical use case for a table top robot manipulator. More pre-
cisely, the task was to move the robot hand first to a given
position of an object and then to a given final target posi-
tion, simulating the grasping and moving of an object. The
positions were indicated to the users visually. The length of
the required trajectory was approximately 1 meter.

The users were instructed about the task and the studied
characteristics before the beginning of the experiment. Each
user was asked to complete the task with four different con-
trollers described below. The order of controllers was ran-
domized and they were presented to the user as controllers
A, B, C, and D. Previously to the realization of the task, the
user was allowed to interact with the robot for 30 seconds
with each controller to familiarize with the controller. A
written questionnaire was provided to the participants where
the characteristics (naturalness, control, accuracy) were to
be ranked from 1 (poor) to 5 (excellent). In addition, the
users were asked which characteristic is most important for
usability. Finally, the users were asked to rank the four con-
trol approaches. General comments from the users about
the interaction were allowed during the execution of the ex-
periment. To validity of the results for differences in scores
between each two approaches was studied using a paired t-
test with the p-value of 0.05.

Four different controllers were inspected, the proportional
controller introduced in Sec. 4.1 and three variants of the vir-
tual tool controller. The variants of virtual tool controller
vary by the value of damping parameter K2, which affects
their characteristics. In the following, the approaches are de-
noted Proportional, Low gain, High gain and Variable gain.
For Proportional controller, the gain was set to obtain mo-
tion with very little vibration. In Low gain approach, the
parameter K2 had a low value, which produces lower en-
vironment resistance while making the robot feel less sta-
ble. Respectively, the higher value of K2 for the High gain
approach produces higher environment resistance while in-
creasing the sense of control of the robot. Finally, Vari-
able gain approach used two different values for the param-
eter depending on the sensed human force. A higher value
was used for low forces and a lower value for high forces.
The basic idea is that this would allow the human continue
producing the robot motion without effort (low resistance
of the environment) and, on the other hand, the motion is
rapidly stopped when the human releases the robot or de-
creases the force used to guide the robot (high resistance
of the environment). The idea is somewhat similar to [15]
where virtual tool parameters are adjusted over time for a
collaborative positioning task.

6.2 Results
According to users’ comments, naturalness of motion de-

pends on the ease of use of the system. Table 1 shows the
mean score and its deviation for naturalness.

The results shown in the table indicate that the virtual
tool controllers are more natural than the proportional con-
troller (with the significance level p<0.01). Although the
Variable gain approach has the largest mean score, there is
no statistically significant difference between the three vir-
tual tool controllers. According to the user comments, more
effort (force) was necessary to produce motion with the Pro-



Table 1: Naturalness.
Approach Mean Standard Deviation
Proportional 2.15 0.81
Low gain 3.55 1.00
High gain 3.50 0.95

Variable gain 3.65 1.31

portional controller, which was one of the reasons for lower
naturalness. Additionally, we can hypothesize that the vir-
tual tool approach feels more natural because it is equivalent
to moving an object in a liquid, as mentioned earlier, and
the users are likely to be familiar with the associated sensory
percepts.

Feeling the sense of being in control of the robot can be
defined as good response from the robot to the forces ap-
plied by the user to produce the desired motion. This re-
quires both smooth motion and also the fact that the user
feedback can easily change the speed or direction of motion.
Table 2 shows the mean scores and their standard devia-
tions for the four approaches. High gain approach exhibits

Table 2: Control over the robot.
Approach Mean Standard Deviation
Proportional 2.95 1.15
Low gain 3.60 0.88
High gain 3.75 0.97

Variable gain 3.25 1.47

the best sense of control, followed by Low gain approach,
however without statistically significant difference. Com-
pared to Variable gain approach, they are not statistically
significantly superior with the available experimental data.
However, compared to Proportional approach, High gain ap-
proach is statistically significantly superior (p ≈ 0.04). The
superiority is likely mostly due to the smooth motion pro-
duced. The scores of Variable gain approach have a large
variance, showing a disagreement among the test subjects.
Users who used lower forces to control the robot felt more in
control as opposed to users who used higher forces resulting
in fast motions. Thus, it seems that the approach would re-
quire more training and/or learning by the users compared
to the other virtual tool approaches. The low scores of Pro-
portional approach are mostly explained by the existence of
discontinuities of velocity and vibrations induced by them.

The positioning accuracy of the motion was also deter-
mined by the written questionnaire, and is thus subject to
user interpretation. Table 3 shows the results of this char-
acteristic obtained for each approach.

Table 3: Positioning accuracy.
Approach Mean Standard Deviation
Proportional 3.30 1.26
Low gain 3.25 0.91
High gain 3.85 0.93

Variable gain 3.20 1.44

High gain approach has the largest scores on average. Even

though differences appear, they are not statistically differ-
ent when compared to Proportional and Variable gain ap-
proaches. Nevertheless, the superiority of High gain ap-
proach seems to indicate that high damping is useful for the
positioning accuracy. Similar to the previous characteristic,
Variable gain approach exhibits large variations in scores in
the test group. The reason for the differences is identical
to the case in the sense of being in control discussed above.
Thus, the conclusion that the approach needs more training
holds also here.

The user ranking for the most important characteristic
for the usability shows no significant differences between
the characteristics. This, with supporting user comments,
demonstrates that all three characteristics are important for
usability. However, this ranking also shows the users pri-
ority for the overall best approach. While there was no
clear winner as the overall best approach, Variable gain and
Low gain approaches were deemed best by users who valued
naturalness the most, Proportional approach by the users
who valued positioning accuracy, and High gain approach
by the users who tried to balance the three characteristics.
These results highlight the need of user-based measures in
assessing the usability, in addition to physically grounded
measures such as required time and accuracy.

In conclusion, the choice of an approach should depend on
the application. As a summary, the virtual tool approach
with high damping produces a robot motion with a good
naturalness, a good sense of control positioning accuracy.
With lower damping, the naturalness of the approach in-
creases further, while decreasing the positioning accuracy.
Variable damping seems to induce the most natural mo-
tion but is inferior in the sense of control and positioning
accuracy, and seems to require more training for the user.
Furthermore, virtual tool approaches seem to outperform
the proportional velocity control due to their more intuitive
user interface, which is likely to be more familiar to the
users in their everyday life. In a general application, using
the virtual tool approach with large enough damping seems
to provide a good overall solution.

7. CONCLUSION
The goal of this paper was to study the qualities prefer-

able for a human in a physical HRI system, where a robot
arm is controlled using a wrist-mounted force sensor. Con-
trollers with different characteristics were first described,
and the significance of the different characteristics was ex-
amined through a user study.

The results indicate that the virtual tool approach for
controlling the motion is advantageous through its corre-
spondence to motion of physical systems, which makes it a
natural way of control for the users. In other words, even
the novice users recognize the mental model used in the con-
trol from their everyday life. Thus, the approach is likely
to be successful in general service robotic applications even
with non-expert users. The experiments also supported that
novice users can learn to perform effective physical HRI with
the current state-of-the-art technology.

It was also found that the choice of a physical HRI con-
troller should depend on the target application, because a
trade-off is necessary between the conflicting goals of natu-
ralness of motion and positioning accuracy. Thus, it seems
that a single controller is not likely to succeed in providing
ultimate ease of use together with absolute accuracy.



Finally, the study supports the fact that in addition to
well-defined quantitative measures such as effectiveness (time
required) and absolute positioning accuracy, user experience
is greatly affected by several other factors, which need to be
measured using questionnaire type studies. It remains a
topic of further study to collect these factors for physical
HRI. When service robots are introduced to everyday envi-
ronments, these factors will be essential in providing prod-
ucts the users are comfortable with and willing to use.
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Assessing grasp stability based on learning and
haptic data

Yasemin Bekiroglu, Janne Laaksonen, Jimmy Alison Jørgensen, Ville Kyrki and Danica Kragic

Abstract— An important ability of a robot that interacts with
the environment and manipulates objects, is to deal with the
uncertainty in sensory data. Sensory information is necessary to,
for example, perform on-line assessment of grasp stability. We
present a method for assessing grasp stability based on haptic
data and machine learning methods. In particular, we study the
effect of different sensory streams to grasp stability. This includes
object information such as shape; grasp information such as
approach vector; tactile measurements from fingertips and joint
configuration of the hand.

Sensory knowledge affects the success of grasping process
both in the planning stage (before a grasp is executed) and
during the execution of the grasp (closed-loop on-line control).
In this paper, we study both of these aspects. We propose a
probabilistic learning framework for assessing grasp stability
and demonstrate that knowledge about grasp stability can be
inferred using information from tactile sensors. Experiments on
both simulated and real data are shown. The results indicate
that the idea of exploiting the learning approach is applicable in
realistic scenarios which opens a number of interesting venues
for the future research.

Index Terms— Grasping, Force and Tactile Sensing, Learning
and Adaptive Systems.

I. INTRODUCTION

Grasping is an essential skill for a general purpose service
robot, working in an industrial or home-like environment. If
object parameters such as pose, shape, weight and/or ma-
terial properties are known, grasp planning using analytical
approaches can be employed [1]. In unstructured environments
these parameters are uncertain, which presents a great chal-
lenge for the current state-of-the-art approaches. Extraction
and appropriate modeling of sensor data can alleviate the
problem of uncertainty. Many approaches to robotic object
grasping exist and most of these have been designed for
dealing with known objects. To estimate the shape and pose
of an object, visual sensing has been used [2, 3, 4, 5, 6, 7].
However, the accuracy of vision is limited, for example due
to imperfect calibration and occlusions. Small errors in object
pose are thus common even for known objects and these errors
may cause failures in grasping. These failures are commonly
difficult to prevent at the grasp execution stage if a hand is not
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equipped with proper sensors. Tactile and finger force sensors
can be used to reduce some problems but are uncommon in
practice [8, 9]. Due to uncertainty in the observations, a grasp
may fail due to slippage or collision even when all fingers
have adequate contact forces and the hand pose with respect
to the object is not very different from the planned one.

The main contribution of our work is a new approach
that incorporates knowledge of uncertainty in the observations
when predicting the stability of a grasp. We show how grasp
stability can be assessed based on data extracted both prior
to and during execution. The data contain object information
such as shape; grasp information such as approach vector;
and online sensory and proprioceptive data including tac-
tile measurements from fingertips and joint configuration of
the hand. In real world scenarios the observations acquired
from the environment are erroneous and associated with a
degree of uncertainty. Our goal is to create a system capable
of performing prediction of grasp stability from real world
sensory streams. In order for the system to be robust, the
uncertainty in the observations needs to be taken into account.
Probabilistic methods provide a framework for dealing with
uncertainty in a principled manner and will to this end provide
the foundation that our system is built upon. Our aim is
to model the embodiment specific and inherently complex
relationship between grasp stability and the available sensory
and proprioceptive information. Our approach is a learning
based framework and relies on having a training data-set
which can be assumed to sample the domain of possible
scenarios well. This poses a challenge as acquiring such
data is associated with a significant cost with respect to
time and computation. In order to alleviate this problem we
use a simulator from which we can generate a large set
of synthetic training data in a controlled environment with
relative ease. The approach of using synthetic training data
is justified by performing inference on real-world examples.
Moreover, the generalizability of the grasp stability estimation
is experimentally evaluated. The results demonstrate that the
stability estimation generalizes relatively well to new objects
even with a moderate number of objects used in training.
In summary, the paper demonstrates that knowledge about
grasp stability can be inferred using information from tactile
sensors while grasping an object before the object is further
manipulated. This is very useful since, if an unstable grasp
is predicted, objects can be regrasped before attempting to
further manipulate them.

In the following section, the contributions of our work are
discussed in detail in relation to the state-of-the-art work in



the area. This is followed by a presentation of the theoretical
framework in Section III and the employed learning methodol-
ogy. In Section IV the simulator, the database and the real data
collection are described. We present the results of experimental
evaluation in Section V and conclude our work in Section VI.

II. CONTRIBUTIONS AND RELATED WORK

In robotic object grasping there has been a lot of effort dur-
ing the past few decades [1]. Grasp stability analysis is a tool
often used in grasp planning, where the grasp is planned using
grasp quality measures derived from stability analysis. Most
of the work on grasp stability assessment relies on analytical
methods and focuses on rigid objects, albeit some work has
considered the analysis of grasps on deformable objects [10].
Compared to our approach, the analytical methods require
exact knowledge of the contacts between the hand and the
object to estimate the stability of a grasp.

Most of the grasp planning approaches tested in simulation
have the common property of using a strategy that relies on
the object shape. Modeling object shape with a number of
primitives such as boxes, cylinders, cones, spheres [11, 4],
or superquadrics [12] reduces the space of possible grasps.
The decision about the suitable grasp is made based on grasp
quality measures given contact positions. However, none of
these approaches provide a principled way of dealing with
uncertainties that arise in dynamic scenarios or the errors
inherent to simplification with primitives, which can poten-
tially be solved using tactile feedback. This is also the main
objective and contribution of the work presented here.

One of the issues often faced in household scenarios are
deformable objects. Planning grasps for these type of objects
is not at all as well studied as rigid objects. Examples can
be found in literature, such as [13], where the deformation
properties of objects are learned and then a suitable grasping
force is planned for the associated objects.

To cope with the fact that the exact knowledge of the
object and the hand is not available, we employ tactile sensors
measuring a range of pressure levels. Tactile sensing has been
used for various purposes in prior studies and we focus on
the use of tactile sensors in the remaining survey of the
related work. There are recent examples which perform grasp
generation from visual input and use tactile sensing for closed
loop control once in contact with the object. For example,
the use of tactile sensors has been proposed to maximize the
contact surface for removing a book from a bookshelf [14].
Application of force, visual and tactile feedback to open a
sliding door has been proposed in [15]. In our work the main
difference is that the tactile sensors are used to assess the
stability of a grasp. Thus, rather than using the tactile data for
control, we use it in order to reason about grasp stability.

Learning aspects have been considered in the context of
grasping mostly for the purpose of understanding human
grasping strategies. In [16], it was demonstrated how a robot
system can learn grasping by human demonstration using a
grasp experience database. The human grasp was recognized
with the help of a magnetic tracking system and mapped to

the kinematics of the robot hand using a predefined lookup-
table. Another approach is to use vision. However, measuring
the contact between object and hand accurately is a non-
trivial task. The system in [2] learns grasping points by
using hand labeled training data in the form of image regions
which indicate good grasping regions. A probabilistic decision
system is employed on previously unseen objects to determine
a good grasping point or region. In [3], vision is used to create
grasp affordance hypotheses for objects and refine the grasp
affordance hypotheses through grasping. The result is a set of
grasps that will produce good grasps on a specific object.

Current learning approaches using tactile sensors are fo-
cused on either determining the properties of objects [17, 18,
19] or object recognition [19, 20, 21, 22]. Different properties
of objects give valuable information that can be further used
in grasp stability analysis. In [17], the pose of the object
is determined using a particle filter technique based on the
tactile information gained from the contacts between a gripper
and the object. Similar work was presented by Hsiao et al.
[23] where object localization was performed with knowledge
of tactile contacts on specific objects. In [18], the surface
type (edge, flat, cylindrical, sphere) of the tactile contact is
determined using a neural network. In [19], tactile information
extracted from the sensors on a two fingered gripper is used to
determine the deformation properties of an object. However,
learning or analyzing such object properties through tactile
sensors do not answer the question of grasp stability directly
compared to the work presented here.

Work on using tactile sensors for recognition of manipulated
objects has been reported rather recently. The main approach is
to use multiple grasp or manipulation attempts and then learn
the object through the haptic input from the manipulations
or grasps. Current approaches use either one shot data from
the end of the grasps [21, 22] or temporal data collected
throughout the grasp or manipulation execution [19, 20]. In
[21], a bag-of-words approach is presented which aims to
identify objects using touch sensors available on a two fin-
gered gripper. The approach processes tactile images collected
by grasping objects at different heights. In [22], a similar
approach is taken for a humanoid hand. A more traditional
approach to learning is employed with features extracted from
tactile images in conjunction with hand joint configurations as
input data for the object classifier. In [20] entropy is used to
study the performance of various features in order to determine
the most useful features in recognizing objects. In this case, a
plate covered with tactile sensor was used as the manipulator.
However, the object recognition using the recognized good
features did not perform as well as in the other presented
works. Thus, no attempts have been made on using tactile
sensors placed on a robotic hand to predict the stability of a
grasp. We have presented the idea of grasp stability prediction
using tactile sensors in [24] with some initial results and we
extend our work in this paper.



III. PROBLEM FORMULATION AND MODELING

Determining grasp stability is difficult when factors affect-
ing the stability are uncertain or unknown. We show that
with a probabilistic approach it is possible to assess grasp
stability using tactile measurements. Mapping from tactile
sensor measurements to grasp stability is complex and not
injective because of variability in object parameters, grasp and
hand types, and the uncertainty inherent in the process. Thus,
we consider grasp stability as a probability distribution

P (S|H(t), j(t), O,G), (1)

where grasp stability, denoted by S, depends on different
measured and/or known factors. The factors taken into account
in our model are: i) H , force/pressure measurements from
tactile sensors; ii) j, joint configuration of the hand; iii) O,
object information, e.g., object identity or shape class; and
iv) G, information relevant to the grasp, e.g. approach vector
and/or hand preshape. Grasp stability, S, is a discrete variable
with two possible states: a grasp is either stable or unstable,
while the other variables can be discrete or continuous. Our
goal is to assess the effect of factors in Eq. (1) to grasp stability
by considering different subsets of the variables.

We study the problem using both instantaneous measure-
ments of variables and time-series measurements. With in-
stantaneous measurements, the stability is assessed only from
the instant when the robot hand is static and has closed
around the object. This approach is referred to as one-shot
classification. In contrast, the time-series approach takes into
account measurements generated during the whole grasping
sequence. The variables H and j are thus represented from
time t0 to tn where t0 and tn represent the start and the end
of the grasping sequence respectively. In the case of one-shot
classification, we use the measurements once the hand has
reached a static configuration, an approach similar to [21].
Thus, we compare the distribution defined by Eq. (1) to one
which discards the time series:

P (S|H(tn), j(tn), O,G). (2)

We show that both approaches described by Eq. (1) and
Eq. (2) are valid and that grasp stability can be assessed
based on them. To study the contribution of object O and
grasp knowledge G, we have set up a hierarchy as depicted
in Fig. 1. The hierarchy is divided into levels, each with
increasing amount of sensory information being available. At
the top level of the hierarchy only the information related to
the hand itself, H , and j is used. Thus, we estimate

P (S|H, j) =

∫ ∫
P (S|H, j,O,G) p(G|O) p(O) dO dG .

(3)

Considering only sensor information, the overall distribution
will be somewhat uninformative — there is significant un-
certainty as the same sensor readings can be associated with
both stable and unstable grasps for different objects, grasp
approach vectors and hand preshapes. Subsequently, when
more pieces of information are considered, the estimation of

the distribution should be more specific resulting in better
discrimination. At the second level, we consider that object

All shape classes
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Specific strategy
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Specific strategy
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Fig. 1. Hierarchical recognition of grasp stability taking into account different
type of sensory knowledge.

shape or object instance are known:

P (S|H, j,O) =

∫
P (S|H, j,O,G) p(G) dG . (4)

Finally, at the third level we consider knowledge about
the applied grasp, and estimate the stability through
P (S|H, j,O,G). Since knowledge of all the variables present
in Eq. (1) is assumed, the uncertainty in the stability estimation
is expected to decrease.

In the rest of the section, we describe methods for estimating
the density functions using a classification approach. Support
Vector Machines and AdaBoost are used to model the instan-
taneous model, according to Eq. (2) while Hidden Markov
models are used for the general time series case, according
to Eq. (1). Although the probabilistic framework is presented
as a method to estimate grasp stability using haptic data, it is
also possible to use the proposed framework with other types
of sensory information.

A. Feature representation

First, we describe the input features for the classifiers. In
this work, a three-fingered Schunk Dextrous Hand (SDH)
with seven degrees of freedom and equipped with six two-
dimensional Weiss Robotics pressure sensitive tactile pads
[25] is used as a demonstration hardware platform. Tactile
measurements are recorded from the first contact with the
object until a steady state is reached. The whole measurement
sequence is denoted by xi1, . . . , x

i
Ti

, where i is the index of the
measurement. For one-shot classification, tactile measurements
at the steady-state is used and denoted xiTi

. Training data is
generated both in simulation and on real hardware and will be
presented in Section IV. The notation used in this paper is as
follows:
• D = [oi], i = 1, . . . , N denotes a data set with N

observation sequences.
• oi = [xit], t = 1, . . . , Ti is an observation sequence.
• xit = [M i,t

f ji,tv ], f = 1, . . . , F, v = 1, . . . , V is the
observation at time instant t given the i-th sequence; F



Fig. 2. An example grasping sequence of a cylinder and the corresponding
tactile measurements.

is the number of tactile sensors and V is the number of
joints of the robot hand.

• M i,t
f includes the moment features extracted from the

tactile readings Hi,t
f on the sensor f at time instant t

given the i-th sequence. Details about the extraction of
these features are given later in this section.

• ji,tv is a joint angle at time instant t given the i-th
sequence.

The acquired data thus consists of tactile readings Hi,t
f and

joint angles of the hand ji,tv . For the Schunk Dextrous Hand,
we store 3× (14× 6) readings on proximal and 3× (13× 6)
on distal sensors, and seven parameters representing the pose
of the hand given the joint angles. Example images from the
tactile sensors are shown in Fig. 2. The tactile images in the
figure represent a stable grasp of a cylinder.

Tactile data is relatively high dimensional and redundant.
Thus, we borrow ideas from image processing and consider
the two-dimensional tactile patches as images. Each tactile
image is represented using image moments. The general
parameterization of image moments is given by

mp,q =
∑

z

∑

y

zpyqf(z, y), (5)

where p and q represent the order of the moment, z and y
represent the horizontal and vertical position on the tactile
patch, and f(z, y) the measured contact. We compute moments
up to order two, (p + q) ∈ {0, 1, 2}, for each sensor array
separately. These then correspond to the total pressure and
the distribution of the pressure in the horizontal and vertical
direction. Thus, there are in total six features for each sensor
resulting in an observation xit ∈ R6F+V . Normalizing the
feature vector is a common step in machine learning methods.
In our case, moment features and finger joint angles are
normalized to zero-mean and unit standard deviation. Nor-
malization parameters are calculated from the training data
and then used to normalize the testing sequences.

B. One-shot recognition

In this section, we examine the learning of grasp stability
based on tactile measurements acquired at the end of a grasp-
ing sequence, that is, once the final grasp has been applied
to the object. We claim that if successful separation between
stable and unstable grasps can be learned from examples, one-
shot classification can determine the stability of the grasp
from any haptic observation xit measured during a grasp. This
information can then be used in grasp control to determine
when the robot hand has reached a stable configuration.

In this paper, two types of non-linear classifiers, AdaBoost
and Support Vector Machine (SVM), are used in the exper-
iments to demonstrate the ability to learn the stability of
the grasps. AdaBoost and SVM were the best performing
classifiers in [26]. AdaBoost is a boosting classifier, developed
by Freund and Schapire [27], that works with multiple so-
called weak learners to form a committee that performs as the
classifier. Here, we use AdaBoost implementation from [28].

Support vector machine classification [29, 30] is also suit-
able for the problem. SVM is a maximum margin classifier,
i.e. the classifier fits the decision boundary so that maximum
margin between the classes is achieved. This guarantees that
the generalization ability between the classes is not lost
during the training of the SVM classifier. We use the libSVM
implementation presented in [31]. Another critical feature
of the SVM for our use is the ability to use non-linear
classifiers instead of the original linear hyper-plane classifier.
Non-linearity is achieved using different kernels, in this study
the radial basis function (RBF)

K(xi, xj) = e−γ‖xi−xj‖2 , for γ > 0, (6)

is used as the kernel for SVM. Moreover, as an extension to
the basic two-class SVM, probabilistic outputs for SVM are
used to analyze the results given by the SVM. This idea was
first presented in [32]. The SVM output y(x) is converted to
a probability according to

p(t = 1|x) = σ(Γy(x) + Λ), y(x) = K(w,x) + b , (7)

where parameters Γ and Λ are estimated using training data,
and σ(·) is the logistic sigmoid function. This probability is
thus related to the earlier general discussion by

P (S = stable|H(t), j(t), O,G) = p(t = 1|x) . (8)

C. Temporal recognition using HMMs

Time-series grasp stability assessment is performed using
Hidden Markov models (HMMs) [33]. We construct two
HMMs: one representing stable and one unstable grasps. Clas-
sification of a new grasp sequence is performed by evaluating
the likelihood of both models and choosing the one with higher
likelihood. For the HMM, we use the classical notation λ =
(π,A,B) where π denotes the initial probability distribution,
A is the transition probability matrix

A = aij = P (St+1 = j|St = i), i, j = 1 . . . N, (9)



and B defines output (observation) probability distributions
bj(x) = fXt|St

(x|j) where Xt = x represents a feature-vector
for any given state St = j. In this work, we evaluate both
ergodic (fully connected) and left-to-right HMMs.

The estimation of the HMM model parameters is based on
the classical Baum-Welch procedure. The output probability
distributions are modeled using Gaussian Mixture Models
(GMMs):

fX(x) =

K∑

k=1

wk
1

2πL/2
√
|Ck|

e−
1
2 (x−µk)

TC−1
k (x−µk), (10)

where
∑K
k=1 wk = 1, µk is the mean vector and Ck is

the covariance matrix for the k-th mixture component. The
unknown parameters θ = (wk, µk, Ck : k = 1...K) are
estimated from the training sequences o = (x1, ...xT ). Initial
estimates of the observation densities in Eq. (10) affect the
point of convergence of the reestimation formulas. Depending
on the structure of the HMM (ergodic vs left-to-right), we
use a different initialization method for the parameters of the
observation densities. The two initialization procedures are
given below:
• For an ergodic HMM, observations are clustered using
k-means. Here, k is equal to the number of states in the
HMM and each cluster is modeled with a GMM using
standard expectation maximization. Initial parameters for
the GMMs are found using k-means algorithm.

• For a left-to-right HMM, each observation sequence is
divided temporally into equal length subsequences. Then,
each GMM is estimated from the collection of corre-
sponding subsequences. Thus, the GMMs represent the
temporal evolution of the observations. Initial parameters
are found as in the case of an ergodic HMM.

IV. DATA COLLECTION

For a learning system to achieve good generalization ca-
pabilities, relatively large training data is typically required.
Generating large datasets on real hardware is time consuming
and in robotic grasping generating repeatable experiments is
difficult due to the dynamics of the process. However, if
suitable models are available, simulation can be used for
generation of data for both training the learning system
and performance evaluation. In our work, we generate both
simulated and real training data as explained below.

A. The simulator

The grasp simulator RobWorkSim, described in [34], is used
to generate training data including tactile measurements. The
simulator is used in combination with the Open Dynamics
Engine (ODE) physics engine and provides support for sim-
ulating articulated hands, PD joint controllers, grasp quality
measures, camera sensors, range sensors and tactile sensors.
The primary motivation for using RobWorkSim over the more
widely used GraspIt! [35], is the integrated support for tactile
array sensors.

1) Tactile sensor model: The tactile array sensor simulation
in RobWorkSim is an experimental model that transforms
the point contacts of the ODE to sensor measurements by
describing the deformation of the sensor surface given a point
force f applied perpendicular to it. The model was originally
described in [36]. The model assumes that the deformation or
response is linear with the magnitude of the point force, which
is a fair assumption for small forces. Given the deformation
function h(x, y) where x and y are specified relative to the
center (a, b) of the contact, the total deformation of the surface
of an array of rectangular texels with size (A,B) can be found
by integrating over the surface of each texel by

gm,n(a, b) =

∫ (A+ 1
2 )m−a

(A− 1
2 )m−a

∫ (B+ 1
2 )n−b

(B− 1
2 )n−b

h(x, y)dxdy, (11)

where (a, b) is the center point of the contact and (m,n) is the
texel index. This surface integration is approximated using the
rectangle method. Point force experiments on the real sensors
suggested that the deformation decreased with the inverse of
the square of the distance from the point force. We use an
isotropic function to approximate the deformation of the sensor
surface

h(x, y) = (f · ntexel) max(−β +
α

1 + x2 + y2
, 0), (12)

where (x, y) is specified relative to (a, b) and ntexel is the
normal of the texel on which the point force f is applied.
The parameters (α, β) were found by fitting the model to
experimental data extracted from real sensors. Fig. 3 shows a
visual comparison between the real and the simulated sensor
output where a sharp edge was pressed against both sensors.

a b c d

Fig. 3. Measured (a and c) versus simulated (b and d) sensor values. The
tactile images were generated by pressing a sharp edge onto the sensor surface.

Assessing grasp quality requires taking properties of the
hand (orientation, joint configuration, friction, elasticity, grasp-
ing force) and object (shape, mass, friction, contact locations
and area, contact force) into account. In the simulated envi-
ronment these parameters are known. We use a widely known
grasp quality measure based on the radius, ε, of the largest
enclosing ball in the grasp wrench space (GWS). We construct
the GWS as proposed in [37] by calculating the convex hull
over the set of contact wrenches wi,j = [fTi,j λ(di × fi,j)T ]T ,
where fi,j belongs to a representative set of forces on the
extrema of the friction cone of contact i. di is the vector from
the torque origin to contact i and λ weighs the torque quality
relative to the force quality.



It is not obvious how to determine λ due to the differences
between forces and torques. We therefore calculate force space
and torque space independently and use the radius of the
largest enclosing ball in each of these to give a 2 dimensional
quality value (εf , ετ ) for each grasp. A third quality measure
εcmc based on the distance between the centroid of the contact
polygon C and the center of mass CM of the object [38]
is used: εcmc = ||CM − C||. This measure captures the
same properties as the torque measure, however it is more
robust with regard to the point contact output of the simulator.
Stable grasps are defined as those for which all three quality
values are within a certain threshold. The thresholds have been
determined experimentally.

B. Generating training data in simulation

The database includes examples of stable and unstable
grasps on different objects. We examine stability starting from
the most general case in the hierarchy specified in Fig. 1 and
continue by including information about subsequent properties
until reaching the most specific case. At the top level of
the hierarchy, data is generated on objects with different
shapes using approach vectors generated uniformly from a
sphere, referred to as a spherical strategy. At the second level,
the shape information is given, hence grasps are generated
separately per object shape with the spherical strategy. At the
third level, the approach vector is formed based on the object
shape, namely side or top grasps are applied with more than
one preshape. At the bottom level, the preshape is also chosen
per object shape and approach vector. Fig. 4 shows examples
of objects that are included in the database.

Fig. 4. Objects in simulation were generated in three sizes
(75%,100%,125%): Hamburger sauce, Bottle, Cylinder, Box, Sphere.

Each grasping sequence in the database is generated by
placing the hand in a specific configuration with respect to
the object and then closing the fingers. For the recognition
that relates to levels 1 and 2 in the recognition hierarchy (see
Fig. 1), a simple spherical grasp strategy with a randomly
chosen preshape is used. The spherical grasp strategy generates
the approach direction for the hand by sampling the unit sphere
around the center of mass of the object. Each sample then
consists of a vector pointing toward the center of mass of the
object.

The strategy and the preshapes used for level 3 in the
recognition hierarchy are shape specific. Therefore strategies
where developed for each shape used in the experiments. The
hand preshapes for level 3 were generated with finger joint
values in the interval ([−90;−70], [−10; 10])◦, where the 7th
joint was one of 90◦, 60◦, 0◦ as shown in Fig. 5.

90⁰ 60⁰ 0

Fig. 5. Hand configuration when the 7’th joint is at 90◦, 60◦ and 0◦

The following grasp strategies are applied for the shape
primitives:
• Sphere - The approach directions are sampled randomly

from the unit sphere with origin in the center of gravity of
the object. Both the ball preshape (60◦) and the parallel
preshape (0◦) were used.

• Cylinder - The object is approached either from the top
or from the side. When approaching from the top, a
ball grasp preshape is used and the approach direction
is pointing towards the object center of mass. For side
grasps, the approach is sampled with an angle of 0−20◦

with respect to the horizontal plane, pointing towards the
center of mass of the object. The preshape in the side
grasp uses an angle of 0 on joint 7, so that a parallel
grasp is obtained.

• Box - The object is approached using a vector lying in
the plane defined by the world z-axis and the longest axis
of the box and pointing toward the center of gravity. A
parallel preshape of the hand is used.

In addition, two natural objects, the hamburger sauce and the
bottle (see Fig. 4), used the same strategy as the cylinder. The
tactile information and the joint configuration are recorded
from simulation at regular time intervals.

In general, the performance of the simulation is largely
dependent on the level of detail of the geometries in both hand
and objects. In our setup generating a simulated grasp using
a modern quad core computer took approximately 2 seconds.

C. Generating training data on a robot

The real world experiments show the feasibility of assessing
grasp stability on physical robot platforms. The experiments
aim to serve as a proof-of-concept rather than assessing the
exact performance rates in different use cases. The experi-
mental evaluation on real data follows the methodology used
in simulation such that similar objects and same grasp types
are used. The objects are placed such that they are initially not
well centered with respect to the hand to assess the ability of
the methods to cope with the uncertainty in pose estimation.
A few example grasps are shown in Fig. 6. The real data
includes side grasps on the objects in Fig. 7 with the preshape
shown in Fig. 5 where the 7th joint is 0◦. After preshaping,
the hand closes the fingers with equal speeds while limiting
the maximum torque of each actuator until reaching a static
state where the object does not move or a fully closed hand
configuration is reached. The latter occurs in the case of an
unsuccessful grasp.



Fig. 6. A few examples from the execution of real experiments.

Fig. 7. Objects used in real experiments, with last three deformable.

Tactile readings and corresponding joint configurations were
recorded starting from the first contact until a static state
is achieved. To generate stable/unstable label for a grasp,
the object is lifted and rotated [−120◦, +120◦] around the
approach direction. The grasps where the object is dropped
or moved in the hand were labeled as unstable. 100 stable
and 100 unstable grasps were generated for each object.
Data processing, training and classification followed the same
methodology as described for the simulated data.

V. EXPERIMENTS

We begin the experimental part by describing a simple
demonstration scenario to show that the proposed approaches
are viable in real applications. As the main experimental
contribution, we proceed to study the effect of different types
of information for the estimation of grasp stability.

A. Demonstration

The feasibility of the approach is demonstrated in a real-
istic scenario. The demonstration is included to better show
how the proposed methodology can be integrated in a real
robotic system. Quantitative evaluation of the methodology is
presented after the demonstration.

A vision based system can provide information about the
specific objects in the scene and their pose [4, 5, 6] or potential
grasping points on the object [39, 7]. In our previous work, we
have shown how this can be done for known [4], unknown [5,
6] and familiar objects [39, 7]. However, in the the previous
work there were many cases that resulted in unsuccessful
grasps. One example using system from [7] is shown in
Fig. 8 and more examples are provided in the supplementary
material1.

The scenario that is demonstrated is as follows: Objects
of known geometry are placed in the workspace of a robot
in a known position similar to [4]. Grasp hypotheses from a
planner [40] are applied on the real robot by placing each
of the 5 objects (Fig. 9) in a known position. The planner
is performing object decomposition for complex objects and
plans grasps on the decomposed parts [4]. In our scenario, the

1A supplementary video showing the demonstration is available at
http://ieeexplore.ieee.org.

planner is configured for a specific preshape. To demonstrate
grasping of asymmetric objects in different poses, we place
them in four different orientations with respect to the robot.
After a suitable grasp is generated by the planner, the hand is
moved to a preshape position and the fingers are closed. After
a steady state is reached (no change is detected in the tactile
sensors), the stability of the grasp is estimated. Finger closing
is controlled by executing a constant velocity motion for the
finger joints and simultaneously limiting the maximum force
by limiting the current for the finger actuators.

Before the system can be operated, a training (calibration)
process, required for each individual robotic hand, needs to
be completed. The calibration process is described in Algo-
rithm 1. The algorithm is run using the objects in Fig. 9, 114
stable and 114 unstable grasps are generated, including 58
grasps from the white spray bottle and 32 grasps from the
pink detergent bottle in Fig. 9. While the calibration algorithm
is not tied to a particular classification methodology, in the
demonstration the HMM classifier presented in Sec. III-C is
shown.

Algorithm 1 Calibration mode.
1: Choose a suitable grasping strategy for object O.
2: for i = 1 to n do
3: Preshape the hand
4: Grasp object O according to the chosen grasping strat-

egy.
5: Record tactile and joint configuration data during the

grasp.
6: Manipulate the object O along a predetermined path.
7: Record object motion relative to the hand ∆T .
8: if ∆T > 0 then
9: Grasp i is unstable.

10: else
11: Grasp i is stable.
12: end if
13: end for
14: Using recorded data from each grasp i, train a classifier

C.

The operation mode of the demonstration system is de-
scribed in Algorithm 2. A grasp is estimated as stable if the
probability of a stable grasp exceeds the probability of the
grasp being unstable, that is, P (S = stable) > P (S =
unstable). The probabilities are estimated using the well-
known HMM “forward algorithm” to compute the probability
of the observed sequence of measurements, assuming equal
prior probabilities for stable and unstable.

Figure 10 shows snapshot images from the operation of
the system2. The robot is attempting to grasp a bottle by
first placing the hand in a preshape position given by the
planner mentioned above, as shown in Fig. 10a. Then, the
fingers are closed as described above. The closed grasp is
shown in Fig. 10b with the corresponding tactile measurements

2Please see the supplementary video for a more detailed demonstration.



Fig. 8. An example of a failed grasp when only visual input is used. Details about the system are reported in [7].

Algorithm 2 Operation mode.
1: Generate a grasp using our grasp planner.
2: Preshape the hand.
3: Grasp object by closing fingers.
4: Evaluate classifier using sensor data.
5: if P (S = stable) > P (S = unstable) then
6: Lift object.
7: else
8: Go to 1.
9: end if

in Fig. 10c. The grasp is predicted to be unstable, with the
log-likelihood ratio log P (unstable)

P (stable) of the two models being
191.1270 > 0, indicating unstable grasp. Now, in order to
demonstrate that the failure was correctly predicted, instead
of regrasping, the robot is nevertheless commanded to lift the
object. The object drops as shown in Fig. 10d, demonstrating
the ability to correctly recognize an unsuccessful grasp. Next,
to demonstrate that the stable grasps are also successfully
recognized, another grasp generated by the same grasp planner
is shown in Fig. 10e. The closed grasp and the corresponding
tactile measurements are shown in Figs. 10f and 10g. Based
on the measurements, the grasp is predicted to be stable,
with the difference across log-likelihoods of the two models
being −537.7687 < 0, indicating a stable grasp. Lifting and
rotating the object around demonstrates this in Fig. 10h, which
concludes the demonstration.

Fig. 9. Objects used to generate a dataset for the demonstration.

B. Evaluation of Learning Capability

The experiments are divided according to the hierarchy
presented in Section III. The goal is to evaluate the effect
of the increasing knowledge on the classification results with
both one-shot and temporal classification approaches.

1) Level 1: No constraints: On this level, no constraints
are placed on the data used for training the classifiers. In other
words, only tactile sensor measurements and the joint configu-
ration are available and the other variables are unknown. The
grasps are sampled from a sphere and the hand is oriented
towards the object. The data is collected in simulation across
multiple object shapes and scales.

2) Level 2: Constraints on object shape: The shape of the
object is known, enabling the use of shape specific classifiers.
The grasps are randomly sampled from a sphere and the
hand is oriented towards the object. The data is collected in
simulation.

3) Level 3: Constraints on approach vector, preshape and
object shape: On level 3 of the hierarchy, constraints are
placed on the approach vector, the grasp preshape and the
object shape. The data are collected using a manually chosen
approach vector, and the preshape is adjusted to the shape of
the object. On this level, the shape is known so that shape
specific classifiers can be used. Both simulated data and real
data are available at this level.

C. Experimental setup

1) Data: The simulated data used in the experiments con-
sists of five objects with three different grasp configurations
applied to them. Three of the objects have primitive shape
(box, cylinder, sphere), and two have natural shape (ham-
burger sauce, bottle). Each object is scaled to three different
sizes, 0.75, 1.0, and 1.25 of the original size. For each
object/size/grasp combination, 1000 unstable and 1000 stable
grasps are randomly chosen from the database described in
Sec. IV-B. Thus, each object/grasp dataset consists of 3000
stable and 3000 unstable grasps. When we refer to specific
simulated object/grasp combination, terms side or top are used
for grasps generated as side and top grasps, while sph. is used
for grasps generated uniformly from a sphere around the object
(random approach vector). Altogether, there are then 30000
samples for the five objects. We also refer to the root node
of the information hierarchy, which contains all samples of
primitives shapes, a total of 18000 samples.

The real data collected includes nine objects with 100
unstable and 100 stable grasps for each object. Thus, there
are 1800 samples in the real data set. The details of the real
data collection are described in Sec. IV-C.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Operation of the system. First row unsuccessful grasp, second row successful grasp: (a,e) Hand in a preshape position; (b,f) Closed grasp; (c,g)
Tactile measurements; (d) The object dropped while lifting; (h) Lifting and rotating the object successfully.

2) One-shot recognition: As mentioned in Section III-B, we
utilize the AdaBoost-algorithm in one-shot classification. Due
to the formulation of the AdaBoost, a weak learner needs to be
chosen. In the experiments, a decision tree with a branching
factor of 1 was used as the weak learner, effectively reducing
the tree to a series of linear discriminants. The branching
factor was determined from series of tests that showed that
using branching factor of 1 performed as good or better as
larger branching factors on the data described in Sec. IV. 200
iterations of AdaBoost were run to find the final classifier in
all experiments. For SVM classifier, γ = 0.03 and constant C
related to the penalty applied to incorrectly classified training
samples [29] is set to C = 0.4. Training time for both
AdaBoost and SVM varies from a few minutes for simulated
datasets with thousands of samples to a few seconds for real
datasets which have only a few hundred samples. Classifying
a single sample with the trained classifier, AdaBoost or SVM,
takes a few milliseconds.

All experiments are reported as 10-fold cross validation
averages, except where otherwise noted. In each case, the data
sets used for training and testing the classifiers are balanced,
i.e. the data sets contain equal number of unstable and stable
grasps. Image moments are used as the feature representation
for the one-shot classifiers. The joint data in addition to the
tactile data is also included in the features unless otherwise
noted.

3) Temporal recognition: To study if the temporal informa-
tion improves the recognition performance, two HMMs, one
for stable grasps and another for unstable ones, were trained.
The stopping criteria for HMM training was a convergence
threshold of 10−4 with a 10 iteration limit. In order to improve
the reliability of the evaluation, both ergodic and left-to-right

HMM were evaluated independently. The reason for these
multiple experiments is that by evaluating multiple temporal
models we aim to understand if the temporal ordering plays
part in the modeling. The covariance of the mixture model
component distributions was forced to be diagonal.

In the training of the temporal model, the structure of the
HMM needs to be chosen in the form of structural parameters,
which describe the number of HMM states and the number of
mixture model components for each state. These were chosen
experimentally such that the HMM was trained using different
parameter settings and the setting producing at least lowest
equal error rate result (equal number of false positives and
negatives) or better performance than that was chosen. The
number of states was varied between 2 and 6 while the number
of mixture components was between 2 and 5.

Experiments were performed both on simulated and real
data. For simulated data randomly chosen 80% of the samples
were used for training and the rest 20% for testing. For the
real data 10-fold cross validation was used to evaluate the
performance and best parameter setting over all folds was
chosen. With given parameters, the training time for the HMM
varies from less than 20 minutes for the simulated data with
thousands of samples to a few minutes for the real data with
a few hundreds of samples. Classification of a single sample
takes a few seconds.

Image moments were used as features, similar to one-shot
learning. However, to reduce the number of parameters in
HMM and speed up the training process, principal component
analysis (PCA) was applied to the moment and joint measure-
ments separately to reduce the dimensionality of the dataset.
The number of principal components was chosen such that at
least 99% of the total variance is retained.



D. One-shot recognition

In this section, we present a collection of experiments based
on the information hierarchy in Fig. 1 using the AdaBoost
classifier. Support vector machine classifier is used with image
moments to examine the separability of the grasp stability
at each level by means of log-likelihood histograms. We
also study the effect of the joint configuration data on the
classification by including or excluding it from the feature
vector for the classifier when using real data.

1) Real data: The experiments begin by showing results
using real data. Sampling grasps with a real hand is a slow
process and thus the sample size is limited. To study the effect
of the amount of samples used for training, we ran a series
of tests with variable sample sizes. These tests are shown
in Table I. The test shows that for a specific grasp on the
cylindrical object, 100 samples are already enough to reach
classification performance levels achieved with higher amount
of samples, the differences in classification performance above
100 samples are not statistically significant. However, this
is the case only when the stable and unstable grasps are
distinctive, i.e. we achieve a high rate of correctly classified
grasps. In the case of the white bottle data set, where the
classification rate is lower, the results show that more than
200 samples could be useful in increasing the classification
performance.

TABLE I
ADABOOST CLASSIFICATION RATES (IN PERCENT) ON DATA SETS WITH

VARIABLE AMOUNT OF SAMPLES.

Samples 50 100 150 200
Def. cylinder 74.6 % 85.0 % 84.8 % 89.0 %
W. Bottle 64.6 % 68.0 % 68.5 % 75.5 %

Classification results for single object classifiers are pre-
sented in Table II. Classification rates are shown both with
joint configuration data and without it, and the classification
rates were computed for image moment feature representa-
tions. The main focus in this experiment is to study prediction
of the grasp stability on objects the system has previously
learnt. The average classification rate for known objects is
82.5% including joint data and 81.4% excluding it from the
measurements. Thus, the inclusion of joint data seems to
benefit the recognition but only to a minor effect. Moreover,
the result indicates that at least with known objects the
proposed approach seems to have adequate recognition rate
for practical usefulness.

We also study how well the trained system can cope with
unknown objects, i.e. objects that have not been used to train
the system. The results are shown in Table III. The results are
for a system that has been trained on all the objects except the
object for which the classification rate is shown. The average
recognition rate is 73.8% with joint data and 72.7% without
it. The results show that while the classification rate is lower
than with known objects it is still possible to make predictions
of the grasp stability on unknown objects to some extent.

TABLE II
ADABOOST CLASSIFICATION RATES (IN PERCENT) ON OBJECT SETS WITH

AND WITHOUT JOINT DATA.

With joint data Without joint data
Cylinder 88.9 % 90.3 %
Def. cylinder 91.0 % 89.0 %
Cone 79.5 % 81.0 %
O. Bottle 77.0 % 78.5 %
Shampoo 82.5 % 76.0 %
Pitcher 84.5 % 78.0 %
W. Bottle 76.0 % 73.5 %
B. Bottle 74.0 % 75.0 %
Box 89.0% 91.0 %

However, this holds true only when similar grasps are applied
on unknown objects as were applied to the objects that the
system were trained on. In comparison, including grasps from
all objects, including the one being tested, for a single classifier
yields a result of 78.6 % correct classification across all the
objects in the real object set. This indicates that the variety
of objects used in training plays an important role in order
to attain good performance, and that the knowledge of object
identity is useful but does not seem necessary if the training
data includes same or similar objects.

TABLE III
ADABOOST CLASSIFICATION RATES (IN PERCENT) ON UNKNOWN

OBJECTS WITH AND WITHOUT JOINT DATA.

With joint data Without joint data
Cylinder 80.4 % 81.9 %
Def. cylinder 76.0 % 76.5 %
Cone 73.0 % 68.0 %
O. Bottle 72.5 % 72.0 %
Shampoo 70.0 % 71.5 %
Pitcher 71.0 % 66.0 %
W. Bottle 75.0 % 76.0 %
B. Bottle 68.5 % 69.0 %
Box 78.0 % 73.0 %

Two objects of a primitive shape are included in the real
data, a box and a cylinder. Table IV shows classification results
when the classifier is trained only on one of the primitive
objects. The classifier is then asked to classify the grasp
stability of grasps made on real-world objects with different
shapes. Cross validation was not needed in this case, because
the training and test sets are naturally separate. The average
classification rate for the cylinder model is 68.0 % and for
the box model 66.4 %. These results do not anymore seem
adequate for a real system, which again suggests that the
variety in the training data is essential.

2) Simulated data: In contrast to the real data, in simulation
we are able to sample a large number of grasps from different
objects and using different grasp strategies. The following
classification results were achieved using the simulated data
sets described in Section IV. In Table V, the results are
reported for each node in the information hierarchy. The root
node (Level 1) was randomly subsampled to 12000 samples
due to computational constraints and has classification rate
of 75.3%. The average classification for Level 2 (known



TABLE IV
CLASSIFIER PERFORMANCE (IN PERCENT) WHEN TRAINING WITH A

PRIMITIVE OBJECT.

Trained Cylinder Box
object
Def. cylinder 76.0 % 73.5 %
Cone 66.0 % 69.5 %
O. Bottle 64.5 % 61.0 %
Shampoo 66.5 % 64.0 %
Pitcher 71.0 % 62.0 %
W. Bottle 73.5 % 69.5 %
B. Bottle 58.5 % 65.0 %

object, unknown approach vector) is 76.5% and for Level 3
(known object, known grasp) 77.5%. A trend that increasing
knowledge increases classification rate appears, similar to the
experiments with real data. However, the trend is significantly
weaker compared to the real data. Somewhat surprisingly, the
real data classification rates are notably higher when more
information is available and the trend is stronger, compared to
simulation.

TABLE V
ADABOOST CLASSIFICATION RATES (IN PERCENT) ACCORDING TO THE

INFORMATION HIERARCHY ON SIMULATED DATA.

Level Node Classification rate
Level 1 Root 75.3 %

Level 2
Prim. cylinder sph. 73.5 %
Prim. box sph. 79.2 %
Prim. sphere sph. 77.0 %

Level 3

Prim. cylinder side 80.7 %
Prim. cylinder top 67.6 %
Prim. box side 83.5 %
Prim. sphere side 78.5 %

While the primitive shapes used in Table V are simple
shapes, we can use these primitive shapes to train the classifier
and then use the classifier to classify grasps sampled from
more natural, complex objects. The results are shown in
Table VI. The table shows results of classifying the natu-
ral objects (hamburger sauce, bottle) with different training
objects and grasp strategies shown in columns. Comparison
results when training the classifier with the natural object and
corresponding grasping strategy are shown italic font. The
figures in the table show that having data from the correct
object has a notable positive effect on the classification rates.
This is again a positive argument for the beneficial effect of
a variety of training data.

Using the SVM and its ability to output estimates of the
prediction certainty, gives us a possibility to examine the
performance of the classifier on different data sets in more
detail compared to AdaBoost, which supports only the hard
decision boundary. This comparison can be seen in Fig. 11. In
the figure, log-likelihood ratios, log 1−P (S)

P (S) , calculated from
the probabilities for stable and unstable samples are shown
in histogram form, red for unstable and blue for stable.
The classification errors are shown in filled color, with the
filled area indicating the error probability. Fig. 11a-c are
from simulated data and Fig. 11d is from the real cylinder

grasped with the SDH hand. It is evident from the figure
that increasing information makes the distributions for stable
and unstable grasps more separate, which was also indicated
by the earlier results. Moreover, the figure also supports the
finding that classifying the real data seems to be easier than
the simulated data. Finally, the figure supports the use of
probabilistic approaches for grasp classification, as the ability
to measure the uncertainty in classification is important as it
can, for example, allow tuning the classification system to give
fewer false positives.

E. Recognition based on temporal model

1) Real data: Similar to one-shot classification, we begin
by investigating the general performance and the required
number of samples for achieving good generalization prop-
erties. Table VII shows HMM results corresponding to Ta-
ble I. The results demonstrate that the performance of HMM
classifier does not change much for distinctive grasps such
as the ones from the deformable cylinder. While the average
classification rates are similar to the one-shot model, the
temporal model seems to have better generalization capability
in that the classification rate does not decrease significantly
with smaller data sets.

TABLE VII
HMM CLASSIFICATION RATES (IN PERCENT) ON DATA SETS WITH

VARIABLE AMOUNT OF SAMPLES.

Object 50 100 150 200
Def. cylinder 86.7 % 85.0 % 85.4 % 87.0 %
W. Bottle 78.3 % 82.0 % 74.8 % 75.0 %

Classification results for single object classifiers are pre-
sented in Table VIII both with joint configuration data (w/j)
and without it (wo/j), to study the prediction capabilities
on objects the system has previously learnt with the two
HMM types (left-to-right: LR, ergodic: ERG). The average
classification rate for known objects (with joint data) is 82.4%
with LR and 81.7% with ERG which are on a par with the
one-shot learning (Table II). Thus, with single object classi-
fiers the inclusion of temporal information did not increase
classification performance.

Table VIII also includes the results that study how well the
trained system can cope with unknown objects, corresponding
to Table III for the one-shot learning. The rates not included
(marked with a dash) were below the level of chance. The
results are similar in the way that the classification rates
drop with unknown objects, average rate with joint data being
77.5% for LR and 77.0% for ERG. However, the rate for
unknown objects is in most cases high enough such that while
the classification rate is lower than with known objects, it is
still possible to make useful predictions of the grasp stability
on unknown objects. LR seems to outperform ERG slightly
in both cases but the difference is not very significant. The
reason for the difference is likely to be the simpler structure
forced by the LR model, which in turn is likely to prevent



TABLE VI
ADABOOST TRAINING WITH A PRIMITIVE SHAPE AND CLASSIFYING GRASPS SAMPLED FROM A NATURAL OBJECT WITH SIMULATED DATA.

Prim. cylinder Prim. cylinder Prim. cylinder Prim. box Prim. box Prim. sphere Prim. sphere All classes
sph. side top sph. side sph. side sph.

Hamb. sauce 71.5 % 74.0 % 62.9 % 76.8 % 73.6 % 61.4 % 62.7 % 73.4 %
78.7 % 83.5 % 72.4 % 78.7 % 82.0 % 78.7 % 83.5 % 78.7 %

Bottle 68.6 % 77.4 % 56.2 % 72.6 % 76.9 % 59.4 % 66.9 % 69.7 %
74.7 % 82.0 % 65.2 % 74.7 % 82.0 % 74.7 % 82.0 % 74.7 %

(a) (b) (c) (d)

Fig. 11. Likelihood ratios for comparison of separability: (a) Root node, all objects, random grasp vector; (b) Cylinder, random grasp vector; (c) Cylinder
side grasp; (d) Real cylinder side grasps.

overfitting. In comparison, using all data from all objects for
a single classifier yields a result of 78.3% for LR model and
76.5% for ERG. It is remarkable that the difference between
these and the results without the test object in the training
data is less than 1%. Thus, with real data it seems that the
generalizability of grasp stability across objects is surprisingly
good.

TABLE VIII
HMM CLASSIFICATION RATES (IN PERCENT) ON KNOWN AND UNKNOWN

OBJECTS.

LR, Kn. ERG, Kn. LR, Unkn. ERG, Unkn.
w/j wo/j w/j wo/j w/j wo/j w/j wo/j

Cyl. 90.0 86.5 92.5 82.0 83.0 77.5 81.0 75.0
Def. cyl 87.0 83.5 85.0 83.0 76.0 75.5 76.0 -
Cone 83.0 80.0 81.0 85.0 77.0 73.5 76.0 69.5
O. Bott. 74.0 76.5 75.0 73.5 77.5 77.5 74.5 77.5
Shamp. 81.0 77.5 78.5 77.5 81.0 75.5 79.0 75.0
Pitcher 83.0 81.5 84.0 73.5 72.5 77.5 72.5 65.0
W. Bott. 75.0 69.0 74.0 59.5 77.0 65.0 77.5 -
B. Bott. 78.5 71.0 75.0 66.0 75.5 69.0 75.0 -
Box 90.5 67.0 90.5 68.0 78.5 79.0 81.5 -

Table IX shows classification results when the classifier is
trained only on one of the primitive objects, corresponding
to one-shot learning results in Table IV. The average rate for
cylinder primitive is 64.6% for LR and 62.3% for ERG, which
are below the results of one-shot recognition. For box primi-
tive, the recognition rate for pitcher was below level of chance
and is thus not shown. On average, the rates for box primitive
are nevertheless higher than for the cylinder primitive and also
higher compared to the one-shot learning. The cause of failure
for the single object could not be identified. Altogether, the
results are in agreement with those from one-shot learning in
that the variety of training data seems important to attain good

and stable performance.

TABLE IX
HMM CLASSIFICATION RATES (IN PERCENT) WHEN TRAINING WITH A

PRIMITIVE OBJECT ONLY.

Node Cylinder Box
LR ERG LR ERG

Def. cylinder 67.0 69.5 74.0 74.5
Cone 66.0 66.0 70.0 76.5
O. Bottle 63.0 60.0 72.0 74.5
Shampoo 61.5 57.5 75.5 77.5
Pitcher 79.5 78.5 - -
W. Bottle 58.5 50.0 76.5 76.5
B. Bottle 57.0 55.0 73.5 74.5

2) Simulated data: Using the simulated data, Table X
reports the results for each node in the information hierarchy,
corresponding to Table V for the one-shot learning. For LR
model, the average classification for Level 1 (root node,
unknown object, unknown approach vector) is 64.9%, 69.9%
for Level 2 (known object, unknown approach vector), and
for Level 3 (known object, known grasp) 67.5%. The results
for ERG are similar. There are two observations to be made.
First, these are consistently lower than those with one-shot
learning, which is the opposite behavior compared to the real
data experiments, indicating that the simulated and real data do
not match exactly. Second, the trend that increasing knowledge
increases performance is broken for Level 3, although the
difference is not very significant. A possible explanation for
this is that the stability of top and side grasps is on average
more difficult to model with the HMM compared to modeling
the stability of a grasp with random approach vector, because
it is possible that some of the grasps with random approach
vector might be especially easy to recognize correctly.



TABLE XI
HMM TRAINING WITH A PRIMITIVE SHAPE AND CLASSIFYING GRASPS SAMPLED FROM A REAL-WORLD OBJECT WITH SIMULATED DATA.

cylinder cylinder cylinder box box sphere sphere All
sph. side top sph. side sph. side sph.

LR ERG LR ERG LR ERG LR ERG LR ERG LR ERG LR ERG LR ERG
Hamb. sauce 61.2 60.8 63.3 60.3 57.8 57.3 59.2 57.3 63.1 61.1 51.6 52.9 65.2 63.2 59.3 59.6

60.1 57.2 67.5 68.0 68.1 64.8 60.1 57.2 67.5 68.0 60.1 57.2 67.5 68.0 60.1 57.2
Bottle 58.4 58.3 67.6 64.3 63.1 65.4 58.4 54.2 57.2 - 52.4 52.8 62.7 59.6 57.4 58.5

57.8 55.6 65.8 66.8 68.8 69.1 57.8 55.6 65.8 66.8 57.8 55.6 65.8 66.8 57.8 55.6

TABLE X
HMM CLASSIFICATION RATES (IN PERCENT) ACCORDING TO THE

INFORMATION HIERARCHY ON SIMULATED DATA.

Level Node LR ERG
Level 1 Root 64.9 64.6

Level 2
Prim. cylinder sph. 70.2 70.2
Prim. box sph. 62.1 59.0
Prim. sphere sph. 77.4 76.9

Level 3

Prim. cylinder side 69.3 64.3
Prim. cylinder top 69.5 69.3
Prim. box side 68.6 69.0
Prim. sphere side 62.8 63.2

The classification performance when training with primitive
shapes but testing with real-world objects is shown in Table XI,
corresponding to Table VI for the one-shot classification.
The classification rates with the correct object are shown in
italic for comparison. The results indicate that on average the
classification is significantly improved by having the correct
object model instead of a general primitive model, again indi-
cating the importance of variety in training data. Moreover, the
results are again inferior to one-shot recognition, strengthening
the finding that the temporal information is not essential for
recognition with the available simulated data. To conclude, the
real-world cases seem to contain dynamic phenomena which
can be modeled better using a temporal model.

VI. CONCLUSION AND FUTURE WORK

Uncertainty is inherent to the activities robots perform
in unstructured environments. Probabilistic techniques have
demonstrated the strength of coping with the uncertainty in
robot planning, decision making, localization and navigation.
In the area of robot grasping, there have been very few
examples of solving problems such as assessing grasp stability
by taking uncertainty into consideration.

In the present work, it was shown how grasp stability can be
assessed based on uncertain sensory data using machine learn-
ing techniques. Our learning framework takes into account ob-
ject shape, approach vector, tactile data and joint configuration
of the hand. We have used a simulated environment to generate
training sequences, including the simulation of the sensors.
The methods were evaluated both on simulated and real data
using a three-fingered robot hand. Our work demonstrates
how grasp stability can be inferred using information from
tactile sensors while grasping an object before the object

is further manipulated or during the manipulation step. We
have implemented and evaluated both one-shot and temporal
learning techniques. One focus of the experiments was to
study prediction capabilities of the proposed methods for
known objects. We have also studied how the system can
cope with unknown objects, i.e. objects that have not been
used in the training step. The results show that while the
classification rate is lower than with known objects it is still
possible to make useful predictions of the grasp stability on
unknown objects. In summary, the experimental results show
that tactile measurements allow assessment of grasp stability.
The aim of the paper was not a perfect discrimination between
successful and unsuccessful grasps but rather a measure of
certainty of grasp stability. This also means that a system
may be built to reject some stable grasps while having fewer
unstable grasps classified as stable ones. Experiments showed
that using sequential data to evaluate grasp stability appears
to be beneficial during dynamic grasp execution.

Our current work proceeds in several directions. First, we
are in the process of integrating the presented system with
a vision based pose estimation system and grasp planning.
Second, we are implementing a grasping system based on
the proposed ideas for local control of grasps and corrective
movements. In both cases, the aim is to demonstrate a robust
object grasping and manipulation system for both known and
unknown objects based on visual and tactile sensing. Finally,
we are developing a more elaborate probabilistic framework in
which we study the joint probability of object-relative gripper
configurations, tactile perceptions, and grasping feasibility.
Here, we are developing a kernel-logistic-regression model
of pose- and touch-conditional grasp success probability. The
goal is to show how a learning framework can be used for
grasp transfer, i.e. if the robot has learnt how to grasp one
type or category of objects, to use this knowledge to grasp a
new object.
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Robust robot-camera calibration

J. Ilonen and V.Kyrki

Abstract— Calibrating parameters of a vision system for
robotics is crucial for many tasks where the robot has to
interact with the environment. This paper introduces a robust
method for calibrating the relative poses between the base
frame of the robot and one or more cameras. The method is
based on tracking a marker attached to the end-effector of the
robot without requiring manual boostrapping. The method is
robust to a large number of outliers (wrongly detected marker
positions) and can provide covariance of the of the estimated
parameters based on the variance of the observed errors,
providing information on the accuracy of the estimate. The steps
of the calibration procedure are presented comprehensively.

I. IINTRODUCTION

Calibrating parameters of a vision system for robotics
is crucial for many tasks where the robot has to interact
with the environment. In this paper a robust method for
calibrating the relative poses between the base frame of the
robot and one or more cameras is introduced. The method
is based on tracking a marker rigidly attached to the end-
effector of the robot. The position of the marker relative
to the end-effector is estimated, but the forward kinematics
of the robotics must be known. No manual boostrapping is
required, the robot can be moved to random joint positions
and if marker is visible to the camera the data is stored.
When some amount of data is available, the parameters
(pose of the camera(s) and the marker position) can be
estimated. The estimation can provide information on the
accuracy of the estimate by backpropagating the variance of
the residual errors. The estimation method is based on robust
M-estimators and therefore some outliers, wrongly detected
marker positions, do not affect the accuracy of the estimate.

The method is related to the (stereo) camera calibration
method by Zhang [17] (additional details in [16]), where a
planar calibration target is viewed from several viewpoints
and the method then solves the intrinsic camera parameters
and relative poses of the calibration objects to the camera. It
provides a (non-robust) maximum likelihood estimate for the
parameters using Levenberg-Marquadt algorithm. Zhang’s
method requires that the markers lie on a plane while in our
case the requirement is that their relative poses are known
from forward kinematics. Rotation matrix is parametrized
using axis-angle presentation in both methods. In Zhang’s
method the main interest is in calibrating the intrinsic camera
parameters and the pose of the calibration plane comes
along for free. In our method the main interest is estimating
the pose between camera and the robot, which holds the
calibration target which is moved to different positions. In
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this article it is assumed that the intrinsic parameters of the
camera are already known, but their estimation could also be
easily added. Intrinsic camera parameters do not have to be
estimated all that often compared to extrinsic and therefore
the steps have been kept as separate.

Contributions and design goals of the method are:
• Simple and accurate method for robot-camera calibra-

tion (the relative pose between the base frame of the
robot and one or more cameras).

• Robust to noise in detected marker positions and to
complete outliers.

• Provide information on accuracy of the estimate.
• Reasonably quick, both in the sense of not requiring

much data and fast computation.
Section II covers shortly the related work, Section III is

the overview and details of the presented method, Section
IV presents the experimental setup and results and Section
V the conclusions.

II. RELATED WORK

The problem in our case is formulated similarly to ex-
trinsic camera calibration using a known 3D object. Zhang’s
method [17] has been extended for 3D calibration objects
for example in [11] and for moving 1D objects in multi-
camera setups in [14]. There also numerous other calibration
methods based on 3D calibration objects, for example [4], [5]
where unit quaternions are used for handling rotations and
the robustness (to noise in marker positions) of the method is
of special interest. However, the extrinsic camera calibration
methods are not directly applicable to our case because if
a separate calibration object is attached to the robot, there
is still the problem of finding out its position relative to the
robot, or the required shape of the calibration object (which
in our is equal to movement of the robot’s hand and the
attached marker) would be difficult to realize.

In the field of robotics there are many studies on hand/eye
calibration, where the location of the camera mounted on the
end-effector has to be determined. For example in the method
by Tsai and Lenz [13] few images of a planar calibration
object are taken and the hand/eye calibration can be then
performed. Later, even automatic calibration methods have
been designed [10].

The problem of calibrating the coordinate frames between
the robot and the camera is often described only in scarce
detail as the main problem presented in an article lies
elsewhere. Here is a short review how the calibration is
performed in two laboratories where the ARMAR III robotic
head [1] is used, Karlsruhe Instutute of Technology (KIT)
and KTH Royal Institute of Technology. The ARMAR III



robotic head has 7 degrees of freedom and has two ”eyes”
which both have wide and narrow field of view cameras
which can focus on an object (foveation). Calibration of such
system requires much more than calibration between robot
(or world) and camera frames, but that is still a crucial part
if a robotic hand has to interact with the world the head sees.

In KIT the ARMAR III calibration procedure [15] is based
on a checkerboard pattern which defines the world frame,
i.e., the location of the base frame of the robot in the world
frame is not considered explicitly. The calibration starts
from Zhang’s method [17] and is mostly concentrating the
kinematic calibration; how the relation between the camera
and world frames change when the head or eyes move.

In KTH the calibration of ARMAR III [6] is performed
using a LED attached to the robot’s end effector which is
then moved in a pattern. Combined stereo and robot-camera
calibration is performed at the same time and the method is
based to that of Zhang [17]; the LED is moved in regular
planar patterns instead of using a actual planar checkboard.
In comparison to this article, the method requires that the
pattern in which the LED is moved is selected manually so
that the camera sees all of the pattern, and the position of
the LED is measured beforehand and not estimated.

III. OVERVIEW OF THE METHOD

The robot-camera calibration is based on a marker attached
rigidly to the end-effector of the robot. The position of
the marker in the end-effector frame and the pose between
the camera and the robot base frame are estimated during
calibration. The overview of the estimated parameters is
presented in Fig. 1. When more than one camera is calibrated
at the same time they all have separate poses, but share the
same marker position.

Intrinsic parameters of the cameras are assumed to be
calibrated separately, because effective methods already ex-
ist [8], [17] and the number of measurements would increase
needlessly as the intrinsic parameters (in fixed focus cam-
eras) do not usually change. The intrinsic parameters have
been estimated in this work with Matlab Camera Calibration
Toolbox [3]. The method can apply both radial and tangential
distortion parameters of the camera.

M
EE 
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EE CT

R
 ?

 

Camera

Robot base

End-effector

Fig. 1. Overview of the setup and what is being estimated.

In the following all necessary steps for calibration are
described and in the end of this section the steps of the
calibration procedure are enumerated.

A. From end-effector to camera frame

A doint rotation-translation matrix is composed as

T =

[
R t
0 1

]
(1)

where R is a 3 × 3 rotation matrix and translation vector
t = [tx, ty, tz]

T .
It is assumed that the joint rotation-translation matrix

between the end-effector and the robot base, RTEE , is known
from forward kinematics and can be computed for the current
measurement from for example joint values.

In the camera frame the XY Z position of the marker
MEE is

MC =




x
y
z
1


 =C TR ∗R TEE ∗MEE , (2)

where RTEE is known from the forward kinematics and
MEE and CTR are the unknown parameters to be deter-
mined. The marker position MEE = [mx,my,mz, 1]T is
the position of the marker in the EE frame in homogenous
coordinates. There are several possible parametrizations for
rotation matrix, but the most natural for our case is the axis-
angle presentation where vector θ = [θ0, θ1, θ2]T defines
the axis of rotation and the length of vector |θ| defines the
rotation around the specified axis. The benefit of this for-
mulation is that the partial derivatives, which are needed for
estimation, have only one singular point (zero length vector)
unlike Euler angles, and there are no extra constraints unlike
with quaternions where the are four parameters presenting
three degrees of freedom.

The rotation matrix from vector θ is defined as [7]

R(θ) = cos|θ|I +
sin|θ|
|θ| [θ]x +

1− cos|θ|
|θ|2 θθT , (3)

where I is the identity matrix, [θ]x is skew-symmetric matrix

[θ]x =




0 −θ2 θ1
θ2 0 −θ0
−θ1 θ0 0


 . (4)

and

θθT =




θ20 θ0θ1 θ0θ2
θ0θ1 θ21 θ1θ2
θ0θ2 θ1θ2 θ22


 . (5)

In case of one camera and one marker the parameters to
be estimated are

X = {θ0, θ1, θ2, tx, ty, tz,MEEx ,MEEy ,MEEz}. (6)



B. From camera frame to pixel position

To get from a 3D point in the camera frame to the actual
camera pixel position a pinhole camera model with radial
and tangential distortion is used [8].

The basic pinhole camera can be defined as



u
v
w


 =



fx 0 cx
0 fy cy
0 0 1





x
y
z


 (7)

where fx, fy is the focal length of the lens in x and y
directions and cx, cy is the principal point (center of the
image) and the actual pixel position is (u/w, v/w). Distor-
tion parameters are (k1, k2, k3) for the radial distortion and
(p1, p2) for the tangential distortion. The pixel position (u, v)
can then be calculated as follows:

[
ȧ

ḃ

]
=

[
a
b

]
(1 + k1r2 + k2r

2
2 + k3r

3
2)+

[
2p1ab+ p2(r2 + 2a2)
p1(r2 + 2b2) + p2ab

]
(8)

u = fxȧ+ cx

v = fy ḃ+ cy,

where a = x/z, b = y/z and r2 = a2 + b2.

C. Partial derivatives

For maximum-likelihood estimation of the parameters
(position of the marker MEE and joint rotation/translation
matrix from robot to camera frame CTR) partial derivatives
of Eq. 2 with respect to each parameter are needed. Applying
the product rule of derivation it can be seen that partial
derivatives of MEE and CTR can be solved separately and
the joint rotation-translation matrix CTR can be divided to
its rotation and translation parts.

The partial derivative of a rotation matrix defined by axis-
angle vector θ (Eq. 3) is

∂R(θ)

∂θi
= −θi

sin |θ|
|θ| I+

θi

(
cos |θ|
|θ|2 −

sin |θ|
|θ|3

)
[θ]x+

sin |θ|
|θ|

∂[θ]x
∂θi

+ (9)

θi

(
sin |θ|
|θ|3 + 2

cos |θ| − 1

|θ|4
)
θθT+

1− cos |θ|
|θ|2

∂(θθT )

∂θi

where the partial derivatives of ∂[θ]x
∂θi

and ∂(θθT )
∂θi

can be
trivially solved from Eq. 4 and 5. Partial derivatives of the
translation vector and the position of the marker are also
trivial, for example, ∂t

∂tx
= [1, 0, 0]T . The complete partial

derivatives of Eq. 2 are

∂MC

∂θi
=

[
∂R(θ)
∂θi

0

0 0

]
∗R TEE ∗MEE

∂MC

∂tx,y,z
=

[
0 ∂t

∂tx,y,z

0 0

]
∗R TEE ∗MEE (10)

∂MC

∂MEEx,y,z

= CTR ∗R TEE ∗
∂MEE

∂MEEx,y,z

One thing to note is that a partial derivative of a rotation
matrix is not a proper rotation matrix, e.g., the sum of
rows/columns is not necessarily 1, and the results in general
are not in homogenous coordinates as the last value of the
resulting vector is zero.

To estimate the parameters with the maximum-likelihood
estimator the derivatives in the camera coordinates are also
needed to calculate to which direction the marker would
move in camera pixel coordinates if a of the model parameter
is adjusted. For this derivatives of Eq. 8 are needed, i.e, ∂u

∂X
where X is one of the model parameters. As the equations
are the same for all parameters a simplified notation is used,
where ∂u

∂X = u′. The derivatives can be calculated from Eq. 8
and

[
ȧ′

ḃ′

]
=

[
a′

b′

]
(1 + k1r2 + k2r

2
2 + k3r

3
2)+

[
a
b

]
(k1r

′
2 + 2k2r2r

′
2 + 3k3r

2
2r
′
2)+

[
2p1(a′b+ ab′) + p2(r′2 + 4aa′)
p1(r′2 + 4bb′) + 2p2(a′b+ ab′)

]
(11)

u′ = fxȧ
′

v′ = fy ḃ
′,

where a′ = zx′−xz′
z2 , b′ = zy′−yz′

z2 and r′2 =
z2(2xx′+2yy′)−2zz′(x2+y2)

z4 .

D. Weighted Gauss-Newton approximation and M-
estimators

The problem is formulated as a bundle adjustment [12]
problem using a non-quadratic M-estimator which can ex-
plicitly handle outliers, unlike more classical maximum-
likelihood or least-squares formulation. In this case when
using a single camera and a single marker the problem is
not sparse, but when several cameras (non-calibrated stereo
system, for example) is estimated the problem becomes
sparse because pixel position of the marker in a camera is
not dependent of other cameras, they only share the same
marker position, MEE .

A single iteration of weighted Gauss-Newton approxima-
tion consists of solving ∆ in equation

(JTWJ)∆ = −JTWε (12)

where J is the Jacobian, W is the weight matrix and ε
are the residuals (prediction error), ε = z − z(X), where z
are the measured and z(X) the predicted values. For least-
squares estimate the weight matrix is the identity matrix,



other choices for weight are discussed later. The estimated
parameters are then adjusted,

Xi+1 = Xi + α∆, (13)

where α =]0, 2] is selected so that the weighted residual is
minimized [12],

arg min
α∈]0,2]

W (z − z(X + α∆)). (14)

Using the assumption α = 1 often leads to non-optimal im-
provement (i.e., more iterations are needed) and computing
just the residuals instead of the full Jacobian and solving
new ∆ is considerably faster. Iterations are continued until
no improvement is found or a limit on number of iterations
is reached.

Two M-estimators have been used to increase robust-
ness to outliers. Initial estimation is started with L1 − L2

M-estimator and after convergence more outlier-resistant
Welsch M-estimator is used. When used with Gauss-Newton
approximation the M-estimator defines the diagonal elements
in the weight matrix W [18]. In case of least-squares, L2,
estimation w(x) = 1, meaning that no weighting is used,
but the estimate is not robust to outliers. With L1 norm
w(x) = 1

|x| which means that the weight decreases with
increasing residual, however the weight goes to infinity
when x approaches zero. Therefore, L1 − L2 M-estimator
is initially used, because like L1 estimator the influence of
large errors is reduced and the function is defined everywhere
like L2. The weight function of L1 − L2 M-estimator is

w(x) =
1√

1 + x2/2
. (15)

When initial converge has been reached, the M-estimator
is changed to Welsch function [18],

w(x) = e−( x
c )

2

, (16)

where with suitably chosen value of c the weight for large
outliers approaches zero. Few examples of weight functions
of L1 − L2 and Welsch M-estimators are presented inf
Fig. 2. The value of c = 2.9848 for Welsch-function has
been selected as one of the presented graphs because then
it reaches 95% asymptotic efficiency with standard normal
distribution [18].

E. Backward propagation of covariance

In general given a non-linear function f : RM → RN
and v a random vector in RM , the approximation of mean
and covariance of f(v) can be computed in the vicinity
of the mean v of the distribution. The approximation of
f is f(v) ≈ f(v) + Jf (v − v), where Jf is the Jacobian
∂f
∂v evaluated at v. The first-order approximation of random
variable f(v) has mean f(v) and covariance Σf = JfΣJTf .
In our case we can calculate or have a reasonable assumption
of covariance of f(v) (the pixel positions given estimated
parameters) and would like to propagate the covariance
backwards. One option would be to create inverse mapping
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Fig. 2. Weight functions of L1 − L2 and Welsch M-estimators.

function f−1 to map pixel positions to parameters and their
partial derivatives Jf−1 , but fortunately that is not needed,
because the inverse covariance propagation can be calculated
as [2], [7]

Σf−1 =
(
JTf Σ−1f Jf

)−1
. (17)

F. The complete calibration procedure

1) Collect data; move the robot to (random) positions,
store the marker position zi and RT iEE .

2) Start the parameter estimation, initialize the parameters
X .

3) For each measurement i, calculate the predicted mea-
surements zi = z(X,R T iEE) (Eq. 2 and Eq. 8),
residuals εi = zi−zi and partial derivatives Ji (Eq. 10
and Eq. 11).

4) Calculate M-estimator weights W based on the resid-
uals (Eq. 15 or Eq. 16).

5) Do one iteration of Gauss-Newton estimation (Eq. 12
and Eq. 14).

6) If an improved solution was found, apply Eq. 13 and
go back to step 2, otherwise stop.

7) Parameters estimated, check backpropagated variances
if needed (Eq. 17).

IV. EXPERIMENTS

A. Setup

The experiments have been performed using Mitsubishi
RV3SB industrial robot with an attached Schunk PG 70
gripper and Bumblebee 2 stereo camera with 640 × 480
resolution. The marker has been a blinking red LED which
has been gripped in arbitrary pose by the gripper.

The stereo camera has been calibrated using camera
calibration toolbox for matlab [3]. The calibration includes
intrinsic parameters of both cameras and their relative pose.
The camera-robot calibration method presented here requires
that the intrinsic parameters are known and can apply the
information of respective poses of cameras in calibrated
stereo by modifying the Eq. 2 to include the joint rotation-
translation between left and right cameras, CrTCl

, assuming



the pose between robot and the left camera is being cali-
brated. Eq. 2 then becomes two separate equations for left
and right cameras, but the number of estimated parameters
(6 for ClTR and 3 for MEE) stays the same as in one camera
case,

MCl
= ClTR ∗R TEE ∗MEE

MCr
= CrTCl

∗Cl TR ∗R TEE ∗MEE . (18)

Some tests have been performed so that the two cameras of
the calibrated stereo have been treated as separate and both
ClTR and CrTR have been estimated, which means that there
are now 15 parameters to estimate in total as MEE is still
shared,

MCl
= ClTR ∗R TEE ∗MEE

MCr
= CrTR ∗R TEE ∗MEE . (19)

This way, we have a ”groundtruth” pose between two cam-
eras measured with the camera calibration toolbox and we
can compare the result between two different calibration
methods.

Tests were repeated with the camera and the marker LED
in several different locations. In the tests the robot arm was
set in random joint positions until 50 such poses were found
where both cameras found the position of the blinking LED
in the same frame. Each test set includes 50 stereo image
pairs with the marker location found with sub-pixel accuracy,
however, in some of the images instead of the true LED
marker location an erroneous reflection from a metallic part
of the robot or surrounding environment has been found
instead. Examples of two test setups can be seen in Fig. 3.
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Fig. 3. Examples of test setups. Green lines and capital letters X, Y and
Z mark the axes of the robot base frame, red lines and small letters mark
the axes of the end-effector frame and a blue circle marking the estimated
position of the marker LED.

The parameter estimation was initialized so that the origin
of the robot base frame was assumed to be one meter
directly in front of the camera, the marker LED 0.2m
directly in front of the robot’s end effector frame and the
three axis angle parameters were initialized randomly. This
initialization strategy was used because there is a reasonable
assumption for the two translations but the rotation matrix
can be almost anything depending on which side of the robot
the camera is.

Unless otherwise noted, the tests have been run initially
using the L1 − L2 M-estimator and after convergence the
M-estimator have been changed to Welsch wich c = 5.0 to
remove the effect of outliers. The value of c = 5.0 means that
the weight of a measurement approaches zero for residuals
larger than 10 pixels (see Fig. 2) and the value should in
general be based on the resolution of the camera, accuracy
of the forward kinematics of the robot and how accurately
the marker can be detected. Note that the residuals have been
calculated as euclidean distance between the detected and
estimated marker positions of the marker, not separately for
x and y coordinates.

The speed of the parameter estimation was not of special
interest, but the C implementation estimates parameters for
50 measurements in under one second.

B. Gaussianity of errors

Propagating covariance requires that the errors are dis-
tributed roughly according to Gaussian distribution. There-
fore, the distribution of residuals was the point of interest in
this experiment. In the experiment non-robust least-squares
estimation was used with a test-set where there were very few
outliers. In addition the potential bias caused by estimating
only the position of the left camera and using the pre-
calibrated pose between cameras (Eq. 18) and estimating
both cameras separately (Eq. 19) was studied.

The results are presented in Fig. 4. Fig. 4(a)&(c) present
results when estimating only one camera and Fig. 4(b)&(d)
the results when estimating cameras separately. In both cases
the residuals were roughly normally distributed, however, as
is reflected by the kurtosis values (≈ 20) the distributions
have sharper peaks and fatter tails [9].

There was a slight bias between the right and left cameras
(Fig. 4(a), means marked with bold ’x’ and ’+’), the distance
between means was 0.194 pixels. The bias is mainly caused
by the fact that the marker LED is not truly a point and it is
seen from slightly different points of view by the cameras, in
the view of the right camera the marker is always left of the
position compared to what the left camera sees. In the case
where both cameras were estimated separately (Fig. 4(b))
there was no bias.

C. Estimation accuracy

Eight test sets in total were collected where each has 50
stereo image pairs. In four of them the camera was kept
in the same position and the marker LED was attached to a
different position in the gripper. The results for these four test
are presented in Table I. The ± values report the inaccuracy
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Fig. 4. Distribution of residuals; (a) residuals when estimating one camera;
(b) residuals when estimating cameras separately; (c)&(d) histograms of
residuals for both cases, green line presents the Gaussian distribution fit to
the data.

calculated from backpropagated variance of residuals. With
50 stereo image pairs there is maximum of 100 inliers.
With the camera staying stationary in best case tx,y,z would
be identical in every test. Angle∗ is the average difference
between rotation matrices to the other sets. The differences in
the coordinates were a few millimetres and also the angular
differences between the test sets were small, about 0.4◦. One
thing to note is the large number of outliers in Set 3, which
was caused by the LED being positioned so that its reflection
was being detected often instead of the actual LED.

TABLE I
RESULTS WITH FOUR TEST SETS WHERE THE CAMERA HAS STAYED

STATIONARY AND THE MARKER LED HAS BEEN CHANGED TO

DIFFERENT POSITIONS. THE UNITS ARE MILLIMETRES.

Set 1 Set 2 Set 3 Set 4
inliers 96 90 56 93
angle∗ 0.444◦ 0.444◦ 0.508◦ 0.398◦

tx 104.1± 1.2 100.3± 0.8 102.2± 1.2 103.9± 0.9
ty 275.8± 1.6 283.8± 0.9 280.5± 1.4 281.9± 1.2
tz 1379.4± 2.0 1373.3± 1.3 1380.8± 2.9 1377.5± 1.6
MEEx 5.8± 0.5 −13.0± 0.5 −5.5± 0.8 −0.3± 0.5
MEEy 8.8± 0.4 −29.5± 0.4 −9.5± 0.7 0.0± 0.4
MEEz 204.5± 1.1 215.4± 0.7 170.4± 1.0 214.7± 0.8

In four of the tests the marker LED was kept in the
same position and the camera was moved to other positions.
The results are presented in Table II. In this experiment the
marker LED positions MEEx,y,z would be equal in the best
case. In x and y directions the changes were very small, in
the order of 0.5mm, but in the z direction the changes were
slightly larger in one of the test sets, Set 2, the difference
was about 3mm.

The results comparing estimation of joint rotation-
translation betweeen CrTCl

cameras in a stereo system are
presented in Table III. The translation between cameras
estimated by the Camera Calibration Toolbox for Matlab [3]
was (120.5,−0.5, 0.8)mm with 0.30◦ difference between
directions of the cameras (which are designed to be parallel).
Average trasnlation with the eight test sets estimated with

TABLE II
RESULTS WITH FOUR TEST SETS WHERE THE CAMERA HAS BEEN

MOVED AND THE MARKER LED HAS BEEN KEPT IN THE SAME

POSITION. THE UNITS ARE MILLIMETRES.

Set 1 Set 2 Set 3 Set 4
inliers 96 100 93 96
tx −235.2± 0.7 −57.6± 0.7 −110.7± 0.6 529.2± 0.6
ty 282.8± 0.8 258.2± 0.8 405.8± 0.6 216.8± 0.8
tz 905.5± 1.2 1950.4± 2.7 1309.6± 1.2 1356.7± 1.4
MEEx −0.3± 0.5 −0.3± 0.6 −0.9± 0.2 −0.7± 0.3
MEEy −0.7± 0.5 −0.6± 0.4 −0.5± 0.2 −0.0± 0.3
MEEz 216.3± 0.7 212.8± 1.0 215.5± 0.5 216.2± 0.7

Eq. 19 was (118.6, 0.2, 0.8)mm. The specifications of the
Bumblebee 2 stereo camera state that the distance between
cameras is 120mm and with both estimation methods the
difference was below 2%. There was a slight constant bias
between the results of the two estimation methods in the x
and slightly also on y translation. The same bias was also
noticeable in Fig. 4(a) and the underlying reason is probably
the same – a non-point marker and a constant difference in
camera viewpoints.

TABLE III
RESULTS COMPARING CrTCl

ESTIMATED BY CAMERA CALIBRATION

TOOLBOX [3] AND BY ESTIMATING TRANSFORMATION BETWEEN THE

ROBOT BASE FRAME AND BOTH CAMERAS SEPARATELY (EQ. 19).

Test set Difference in angle Difference in translation
Static cam 1 0.115◦ (−1.56, 0.88,−1.33) mm
Static cam 2 0.062◦ (−1.49, 0.45,−0.87) mm
Static cam 3 0.236◦ (−1.72, 1.75, 3.59) mm
Static cam 4 0.057◦ (−0.36, 0.71, 0.17) mm
Static LED 1 0.103◦ (−1.10, 0.33,−0.22) mm
Static LED 2 0.214◦ (−5.35, 0.58,−2.49) mm
Static LED 3 0.159◦ (−1.25, 1.78, 0.29) mm
Static LED 4 0.172◦ (−2.37,−0.03,−0.31) mm

D. Effect of number measurements

These experiments study the effect of used number of
measurements (stereo image pairs). For each number of
measurements and test set the tests were repeated 25 times.

Fig. 5 shows the results when measuring the position of
only the left camera (Eq. 18). All 8 datasets are included.
Fig. 5(a) shows how often the estimated position of the
marker LED was within 50mm or 5mm of the position
estimated when using all 50 measurements. After 15 mea-
surements the failure percent was fairly constant. There are 9
parameters to estimate and a single measurement gives 4 dat-
apoints (x and y positions in two frames) so in theory three
measurements are sufficient, but the estimation often fails to
find the correct parameters when only 5 measurements were
used. When repeating the test with the full dataset, there still
were some failures because the estimation starts from partly
random initialization and Gauss-Newton sometimes fails to
converge. However, in those cases the errors were extremely
large and the median difference was exactly zero, i.e., when
the estimation succeeded the same parameters were always
found.



Fig. 5(b) shows the median differences in estimated CTR
angle and translation and in marker position separately for
all 8 datasets. Results for dataset ’Static camera 3’ are
highlighted, because the results differ from other datasets
due to the dataset having a large number of outliers (as
seen in Table I). That dataset required 20 measurements
for the median errors to become near the values estimated
with the full dataset, but in all other datasets 10, or even
5, measurements gave very low median errors (under 10mm
for marker position and under 20mm for the robot-camera
translation).
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Fig. 5. The effect of number of measurements; (a) How often the estimation
failed to find the marker position with specified accuracy; (b) Median
differences in estimated CTR angle and translation and in marker position
for all 8 datasets, dataset ’Static camera 3’ highlighted.

Similar tests were repeated also when estimating the
position of the both cameras separately (Eq. 19). The results
are presented if Fig. 6. For simplicity of the presentation
results are presented only for the left camera. In this case
there was 15 parameters to estimate, so theoretically 4 mea-
surements are enough. With some test sets 5 measurements
gave reasonably small median errors, but the increased need
for measurements can be seen that for dataset ’Static camera
3’ 25 measurements were needed instead of 20 which was
enough in the previous experiment.
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Fig. 6. The effect of number of measurements when estimating position
of both cameras; (a) How often the estimation failed to find the marker
position with specified accuracy; (b) Median differences in estimated ClTR

angle and translation and in marker position for all 8 datasets, dataset ’Static
camera 3’ highlighted.

E. Effect of outliers

Here the effect of number of outliers is studied. In these
tests 25 best inliers, those having the largest weight values
after the estimation, from one of the test sets were selected

and then a number of outliers were added and the parameter
estimation was performed again. For each number of outliers
the test was repeated 25 times with different set ouf outliers.
The results are shown in Fig. 7 where the graphs show how
often the marker LED was not found within 5mm compared
to the outlier-free estimation. In Fig. 7(a) the ”outliers” are
selected randomly from all other test sets and in Fig. 7(b)
the marker positions are additionally randomized. In the first
case the estimation begun to fail very often when the number
of outliers grew over 25 but in the second case the estimation
only grew linearly and still succeeded over 10% of the time
with 100 outliers (4 times more than true inliers). With
outliers selected from real data the estimation fails earlier
because there actually are several valid parameter sets and
the estimation may end up in converging to a wrong one.
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Fig. 7. The effect of number of added outliers with 25 valid inlier
measurements; (a) Outliers added from other test sets; (b) Outliers in
randomized marker positions.

Note that the performance in the second case (randomized
marker positions) would be considerably higher if the Welsch
M-estimator used some adaptive scheme for selecting the c
parameter instead of constant c = 5.0.

F. Joint noise and error backprogation

This experiment studies the effect of added noise in
the joint values, adding inaccuracy to RTEE , and the use
of backpropagating variance of residuals to the estimated
parameters. Some robotic arms have considerable errors in
their forward kinematics, i.e., they are not very stiff or there
are other errors in joint configurations and it is useful if the
error can be measured from the camera-robot calibration.

In these tests zero mean Gaussian noise was added to the
joint values of the robot which are used to calculate the
position of the marker LED in the base frame of the robot. To
avoid having to tune the M-estimators for increasing amount
of noise, a non-robust least-squares estimator was used. The
test set having smallest number of outliers was therefore
used, same as in Fig. 4. The results are presented in Fig. 8.
The effect of added noise in the joint positions is presented
Fig. 8(a), both in the world coordinates and in camera pixels
coordinates. Fig. 8(b) presents the differences to non-noisy
estimates. Actual realized average differences are solid line
and the dashed lines presents the backpropagated variances
from the variance of the residuals (pixel positions errors),
see Eq. 17. Backpropagated variances were very close to
the realized differences, except for the rotation matrix angle



where the overestimated error is caused by the non-linear
nature of the axis-angle presentation.
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Fig. 8. The effect of added joint noise; (a) Displacement caused to world
coordinates and pixel values; (b) Differences to parameter estimates with
no added noise.

V. CONCLUSIONS

In this work a new camera-robot calibration method was
presented. It is based on tracking a marker attached to the
end-effector of the robot. The estimation can be performed
for one or multiple camera simultaneously and a known pose
between cameras in a stereo system can also be applied. The
accuracy of the estimate can be established using backprop-
agation of the variance of the measurement residuals.

In the experiments various aspects of the parameter estima-
tion procedure were studied. In tests where the camera or the
marker was moved to different position, it was noticed that
the estimations agreed with few millimeters, as well as the
stereo calibration result between this method and the Camera
Calibration Toolbox [3]. As few as 5 measurements were
noticed to give reasonably accurate estimations, but a larger
number improves the result and makes the method robust
to a large number of outliers. The backpropagation of the
variance of the residuals to the estimated parameters was
noticed to very accurately reflect the realized inaccuracy in
an artificial test where noise was added to the joint positions.

Future improvements could be changing the Gauss-
Newton approximation method to more robust Levenberg-
Marquardt algorithm, using an adaptive scheme for selecting
the M-estimator parameters for cases where the measurement
errors are unknown, and the estimation of camera intrinsic
parameters could be easily added, which however would
increase the amount of needed data would considerably.
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Emptying the box using blind haptic manipulation primitives

Javier Felip, Jose Bernabé and Antonio Morales

Abstract— This paper shows the application of the ma-
nipulation primitives paradigm in order to solve a complex
manipulation task. The paradigm uses a set of atomic elements
to define actions called manipulation primitives. The primitives
are basic controllers that define simple actions such as grasp,
lift, transport place and release. All the primitives are sensor
based and implement a reactive behavior that adapts its actions
to the uncertain and changing real environment. The task
consists in emptying a box which location is barely known,
and which contains an undefined number of unknown objects.

In this paper we compare two different approaches, blind
and vision based, to obtain the main parameters of the task:
starting pose, end pose and hand preshape.

I. INTRODUCTION

Robotic manipulation on real and unstructured environ-
ments is one of the current challenges in robotics. One of
the main problems is the inherent uncertainty that shows up
in this scenarios. There are several sources of uncertainty,
lack of knowledge about the physical properties and shape
of the objects, inaccuracy in hand-eye calibration, sensing
errors, limitation of planner models and so on.

As a result, it is very difficult to have enough precision in
order to move the fingertips to a determined position. Thus
establishing a precise grasp is quite difficult. An approach to
deal with the environmental uncertainty are the independent
contact regions [1] that compute areas to place the fingers
instead of points allowing some error in the final position of
the fingertips. If the contact points are not taken into consid-
eration, sensor based strategies are the most popular approach
to adapt actions to environment conditions. Teichmann and
Mishra [2] proposed the use of a light beam sensor to align
the gripper with an unknown object. More recently, other
solutions such as IR proximity sensors [3], tactile sensors [4]
[5], force and tactile feedback [6] were proposed. A totally
different approach is to design a compliant hand that adapts
to the object [7].

Executing manipulation tasks and actions for complex
humanoid robots has always been a tough control problem.
In this paper we use the manipulation primitive paradigm
to define atomic actions, the reduction of possible actions
reduces complexity and eases planning. There are several
definitions of primitives: to control a hand [8], to define
object movements [9] and its relations [10] or to control a
manipulator [11]. Despite the different approaches to define
primitives, they have a common purpose: discretize and
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Intelligence Laboratory at the Department of Computer Science
and Engineering, Universitat Jaume I, 12006 Castellón, Spain
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Fig. 1. The experimental robotic platform: Tombatossals, the UJI humanoid
torso.

reduce the complexity of controlling the robotic setup to
reduce the search space for planning issues.

In literature, terms like primitive, task or plan have many
different hues. In this paper a manipulation primitive is
a single controller that performs a specific action on a
particular embodiment. From an abstract point of view,
primitives are the simplest pieces of a vocabulary to define
tasks. Hence, a task is defined by a sequence of manipulation
primitives that require some information (i.e. parameters) to
tune its behavior to the specific situation. Although some
of the parameters are defined by the task, there are still
some parameters that must be defined. A task with defined
parameters is called plan.

Paper outline

In this paper, we use manipulation primitives that relay
in force, tactile and visual feedback to adapt its behavior
to the real environment. We use our primitive approach to
define and solve a complex manipulation task like emptying
a box full of objects in any position. Section II describes the
design principles of tasks and primitives. It also presents two
different approaches to parametrize the defined task with and
without vision. This two approaches are tested and validated,
results are described and discussed in sections III and IV.

II. METHODOLOGY

Emptying a box consists on repeating a pick and place task
for each object in the box. As pointed in section I, a task
is defined using a set of manipulation primitive controllers.
Each set of primitives is structured and executed as a Finite
State Machine (FSM) where each primitive represents a state.
In this paper we have defined a pick and place task using
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Fig. 2. Diagram of the sequence of primitives that compose a pick and
place task. Inside each primitive, some examples of parameters are written
in italics.

a subset of the available manipulation primitives. This task
allows the robot to pick up an object from a staring position
and place it to a destination position.

The set of primitives that form the pick and place task
was defined in advance and is composed of: transport,
grasp, lift, place and release. The FSM formed by this
primitives is depicted in Fig. 2. As long as the primitives are
parametrizable, this sequence defines a parametrizable pick
and place task. The required parameters are the approach
vector to the object to be grasped and the target position to
place it. It is possible to set up some optional parameters
to improve the performance of the primitives such as object
size, weight or hand preshape.

The approach vector defines the starting position and
direction to start grasping the object, in section II-D we detail
two different strategies to provide the approach vectors: blind
and vision based. An approach vector is defined as a 6D
vector containing position and orientation using the Roll-
Pitch-Yaw (RPY) agreement, see eq.1.

~p = (px, py, pz, pγ , pβ , pα) (1)

A. Algorithm

The algorithm that solves the problem is structured in two
levels of abstraction. The lower level (Fig. 2) is the primitive
level, primitives could be combined to define a task. The
upper level (Fig. 3) uses sequences of tasks to define more
complex manipulation tasks.

For the specific problem of emptying a box, we have
defined the pick and place task (see Fig. 2) that allows the
robot to grasp an object and place it on the target position.
This pick and place task, is repeated as long as there are
objects left in the box to get the task done (see Fig. 3).

The output of the algorithm is the execution of the task,
the minimum input needed is the approach vector for each
object and the target pose to place it. For this work we
have considered the place position to be common to all the
objects. The approach vector generation methods are detailed
in Sec. II-D.

Pick and
place task

Approach vector
generator
(blind or kinect)

is box
empty

no

yes

Object pose
Place pose

Fig. 3. Diagram to solve the empty the box task using a loop of pick and
place tasks and the generation of approach vectors.

B. System description and Assumptions

1) Hardware description: The torso system, called
Tombatossals has 23 DOF (see Fig. 1). It is composed of
two 7 DOF Mitsubishi PA10 arms. The left arm has a 4
DOF Barrett Hand [12] and the right arm has a parallel jaw
gripper. Each arm has a JR3 Force-Torque sensor attached on
the wrist between the arm and the hand. The visual system
is composed of a TO40 4 DOF pan-tilt-verge head with
two Imaging Source DFK 31BF03-Z2 cameras. Attached to
the centre of the pan-tilt there is a KinectT M sensor from
Microso f tCorp. For this work only the left arm, the pan-tilt
head and the kinect system was used.

2) Assumptions: The object position inside the box is
not restricted, objects can be in any position and orientation
inside the box, except that it must be possible to grasp any
object with the Barrett hand without needing to move it
before. This means that the objects that are shorter than the
box walls cannot be too close to the box walls, the separation
between this kind of objects and the walls must be enough
for the robot fingers to fit in (3cm).

The object maximum and minimum size is defined by the
Barrett hand dimensions. All the objects must fit inside the
hand and be graspable. The box must be on an even plane
(i.e. table) inside the arm workspace.

C. Manipulation primitives

Primitives are parametrizable and all of them require
a common parameter: a pose. All other parameters are
optional and, if present, will help to improve performance
and robustness. Each primitive may read the pose with a
different purpose, for example, if using a transport primitive
the pose will represent the destination position to move the
arm to, on the other hand, if using the grasp primitive the
pose will be used as the approach vector to the object (i.e.
starting position). In the next subsections a brief description
of each primitive used for this work is presented.

1) Grasp primitive: The main features of the grasp primi-
tive and its parameters are described in [6]. That grasp primi-
tive has been improved with another two correction methods:
translation error correction (see Fig. 4) and sliding grasp (see



(a) Arm moving towards the object.

Tn

Fn

(b) Contact generates torque in the
wrist.

(c) Correction movement is
performed.

Fig. 4. Translation error correction strategy.
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(a) The fingers contact the table while
closing. Thus the controller sets the
velocity to move the hand back.

Vz

Fn Fn

(b) The fingers continue closing and the
contact force keeps moving back the
hand.

Vz

Fc Fc

(c) The fingers are closing and the con-
tact with the table is lost. Vz is set
forwards.

Vz

Fn Fn
Fc Fc

(d) The hand contacts the table again but
the object is already grasped.

Fig. 5. Sliding grasp strategy.

Fig. 5) the latter replaces the parallel face detection phase of
this primitive.

The execution of the slide grasp is depicted in Fig. 5. The
hand starts closing and when the fingers make contact with
the surface, the force they are applying is felt in the wrist
Fig. 5(a), thus the arm moves back. The fingers continue
closing and because there is no force felt, the arm moves
forward Fig. 5(c). When the fingers are not able to continue
closing and there is no force felt in the wrist Fig. 5(d), the
primitive ends successfully.

2) Transport primitive: Moves the arm while it holds
an object to the specified target position. It can also be
used to move the arm without any object. This primitive
has some optional parameters such as obstacle definition.
If the obstacles are defined it will use a force-field [13]

z

x
y

(b )y,max

(b )x, max

(b )x, max(b )y, max

hy

hx

Fig. 6. Input parameters for blind and vision based approach vector
generation.

based collision avoidance strategy to generate a collision free
motion from current to target position.

3) Place primitive: The arm moves down until a contact
is detected. It uses the force/torque sensor to detect a force
opposing the movement direction, when it happens, the
controller assumes that the object is placed.

4) Release primitive: This primitive opens the hand
slowly. The movement of the arm is force-controlled and the
arm moves back if a contact between the opening fingers and
the environment is detected.

D. Generating approach vectors

We propose two strategies to generate approach vectors.
A blind method and a simple vision based method. Both
methods have been proposed in order to compare the results
of adding vision to an already working blind task.

Both approach vector generators assume that the arm is
able to perform top grasps on any position over the box.
All the approach vectors generated have the same direction
defining always top grasp. The box position is defined by the
user, in the blind grasping is introduced in a configuration
file while in the kinect version the user clicks on the image
the corners of the box to fix its location.

An approach vector is defined as (eq. 1) where px, py and
pγ (roll) are computed by the proposed methods, pz is fixed
by the user and pβ (pitch),pα (yaw) are fixed by top grasp.

1) Blind method: Variable elements of approach vectors
(px,py,pγ ) are randomly generated as shown in (eq. 2) where
U(0,1) is a random uniform function and px,min, px,max,
py,min, py,max are defined in (eq. 3) and are function of pγ
due to Barrett hand is not symmetrical. The parameters bx,min,
bx,max, by,min, by,max are the dimensions of the box (See Fig. 6)
and hx,hy are the dimensions of the hand in x and y axis of
hand frame.

pγ = round(U(0,1))∗ π
2

px = px,min +U(0,1) · (px,max− px,min)
py = py,min +U(0,1) · (py,max− py,min)

(2)



ρ =
(hx)

2+(hy)
2

4

φ = arctan
(

hy
hx

)

px,min = bx,min +
√

ρ · cos(pγ +φ)2

py,min = by,min +
√

ρ · sin(pγ +φ)2

px,max = bx,max−
√

ρ · cos(pγ +φ)2

py,max = by,max−
√

ρ · sin(pγ +φ)2

(3)

2) Vision Based Approach: The vision system uses the
KinectT M sensor from Microso f tCorp. Kinect outputs a
depth image and a common RGB image. By the combination
of both images a RGB 3D point cloud is obtained (Fig. 7(a)).
The use of point clouds enables the use of clustering to detect
separate objects and also PCA to calculate each cluster main
orientations. For the voxel filter and clustering algorithm
implementation we have used the Point Cloud Library (PCL)
[14] from ROS.

The process to obtain an approach vector over an object
is divided in the following phases (see Fig. 7):
• Background extraction (see Fig. 7(c)): Using a virtual

box with the same dimensions as the real one, all the
points outside the box are labeled as obstacles if they
are inside the arm workspace or background if they are
outside. The points inside the box are labeled as object
points.

• Voxel filtering: Clustering has a high computational
cost which depends on the number of points to be
clustered. A voxel filter reduces the number of points
while keeping object geometry almost untouched.

• Clustering (see Fig. 7(d)): Using an implementation of
the the Kd-Tree method [15], all the object points are
labeled to belong to one cluster. Usually each cluster
represents one object but it is possible that, if some
objects are in contact, they might be classified as the
same cluster.

• Centroid and PCA [16]: At this point, one cluster is
selected and its approach vector is calculated as follows:
px,py and pz are extracted from the centroid of the
selected cluster. pβ and pα are fixed to perform a top
grasp (i.e. perpendicular to the table plane) and pγ is
obtained from the orientation of the clusters’ main axis
obtained using Principal Component Analysis (PCA).

III. EXPERIMENTAL RESULTS

A. Experimental setup

The experimental setup consists on a table in front of the
robot. On the table there is a box full of graspable objects
in any position (even stacked), the only restriction is that no
pregrasp movement of the object is needed.

B. Results

We have obtained only some qualitative preliminar results.
For the blind grasping we have executed the experiment and
the robot succeeded emptying the box 4 out of 5 times.
Although the first objects are grasped quickly, when there
is only one object left it takes more time for the random

(a) Original 3D image.

(b) Original 3D point cloud read from Kinect sensor.

(c) Virtual box background filtering. Background points are colored in gray and
objects are in green.

(d) Object clustering and selection. Background points are marked in gray, objects
in green, and the selected cluster is labeled in red

Fig. 7. 3D point cloud segmentation phases.

approach vector generator to generate a vector close enough
to the object to grasp it. The unsuccessful attempt was caused
by an ungraspable position of an object, the object moved
during a grasping attempt to a corner of the box. All the
objects graspable by the Barrett hand that are in a graspable
position will be grasped sooner or later.

On the other hand, using vision approach vectors are
generated always over an object and the whole process is
faster because less tries are required. Using the kinect vision
the success rate was 2 out of 2 and the time taken to end
the task was much lower.



IV. CONCLUSION

In this paper we have presented the application of ma-
nipulation primitive controllers to define a parametrizable
pick and place task. Using the defined task, a solution to
a complex manipulation task has been implemented and
validated. It was also demonstrated that it is possible to
solve the task with and without vision relaying on sensor
based primitives that adapt their behavior to the environment.
Moreover it was also shown that adding vision to the process
improves the performance of the task. Thus, selecting good
approach vectors is a key point for this task and we can
use our current setup as a testbench for top grasp approach
vector generators.

As future work, some of the assumptions taken to simplify
the task and ease the programming will be removed. To solve
the issue of objects too close to the box walls, we plan to
add pregrasp movements to slide the objects away from the
wall before grasping them.
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Probabilistic Approach to Sensor-based Grasping

Janne Laaksonen and Ville Kyrki

Abstract— In this paper, we present a probabilistic frame-
work for grasping. In the framework, we consider grasp and
object attributes, tactile information and the stability of a grasp,
as probability distributions. We describe how the probability
distributions can be used to plan for a stable grasp and
how object attributes can be updated simultaneously using
tactile information gained during grasping. We demonstrate
the framework in simulation.

I. INTRODUCTION

Current grasp planning approaches are usually based on
perfect knowledge of objects. While geometric models are
good approximations of the objects in the real world, they
never are exactly the same, especially when speaking of
household items. From these approximations, arises the error
between the expected and the realized grasp, although usually
small enough to achieve a stable grasp. This error is usually
left unused.

On the other side, we have methods that use sensor
information to grasp, using corrective motions or reacting
to the tactile sensor information. Contrary to grasp planners,
accurate object models are not usually available in this type
of grasping. Thus, the only way to model the stability of a
grasp is through the sensors of a manipulator.

In this paper, we present a probabilistic framework, which
unifies the ideas behind grasp planning and reactive grasping.
The probabilistic framework considers all required variables
for grasping and allows the variables to be represented as
probability distributions. The framework allows interplay
between grasp planning and corrective motions, in situations
that object attributes, such as pose, are not precisely known,
by utilizing sensor information gained during grasping. We
demonstrate the framework with a simple 2D example. In
the demonstration, we use particle filters, a MCMC (Monte
Carlo Markov Chain) method, to estimate the probability
distributions.

Section II collects the related work and Section III de-
scribes the probabilistic framework. In Section IV, a prac-
tical implementation based on the presented framework is
presented. We conclude in Section V.

II. RELATED WORK

Our approach to find good grasps is closely related to
the field of grasp planning. In grasp planning the goal is

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme under grant agreement
n◦ 215821.

J. Laaksonen and V. Kyrki are with Department of Information Technol-
ogy, Lappeenranta University of Technology, P.O. Box 20, 53851 Lappeen-
ranta, Finland, jalaakso@lut.fi, kyrki@lut.fi

to find as good as possible grasp on a given object. The
goodness of the grasp is usually measured with a grasp
quality measure [1]. However, compared to our method,
most current grasp planning methods do not account for
the uncertainty present in the object or in the object’s
pose information. Also most of the grasp planning methods
require a known geometric model of the object.

To simplify the grasp planning, many methods employ
some form of decomposing the object. The goal of the
decomposition is to reduce the amount of feasible grasps
without trying every grasp on an object. In [2], the object
is decomposed to minimum volume bounding boxes, in an
effort to understand the underlying shape of the object. The
primitive shape is then used to reduce the search space
for stable grasps. Instead of boxes, superquadrics are used
in [3]. In addition to the construction of the superquadric
decomposition, heuristic is used to define the trial grasps
based on the superquadric form of the object limiting the
space of grasps significantly.

The Columbia Grasp Database [4] takes a different ap-
proach to most grasp planners and compute best grasps for
a set of hundreds of objects. The grasp planning problem is
then transformed to a problem of matching a new object with
an object found in the precomputed database of grasps. The
work has also been extended to consider partial data [5].

If the object is not known, i.e. a geometric model is not
available, the grasp planning methods can still be used if
the model of the object can be constructed. The model con-
struction can either be done by vision or tactile exploration.
However, the geometric model in this case is usually a mesh
or a point cloud, and contains no information about the
inherent uncertainty related to the perception. Approaches
such as [2] can be applied here as well but the results can
be worse than in the cases where the full geometric model is
known and the decomposition may fail in cases where large
volumes are missing from the perceived object.

Another approach for finding grasps is object affordance
modeling. While object affordance is a broader subject, the
affordances can also be thought in the sense of grasp stability.
In some of the grasp related studies, grasp affordances
consider the overall stability of the grasp [6], [7] or, for
example, the grasp affordance in specific tasks [8].

Learning to find good grasps is another view on the
problem. [6] utilizes learning on a real robot to learn the
grasp affordance of an object. The learning process reduces
a vision bootstrapped distribution of grasps to a smaller
set of grasps containing only good grasps. Reinforcement
learning [9] can also be applied, so that a sequence of grasps
can be learned which will lead to a stable grasp of an object.



Our approach to grasping is more related to the methods
found in [10] and [11]. The aim of [10] is to reduce the
uncertainty of a object’s pose to enable grasping the object.
In [11], the shape of the object is also uncertain in addition to
the pose. In both of the studies, the method is presented with
a parallel jaw gripper grasping a 2D-object. However, these
methods do not utilize sensor information gained during
grasping. Also in [12], the authors propose a decision-
theoretic controller which minimizes the uncertainty of the
object pose using arm trajectories to enable task specific
grasps on objects. Tactile sensors were used to detect contacts
between the hand and the objects.

This paper will present a probabilistic approach for finding
a stable grasp and if necessary, refine the grasp by regrasping,
so that even better grasp can be found for an object and at
the same time reduce uncertainty of an object’s pose. As
can be seen from our survey of recent grasp planners and
other grasping methods, similar grasping frameworks have
not been yet published to our best knowledge.

III. GRASPING IN PROBABILISTIC FRAMEWORK

We model sensor-based grasping using the following vari-
ables: S denotes the stability of a grasp as a binary value,
G the grasp attributes (e.g. the pose of the end-effector), O
the object attributes (e.g. the pose of the target object) and T
represents measurable tactile information. The variables have
characteristics: G, the grasp attributes, can be controlled, T
can be measured for each grasp attempt, while O is uncertain,
that is, we assume we only have an uncertain initial estimate
of the object attributes.

In our framework, traditional grasp planning algorithms
try to maximize the stability, S, by controlling the grasp
attributes, G, with perfect knowledge of the object attributes
O,

max
G

P (S|G,O) . (1)

In our model, O is not precisely known but instead repre-
sented as a probability distribution.

It has been shown that grasp stability can be estimated
using tactile information [13]. Thus, we can build a prob-
abilistic model for the stability given the other variables,
P (S|G,O, T ). That model can be used to assess the stability
of a single grasp attempt, as shown in the reference cited
above. Moreover, for stability detection with uncertain object
knowledge, we can marginalize over the uncertain object
attributes, such that the probability of a stable grasp given
the grasp attributes and tactile measurements is given by

P (S|G,T ) =
∫
P (S|G,O, T )P (O|G,T ) dO . (2)

If the grasp attributes are also uncertain, we can marginalize
over them in a similar fashion to find P (S|T ). This is also the
model for grasp stability for the case where no information
about the object or grasp is used for stability recognition.

In order to perform grasp planning, we need also to
marginalize over the distribution of object attributes. That

is we need to find the mode of P (S|G). This gives,

P (S|G,T ) =
∫
P (S|G,O, T )P (O|G,T )dO . (3)

Since the tactile information for a future grasp attempt is
not available, we approximate the first term in the integral
by P (S|G,O) and use the tactile information only to update
the posterior distribution for the object attributes. Thus,
after some tactile information has been collected, for grasp
planning we find the maximum

max
G

P (S|G) ≈ max
G

∫
P (S|G,O)P (O|G,T )dO . (4)

Equation (4) shows that the stability S can be maximized
by finding the best grasp G, when G and T (from the
previous attempt) are known. To build a working system
based on the Equation (4), two models are needed:

• Model for P (O|G,T ), describing relation between tac-
tile information and grasp and object attributes.

• Model for P (S|G,O), stability as a function of grasp
and object attributes

Unfortunately, these models are not trivial to build and
depend on the object and the manipulator used to grasp the
object. Still, there are existing models for both cases, e.g. see
[14] for a model for P (O|G,T ) and [15], [13] for a model
for P (S|G,O, T ). One approach to generate the models is
to simulate the object and the manipulator to produce the
required tactile information and stability models. We have
used this approach to demonstrate the framework in action
in Section IV.

Our framework does not place constraints on the actual
models, and the attributes G, O, T can be freely chosen. For
example, G and O can include the poses of the manipulator
and the object. The benefit of the presented probabilistic
framework is that throughout the grasping process uncer-
tainty of the actions arising from equation (4) is known. Also,
measurement errors can be accounted for during both grasp
planning as well as on-line grasp stability detection.

IV. DEMONSTRATION

We will demonstrate the validity of our method using
a simulated environment. The environment is depicted in
Figure 1. The environment consists of a parallel jaw gripper
with finger width lfinger and a rectangular object with side
lengths of 6 and 2. The angle of the gripper in degrees is
denoted by θ, which is zero when the gripper is perpendicular
to the long side of the object. The gripper center is denoted
with (x, y), which is relative to the object center (x0, y0).
In the demonstration, the object is static. When grasping,
we can close the two fingers of the gripper independently
of each other and we will use the distances d1 and d2 as
the measurements, representing the tactile information T .
We assume that the fingers have the capability to detect
when they come into contact with the object and that we
can stop the fingers at that instance. We will use 3-tuple
(x, y, θ) to denote the gripper variables, which are in relation
to the object center (x0, y0, θ0). (x, y, θ) represent G, the



grasp attributes, while (x0, y0, θ0) represents the O, object
attributes.

Note that with this setup, there is always ambiguity about
the orientation of the gripper when the fingers are in contact
with the top and bottom sides of the object. Also due to the
symmetry, we can not reduce uncertainty in the x-axis.

d
1

d
2

(x,y)
(x ,y ,   )

0 0

l
f inger

0

6

2

Fig. 1. Simulation environment.

1) Implementation: Our general approach is based on a
sequence of actions, shown in Figure 2. We assume that
some type of initial estimate of the object pose is given
(1), e.g. from vision. Using the estimate, we can plan for
a grasp with the uncertainty from the initial estimate (2).
Then a grasp is performed (3), giving measurement data
(we assume tactile and joint configuration data is available).
Using the measurement data, we can make a decision of the
grasp stability (4), if the grasp is stable, the object can be
manipulated, if not, we can plan for a new grasp (5) with
the new information from the attempted grasp. This loop
can then be further iterated until grasp stability conditions
are satisfied.

( 1 ) ( 2 )

Grasp 
planning

( 3 )

Grasp

( 4 )

Stabil i ty
recognit ion

( 5 )

Grasp 
planning
with tact i le
information

Grasp ok

Grasp not ok

Initial object 
pose

Fig. 2. Sequence of actions.

The theoretical framework described in Section III is
implemented with particle filters to make the computation of
probability distributions tractable. The particle filter method
is a MCMC method, and estimates probability distributions
with a cloud of particles. More information on particle
filtering, especially applied to robotics can be found in [16].
Particle filters has been used in manipulation, for example
in [14], to estimate object pose using tactile sensors. We
use two different particle filter processes to estimate the two
different models, P (O|G,T ) and P (S|G,O), introduced in
Section III. Likelihoods, which are shown in Figure 3, were
chosen by hand for the purposes of this example. Figure 3(a)
shows how likely a measurement d is a correct measurement
in relation to the true measurement d∗, this model is used

for both d1 and d2. Figure 3(b) presents how likely a grasp
is stable relative to the belief of object pose O.

(a) (b)

Fig. 3. Likelihoods for: (a) Measurement model, p(d|d∗); (b) Grasp
stability, P (S|G,O), for (x, y, θ), x in red, y in green, θ in blue.

Algorithms 1 and 2 describe our method of finding sta-
ble grasps. The algorithms also contains the variables and
distributions that we have used in particle filter processes.
Algorithm 1 requires the initial estimates of the uncertainty,
given in σinit, for each of the variables (x, y, θ). The particle
set O1 in Algorithm 1 represents the probability distribution
of the object, i.e. P (O|G,T ), while particle set G1 in
Algorithm 2 represents the relative or corrective motion to
the actual grasp, and by applying the relative motion to
each of the particles in O1, we can find the probability of
a stable grasp P (S|G,O). In Algorithm 2 the maximum

of distribution, max
G

∫
P (S|G,O), is searched for and the

corresponding relative motion is then applied.
Referencing Figure 2, Algorithm 2 takes care of the grasp

planning, that is, steps (2) and (5). Algorithm 1 handles
step (3), grasping the object and updating the belief of
object pose. In line 13 of Algorithm 1, the grasp stability
probability is computed and corresponds to step (4) of the
action sequence.

2) Results: Figure 4 shows a single example run of the
Algorithm 1. The example was run with the initial object
pose (x0, y0, θ0) set to (0, −0.3, −15). Particle locations
are shown in green and 1

4 of the particles are plotted with
blue line, indicating the orientation, θ0. Figure 4(a) shows
the initial distribution of O1, where σinit = [0.3 0.3 6]. The
grasp planning stage will produce a near zero relative motion
after the initial object pose distribution is given, as there are
no measurements yet. In Figure 4(b), the first grasp attempt
has been made, and the distribution of object pose changes
to account for the measurements, d1 and d2. The figure also
shows the symmetry of the problem and two modes arising
from this symmetry, one for θ0 = 15, other for θ0 = −15.
This grasp does not satisfy the threshold of 0.5 for the grasp
stability probability. Maximizing P (S|G,O) yields solution
(0.07, −0.32, −14.3) for the grasp G. Figure 4(c) shows
the final distribution of O1, after the information from the
second grasp. This grasp is stable as the probability of a
stable grasp is 0.503. The mean of the distribution O1 was
(−0.24, −0.32, −14.28) compared to the set pose which
was (0, −0.3, −15). As can be seen, the method was able to
find a corrective motion for the gripper and produce a stable
grasp and after the two grasps, the particle cloud converged to
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Fig. 4. Sequential distributions of particles modeling P (O|G,T ), (a)-(c), for a single run of Algorithm 1: (a) Initial distribution ; (b) Distribution after
the first grasp; (c) Distribution after second grasp, for which P (S|G,O) = 0.503; (d) An example of distribution P (S|G,O)

Algorithm 1 find stable grasp(σinit)
1: Generate initial particle set, O1 according to
N (0, σinit

2)
2: q ← 1
3: while q = 1 do
4: (x, y, θ) ← find best relative motion(O1,σinit)
5: Apply motion (x, y, θ) to gripper
6: Grasp object
7: while O1 is not converged do
8: For each particle, simulate the finger lengths, d1

and d2
9: Weigh particles O1, w1 ∝ p(d|d∗), i.e. estimate

P (O|G,T )
10: Do importance filtering according to w1

11: Use N (0, σ1
2) as proposal distribution with σ1 ←

[0.02 0.02 2]
12: end while
13: Approximate P (S|G,O) by

∑

i

P (S|G,O1i)

14: if
∑

i

P (S|G,O1i) > 0.5 then

15: q ← 0
16: end if
17: end while

Algorithm 2 find best relative motion(O1,σinit)
1: Generate particle set, G1 according to N (0,5σO1

2)
2: while G1 is not converged do
3: Weigh particles G1, w2 ∝ P (S|G,O)
4: (xmax, ymax, θmax) ← max

G
P (S|G,O)

5: Do importance filtering according to w2

6: Use N (0, σ2
2) as proposal distribution with σ2 ←

0.2 σinit
7: end while
8: return (xmax, ymax, θmax)

near optimal values for the object pose, except the x-variable
for which the uncertainty can not be reduced.

However, as the method is probabilistic, maximizing the
probability P (S|G,O) can produce a motion that is opposite
to the correct one in θ, but after the mistaken grasp, the two
modes have been eliminated, and during the next iteration of
Algorithm 1, the correct motion will be found. In the case
of this example, the system will usually make two or three
grasps before finding a stable grasp, depending on the first
corrective motion.

One of the benefits of probabilistic approach is also
that we always know the uncertainty behind the actions.
Figure 4(d) shows an example of probability distribution
of P (S|G,O). From this distribution, the uncertainty of the
corrective motion can be observed and if needed, constraints
can be placed, for example, to allow only very precise
motions in relation to the grasp stability. The same can
be applied to the probability distribution P (O|G,T ), for
example, if the accuracy is not enough for grasping at a
certain time instance, we can use additional measurements
from vision to update the object pose.

V. CONCLUSIONS AND FUTURE WORK

We have presented a novel framework for grasping, which
operates in a probabilistic setting. The framework allows
grasp planning and corrective motions to interact, leading to
a system where we can estimate uncertain object attributes,
such as pose, and improve grasp stability simultaneously. We
also presented a practical implementation of our framework
utilizing particle filters. We showed that our method is able
to find a stable grasp and simultaneously update the pose
estimate of the object.

However, we were able to only show our implementation
with a simple simulated environment consisting only of a
simple object and of a simple manipulator. In the future
we will try to apply the framework presented here to more
complex manipulators and to more complex objects. Our goal
is to first concentrate on simulation and building useable
models of objects to use with our probabilistic framework.
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