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Chapter 1

Executive Summary

This report presents the work of year three in WP4. WP4 is concerned with perceiving the object and
hand involved in the grasp and all contextual information relevant. With grasp context we refer to the
information relevant to the grasp, which at its core includes the grasp points on the objects but also
the relationship to the complete object, the hand, the task, and the attention on the target object. The
overall objective is to perceive grasping points on unknown objects by the end of the project.

Work in year three concerned

• [Task 4.2] - Perceiving task relations and affordances The objective is to exploit the set of
features extracted in Task 4.1 to obtain a vocabulary of features relevant to the grasping of objects
and to learn the feature relations to the potential grasping behaviours and types.

• [Task 4.3] - Linking structure, affordance, action and task The objective is to provide the
necessary input to the grasping ontology developed in WP2, which represents knowledge about
the grasping experiences learned. It contains relations and constraints to (1) the object and its
properties such as size, shape and weight, to (2) perceived affordances (potentialities for actions)
and grasping points, to (3) the task that is executed, e.g., grasping for pick up or to move as
cup, and to (4) the context or surrounding of relevance. It is investigated how such a link can be
efficiently established and used to obtain task-based grasping of object categories and to achieve
extendibility for grasping new objects.

The work in this deliverable relates to the following second year Milestones:

• [Milestone 10] Linking structure, affordances, actions and tasks and a first evaluation of repre-
sentations defined by the ontology.

The advance in year three focused on learning object categories to generalise grasps to new objects in
relation to known object classes.

• Evaluating features for 3D object class detection: This work uses previous results from WP5
to merge stereo views and obtain a more complete 3D image of objects on a table for classifica-
tion. A shape model based approach and machine learning are used for object categorization has
been implemented and tested on ARMAR-IIIa. Visual sensing from different view points allows
the reconstruction of 3D mesh-models of the objects found in the scene by exploiting knowledge
about the environment for model-based segmentation and registration. These reconstructed 3D
mesh-models were used for shape feature extraction for categorization and provide sufficient infor-
mation for grasping and manipulation. Finally, visual categorization was performed with a variety
of features and classifiers allowing properly categorisation of unknown objects even when object ap-
pearance and shape differ from the training set. The approach is evaluated with ARMAR moving
around a table with a single object to merge views obtaining a nearly complete 3D model and then
categorise the model. 35 objects belonging to 8 categories have been tested. Details are presented
in Appendix [A].
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• Learning object classes from the web for single view detection: The goal is to have a robot
classify never before seen objects within a single view in a fast and robust manner. Instead of taking
many images in a large database, we exploit Web resources such as 3D-Warehouse to obtain a model
of object classes from the models of many individuals of a class. The work shows how view-based
data from the 3D Web models is used to efficiently train for such a single view detection. The
classification task itself is seen as a matching problem, finding the most appropriate 3D model and
view to a depth image. We show that a single view using an RGB-D sensor is sufficient to classify
a novel object. To achieve robust yet fast classification, we use an ensemble of state-of-the-art
classifiers that directly operates on the 3D points of the sensor without any calculation of normals
or generating a mesh from it. The approach requires a first segmentation that is achieved with
methods from year two. To move towards grasping objects out of a box we work on improving
these methods, since at present segmentations either over or under segment, which is not sufficient
to obtain reliable results for grasp point detection. The result of the classification is a labelling of
the image region of interest. However, the classification approach itself does not deliver accurate
pose information of the object. Hence, in a further step of the object classification process, object
pose needs to be determined. Appendix [B] presents details of this work.

• Aligning class models to obtain object pose for grasp point determination: Here we
introduce a novel method for the pose alignment of geometrically similar 3D models. Similarity has
been already achieved in the previous step through object classification. Pose alignment is based on
the prior that both models have at least one common tangent plane on which both can stand stably
and when standing on it the models are partially aligned. The use of such a ”common sense” rule
greatly simplifies and hence robustifies the remainder of the procedure. Furthermore, object pose is
linked to the typical object affordances, hence this enables to link affordances with pose and object
shape in a formal way (see WP2). It is only necessary to determine the final rotation around the
normal of this stable plane. For this we use an image alignment technique based on the log-polar
transformation. Of particular interest to the approach of using one view only is that the method
does not rely on any kind of global symmetry features. Hence we show it can be used to register
incomplete stereo point clouds of objects located on a stable plane (table, ground, etc.) with the
corresponding similar 3D models. We evaluated the method by aligning 120 models belonging to
12 different classes and a comparison to state-of-the-art methods. Appendix [C] presents details in
form of a recently accepted paper. This approach has also been used to enable pose related task
learning in WP2.

• Part-based grasp points: Results in the first two years [Task 4.1] showed that local image
information can be very well used to obtain shape information about objects. Based on this, a new
method for learning grasp points in relation to object parts is investigated. The idea is to link object
parts with the affordances and tasks formulated in WP2. This enables to break down the detection
of new object to object parts, which in themselves typically indicate where to grasp an object. We
attempt to extend the scope of affordance features to define Conceptual Equivalence Classes and to
recognize these classes leading to scalable unit (part/ part assembly/ object) recognition system.
The advantage is that grasp points from related object classes can then be used for grasping of new
objects. First work towards this goal is presented in Appendix [D].

• Object classification from 2D and 3D data: Grasping knowledge can be transferred between
objects that belong to the same object category due to their similar geometric properties and
functionality. Moreover, given a specific task we can generate a set of the most suitable grasps for
each object category. For example, when pouring from a cup it should be grasped by its handle not
from the top. We developed an object category recognition system that employs 2D (RGB image)
and 3D (point cloud representing a partial view of an object) information about an object and
several strategies for integrating 2D and 3D information. The system was evaluated on real data
collected using active stereo cameras and for a number of household object categories obtaining a
high recognition rate. The system was integrated with the active segmentation module already used
for the year two demonstration and the task-constrained grasp planning system (WP2) constituting
a comprehensive system that generates a set of suitable grasp for objects in a natural scene specific
to their categories and constrained by the performed task. Details are given in Appendix [E].
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D Karthik Varadarajan, Markus Vincze: Affordance based Part Recognition enabled Visual Cognitive
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Towards Shape-Based Visual Object Categorization for Humanoid Robots

D. Gonzalez-Aguirre, J. Hoch, S. Röhl, T. Asfour, E. Bayro-Corrochano∗ and R. Dillmann
Karlsruhe Institute of Technology, Adenauerring 2, Karlsruhe-Germany.
{gonzalez,julian.hoch,roehl,asfour,dillmann}@ira.uka.de

∗CINVESTAV-Unidad Guadalajara, Av. Cientı́fica 1145, Mexico
edb@gdl.cinvestav.mx

Abstract— Humanoid robots should be able to grasp and
handle objects in their environment, even if the objects are
seen for the first time. A plausible solution to this problem is to
categorize these objects into existing categories with associated
actions and functional knowledge. So far, efforts on visual
object categorization using humanoid robots have either been
focused on appearance-based methods or were restricted to
object recognition without generalization capabilities.

In this work, a shape model based approach using stereo
vision and machine learning for object categorization is in-
troduced. The state-of-the-art noise-tolerant shape-matching
and shape-retrieval features were evaluated and selectively
transfered into the visual categorization task. Visual sensing
from different vantage points allows the reconstruction of 3D
mesh-models of the objects found in the scene by exploiting
knowledge about the environment for model-based segmenta-
tion and registration. These reconstructed 3D mesh-models were
used for shape feature extraction for categorization and provide
sufficient information for grasping and manipulation. Finally,
the visual categorization was successfully performed with a
variety of features and classifiers allowing properly catego-
rization of unknown objects even when object appearance and
shape substantially differ from the training set. Experimental
evaluation with the humanoid robot ARMAR-IIIa is presented.

I. INTRODUCTION

Sensing

Classification

a)

b)

c)

c2c1 c3

Fig. 1: Shape-based visual object cat-
egorization. a) The humanoid robot
ARMAR-IIIa is exposed to an un-
known object. b) Visually reconstructed
scene. c) Object categories represented
by shape-models from the training set.

In everyday scenarios, hu-
manoid robots need to inter-
act with a wide variety of
different objects in the en-
vironments in order to per-
form complex tasks. Reliably
recognizing these objects is a
problem which has been ac-
tively researched. As a con-
sequence there are now well-
established appearance-based
methods for the task of ob-
ject recognition [1][2] where
only previously learned ob-
jects have to be recognized.

However, an autonomous
humanoid robot also needs
to deal with objects it has
never encountered before.
This generalization skill is
the purpose of object cate-

gorization, where the encountered objects are assigned to
previously defined categories. These categories are basic
level classes which can be mostly characterized by their

shape, see [3]. For example, object instances of the category
bottles have different shape, size, texture and color, still the
robot should be able to correctly categorize a bottle even if
it has not seen this particular exemplar before.

Furthermore, categories like fruits or vegetables change
their appearance (color and texture) with progressing
ripeness but maintain their overall shape. By using shape-
based representations it is possible to simultaneously deal
with these circumstances and supply the essential grasping
and manipulation information.

In this approach, a set of predefined object categories with
several training samples was created. The training samples
consist of labeled visually reconstructed 3D mesh-models
for each category. Afterwards, a variety of classifiers was
trained using shape features extracted from these 3D mesh-
models. Subsequently, in the on-line phase, the acquired 3D
meshes with the stereo camera of humanoid robot were used
to extract shape features. Finally, the trained classifiers were
applied to categorize unknown objects, see Fig.1.

II. RELATED WORK

The focus of this work is to properly categorize small,
rigid and graspable objects typically found in a human
household environment while coping with the challenges
of the limited visual sensing capabilities such as sensor’s
dynamic range, resolution, noise and self-occlusion.

Classic approaches for object recognition in robot vision
solely use the object appearance [4] and [5]. Besides, in order
to be able to manipulate an object, the 6D pose has to be
determined. While it is possible to get the object pose with
appearance based methods when using the depth information
from stereo cameras [6], a more common approach is to
match stored 3D models to the scene [7].

Appearance-based categorization approaches include the
Bag-of-Features [8] methods, which determine the distribu-
tion of local features in the feature space and the part-based
approaches [9], which model objects as a collection of image
parts or features.

When objects of different categories only differ in shape
and not in texture (for example a wooden saltshaker and
a wooden trivet), appearance-based methods quickly reach
their limits. With a model-based approach, the object’s 3D
shape can be incorporated into the categorization process.

In [10] and [11], point clouds were obtained from the
objects using a structured light projection and stereo camera
on a mobile robot. The Fast Point Feature Histograms
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a) b) c)

Fig. 2: The off line 3D mesh-models acquisition for training. a) Training sample object(s). b) The system used to digitize the training objects: [1]-Stereo camera, [2]-Projector.
c) The digitized 3D polygon representation.

were calculated from surface points and the object were
classified using Support Vector Machines and Conditional
Random Fields. They achieved accurate results (96.69%
category identification, although they used the same objects
for training and testing), but use only four categories with
little inter-class variance. However, since most humanoid
robots do not have light projectors, this sensing approach is
not a viable option for on-line categorization systems using
humanoid robots.

Another common approach is to use spin image features,
which describe the global shape of the object from the
perspective of local points on the object’s surface. Spin
images are shape descriptors which have been applied to
surface matching [12], object recognition [13] and [14],
3D registration [15] and 3D object retrieval [16]. In [17],
objects were modeled as consisting of three parts which were
categorized by spin images using the recognized part classes.
The input data consists only of noise-less simulated laser
scanner point clouds, achieving good results categorizing
cars into eight categories. In [14], spin images are used in a
3D object detection system with the humanoid robot HRP-
2 [18]. The scene was captured with stereo cameras and
converted into a point cloud for the 3D mesh construction.
Random scene points were selected and the corresponding
spin images were calculated. These points were matched
to previously calculated spin images of the model to be
localized. This approach was designed to find a known object
in the scene and does not deal with generalization such as
the categorization of unknown objects.

Among the many features that have been used for 3D
model-based object recognition are tensors [19], spheri-
cal harmonic representations [20], shape distributions [21],
coarse filters [22] and conformal factors [23]. Only three
of those features degradate gracefully when dealing with
occlusion and sensor noise expected in real applications.
Because of their promising properties and superior noise
degradation, i) spin images, ii) shape distributions and iii)
coarse filters were selected to visually categorize objects by
the humanoid robot through stereo vision.

In addition, among the different ways to represent objects
with 3D models, like point clouds, voxel representations,
octrees or collections of primitives like boxes [24], the
3D polyhedron models were selected due to the efficient
construction and calculation of a wide variety of features.
There are different algorithms to reconstruct polyhedral from
point clouds, the most prominent being the power crust [25]
and the tight cocone [26].

Fig. 3: The training data set. Objects for each category with different shapes and sizes
were selected to capture the natural intra-class variance.

III. METHODOLOGY

The categorization is based on supervised learning to infer
from known training samples to unknown observed objects.
Classifiers are trained on a set of labeled training samples
and applied to the objects that the robot encounters in its
environment. The approach consists of the following phases:

• Training: Create training data and train categories.
• Acquisition: The robot gathers, segments and registers

images of an unknown object to be categorized.
• Reconstruction: Obtain 3D meshes from the images.
• Categorization: Manages the shape feature extraction

and the evaluation of the trained classifiers.

A. Training

The training of reliable classifiers requires sufficiently
large database of labeled training objects. Although there are
public databases available with labeled object models, like
the Princeton Shape Benchmark [27] or the KIT ObjectMod-
els Web Database [28], these were not suitable.

Often, like in the Princeton Shape Benchmark, the models
represent artificial objects and are simplified representations
of real objects. Therefore, they do not contain the real object
dimensions, which can carry important information for the
categorization process.



Other databases contain high quality and dimension-
retaining representations of real objects, but unfortunately
they lack the necessary variety of shapes needed for classifier
training. The KIT object models Web Database is more
geared towards appearance-based approaches and disposes
of a large variety of box-shaped and cylinder-shaped models,
but for other shapes there are only single models available.

Due to these limitations, a new training database was
created, see Fig.3. This model database comprises 35 objects
belonging to 8 categories with sufficiently different shapes:
apples, mugs, beverage cans, oranges, bottles, bananas,
beakers and tissue packages. Notice that some categories
with similar shapes were chosen (like apples and oranges),
to determine if the small differences between the categories
are discriminative enough, especially in presence of larger
intra-class variance.

The 35 selected training objects were scanned using a
StarCamTM3D camera system. It projects structured light on
the object and captures the resulting patterns with a stereo
camera, see Fig.2. It densely samples the surface of an object
from different angles to create a 3D reconstruction.

For each object, a 3D point cloud was obtained (with
approximately 5000 points) and a watertight surface repre-
sentation created using the power crust algorithm, see Fig.2-
c. The resulting meshes consist of approximately 10,000 to
15,000 convex polygons, which is small enough for fast
feature extraction in less than one second. This database of
real world objects was used to extract discriminant features
in order to train different classifiers, see Sec.III-D.

B. Visual Acquisition

In the on-line evaluation, the humanoid robot ARMAR-
IIIa (see Fig.1) attains the 3D object reconstruction. Since
from one point of view only a part of the object is visible,
the object is circumnavigated by the robot and several stereo
views of the object were captured, see Fig.4. These views
were used to create a 3D surface model of the object.

Because the stereo reconstruction is sensitive to lighting
effects such as over-exposure, under-exposure and gloss,
additional image preprocessing is performed prior to the
actual reconstruction step. For each view, several images with
different shutter speeds are captured and combined to create
a tone mapped HDR image [29], which improves the image
quality and preserves local contrast, see Fig.5.

Finally, the object to recognize is segmented in the reg-
istered input images using a model-based environmental
segmentation algorithm, which exploits the CAD-model of
the table and the relative pose of the humanoid robot during
the acquisition, see author’s previous work in [29].

C. Reconstruction

For each set of images captured from one specific posi-
tion, a point cloud of the scene is calculated using stereo
reconstruction. For correspondence analysis, an extension of
the Hybrid Recursive Matching method is used [30].

In two-stage process, the block recursion and the pixel
recursion step calculate a new disparity value for the current
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Fig. 4: The acquisition path around the test objects was defined by specifying a start
and end point and several way points in between. The humanoid robot ARMAR-IIIa
calculated an interpolated path between the given positions and traversed it, making
several stops to capture stereo images from the object from different perspectives.

pixel by choosing between four different candidates in the
other image. For each candidate, the similarity is calculated
using block matching. The with the candidate most similar
neighborhood is set as the correspondence. While the block
recursion step ensures a smooth disparity distribution (es-
pecially in low textured regions), the pixel recursion step
introduces new values in regions of discontinuity.

The outliers detection is done via a consistency check
where disparities of the left and right disparity image are
compared and rejected if their difference exceeds a threshold.
Finally, the 3D coordinates of the image points are calculated
by using the detected correspondences.

The resulting point clouds of the individual views were
then fused using environmental visual cues (known table
edges and region growing segmentation), and the final point
cloud was preprocessed to remove outliers by calculating the
object’s centroid and the mean distance d̄ between points
belonging to the object and the centroid. Points for which
the calculated distance d was much greater than the mean
distance (d > θ · d̄ with θ set to 2.5) were removed from the
point cloud. The resulting point cloud was converted into
a surface mesh using the power crust algorithm, see Fig.6.
The tight cocone algorithm [26] was also evaluated, however,
power crust provided models with less noise artifacts.

D. Categorization

Finding a good set of features is crucial for the object
categorization task. Adequate features should have high
discriminative power and should be robust to noise and other
sources of variation. They also need to be efficient, pose
invariant and capable of partial matching [31].



a) b) c)

Fig. 6: 3D Reconstruction of a banana by the humanoid robot stereo vision. a) Original object. b) Calculated point cloud. c) Reconstructed surface mesh.

a) b)

c) d)

Fig. 5: HDR image acquisition. Captured images exhibit areas of a) under- and c)
over-exposure. Tone-mapped HDR images also show details in b) very dark or d) very
bright areas.

Due to these criteria, spin images, shape distributions and
coarse filters were selected to perform shape categorization.

1) Spin Images: The performance of spin images is
influenced by three generation parameters:

• Image size: s determines the size and resolution of the
spin image and the number of bins s2.

• Bin size: b sets the distance between the different bins
and determines the support distance d = s·b. Increasing
d results in a more global behavior of the spin images.

• Support angle: determines if the object’s rear side is also
considered for the calculation. Increasing the support
angle leads to a more global behavior.

Spin images were used as features for object recognition
by training standard classifiers like support vector machines
and artificial neural networks. In the categorization phase, a
number of scene spin images is classified and the object that
receives the most votes is selected. Notice that dimensional-
ity reduction using PCA of the spin images was performed
prior to training.

2) Shape Distributions: Shape distributions [21] are his-
tograms of a shape function that cover geometric properties
of an object. Possible shape functions are for example the
distance between two random points on the object surface
or the angle between three random surface points, see Fig.7.
The shape function is evaluated for many random samples

Distance
Bins

Votes

0 1 2 3 4 5 6 7 8 9

a) b)
Fig. 7: Fundamental concept of distance histogram calculation [21]. a) Object surface
mesh with sampled surface points (yellow). Distance calculation for randomly selected
point pairs (red). b) Distance distribution calculation.
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Fig. 8: The distance histogram and the estimated pdf using kernel density estimation.
a) Cylindrical object. b) Spherical object. c) Box object.

and the resulting histogram can be used for matching using
dissimilarity metrics or standard classifiers.

In the presented work, the D2 measure was implemented,
the distance between two random surface points (also called
distance distribution), which yields the best categorization
results according to [21]. In order to obtain a smooth and
stable histogram, kernel density estimation was applied with
an Epanechnikov kernel because of its performance and
theoretical properties, see Fig.8.

3) Coarse Filters: Coarse filters are features that are
created by calculating geometric properties of a 3D model. In
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Fig. 9: Concepts used for coarse filter calculation. a) Bounding Box. b)Bounding
Sphere. c) Convex Hull.

Volume and Surface Area Volume V , Area A
Bounding Box Sides b1, b2, b3(b1 ≥ b2 ≥ b3)

Ratios b1/b3, b2/b3
Cuboid Ratio V/(b1 · b2 · b3)
Bounding Sphere Radius rbs, Volume Vbs
Sphere Ratio V/Vbs
Convex Hull Volume Vch, Area Ach

Convexity A/Ach

Compactness V/Vch
Hull Packing 1− V/Vch
Hull Compactness A3

ch/V
2
ch

TABLE I: Features in the coarse filters feature vector, see Fig.9.

[22] this approach is used for a shape matching engine with
measures like volume, surface area, volume-to-surface area
ratio, bounding-box aspect ratio (longest to shortest edge)
and some derived values including the surface and volume
of the object’s convex hull.

In this work, 17 features were tailor into a feature vector.
They included the dimensions of the bounding box, the
bounding sphere, object area and volume, area and volume
of the convex hull, as well as several deduced features like
convexity and compactness, see Tab.I.

Taking the calculated feature vectors spin images, coarse
filters or shape distributions directly as input for a classifier
often leads to inferior results. If some dimensions in the
feature vector contain very large values and dominate the
others, it is necessary to rescale or normalize the feature
vector. The selected classifiers are:

• Soft margin support vector machines with linear kernels
and RBF kernels.

• Multilayer perceptrons with one hidden layer.
• K-nearest neighbor classifiers with different values for
k and different distance metrics.

In order to estimate the optimal parameters for the different
classifiers, a grid search [32] was implemented by a cross-
validation performance evaluation on the training database.

IV. EXPERIMENTAL EVALUATION

A. Artificial Data

First, the system was evaluated using only the noise-free
objects digitized with the 3D scanner in order to evaluate the
pure discriminative power of the classifiers.

First, the classifiers were applied them to the training set.
Each of the experiments was performed by applying a modi-
fied cross-validation approach, namely, randomly separating
the database into a subset of training and a subset of test
samples, with the training sample ratio being 3:1. Later on,
a classifier is trained on the training samples and evaluated

a) b) c)

Fig. 10: Artificial model deterioration. a) Original model. b) Noisy model. c) Partially
occluded object.

on the test samples. This procedure is repeated 1000 times,
each time with a different set of test and training samples.

Finally, the overall performance is used to calculate the
statistical mean and standard deviation of the measured
accuracies, see results in Tab.II.

Classifier CF σ D2 σ SI σ
SVM 85% 11% 68% 12% 83% 13%
MLP 86% 12% 60% 14% 76% 13%
kNN 83% 11% 65% 13% 83% 12%

TABLE II: Mean categorization accuracy results using the data set digitized with
3D scanner for Coarse Filter (CF), Distance Distribution (D2) and Spin Images (SI),
together with respective standard deviation.

Especially the coarse filters and the spin images yield
good results. Most problems occurred due to the confusion
between similar categories, like apples and oranges or mugs
and beakers, see Tab.III.

Banana Can Apple Orange Beaker Tissues Mug Bottle
Banana 70% – – – – – – 10%
Can – 30% – – 30% 50% – –
Apple – – 100% 70% – – – –
Orange – – – 30% – – – –
Beaker – 70% – – 50% 50% 10% –
Tissues – – – – – – – –
Mug – – – – 20% – 90% –
Bottle 30% – – – – – – 90%

TABLE III: Averaged confusion matrix of 10 SVM classifiers using distance
distributions as features. Columns represent true labels, rows represent estimated
categories by classifiers.

B. Noisy Data

In order to measure the influence of noise on the chosen
features, another test was performed where a large amount of
noise was added to the objects in the artificial data set. From
the original point sets, 500 points were chosen as the basis for
the new object. These points were then superimposed with 5
mm to 10 mm of evenly distributed noise. Even more, 3% of
the points were chosen as outliers and their positions were
changed by 5 cm to 10 cm, see Fig.10-b.

Subsequently, classifiers were trained on the (noise-free)
training set, and evaluated on the test set with the added
noise, see Tab.IV. The deterioration in accuracy can be
attributed to two causes. For one, the features for noisy
objects and objects without noise are different. Although a
common assumption is that it is generally preferable to use a
training set without noise, in this case the same experiment
performed with the training data also being noisy achieved
higher accuracy (the difference being 5% – 10%). Also, the
introduced noise decreases the inter-class variance at the
decision borders. The classifiers where unable to differentiate
for example between the orange and apple categories and
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Fig. 11: Visual model reconstruction. a) Test object orange. b) Reconstructed test
model orange. c) Test object tissue package. d) Reconstructed test model tissue
package.

also the beverage can and beaker category became nearly
indistinguishable.

Classifier Coarse Filters D2 Spin Images
SVM 61% 61% 63%
MLP 57% 59% 53%
kNN 59% 56% 57%

TABLE IV: Accuracy results for classifiers trained on noise-free training data set
and tested on data set with artificial noise.

C. Partially Occluded Data

Experiments were also performed on artificially occluded
objects by using only parts of the model, see Fig.10-c. Each
object was used to create three occluded variants by cutting
off a random part of the object. This was done by selecting
a random plane intersecting the object and taking only the
points on one side of the plane. It was ensured that the
resulting object had a length of 30% to 70% along the chosen
plane’s normal compared to the original object, see Tab.V.

Classifier Coarse Filters D2 Spin Images
SVM 53% 42% 75%
MLP 60% 68% 61%
kNN 55% 56% 70%

TABLE V: Accuracy results for classifiers trained on data set without occlusion and
tested on occluded data set.

D. Real Data

In order to evaluate the categorization approach with the
humanoid robot, classifiers were trained on the training set
with the scanned objects and applied to the models that were
reconstructed by the humanoid robot. The test set comprised
an apple, two bananas, a beaker, a beverage can, a bottle,
a tissue package and an orange. Each object was captured
from several views, and for each view a 3D point cloud was
calculated which were then fused and used to create a 3D
polygon model, see Fig.11. The trained classifiers were then
applied to these 8 models, see results in Tab.VI.

Classifier Coarse Filters D2 Spin Images
SVM 100% 35% 50%
MLP 88% 35% 61%
kNN 70% 34% 51%

TABLE VI: Accuracy results for classifiers trained on (scanned) training set and
evaluated on models reconstructed by the humanoid robot.

Surprisingly, the best results were achieved by the coarse
filters, while spin images and distance distributions delivered
less reliable results.

Classifier Coarse Filters D2 Spin Images
SVM RBF C = 1, γ = 1 RBF C = 1, γ = 1 Linear C = 1
MLP 64 Neurons 32 Neurons 20 Neurons
kNN k=1 k=1 k=3

TABLE VII: Estimated classifier parameters for the different features.

E. Parameters

Proper parameters for the different feature vectors were
empirically chosen. The histogram size for the distance
distribution was set to 512, with the largest histogram bin
corresponding to 3σ, where σ represents the mean distance.

The kernel density estimation was performed with an
Epanechnikov kernel and the bandwidth was set to 0.1σ.
For the histogram generation, 100,000 surface points were
sampled and 100,000 point-pair distances were calculated.

The spin image size was set to 10, with bin size 6 mm
(resulting in support distance 6 cm). Support angle was set to
120°. The spin image stack for training was constructed by
taking the 16 k-means cluster centers calculated from 1000
random spin images. Categorization was performed on 100
random spin images using majority voting.

For the coarse filters, the best results were achieved by
using the bounding box dimensions, bounding sphere radius,
volume, convex hull area and convex hull volume as feature
vector components. The estimated classifier parameters cal-
culated by the grid search are presented in Tab.VII.

V. CONCLUSION

Shape-based object categorization is a challenging prob-
lem, especially when one is restricted to the limited visual
sensing capabilities of a humanoid robot.

Up to now, no pure vision-based systems exist that were
capable to generalize objects using their 3D shape. The
difficulties of this task include varying lighting conditions,
unfavorable object surfaces, context and self-occlusions,
which results in incomplete or noisy reconstructions.

By exploiting the environmental knowledge while fusing
several HDR stereo views from different view-points and
applying robust reconstruction techniques, the humanoid
robot is able to acquire sufficiently detailed 3D models of
small objects in real application conditions such as difficult
surfaces and unfavorable lighting.

The careful selection and proper transferring of the coarse
filter approaches from 3D shape-retrieval to the object
categorization task enabled the categorization of unknown
objects by generalizing from known digitized samples. This
promising results corroborate that model-based visual object
categorization will enable humanoid robots to deal with
unknown objects, consequently more general situations in
real application scenarios.

VI. ACKNOWLEDGMENTS

This work was partially conducted within the EU Cogni-
tive Systems project GRASP (FP7-215821) funded by the
European Commission and the German Humanoid Research
project SFB588 funded by the German Research Foundation
(DFG: Deutsche Forschungsgemeinschaft).



REFERENCES

[1] D.G. Lowe. Distinctive Image Features from Scale-Invariant Key-
points. International Journal of Computer Vision, 60(2):91–110, 2004.

[2] P. Viola and M. Jones. Robust real-time object detection. International
Journal of Computer Vision, 57(2):137–154, 2002.

[3] Rosch E. Family Resemblances: Studies in the Internal Structure of
Categories. Cognitive Psychology, 7(4):573–605, 1975.

[4] P.M. Roth and M. Winter. Survey of appearance-based methods for
object recognition. Inst. for Computer Graphics and Vision, Graz
University of Technology, Austria, Tech. Rep. ICG-TR-01/08, 2008.

[5] P. Azad, T. Asfour, and R. Dillmann. Combining appearance-based
and model-based methods for real-time object recognition and 6d
localization. In International Conference on Intelligent Robots and
Systems (IROS), pages 5339–5344, 2006.

[6] K. Okada, M. Kojima, S. Tokutsu, T. Maki, Y. Mori, and M. Inaba.
Multi-cue 3D object recognition in knowledge-based vision-guided
humanoid robot system. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3217–3222, 2007.

[7] M. Ulrich, C. Wiedemann, and C. Steger. Cad-based recognition of 3d
objects in monocular images. In International Conference on Robotics
and Automation, pages 1191–1198, 2009.

[8] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual
categorization with bags of keypoints. In Workshop on Statistical
Learning in Computer Vision, ECCV, volume 1, page 22. Citeseer,
2004.

[9] R. Fergus, P. Perona, A. Zisserman, et al. Object class recognition
by unsupervised scale-invariant learning. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, volume 2.
Citeseer, 2003.

[10] R.B. Rusu, A. Holzbach, M. Beetz, and G. Bradski. Detecting and
Segmenting Objects for Mobile Manipulation. In Proceedings of IEEE
Workshop on Search in 3D and Video (S3DV), held in conjunction with
the 12th IEEE International Conference on Computer Vision (ICCV),
Kyoto, Japan, 2009.

[11] Radu Bogdan Rusu, Michael Beetz, Andreas Holzbach, Rosen Di-
ankov, and Gary Bradski. Perception for mobile manipulation and
grasping using active stereo. In Humanoid Robots, 2009 9th IEEE-
RAS International Conference on, Paris, 12/2009 2009.

[12] A. Johnson. Spin-images: a representation for 3-D surface matching.
Robotics Institute. Pittsburgh, Pennsylvania: Carnegie Mellon Univer-
sity, 1998.

[13] A.E. Johnson and M. Hebert. Using spin images for efficient object
recognition in cluttered 3 d scenes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(5):433–449, 1999.

[14] O. Stasse, S. Dupitier, and K. Yokoi. 3d object recognition using
spin-images for a humanoid stereoscopic vision system. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS,
Beijing, China, pages 2955–2960, 2006.

[15] N. Brusco, M. Andreetto, A. Giorgi, and G.M. Cortelazzo. 3D
registration by textured spin-images. In 3D Digital Imaging and
Modeling, pages 262–269, 2005.

[16] P.A. De Alarcón, A.D. Pascual-Montano, and J.M. Carazo. Spin
images and neural networks for efficient content-based retrieval in 3d
object databases. Lecture notes in computer science, pages 225–234,
2002.

[17] D. Huber, A. Kapuria, R. Donamukkala, and M. Hebert. Parts-based
3d object classification. In IEEE Computer Society Conference On
Computer Vision and Pattern Recognition, volume 2. IEEE Computer
Society; 1999, 2004.

[18] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hi-
rata, K. Akachi, and T. Isozumi. Humanoid robot HRP-2. In IEEE
International Conference on Robotics and Automation, volume 2,
pages 1083–1090. Citeseer, 2004.

[19] AS Mian, M. Bennamoun, and R. Owens. Three-dimensional
model-based object recognition and segmentation in cluttered scenes.
IEEE transactions on pattern analysis and machine intelligence,
28(10):1584–1601, 2006.

[20] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant
spherical harmonic representation of 3D shape descriptors. In Pro-
ceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on
Geometry processing, page 164. Eurographics Association, 2003.

[21] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape
distributions. ACM Transactions on Graphics (TOG), 21(4):807–832,
2002.

[22] J. Corney, H. Rea, D. Clark, J. Pritchard, M. Breaks, and R. MacLeod.
Coarse filters for shape matching. IEEE Computer Graphics and
Applications, pages 65–74, 2002.

[23] M. Ben-Chen and C. Gotsman. Characterizing shape using conformal
factors. In Proceedings of Eurographics Workshop on Shape Retrieval.
Citeseer, 2008.

[24] J. Bohg, C. Barck-Holst, K. Huebner, M. Ralph, B. Rasolzadeh,
D. Song, and D. Kragic. Towards Grasp-Oriented Visual Perception
for Humanoid Robots. In International Journal of Humanoid Robotics,
Special Issue on Active Vision of Humanoids, 6(3):387–434, 2009.

[25] N. Amenta, S. Choi, and R.K. Kolluri. The power crust, unions of
balls, and the medial axis transform. Computational Geometry: Theory
and Applications, 19(2-3):127–153, 2001.

[26] T.K. Dey and S. Goswami. Tight cocone: a water-tight surface
reconstructor. Journal of Computing and Information Science in
Engineering, 3:302, 2003.

[27] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The princeton
shape benchmark. Shape Modeling International, Genova, Italy, 2004.

[28] The KIT ObjectModels Web Database. http://i61p109.itec.
uni-karlsruhe.de/ObjectModelsWebUI, September 2010.

[29] D. Gonzalez-Aguirre, T. Asfour, and R. Dillmann. Eccentricity Edge-
Graphs from HDR Images for Object Recognition by Humanoid
Robots. In Humanoid Robots, 2010 10th IEEE-RAS International
Conference on, 2010.

[30] Nicole Atzpadin, Peter Kauff, and Oliver Schreer. Stereo analysis by
hybrid recursive matching for real-time immersive video conferencing.
IEEE Transactions on Circuits and Systems for Video Technology,
14(3), März 2004.

[31] J.W.H. Tangelder and R.C. Veltkamp. A survey of content based
3D shape retrieval methods. Multimedia Tools and Applications,
39(3):441–471, 2008.

[32] C. Staelin. Parameter selection for support vector machines. Hewlett-
Packard Company, Tech. Rep. HPL-2002-354R1, 2003.



Towards Robust Shape-Based Depth Image to 3D Model Matching
using Inter-View Similarities

Walter Wohlkinger and Markus Vincze

Abstract— Object recognition and especially object class
recognition is and will be a key capability in home-robotics
when robots have to tackle manipulation tasks and grasp new
objects in an appropriate way or just have to search for
objects. The goal is to have a robot classify never before seen
objects within a single view in a fast and robust manner. The
classification task can be seen as a matching problem, finding
the most appropriate 3D model and view to a depth image. We
introduce single-view shape model based approach using RGB-
D sensors and a novel matching procedure for depth image to
3D model matching and inherently for object categorization.
Our state-of-the-art ensemble of classifiers reliably delivers
accurate classification results while being able to calculate the
features directly from the 3D points of the sensor, without
any calculation of normals or generating a mesh from it.
We furthermore introduce a semi-automatic, user-centered
approach to utilize the Internet for acquiring the required
training data.

We present an approach to fast and robust object clas-
sification on depth image data which can be acquired with
any sensor delivering 3D point cloud data such as laser
range scanners, stereo systems and RGB-D sensors like the
PrimeSense sensor used in our Experiments This paper covers
model acquisition from the web and a novel matching method
by exploiting inter-view similarities of 3D models for increased
object classification performance. Experimental evaluation on
two common databases and a new hereby introduced database
of real-world objects in a table-scene context was successfully
performed.

I. INTRODUCTION

For service robots to enter real-world home environments,
they have to become more adaptive to cope with changing
environments and transfer knowledge from one setting to an-
other. One of the key elements for robots to fulfil meaningful
tasks like object search and retrieval or object manipulation is
object and object class recognition. Human-robot-interaction,
robot localization and mapping, and robotic manipulation
can greatly benefit from a vision system which is able to
categorize even never seen before objects at first glance.

The domestic setting with its plethora of categories and
their huge intraclass variety demands a great deal of gen-
eralization skill from a service robot. These categories are
characterized by their shape ranging from low intraclass
diversification of fruits and simple objects like bottles up
to high intraclass variety of liquid containers and furniture.
To aggravate the scenario even more, the environment or
even the task detains the robot from building a full 3D
representation of space and objects around him by restricting

This work was conducted within the EU Cognitive Systems project
GRASP (FP7-215821) funded by the European Commission.

Vision4Robotics Group, Automation and Control Institute, Vienna Uni-
versity of Technology, Austria [ww,vm]@acin.tuwien.ac.at

Fig. 1. Left: A recognized mug, a can, a toy-dining chair and a toy-plane
on a turntable. Mid: The 2D segmentation of the objects. Right: The point
cloud as produced by the PrimeSense sensor and the 3D segmentation of
objects on the table plane.

its movements – no space to acquire views from around the
object – or by restricting the time – a search task may be
too slow if the robot has to move around every object for
inspection.

Hence we propose a 2-fold strategy to tackle this problem.
First, we use a single-view shape model based approach for
range image to 3D model matching to give the system its
required speed. Our methodology works directly on the 3D
data without any need for time-consuming and sensor noise
dependent operations such as normals calculation and mesh-
generation from the point clouds. For increased matching
performance we suggest to utilize inter-view similarity of
the 3D models to discard false positives. This new matching
scheme can be used with any global, affine invariant 3D
descriptor to increase its performance.

Second, we grant a robot internet-access to use the in-
formation found on the internet to cope with the intraclass
variation in categorization. By using 3D models from Google
Warehouse1 the problem of coping with a large intraclass
variety is inherently solved, as the number of available
models is proportional to the intraclass variety, reducing the
problem from categorization to nearest-neighbour-matching.
Now we only have to cope with scalability issues when
matching against thousands of models, but this can be solved
using approximate nearest neighbour and semantic hashing.

The classification is performed with multiple frames per
second against a database of 3D models which can be gener-
ated and altered semi-automatically by a non-expert. Robust
classification is achieved by choosing multiple complemen-
tary feature descriptors, choosing the appropriate similarity
measure and combine the descriptors.

1http://sketchup.google.com/3dwarehouse/



II. RELATED WORK

The focus of this work is to push the performance of solely
3D point based shape descriptors for range image to 3D
model matching. Partial sensor view to 3D model matching
was done by [2] using a dense SIFT based descriptor first
introduced by [8] which is still the top performer in the
SHREC shape retrieval contest of range images2. Extraction
of such local features is computational expensive and the
authors of [2] presented good results using multiple view
with a movable sensor head. Moving around the object
of interest, building a 3D model and then categorize the
object using a humanoid robot was shown in [4]. They used
Spin Images [5], D2 Shape Distribution [9] and geometric
properties like bounding box and volume of the real-world
sized 3D model, thus requiring acquisition of a specialized
database with a structured light sensor. Using Spin Images
was also done on 3D LIDAR point clouds by [3] and by [7]
who also used 3D modesl from the web to match against.
A global descriptor based on histograms of normals was
introduced by [10] which delivered good results on container-
like objects, but required calculation of normals.

III. METHODOLOGY

The categorization is based on matching depth images
against a database of 3D models and a subsequent k-NN
classifier. The stages of the system include the acquisition
of the database, object segmentation and matching against
the database.

A. Knowledge Acquisition & Model Preparation

The input into our model acquisition system is the name
of the new object class, which can be entered by the user
via voice or via keyboard. With this keyword we query
the lexical database WordNet3 to disambiguate the keyword
by presenting the different meanings to the user to select
the appropriate one. Knowing the correct meaning of the
keyword, we now use the synonyms and hyponyms (words
sharing a ’type-of’ relationship with the keyword) provided
by WordNet for the 3D model search on Google Warehouse4.
After downloading of the models, the user selects one of the
models as the reference model to enable a subsequent process
of discarding wrong models from the database using a
similarity criterion to the reference model. Having a semantic
meaning and an index for the word in the hierarchy provided
by WordNet enables further semantically meaningful manip-
ulation applications like pouring something into a container-
like object.

One way of matching range images to full 3D models
is to see the problem as finding the appropriate view of
the 3D model which can be achieved by formulating the
problem as a partial-view to partial-view matching problem.
To use the models from the web for depth image to depth
image matching, we generate synthetic depth images by

2http://www.itl.nist.gov/iad/vug/sharp/contest/2010/RangeScans/
3http://wordnet.princeton.edu/
4http://sketchup.google.com/3dwarehouse/

rendering the 3D models and sampling the z-buffer from 20
equally spaced views around the model using the vertices of
a dodecahedron as done in the lightfield descriptor [12] and
depicted in Figure 2. These 20 views are sufficiently dense
for the type of descriptors used to interpolate between views.
To discard details and therefore improve generalization of the
models, we sample the models by rendering them in 150x150
pixel images which leads to around 5000 data points for the
average model which fills the rendering window to 25%.
Finally, for every one of the 20 views of the model the 3D
descriptors are calculated and stored into the database. Using
the appropriate distance measures, the best partial-view out
of the 3D models can be found by comparing the descriptors
calculated from the range image delivered by the sensor to
all descriptors in the database. Classification is done using
a k-NN classifier on the ranked results with k depending on
the minimum numbers of models in the database for a class.

B. Matching with Inter-View Similarities

The basic idea is to match the range scan not only to one
single view, but to several nearby views as nearby views
share some similarities. These similarities depend on the
type of descriptor used. For pure 2D shape descriptors, the
silhouette will change with every variation of the viewpoint,
but for pure 3D descriptors the change of the neighbouring
views is less dramatic and can therefore be used to discard
false positives. Figure ?? in the experimental evaluation
depicts the improvement of using multiple view similarities.

C. Descriptors

The goal of classification is to find the correct class label
for a given data cluster. This can also be seen as finding the
most similar object to the query data and assigning the label
of the most similar match. The use of multiple descriptors
can lead to an increased recognition rate as descriptors don’t
perform equally on each category. When carefully chosen,
the calculation overhead can be kept to a minimum by work-
ing on the same data and by sharing intermediate results.

Fig. 2. A 3D model of the category ”commercial plane” with the 20
viewpoints at the vertices of a dodecahedron.



We use the affine invariant shape distributions [9], moment
invariants [11] and spherical harmonics [6] as descriptors as
presented in the next sections.

1) D2 Shape Distribution: We use a multi-resolution
version of the D2 shape distribution descriptor of [9] who
introduced this descriptor for full 3D model matching. The
advantage of this descriptor is that the histogram of distances
between randomly sampled points can directly be calculated
from the point cloud. To capture coarse structures and fine
details, one has to find the best bin-size of the distance his-
togram. We avoid this by combining multiple bin resolutions
into one histogram, as depicted in Figure 3. As our choice of
distance measure we use the Taneja [1] similarity measure
(Equation 1), which performed best across all classes in our
evaluation of the similarity measures.

dT =
d∑

i=1

(
Pi +Qi

2

)
ln

(
Pi +Qi

2
√
PiQi

)
(1)

Fig. 3. The multi-resolution shape distribution histogram with bin size
32(green), 64(red), 128(blue) and 256(cyan) combined into a single de-
scriptor.

2) Voxel based Spherical Harmonics: For this descriptor
the point cloud is scaled to have a mean distance of 1 and
voxelized into a cube with side length 64. The spherical
harmonics for each of the 32 concentric spheres and for each
of the 32 frequencies is precomputed and stored in a look-
up-table. This enables this descriptor to be computed in a
fixed amount of time. For the resulting 32 by 32 histogram
we use K divergence [1] as the similarity measure given in
Equation 2.

Fig. 4. The voxelized point cloud of a plane.

dKdiv =
d∑

i=1

Pi ln
2Pi

Pi +Qi
(2)

3) Moment Invariants: For a coarse classification we use
the moment invariants presented in [11] to improve our
results. As the invariants are also calculated directly from
the point cloud, there is only little overhead on calculating
this additional descriptor. The invariants are stacked into a
single vector and as the similarity measure of choice for
this descriptor we decided on Wave Hedges [1] given in
Equation 3.

dW =
d∑

i=1

|Pi −Qi|
max(Pi, Qi)

(3)

IV. EXPERIMENTAL EVALUATION

We demonstrate the increased performance separate on
the descriptors with a sample query on the Princeton Shape
Benchmark to clearly single out the advantage of using our
proposed matching scheme. Figure 6 shows as range scan
generated from rendering the 3D model and sampling the z-
buffer. The descriptors are calculated from this point cloud
and matched against 20 categories.

For evaluation of our approach we used three databases
for evaluation of the different aspects of our approach. On
each database we used as a measure of retrieval performance
First Tier (FT), Second Tier (ST), Nearest Neighbour (NN)
and the precision recall (PR) curve together with Average
Precision (AveP) to provide a more detailed look into the
performance of the system.

A. PSB: Synthetic Data

The Princeton Shape Benchmark (PSB) database is a
common database for comparing 3D model retrieval with
1814 models in 92 categories. We used the database to
test the scalability of our approach to a high number of
categories.

Fig. 5. The voxel based spherical harmonics descriptor [6] applied to
partial view data.



(a) range scan to single view (b) range scan to single view (c) range scan to single view

(d) range scan to multiple views (e) range scan to multiple views (f) range scan to multiple views

Fig. 7. BlaBlaBla

Fig. 6. A partial view of a commercial airplane to be matched against the
database.

B. SHREC: Range Image Contest

The SHREC Range Image Matching benchmark is a
annually held contest to retrieve the object classes from
scanned objects on a table using a high resolution laser
scanner.

C. CatDB: a RGB-D Database

We introduce a new database for testing object classifica-
tion acquired with a RGB-D camera. The database provide
tools for capturing scenes from a Kinect sensor, annotate the
scenes and to replay selected scenes to ease testing.

V. CONCLUSION

In this paper we investigated the use of Web-learned
models to detect object classes in depth images from actual

scenes. The intention was to use the object class relation
to derive grasp points fort he respective objects. We imple-
mented a scheme to learn view-based 3D models given the
Web data. This reference model can be used for matching
with the depth data provided by a state-of-the-art RGB-D
sensor such as the PrimeSense sensor. The results clearly
indicate that the mixture of features used to describe the
object models achieve high recognition rates. We further
showed that with using multiple views at the matching stage
the average precision can be considerably improved.

The advantage of this approach is that new object class
models can be very efficiently learned from Web data and
that matching is robust and fast using the depth images.
Future work comprises the investigation of more and alter-
native features and a deeper analysis of the cases where
pure matching of 3D data is misleading and should be
complemented by adding appearance data to the object class
models.
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Fig. 8. The objects in the CatDB: Each object is captured by 16 views around the object and is then combined with other objects to create a more
realistic scenery. The last two images depict how the mixed scenes look like.



000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

3DIMPVT

#120

3DIMPVT

#120

3DIMPVT Submission #120. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Pose Alignment for 3D Models and Single View Stereo Point Clouds Based on

Stable Planes

Anonymous 3DIMPVT submission

Paper ID 120

Abstract

This paper presents a novel method for alignment of ge-

ometrically similar 3D models. It is based on the prior that

both models have at least one common tangent plane on

which both can stand stably and when standing on it the

models are partially aligned. To determine the final rotation

around the stable plane’s normal, needed for a complete

alignment, we adapt an image alignment technique based

on the log-polar transformation. Because the set of stable

planes of a model is small enough, alignment is efficiently

approached as a global optimization problem that finds the

common stable plane providing the best alignment accord-

ing to a similarity measure. As the method does not rely

on any kind of global symmetry features, we show it can be

used to register incomplete stereo point clouds of objects lo-

cated on a stable plane (table, ground, etc.) with the corre-

sponding similar 3D models. We evaluate the 3D-alignment

method by comparing it to the well-known CPCA and show

a significant improvement when aligning 120 models be-

longing to 12 different classes.

1. Introduction

Pose alignment has been extensively used to provide a

canonical reference system for 3D model databases to re-

inforce 3D model retrieval [15] using pose-dependant 3D

descriptors.

Not only computer graphic researchers are using 3D

databases but also robotic and computer vision researchers

have been adopting these sources of information to re-

inforce well-researched but still open issues, like object

recognition/classification ([10], [9]), object grasping ([5],

[4]), etc.

In these cases, pose alignment/registration is needed to

provide the link between 3D models (represented in a local

reference system and usually with an arbitrary alignment)

and the real world objects. 3D pose estimation in real sce-

narios faces noisy and incomplete data due to sensor and

algorithmic limitations and constrained view ranges which

makes the task even more challenging. This is one of major

drawbacks of the pose alignment methods proposed by the

computer graphic researchers: the difficulty to apply them

to align 3D models with incomplete sensed models.

Our final goal is to solve grasping of novel objects us-

ing a data-driven grasp approach. We reduce the problem

of object grasping to finding the most geometrically sim-

ilar object that we already know how to grasp and trans-

fer the known grasp, similar to [5], [4]. Objects which are

geometrically similar, will be grasped in a similar fashion.

Object grasping is a complete pose dependant problem and

therefore, in order to use valuable information provided by

sources like the ”Columbia Grasp Database” (CGDB [4]),

pose registration between the models and the real scenario

objects is required.

The contribution of this work is two-fold: we present

a novel 3D alignment method superior to the well-known

”Continous Principal Components Analysis” (CPCA [15])

and we show that its properties make it suitable to be used

for alignment of real scenario objects with 3D models. The

prior that objects stand on a stable plane is fullfilled in most

of the situations and second, avoiding the use of global ob-

ject properties like axial symmetries or moments allow us

to work with incomplete sensed models.

The rest of the paper is structured is as follows: in Sec-

tion 2, the most relevant related work in pose alignment is

summarized. Section 3 presents our method and Section 4

shows how it can be adapted to be used with sensed data

together with some preliminary results. Section 5, presents

an evaluation of the method and we finally conclude with

some future ideas.

2. Related work

Pose normalization has historically been performed by

”Principal Component Analysis” (PCA), which is based on

the computation of moments of 3D models. The principal

axes given by PCA are used to align the models after trans-

lating the center of mass (CoM) to the origin of the coor-

1
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dinate system. The most stable of all PCA-approaches is

known to be the CPCA ([15]). Chaouch et al. [2] gives

a detailed explanation for which object classes CPCA will

succeed based on plane reflection symmetry analysis.

Kazhdan [7] approaches pose alignment as an optimiza-

tion problem and reduces the computational effort using

parametrization techniques which allow to optimize inde-

pendently over smaller subspaces. Kazhdan [7] proposes to

use the axial symmetry properties of the models to factor-

ize the search space and shows that an efficient and optimal

alignment can be found for axial symmetric models. The

method computes a meaningful as possible approximation

for other types of models.

To be able to align 3D models with incomplete sensed

models, we must avoid using any methods that make use

of symmetry properties as it will be impossible to compute

them when dealing with incomplete data.

Regarding alignment of incomplete data, some re-

searchers have proposed using correspondences between lo-

cal features [6]. Such methods have two main difficulties:

selecting salient local features that work across different

types of objects and second, globally similar objects may

not share enough local features for alignment.

Goldfeder et al. [5] align partial range scans with neigh-

bor models by breaking alignment into a rough stage and a

refinement stage, using the ”Iterative Closest Point” [12] al-

gorithm. The rough stage is the initial approximation used

for ICP [12] which is known to need a good approximation

in order to be successful. The major problem in their rough

stage is to assume that the CoM of the sensed model, which

is normally a partial view of the whole object, will be close

to the CoM of the actual object.

We approach the alignment problem as a global opti-

mization problem and reduce the search space by using sta-

ble planes instead of symmetry properties like [7]. By using

stable planes, the method can be used to align objects in real

scenarios because the plane (table, ground, etc.) where the

actual object stands can be computed accurately.

3. Pose alignment for 3D models

Figure 1 depicts the flow of the proposed method. To

align a query model with a target model, the algorithm se-

lects a stable plane from each model (1) and rotates the ob-

jects so that the plane’s normals coincide. As we are con-

stantly working with the models in our database, the stable

planes are computed for all the models in a pre-processing

step. Once the objects stand on the plane, the models are

sampled and projected on the stable plane (2). The pro-

jected histograms are then aligned (rotated, scaled) using

2D shape alignment (3). The models similarity is evaluated

(4), the algorithm returns to (1) and selects the next plane

combination.
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Figure 1. Algorithm flow when aligning two models. The yellow

planes represent the stable planes of each cup. After (1), if a good

combination of planes is selected, the models stand on a common

plane and partially aligned. (2) projects the models on the plane

and (3) rotates and scales the histograms to obtain a maximal cor-

relation. The computed rotation and scale are used to transform

the models which are completely aligned after (3).

3.1. Pre-Processing: Stable planes computation

As noticed in [3], the stable planes of a model are a sub-

set of the tangent planes enclosing a model which are the

planar faces of the convex hull. In our implementation, we

perform a hierarchical clustering [1] to group the triangles

of the convex hull in planar faces. The final clusters repre-

sent the tangent planes Π.

Consider π ∈ Π. The model is rotated in such a way that

the normal of π matches the y-axis of the world coordinates

and translated to stand on π. Let cH(s) be the 2D convex

hull of the points supporting the plane, cH(proj) the 2D

convex hull of the whole projected model onto π and A(pol)
a function returning the area of a polygon pol. π is a stable

plane if the projection of the center of mass of the object

lies inside cH(s).

2
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In our case, different to [3], we are not just interested in

the upright orientation base. We would also like to align

models when they are lying on different orientations. Nev-

ertheless, being able to sort the stable planes, will allow us

to check first those stable planes with similar properties with

respect to the model. Therefore, we sort the stable planes

using the following equation:

p(π) = Ar ∗ (d1 + d2) (1)

where

Ar = A(cH(s))/A(cH(proj)) (2)

captures the static stability of π and d1,d2 represent the co-

incidence distance and collinearity distance approximating

symmetry characteristics of π as described in [3].

Although we consider this step as a pre-processing step,

if an unknown model needs to be aligned, the stable planes

can be efficiently computed as it is just needed to compute

the convex hull of the model, group triangles in planar faces

and check for each planar face the condition stated before.

3.2. Aligning the models

Let M1 and M2 represent the models to be aligned af-

ter translating their CoM to the origin. Being Π1 and Π2

respectively the stable planes of M1 and M2, the optimiza-

tion problem consists in finding the combination (Πi
1
, Πj

2
),

scale factor s and rotation r around the plane’s normal pro-

viding the best alignment. Hence, we have |Π1| ∗ |Π2| pos-

sible combinations and the best alignment is found by the

following equation:

(i, j, r, s) = argmin
Π1,Π2

D
(

Ar,s

(

R(M1, Π
i
1
),R(M2, Π

j
2
)
))

(3)

The function R(M, π) rotates the model so that the nor-

mal of π coincides with the canonical y-axis and translate

M along the y-axis in order to stand on π. Define now

M′ = R(M, π). M′

1
and M′

2
are now models laying on

the same plane for a combination of (i, j). Assuming, Πi
1

and Πj
2

would provide a good alignment base for M1 and

M2, we still need to get rid of the last degree of freedom

around the normal of the plane. Indeed, we need to find the

rotation r around the plane normal, that provides an optimal

alignment for M1 and M2. For this porpouse, we could

compute the principal components (PCA) of the projected

points on the plane and align them. As Figure 2 shows,

the result will be satisfactory when both sets of projected

points present a dominant direction but will fail otherwise.

Instead of using PCA, Ar,s (M′

1
,M′

2
) computes the rota-

tion r using a 2D shape alignment technique (see section

3.2.1) which moreover provides a scale factor s used to scale

the models. After the 2D shape alignment, our initial mod-

els have been transformed to its corresponding translated,

scaled and rotated versions: M′′

1
,M′′

2
.

Figure 2. Top row: 2D PCA will align the models correctly. Bot-

tom row: 2D PCA will fail. The dark planes represent the principal

components of the models.

The final point of equation (3) is the function D which is

a dissimilarity function:

d = D(M′′

1
,M′′

2
) ∈ ℜ, d > 0 (4)

When pose alignment is approached as an optimization

problem, a metric is needed to quantify how similar or dif-

ferent the models M′′

1
and M′′

2
are at the current optimiza-

tion step. Therefore, the dissimilarity measure must be

pose-dependant. Hence, D compares two models by ob-

taining 3 different pairs of views from M1 and M2 and

compute the contour distance for each pair of views using

the well-known distance transform. The views are obtained

by placing a virtual camera outside the model on the x, y, z
axes and configured to create a parallel projection of the

model. The view model is similar to the cross-section, floor

plan and elevation model used in CAD modelling.

3.2.1 2D shape alignment

The image registration technique presented in [16] is able to

compute the rotation and scale needed for an image patch in

order to match the original image. Transforming to the log-

polar space enables to find the needed rotation and scale by

performing ordinary cross-correlation over the transformed

images. Our problem is slightly different as the shapes we

try to register do not belong to the same object. Even so, the

cross-correlation will find the rotation and scale where both

shapes match at most and hence, the best alignment.

We use the method in [16] (without a final affine regis-

tration step) and feed it with projection histogram images

HF1, HF2 of the models onto the stable plane. The 3D

models are uniformly sampled (using the technique pre-

sented by Osada et al. [11]) and the sampled points pro-

jected on the stable plane are used to build a projection his-

3
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togram (H). Defining σ and h̄ as the average value and stan-

dard deviation of H, He as the result of the edge detector

on the binarized H and Hi = H −He, the final histogram

HF is built as follows:

HF = {Hi,Hi(u, v) >= h̄ + 2σ} ∪ He (5)

which provides a histogram composed of the edge informa-

tion of the projected model (He) and the most distinctive

parts inside of that profile in the plane’s normal direction

(back seat surface on chairs, legs on tables, etc.). HF is bi-

narized and used as input for the log-polar cross-correlation.

Figure 3 shows the importance of using the salient informa-

tion along the plane’s normal.

Figure 3. By using the projected histogram, the cross-correlation

takes into account the salient information on the plane’s normal

direction and correctly aligns the legs of the table (left part of the

image). The right part shows the alignment when only the edges

of the projection are used. It can be seen that a random orientation

is choosen for the legs.

The method provides a scale factor (s) in the XZ plane

that can directly be used to scale the whole model isotropi-

cally. We avoid anisotropically scaling as it will lead to de-

formations on the structure of the object. Using directly (s)

to scale the model discards all the scale information given

by the model along the plane’s normal direction. There-

fore, a scale factor s′ is computed along that direction (see

[15]). The models are scaled independently using (s) and

(s′) and the scale factor giving the smallest dissimilarity d
is choosen.

3.2.2 Computational requirements

The complexity of the method is O(m× n× d× s), where

m and n are the number of stable planes in the models we

would like to align, d is the size of the projected histogram

(see Eq. (5)) and s is the scale range we want to check

when computing cross-correlation. The histogram size d is

256 and s ranges in [−5, 5] in the log-polar space meaning

that the query model may be 20% smaller or bigger than the

target model.

Because the stable planes are sorted similarly it is not

necessary to check all the possible combinations. Accord-

ing to our experiments, if we set the upper bounds for the

iterators i,j (see Eq. (3)) to 3 and 5 respectively, we still

have a high probability that any of these 15 combinations

will contain a common stable plane which provides a good

alignment base. If one of the planes is fixed, as when we

want to align a real object in a scene, we set i = 1 (ground-

table plane) and probably all the possible combinations for

M2, so that, j = |Π2|.

4. Aligning sensed models with 3D models

In this section, we present how the method can be

adapted to align sensed models, reconstructed from a single

stereo view, with the corresponding similar 3D model. In

this situation, the reconstruction of the sensed model will be

incomplete as some parts of the object are not seen from the

camera point of view and some visible parts will be missing

or noisy. Due to the unseen parts of the object, the CoM of

the reconstruction projected on the plane is shifted from its

actual position. Therefore, we cannot longer use the cen-

ters of mass to center the models as usually done for 3D

models alignment. Hence, instead of having two degrees of

freedom (rotation around the plane normal, scale), we have

now two more: the actual center of mass coordinates of the

sensed model on the plane.

The multiscale approach of the log-polar registration,

also presented in [16], is able to determine the translation

between two images (histograms in our case) that we use

to center the models. At a given resolution, the projected

histogram of the sensed model is translated to different po-

sitions, the log-polar transformation is computed and cross-

correlated with the log-polar transformed histogram of the

3D model to determine rotation and scale. The parameters

giving the highest correlation are used as an approximation

for the next level. Additionally, the log-polar registration

can cope with model inclompeteness and it is robust enough

to succeed with noisy data to a certain degree.

Regarding model incompleteness, although cross-

correlation is a global measure, it is still able to determine

the parameter location where the projections match at most

with each other even when one of the projections is incom-

plete. One can think about cross-correlation as a local fea-

tures approach with the advantages that the features do not

need to be explicitly specified and that all the information

available is used.

Because the scale between real objects and the 3D mod-

els database could be bigger than the scale range accepted

by the log-polar registration, a preliminary step to approx-

imate the scale of the models is needed. Scaling the mod-

els so that the dimensions along the plane normal match

(like when computing s′) ensures that the scale factor will

be small enough and therefore, inside the range checked by

the cross-correlation.

Figure 4 shows models reconstructed from stereo data

aligned with the corresponding 3D models on the database.

The reconstructed models where obtained from virtual

stereo cameras by taking a view of the model lying on a

4
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stable plane. As stereo algorithms need textured regions to

estimate depth, each triangle on the model is painted using

a random color.

Please note, that when a higher precision is needed, the

alignment given by our method can be used as an accurate

starting approximation for ICP [12] as done by other re-

searchers [5].

Figure 4. Left: 3D reconstruction from stereo. Right: Stereo

point cloud (green) aligned with the most similar 3D model in our

database (red) using our method. Best viewed in color.

5. Evaluation

To evaluate the 3D pose alignment algorithm we have

randomly selected 120 models belonging to 12 classes

included in the Princeton Shape Benchmark [14] (PSB).

Given a query model Mi, the target model (Mj , j 6= i)
is selected by finding the closest geometrical (according to

Spherical Harmonics Descriptors [8]) model belonging to

the same class than Mi. PSB contains a tree-like classifica-

tion used to find the possible target candidates belonging to

a given class.

The performance is evaluated (Table 1) by using the dis-

similarity measure we introduced before and computing it

for each pair of aligned models after being aligned with

CPCA [15] and the presented method. It can be seen that

our method is superior than CPCA.

In Table 2 the evaluation is performed using the Spher-

ical Extent Descriptor [13]. CPCA performs slightly bet-

ter than our method for categories on which the principal

Figure 5. Left: 3D models aligned using our method. Right: Same

models aligned using CPCA. Stable plane is also shown. Best

viewed in color.

components are strongly defined (tool, human, vehicle and

blade). Helicopters are better aligned with CPCA for two

reasons: in some cases, our prior is not fullfilled as the sta-

ble plane providing the alignment base is not found due to a

non uniform mass distribution of the actual helicopter (3D

models are assumed to have a uniform mass distribution)

and in other cases, the 2D shape alignment gets a higher

correlation when aligning the rotor blades (mobile part of

the model) instead of the body. Even so, as the method

presented outperforms CPCA for other classes (see Figure

5), the average performance of our method is slightly better

than CPCA when using the Spherical Extent Descriptor for

comparison.

6. Conclusions and future work

We have presented a novel pose alignment approach that

can be applied to a wide class of shapes. It is able to ef-

ficiently align 3D objects with other geometrically similar

objects by using the prior that similar objects will share one

or more stable planes which provide an alignment base.

Using this prior instead of global properties of the ob-

jects, allowed us to show that the method can be adapted to

align point clouds reconstructed from a single stereo view

with the corresponding 3D model.
Nevertheless, we believe some improvements are still
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Avg Max

CPCA Ours Diff CPCA Ours

animal 1.98 1.66 +0.33 2.97 2.83

tool 0.75 0.80 -0.04 1.50 1.51

airplane 1.09 0.95 +0.13 2.57 1.76

helicopter 1.76 1.48 +0.28 3.29 2.18

vehicle 1.43 1.31 +0.12 3.14 2.82

human 0.74 0.70 +0.05 1.28 1.19

liquid c. 2.26 1.50 +0.77 5.71 3.53

gun 1.55 1.23 +0.32 2.57 2.01

seat 2.37 1.64 +0.74 4.50 4.95

blade 0.73 0.84 -0.11 1.75 2.05

shelves 1.71 1.47 +0.24 3.52 3.23

table 2.30 1.70 +0.61 5.50 2.69

All 1.56 1.28 5.71 4.95

Table 1. Results aligning 120 models with the proposed method

and CPCA. To generate the results for our method we have used

the first three stable planes for Mi and the first five for Mj . The

metric used for comparison is the dissimilarity measure we intro-

duced before.

Avg Max

CPCA Ours Diff CPCA Ours

animal 1.30 1.20 +0.10 1.93 1.65

tool 0.55 0.62 -0.07 1.17 1.49

airplane 1.03 0.95 +0.08 2.08 1.66

helicopter 0.84 1.03 -0.19 1.22 1.76

vehicle 1.36 1.40 -0.04 3.69 3.63

human 0.66 0.70 -0.04 1.15 1.12

liquid c. 1.97 1.59 +0.38 4.61 3.64

gun 0.92 0.85 +0.07 2.00 1.29

seat 2.44 2.21 +0.23 3.10 3.03

blade 0.30 0.48 -0.18 0.46 1.31

shelves 1.90 1.91 -0.01 3.09 3.24

table 2.46 2.12 +0.34 4.48 2.84

All 1.32 1.26 4.61 3.64

Table 2. Results aligning 120 models with the proposed method

and CPCA. To generate the results for our method we have used

the first three stable planes for Mi and the first five for Mj .

The metric used for comparison is the L2-difference between the

spherical extent descriptors of the models.

possible when computing the final rotation around the align-
ment base by improving the 2D shape alignment method or
even by correlating 3D descriptors. In any case, the method
used should fullfill the requirements, stated during the pa-
per, for alignment of sensed models. Besides, we will be
implementing the algorithm in our robotic arm to test the
grasping approach (includes the proposed alignment) in real
robotic scenarios.
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Abstract—Affordances (Unit utility, functional and topological 
relationships) and semantic scene understanding are key to 
building a generic, scalable and cognitive architecture for visual 
perception. ‘Affordance based object recognition’ or recognition 
based on affordance features is an important step in this regard. 
In this paper, we extend the scope of affordance features to define 
‘Conceptual Equivalence Classes’ and to recognize these classes 
leading to a Visual Cognitive Engine. This schema is analogous to 
building a scalable unit (part/ part assembly/ object) recognition 
system. This system has been built with the target of enabling a 
robotic arm to grasp a-priori unseen objects in a cluttered scene 
using global knowledge. The Visual Cognitive Engine uses inputs 
from multiple ontology bases – ConceptNet (for unit concept 
definitions), WordNet/WebKB (for textual unit definitions), Otto 
Bock Human Grasping database (for grasp affordances), 
ImageNet and other resources (for visual unit definitions), 
together with the Part Functional Affordance Schema, developed 
in this paper, to establish semantic unit affordances. Recognition 
of parts or part assemblies based on affordances, using the Visual 
Cognitive Engine enables knowledge of affordance and 
interaction modes for the entire object. This leads to a goal-
directed object recognition and manipulation system that can 
perform implicit cognitive tasks such as substitute a cup for a 
mug, bottle, jug, pitcher, pilsner, beaker, chalice, goblet or any 
other unlabeled object, but with a physical part affording the 
ability to hold liquid and a part affording grasping, given the goal 
of ‘bringing an empty cup’ and no cups are available in the work 
environment. The performance of such a system is superior to 
traditional view-point based object recognition and manipulation 
systems.   

Keywords-Affordance, Recognition by Components, Part 

affordances, Grasping, Cognitive Object Recognition 

I.  INTRODUCTION 
Semantic scene understanding is key to building a holistic 
visual object recognition and manipulation system for robots. 
The Semantic Robot Visual Challenge (SRVC) [28] provides a 
platform for research in this direction. SRVC is a research 
competition that is designed to utilize automatic acquisition of 
knowledge from large unstructured databases of images. Fully 
autonomous robots utilize learn visual models of queried 
objects from the web in order to identify the objects in the 
robot's cameras. Other projects such as RoboEarth [29] also 
utilize the web as a knowledge resource for model based object 
recognition and manipulation. Embodiment based scene 
understanding using RACER logical ontology base and proto-
object definitions have been studied in [10].  

On a more generic level, besides robotics, Semantic Web 
based knowledge acquisition systems have been typically 
defined using Web Ontology Languages (OWL), that are 
characterized by formal semantics and RDF/XML-based 
serializations. Extensions to OWL have been used in semantic 
editors such as Protégé and semantic reasoners and ontology 
bases such as Pellet, RacerPro, FaCT++, HermiT, etc. In the 
area of semantic text parsing and knowledge management, a 
number of frameworks such as Framenet, Lexical Markup 
Framework (LMF), UNL, WordNet and WebKB are available. 
Alternatively, a number of tools for conceptual knowledge 
management have also been developed recently. These include 
reasoners and concept ontologies such as Mindpixel, Cyc, 
Learner, Freebase, YAGO, DBpedia, and MIT ConceptNet. 
These semantic reasoners and ontology databases can be 
directly exploited for applications in robotic manipulation.  

The most significant of semantic knowledge acquisition 
systems for robotic vision systems is KnowRob (Knowledge 
Processing for Robots) [13], which uses reasoners and machine 
learning tools such as Prolog, Mallet and Weka, operating on 
ontology databases such as researchCyc and OMICS (indoor 
common-sense knowledge database). In the case of KnowRob, 
the data for the knowledge processing stems from three main 
sources: semantic environment maps, robot self-observation 
routines and a full-body human pose tracking system. 
Extensions to KnowRob, such as the K-COPMAN 
(Knowledge-enabled Cognitive Perception for Manipulation) 
system [14], enable autonomous robots to grasp and manipulate 
objects.  

All the above frameworks for knowledge acquisition based 
object grasping and manipulation suffer from the fact that they 
require the use of explicit model databases containing object 
instances of the query to be processed, in order to obtain 
successful object recognition. K-COPMAN, for instance, uses   
CAD for matching 3D point clouds in order to identify the 
queried object in the given environment. Furthermore, while 
using semantic knowledge of the scene in order to improve 
object recognition and manipulation, these systems are largely 
devoid of performing implicit goal-directed cognitive tasks 
such as substituting a cup for a mug, bottle, jug, pitcher, 
pilsner, beaker, chalice, goblet or any other unlabeled object, 
but with a physical part affording the ability to hold liquid and 
a part affording grasping, given the goal of „bringing an empty 

cup‟ and no cups are available in the work environment. 
In order to alleviate these issues, we utilize the concept of 

part affordances.  Gibson proposed the original idea of 



affordances grounded in the paradigm of direct perception. 
Physical affordances define the agent‟s interaction possibilities 
in terms of its physical form [16]. For example, stable and 
horizontal surfaces are needed to support objects, objects need 
to have a brim or orifice of an appropriate size, in order to be 
functional as a container to drink from. Additional examples of 
affordances studied with respect to robotic manipulation in [16] 
include „sittability‟ affordance of a chair that depends on body-
scaled ratios, doorways affording going through if the agent fits 
through the opening, and monitors afford viewing depending 
on lighting conditions, surface properties, and the agent‟s 
viewpoint. The spectrum of affordances have been extended to 
include social-institutional affordances, defining affordances 
based on conventions and legally allowed possibilities leading 
to mental affordances. Affordances based on History, 
Intentional perspective, Physical environment, and Event 
sequences (HIPE) leading to functional knowledge from mental 
simulations have been studied in [15]. Affordances serve as key 
to building a generic, scalable and cognitive architecture for 
visual perception. „Affordance based object recognition‟ or 
recognition based on affordance features is an important step in 
this regard. 

II.  OVERVIEW 
The primary contribution of this paper is in providing a 

scalable knowledge assimilation and deployment framework 
for robotic grasping that is free of 3D model instance 
representations. The second contribution of this paper is the 
introduction of „Conceptual Equivalence Classes‟ and their 
unique definition in terms of the minimalistic features of Part 
Functional Affordances and Part Grasp Affordances, leading to 
implicit cognitive processing for successful goal attainment. 
The third main contribution is in providing a practical pathway 
for symbol binding – from concepts to observables by defining 
functional geometry mappings. A fourth contribution is the 
automatic generation of grasp points, knowledge of affordance 
and interaction modes for unknown/ un-modeled objects based 
on partial information obtained from the constituent parts. 
Other contributions include algorithms for part detection and 
segmentation from range images, a scalable architecture for 
grasping that can be extended with textual, conceptual, visual 
(2D/3D) model databases. 

As stated earlier, the focal point of our grasping system is 
based on the concept of part affordances. Recognition by 
components (RBC) of objects has been a significant framework 
in cognitive vision [6, 7, 8]. This theory expounds the use of 
known part shapes (called as geons) towards object 
recognition. In this paper, we generalize this theory towards 
„Equivalence Class‟ recognition using part affordances. These 
„Conceptual Equivalence Classes‟ help define the scalable and 
generic nature of the Visual Cognitive Engine. This system has 
been built with the target of enabling a robotic arm to grasp a-
priori unseen objects in a cluttered scene using global 
knowledge from ontology bases and part shape detection. The 
Visual Cognitive Engine uses inputs from multiple ontology 
bases – ConceptNet (for unit concept definitions), 
WordNet/WebKB (for textual unit definitions), Otto Bock 

Human Grasping database (for grasp affordances), together 
with the Part Functional Affordance Schema, developed in this 
paper, to establish semantic unit affordances. ImageNet and 
other image feature resources (for visual unit definitions) can 
also be used in our framework, though this is not important 
from the standpoint of grasping. While the original approach 
towards RBC uses Dynamic Link Architecture (DLA) for 
learning geon assemblies [7] and hence objects, recent 
algorithms such as Attributed Graph Matching [17] and 
advanced variations of it such as the Elastic Graph Dynamic 
Link Model (EGDLM) have proven to be highly successful in 
recognition of objects or segments based on descriptions of 
these entities as a combination of nodes representing parts or 
patches in a graph. In our framework, we use a practical and 
fast variation of Attributed Graph Matching for both symbolic 
and metric nodes using the Hungarian algorithm from [18] to 
perform unit – part/ part-assembly matching. Recognition of 
parts or part assemblies based on affordances, using the Visual 
Cognitive Engine enables knowledge of affordance and 
interaction modes for the entire object. This leads to a goal-
directed object recognition and manipulation system that can 
perform implicit cognitive tasks such as substitute a cup for a 
mug, bottle, jug, pitcher, pilsner, beaker, chalice, goblet (based 
on textual equivalency descriptors) or any other unlabeled 
object, but with a physical part affording the ability to hold 
liquid and a part affording grasping (using conceptual 
equivalency classes), given the goal of „bringing an empty cup‟ 
and no cups are available in the work environment. The 
performance of such a system is superior to traditional view-
point based object recognition and manipulation systems. 

III.  CONCEPT BUILDING 

A. Conceptual Equivalence Classes 

The fundamental basis of our framework revolves around the 
theme of „Conceptual Equivalence Classes‟.  We define these 
classes as sets of objects that are interchangeable from the 
view-point of usage for the primary functionality of the object. 
Hence, objects such as mugs, cups and beakers form an 
equivalence class. Bags and baskets also form an equivalence 
class, so do cans and bottles, bikes and motorbikes and so forth. 
We hypothesize here that all equivalence classes can be 
uniquely defined and recognized in terms of their (a) Part 
Functional Affordance Schema and (b) Part Grasp Affordance 
Schema. The Part Functional Affordance Schema is explained 
in detail in section III.F, while Part Grasp Affordances are 
explained in section III.E. These schemas define the structural 
functionality of the parts and the structural grasp-ability 
respectively. Recognition of conceptual equivalence classes is 
analogous to generic and cognitive object recognition systems 
that have been studied in [6, 7, 8]. It should be noted here that 
the definition of conceptual equivalency class used here is 
distinct and unrelated to the equivalency class definitions 
provided by the OWL framework, which uses only textual or 
named entity equivalency. 



B. Textual Unit Definitions  

In our framework, we employ WordNet [5] for generating 
textual unit definitions for concepts or objects queried for. 
While WebKB provides improvements over WordNet, while 
returning results that are restricted to nouns (of specific 
interest to our framework), the standalone nature of WordNet 
recommends its usage. WordNet provides a lexical database in 
English with grouped sets of cognitive synonyms (synsets), 
each expressing a distinct concept. It also records the various 
semantic relations between these synonym sets, such as 
hypernyms (higher level classes), hyponyms (sub-classes), 
coordinate terms (terms with shared hypernyms), holonyms 
(encompassing structure) and meronyms (constituent parts). 
The system interacts with the WordNet interface based on the 
queried term to obtain a possible match. This is discussed in 
detail in section III.G. The system also assimilates concept 3D 
geometric shape information such as Sphere, Cylinder, Cube, 
Cone, Ellipsoid, Prism, etc., 2D geometric shape information 
such as Square, Triangle, Hexagon, Pentagon, Ellipse etc. and 
abstract structural concepts such as Thin, Thick, Flat, Sharp, 
Convex, Concave etc. by parsing the concept definition. 
Additionally, information on material properties of the concept 
such as Metal, Wood, Stone, Ceramic etc. and part functional 
affordance properties (based on terms such as Cut, Contain, 
Store, Hold, Support, Wrap, Roll, Move, Ride, Enter, Exit, 
Gap, Hole)  are also obtained and stored by the system. 

C. Conceptual Unit Definitions 

For the case of conceptual unit definitions, we employ the  
Open Mind Common Sense (OMCS) [11] based ConceptNet 
framework. ConceptNet has been used in the context of 
robotic task management [12]. The particular choice of this 
ontology database is due to its exhaustiveness, ease of use and 
suitability of attributes with respect to our affordance 
framework. The ontology provides English language based 
conceptual groupings. The database links each concept with 
properties such as „InstanceOf‟ and „SymbolOf‟ – possibile 
semantic replacements, „ConceptuallyRelatedTo‟ – possible 
functional/conceptual replacements, „PartOf‟ – encompassing 
structures, „ReceivesAction‟, „CapableOf‟, „UsedFor‟ – 
possible functional affordances as well as „MadeOf‟, 
„HasProperty‟ etc. that provide further information about the 
concept. The use of these properties enables the part 
affordance based equivalence class selection. Detailed 
description on the querying process using these tags is 
presented in section III.G. 

D. Visual Unit Definitions  

While visual unit definitions can be used to improve the 
performance of the system or to obtain instance level 
recognition, our novel framework for conceptual equivalence 
class recognition and grasping system does not require the use 
of these databases and hence is 3D/2D model free. 
Furthermore, it should be noted that from the viewpoint of 
grasping using range images, monocular image information is 
largely superfluous. Instance level recognition, if necessary in 
future revisions to the system, can be carried out using a bag 
of features approach working with SIFT/SURF or other state-

of-art feature descriptors on labeled image or 3D shape 
databases (such as LabelMe, LabelMe 3D and ImageNet).  

E. Grasp Affordance Definitions  

For the case of part grasp affordance definitions, a number of 
systems are available. These can be used for limiting the large 
number of possible hand configurations using grasp preshapes. 
Humans typically simplify the task of grasping by selecting one 
of only a few different prehensile postures based on object 
geometry. One of the earliest grasp taxonomy is due to 
Cutkosky [4]. In our system we employ the „Human Grasping 
Database‟ [3] from KTH-Otto Bock. This taxonomy lists 33 
different grasp types hierarchically assimilated in 17 grasp 
super-types. It is possible to most of these grasp types to 
geometric shapes they are capable of handling. A 
representative set of grasp affordances from the database are 
presented in Fig 1. Each query concept is defined (as a whole 
or in parts) to provide grasp affordances of the types listed in 
the taxonomy database. 

 

F. Part Functional Affordance Schema 

The most important component of the presented system is the 
Part Functional Affordance Schema. This component 
essentially performs the symbol binding – mapping concepts: 
in our case – the Conceptual Equivalence Classes to visual 
data in the form of 3D geometries. While various schemes for 
affordance definitions have been studied in the past, we utilize 
a set of part functional affordance schema, largely with respect 
to objects found in households and work environments. These 
affordances are based on functional form fit of the Conceptual 
Equivalence Classes. A representative section of the part 
functional affordance schema is presented in Table I. Note that 
the functional affordance here is defined with respect to 
objects of the class being able to perform the defined function. 

TABLE I.  REPRESENTATIVE PART FUNCTIONAL AFFORDANCE SCHEMA 

Part Functional 
Affordance 

Geometric 
Mapping Examples 

Contain - ability High 
convexity 

Empty 
bowl, Cup 

Support - ability Flat - Convex Plate, Table 

 
Figure 1. Representative Grasp Affordances from Otto Bock Human Grasping 

Database 



Intrinsic contain -
ability 

Cylinder/Cube
/Cuboid/Prism 

Canister, 
Box 

Incision - ability 
Sharp edge 
(flat linear 
surface) 

Knife, 
Screwdrive

r 
Engrave - ability Sharp Tip Cone, Pen 

2D Roll - ability Circular/ 
Cylindrical 

Tire, Paper 
Roll 

3D Roll - ability Spherical Ball 

Weed - abilitya Linear textural 
structures 

Comb, 
Brush 

Filter - abilitya 
Bi-linear 
textural 

structures 

Grid, 
Filters 

Wrap(p) -ability w.r.t. given 
shape 

Shoe, 
Glove 

Connect - abilitya Solid with 
support (m) 

Plug, USB 
Stick 

a. Joint Affordances 

The scale of each part is also defined with respect to a discrete 
terminology set based on comparative sizes – (finger (f), hand 
(h), bi-hand (b), arm/knee (a), torso (t), sitting posture (i), 
standing posture (d), non-graspable (n) etc.). The conceptual 
equivalence classes are defined based on joint affordances of 
parts of the objects, along with their topological relationships. 
Some of the various topological relationships (for 2-part 
objects) used are Table II. 

TABLE II.  PART JOINT TOPOLOGICAL RELATIONSHIPS 

Relationship Code Details 
1v2 1 vertical 2 
1h2 1 horizontal 2 

1v2n 1 opposition 
vertical 2 

1h2n 1 opposition 
horizontal 2 

1s2 1 staggered 2 

1os2 1 orthogonally 
staggered 2 

 

In Table II, 1 indicates the larger object and 2 the smaller one, 
vertical dimension refers to the smallest of the 3 dimensions 
and horizontal to the largest. All relationships are with respect 
to the non-symmetrical axis of the object (for e.g. the opening 
in a roughly cuboidal bag). Opposition refers to the 
relationship with respect to the face opposite to the non-
symmetrical face.  

Based on these attribute definitions, the equivalence 
classes can be uniquely represented. Examples of equivalence 
classes are provided in Table III. Note that (ga) denotes grasp 
affordance and (pa) denotes part affordance. 

TABLE III.  EXAMPLE EQUIVALENCE CLASS DEFINTIONS 

Equivalence 
Class – 

Represented 
by its 

Dominant 
Member 

Defintion 

Bag 1v2, b-a, handle (ga), opening (pa: 
containability) 

Plate h-b, (ga), (pa: supportability) 

Cup 1h2, f-h, handle (ga), opening (pa: 
containability) 

Chair 1os2, a-i, 2x(pa: supportability) 
Canister h-b, (pa: intrinsic containability) 

Box h-i, (pa: intrinsic containability) 

Plug 1v2n, f-h, support, contact (pa: 
connectability (m)) 

Knife 1h2, f-h, grip, blade (pa: incisionability) 

Bike b,a,a, 1v2(3hv4), seat (pa: supportability), 
2xwheels (pa: 2drollability) 

Laptop b-a, (pa: supportability) 
Pen f-h, grip, tip (pa: engravability) 
Ball h-a, (pa: 3drollability) 

Spoon 1h2, f-h, grip, opening (pa: containability) 
Spatula 1h2, f-h, grip, opening (pa: supportability) 
Faucet 1h2, f-h, pipe, orifice (pa: filterability) 

Suitcase 1v2, b-a, handle, box (pa: intrinsic 
containability) 

Desk a-d (pa: supportability) 
Cabinet a-d (pa: intrinsic containability) 

Stair nx(pa: supportability) 

Shoe opening (pa: containability), (pa: 
wrappability/ ellipsoid) 

Key 1v2n, f-h, support, contact (pa: 
connectability (m)) 

Brush grip, bristles (pa: weedability) 
Shelf nx(pa: supportability) 

Scissors 2xblade (pa: incisionability) 

Cars 4xwheels (pa: 2drollability) (intrinsic 
containability)  

 

G. Query Evaluation 

For any given query term, the system checks for availability of 
concept definition in the following list of attributes in a 
sequential order. The first database to be queried for is (a) the 
Part Affordance Schema. If unavailable, the system checks for 
the availability of a concept in the Part Affordance Schema 
that is matched using (b) the synsets of the queried term, 
followed by the „InstanceOf‟ and „SymbolOf‟ properties from 
ConceptNet, if necessary. If a match is not found, the system 
tries to use (c) the ConceptuallyRelatedTo property returned 
by ConceptNet (in response to the query term) to define 
possible alternatives for the object to be found. Alternatively, 
(d) the coordinate terms of queried object are searched for in 
order to obtain a conceptual replacement object. If a match is 
still not found, the system searches in (e) the holonym list and 
(f) the „PartOf‟ list from ConceptNet. This is followed by 
matching for (g) „ReceivesAction‟, „CapableOf‟, „UsedFor‟, 
which denote possible functional equivalency of the objects.  

The frequency scores on each of these properties are also 
returned as a measure of confidence in the object found. If no 
matches are found in the Part Affordance Schema for the 
queried object or any of the alternatives to be searched for, as 
suggested by the above list of related objects, the system 
parses the definitions of the queried object returned by both 
WordNet and ConceptNet to search for structural properties 
associated with the object. These include shape geometry 
information such as cylindrical, spherical or cuboidal or its 



alternate surface forms as well as abstract geometrical 
property terminologies such as flat, thick, thin, concave or 
convex.  

Material properties of the object from the parsed definitions 
such as wood, stone or metal, (as well as those returned by the 
„MadeOf‟ property from ConceptNet) as well as functional 
affordances from WordNet are stored as properties of the 
concept being queried for. While it is possible that the given 
range scene can be searched for the required object entirely 
based on the geometry information or the defined geometries 
(from the Part Functional Affordance Schema) based on a 
matched affordance property returned from parsing the 
concept definitions, the confidence level (based on frequency 
scores and weighted by property confidence measures) 
returned by such an unit recognition scheme is very low. 
Furthermore, based on a learned appearance database of 
different material types (such as wood, stone or metal), the 
classification can be improved if monocular scene imagery is 
also available. Such a material classification approach can also 
be used to select salient regions in the scene in order to reduce 
computation requirements of the range image processing. 

IV. SYMBOL BINDING - CONCEPTS TO OBSERVABLES – 
FUNCTIONAL GEOMETRY MAPPING 

Symbol binding for grasping has been challenging problem. 
Approaches such as [23] and [24] use various heuristic 
methods to solve the problem. Another approach using shapes 
and contours combined with grasp point learning is found in 
[25]. Alternate approaches that aid in obtaining grasp points 
directly include [19, 20, 21, 22]. In our framework, we use a 
more elegant approach of structural definitions of functional 
affordances to address the problem. 

 
Figure 2. Pipeline for Equivalence Class Detection and Grasp Generation 

from Range Images 

A. Range Data Pre-Processing 

For the detection of part boundaries, it is necessary to use 
depth maps and surface normals obtained from the depth 
maps. However, the presence of noise in the system and sensor 

resolution can severely hamper the quality of surface normals 
obtained. Hence it is necessary to perform surface 
regularization before part detection. We employ a two step 
process – (a) Depth Diffusion in order to estimate depth values 
in regions with sparse range data (varies based on sensor used 
– due to reflectivity of surfaces and presence of texture), (b) 
Bilateral filtering for surface regularization. While the 
diffusion process can also regularize the surface, we keep this 
stage independent since both outputs are necessary for further 
processing and better control of scale is obtained using 
independent stages. Depth diffusion is required to reduce the 
sparsity of the point cloud for reliable and coherent surface 
estimation. Diffusion of depth values is carried out using a 
Piecewise Isotropic Laplacian Partial Differential Heat Linear 
Equation (PDE) Solver. By combining Multi-grid and Iterative 
Back Substitution (IBS) schemes to solve the PDE equation, 
rapid convergence is obtained. 

The PDE representing the flow of heat in a 2 dimensional 
isotropic medium is given by 

𝜕𝑢(r, 𝑡)

𝜕𝑡
= 𝑐  

𝜕2𝑢(r, 𝑡)

𝜕𝑥2
+ 

𝜕2𝑢(r, 𝑡)

𝜕𝑦2
  

The equation can be reduced to a system of equations forming 
a block-tridiagonal matrix system with fringes. Denoting the 
upper tri-diagonal as 𝑐1(𝑖, 𝑗) and lower tri-diagonal as 𝑎1(𝑖, 𝑗) 
and the upper fringe as 𝑐2(𝑖, 𝑗), lower fringe as 𝑎2(𝑖, 𝑗), and 
the main diagonal as 𝑏1(𝑖, 𝑗) , The fast IBS based Depth 
Diffusion algorithm [9] is given by, 
 
FringeTriDiagSolver := {InitializeSolution, 
InitializeMatrixComputation, iiter -> 0, 

While[{CurrEps > EpsTol && iiter < MaxItr && AbsErr 
> AbsErrTol},{ 

iiter -> iiter + 1, 
StorePreviousResult, 

ForwardSubstitution,BackwardSubstitution, 
ComputeMaximumResidual}] } 
 

where, InitializeMatrixComputation estimates the values of 
intermediate matrices 𝐺, 𝑄𝑖 , 𝑃𝑖as, 
 

𝐺(𝑖, 𝑗)  ∶=  1/( − 𝑎1(𝑖, 𝑗) ∗ 𝑄1(𝑖 − 1, 𝑗)  −  𝑎2(𝑖, 𝑗)
∗ 𝑄2(𝑖,−1)  −  𝑏1(𝑖, 𝑗) ); 

𝑄1(𝑖, 𝑗) ∶=  𝐺(𝑖, 𝑗) ∗ (𝑎2(𝑖, 𝑗) ∗ 𝑄1(𝑖, 𝑗 − 1) ∗ 𝑄2(𝑖 + 1, 𝑗
− 1)  + 𝑐1(𝑖, 𝑗)); 

𝑄2(𝑖, 𝑗)  ∶=  𝐺(𝑖, 𝑗) ∗  𝑐2(𝑖, 𝑗); 
𝑃1 (𝑖, 𝑗)  ∶= 𝑄1(𝑖, 𝑗) ∗ 𝑋(𝑖 + 1, 𝑗); 
𝑃2 (𝑖, 𝑗)  ∶=  𝑄2(𝑖, 𝑗) ∗ 𝑋(𝑖, 𝑗 + 1); 

ForwardSubstitution and BackwardSubstitution modules are 
iterated until convergence of X estimated as,  

𝑀 𝑖, 𝑗 ∶=  𝐺(𝑖, 𝑗) ∗ (𝑎1 𝑖, 𝑗 

∗  𝑀 𝑖 − 1, 𝑗 + 𝑃2 𝑖 − 1, 𝑗 + 𝑃3 𝑖 − 1, 𝑗  + 𝑎2(𝑖, 𝑗)

∗ (𝑄1(𝑖, 𝑗 − 1) ∗ (𝑀(𝑖 + 1, 𝑗 − 1)  + 𝑃1(𝑖 + 1, 𝑗 − 1))  
+  𝑀(𝑖, 𝑗 − 1)  − 𝑆(𝑖, 𝑗)); 

𝑃1 (𝑖, 𝑗)  ∶=  𝑄1(𝑖, 𝑗) ∗ 𝑋(𝑖 + 1, 𝑗); 
𝑃2 (𝑖, 𝑗)  ∶=  𝑄2(𝑖, 𝑗) ∗ 𝑋(𝑖, 𝑗 + 1); 

𝑋(𝑖, 𝑗)  ∶=  𝑀(𝑖, 𝑗)  + 𝑃1(𝑖, 𝑗)  + 𝑃2 (𝑖, 𝑗) + 𝑃3 (𝑖, 𝑗) 



where 𝐺  is an inverse matrix, 𝑄𝑖 ,  𝑃𝑖 ,  𝑀  are intermediate 
matrices and 𝑆  is the solution matrix (the right side of the 
equation) 

Traditional isotropic diffusion solvers smooth out 
edge regions. We suppress the calculation of the forward and 
backward substitution modules for known depth pixels, 
thereby propagating and preserving segment boundaries as 
well as depth edges across iterations.  

The pre-processed depth images are then surface 
regularized for normal estimation using an edge sensitive 
bilateral filter employing a Gaussian kernel. By appropriate 
selection of spatial and range scales, regularized depth 
surfaces are obtained. The equations for the bilateral filter are 
given by 

𝒉 𝒙 =  
1

𝑘
   𝒇 𝜌 . 𝑐 𝜌 − 𝒙 . 𝑠 (𝒇 𝜌 − 𝒇(𝒙))𝑑𝜌 

𝑘 𝒙 =   𝑐 𝜌 − 𝒙 . 𝑠 𝒇 𝜌 −  𝒇 𝒙  𝑑𝜌 
Where the Gaussian kernels based on the spatial difference 
𝜌 − 𝒙 and the range difference 𝒇 𝜌 −  𝒇 𝒙  establishes edge 
sensitive filtering.  

B. Part Detection from Range Images 

The majority of methods for part detection are 
computationally intensive. These include the relaxation 
labeling approach in [28]. Given the need to meet real-time 
constraints for deployments on robots, we use a low 
complexity multi-scale edge analysis scheme on the 
depth/disparity map. This part/object segmentation scheme 
links edges found at various scales using proximity and 
similarity measures to form enclosed regions or segments in 
depth maps. These edges correspond to partial object 
boundaries or jump discontinuities. In order to estimate the 
remaining object boundaries and intra-object part boundaries, 
we use the surface regularized depth map in order to estimate 
local average surface normals. A multi-scale edge analysis on 
the component normal images yields object contact boundaries 
and part boundaries. The angles between the normals at the 
edges are then used to classify the boundaries as contact 
(convexity – less than 90 degrees) or intra-object surface 
extremity (concavity –greater than 90 degrees) edges. Please 
note that in order to ensure scalability of the system to 
cluttered environments, we make no assumptions on the 
presence of a table or stable plane in the scene; detection of 
which is commonly done in order to greatly simply the 
segmentation process. Results from detection of holes and 
concavities in the objects are further used to enhance the 
object grouping. Finally, a convexity analysis is used to 
identify parts belonging to each object. The detected parts are 
then fit to geometric primitives using superquadrics. Handles 
and thin flat surfaces are excluded from the analysis. 

C. Part Recognition using Superquadric Fitting 

Superquadrics serve as highly efficient generic geometric 
primitives in order to obtain grasp configurations for parts/ 
objects with no a-priori model knowledge. Superquadrics can 
model superellipsoids as well as supertoroids [26, 27]. Most 
typical symmetrical 3D geometries – such as cubes, cones, 

cylinders, spheres, cuboids etc. can be modeled using 
superquadrics. However, super-quadrics are not very efficient 
in modeling concavities. Hence, we restrict the parameter 
values of the superquadric fitting process to only convex 
structures. This serves as an added advantage in geometric part 
affordance detection, as discussed in section IV.D. Noise and 
sparsity of the 3D point cloud generated can be serious issues 
in the fitting process. These are resolved in the range pre-
processing step. The selected data points are then resampled 
for use with the superquadric fitting. The convergence rate of 
the superquadric fitting depends on the minimality of the data 
size. Furthermore, it is necessary to have a uniform sampling 
rate in the 3D space of the object. However, the number of 
data points on surfaces that are tangential to the camera 
viewpoint is typically very low. In order to alleviate these 
issues, a content adaptive point-cloud importance resampling 
based on curvature in depth has been used. Superquadrics can 
be represented by the following implicit equation: 
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where 𝜖1 and 𝜖2 are squareness parameters and define the 
transition from a smooth curvature (as in the case of a sphere) 
to sharp edges (as in the case of a cuboid); 𝑎1, 𝑎2, 𝑎3define the 
scale of the superquadric along the x, y, z dimensions. The 
fitting of the superquadric is based on the error metric – the 
inside-outside function (F) that evaluates whether a point is 
inside or outside or on the surface of the superquadric. The 
error metric is conventionally made independent of 𝜖1 , the 
shape of the superquadric in order to obtain rapid convergence. 
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Furthermore, in order to normalize the convergence rates 
and directions, the scale factors 𝑎1𝑎2𝑎3  are introduced in the 
error metric, resulting in the fitting function, 

𝐹𝑠 𝑥, 𝑦, 𝑧 =   𝑎1𝑎2𝑎3 𝐹
𝜖1 𝑥,𝑦, 𝑧 −  1  

The final error metric to be minimized for the superquadric 
fitting is given by 

min
𝚲

   𝜆1𝜆2𝜆3 𝐹
𝜖1 𝑥𝑖 ,𝑦𝑖 , 𝑧𝑖 ; 𝜆1 ,𝜆2 , . . . . , 𝜆11 −  1  

2
𝑛

𝑖=1

 

where, 𝜆𝑖 are the parameters of the superquadric. 
Superquadric based 3D point cloud data approximation can be 
extremely efficient in the identification of stable grasp points. 
This enables a continuous space parameterization of objects in 
the scene. These parameters will form the feature vectors for 
the classification of geometric primitives that serve as discrete 
space parameterizations. The superquadrics fitting process is 
accomplished using a Particle Swarm Optimization (PSO) 
operating on a constrained superquadric equation 
parameterized as size variables, squareness parameters, 
coordinate transformation and rotation, tapering and bending 
parameters - a total of 15 parameters. For most practical scenes, 



it was sufficient to carry out the fitting process using only 11 
parameters, by excluding the bending and tapering forms. 
Fitting of super-quadrics (based on 15/11 parameters) to pruned 
3D data is a relatively easier task due to quantitative nature of 
the representation. The suitability of initial conditions is very 
important for rapid convergence.  In order to identify the 
geometric primitive from the superquadric parameters, 
classification descriptions of 8 basic primitive types, namely 
Sphere, Cube, Cuboid, Regular Cylinder, Cone, Prism, 
Pyramid, and Frustum were established. By using a 
combination of bounds and ranges for each of the super-
quadric parameters the geometric primitives are uniquely 
identified.  

D. Geometric Part Affordance Detection 

As discussion earlier, the Part Functional Affordance 
Schema defines unique symbol binding from affordance 
concepts to observables in terms of functional geometry 
mapping. While certain affordances are defined based on 
geometrical shape structures such as cylinders, cubes, cuboids 
and spheres or continuous space parametric variations of these 
shapes (as defined by superquadrics), other affordances are 
defined in terms of abstract geometrical attributes such as flat, 
concave, convex, sharp tip, sharp edge, linear textural 
structures, bi-linear textural structures. Joint affordances are 
defined in terms of more than one part. While detection results 
of the first set (geometrical shape structures) is directly 
available from the superquadrics, results for the second set 
(abstract geometries) can be inferred from the superquadrics. 
Since superquadrics model objects or parts as convex 
structures, presence of a concavity (such as the open cylindrical 
portion of a cup) can also be verified using visibility tests for 
cloud points and normals (for e.g. belonging to the inner 
surface of the cup, in comparison with a solid cylinder). Other 
attributes such as flatness and sharpness, linear and bi-linear 
textures can also be roughly estimated based on measures of 
size, shape and thickness of the quadric. 

E. Geometric Grasp Affordance Detection 

Most of the grasp affordances based on the Otto Bock 
Grasping Database, can be uniquely represented in terms of 
geometrical shapes. For e.g., the small diameter affordance 
can be structurally defined as a superquadric with a high linear 
dimension value along one axis and small diameters along the 
others. This also holds true of prismatic affordance, though the 
diameter is much smaller. Power disk is suited for disk type 
structures of the size of the palm, parallel extension for 
cuboidal structures and distal for objects with disjoint ring 
shaped parts. 

F. Conceptual Equivalence Class Object Selection using 

Attributed Graph Matching 

In the given scene of interest, the queried object for the given 
task is found using attributed graph matching of the concept 
node built for the query with all geometrical objects found in 
the scene. Among the several attributed graph matching 
approaches [17, 18] available, we use a low complexity 
approach based on Heterogeneous Euclidean Overlap Metric 
(HEOM) using the Hungarian Algorithm [18] for the matching 
process. Each object in the scene is represented as a graph 

with its parts defining nodes along with vector attributes that 
may be symbolic (such as affordances) or metric (scales). 
Given the limited number of objects in a given scene, the 
matching process is fast and accurate. In the case that more 
than one object is found in the scene, the nearest object is 
selected for manipulation. 

G. Grasp Points Generation 

The final step in the pipeline is the generation of grasp points. 
For a given embodiment, the best set of grasp points for 
simple geometric primitives is well established. For the case of 
superquadric structures that do not fit into one of the shape 
descriptions, we use the closest match. For a two finger Otto 
Bock hand, the following grasping schema is defined: 
Cubes/ Cuboids: Cylinder pregrasp shape such that the two 
fingers contact opposite faces. The palm should be parallel to 
the face orthogonal to the two opposing faces. 
Spheres: Spherical pregrasp shape with the palm approach 
vector passing through the center of the sphere. 
Cylinders/Cones: Based on the initial pose and size of the 
cylinder, it can be grasped from the side, or from either end. 
(a) Side Grasp: Cylindrical pregrasp with the approach vector 
perpendicular to the side surface.  
(b) End Grasp: Spherical pregrasp shape with approach vector 
perpendicular to end face.  
For the case of cones, depending upon the size of the cone, an 
end grasp may be more stable. 

Additional parameters such as number of parallel planes, 
divisions of 360 degree, grasp rotations and 180 degree 
rotations [1] together with constraints on time and grasp 
accuracy or learning of grasping modes from knowledge bases 
[2] can be used to decide the grasping points.  

V. RESULTS AND EVALUATION 
The performance of the concept evaluation and range image 
processing algorithms for a given scene is demonstrated using 
a set of queries.  

The results for performance of individual range 
processing modules are shown in Fig. 3 and Fig. 4. The first 
scene (Fig. 3) is composed of 2 large mugs and 2 ping-pong 
paddles and the second scene (Fig. 4) is composed of 2 bags. 
The results of range image pre-processing are presented in Fig. 
3C/D and Fig. 4C/D. Depth diffusion results are shown in Fig. 
3C and 4C, while the depth normals after surface 
regularization are shown in Fig. 3D and 4D. In Fig. 3 and Fig. 
4, E depicts results of concavity detection. Hole detection 
results are shown in Fig. 4F (there are no stable holes in Fig. 
3). Intermediate object candidates are shown in Fig. 3F and 
4G. Final object detection results are shown in Fig. 3G and 
4H, followed by part detection results in Fig. 3H and 4I. The 
regularized scene is shown in Fig. 3I and 4J. In these images, 
thin strips identified as parts of objects (with holes separating 
them from the main object) are classified as handles, based on 
shape and the grasp affordances and the grasp points/approach 
vector for entire object are defined as creating a closure across 
the handle through the encompassing cavity. Besides handles, 
thin flat structures in the scene (for example, the surface of the 
ping pong paddles) are also excluded from the geometric 



primitive estimation process. Fig. 3J shows the results of 
superquadric fitting corresponding to the cylindrical structures 
of mugs in the scene. Side grasp (lilac) and end grasp (green) 
points are generated and depicted in the figure for a sample 
mug.  In the second scene, Fig. 4K depicts the results of 
superquadric fitting (cuboid). While the scale of the objects in 
the scene precludes direct grasping, the presence of handles 
provides a mechanism for grasping of these objects. Selection 
of the correct object for grasping (from among bags, mugs, 
ping-pong paddles etc.) is determined by the query input to the 
system. 

For the first scene (Fig. 3), a search query for „jug‟ is 
presented. It should be noted that the query „jug‟ is not 
available in our equivalence class database, hence causing the 
search to be non-trivial. Using WordNet based parsing, 
renders the part affordance of „containability‟ with a weight 
measure of 2 (out of 10), based on frequency scores for 
primary (from definition text) and secondary characteristics 
(from other attributes). ConceptNet also renders the 
„containability‟ affordance along with a „HasA‟ attribute of 
„handle‟ which provides the grasp affordance for the given 
case. The attributed graph for the given query is simple and is 
composed of nodes for „containability‟ part affordance and a 
„handle‟ – small diameter grasp affordance with an overall 
weighted confidence score of 1.66/4 (using concept and 
textual unit definitions of 1 and 3 respectively). The range 
image processing algorithms yield both the mugs in scene as 
results (prioritized by the closest object), since these objects 
contain concavities (affordance: containability) and handles 
(grasp affordance) that match the query graph attributes 
exactly (normalized HEOM score of 1). 

For the second scene (Fig. 4), a search query - „bag‟ is 
presented. Again, since no equivalence class has been defined 
for the term „bag‟, the computation of the search is non-trivial. 
For the given case, WordNet and ConceptNet render the 
„containability‟ affordances along with the „handle‟ grasp 
affordance. In addition, ConceptNet renders the scale 
parameter to be „large‟ and equivalent to that of a „box‟. The 
confidence score on the resulting affordance description is 
3.64/4 (since WordNet returns a high frequency score of 8). 
Since the queried scene contains 2 true „bags‟, the range 
processing algorithms return both the bags as query results. 
Again the normalized HEOM score is 1, indicating a perfect 
match for known attributes. It can also be seen that the 
confidence in the result is high for the second scene, as 
compared to the first, since the rate of occurrence of the object 
in typical scenes (reflected in the frequency score from 
WordNet) is higher.       

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a scalable knowledge 
assimilation and deployment framework for robotic grasping 
that is free of 3D model instance representations. We have 
also introduced the paradigm of „Conceptual Equivalence 

Classes‟ and uniquely defined them in terms of the 
minimalistic features of Part Functional Affordances and Part 
Grasp Affordances, leading to implicit cognitive processing 

for successful goal attainment. We have also provided a 
practical pathway for symbol binding – from concepts to 
observables by defining functional geometry mappings. The 
system is also capable of automatic generation of grasp points, 
knowledge of affordance and interaction modes for unknown/ 
un-modeled objects based on partial information obtained 
from the constituent parts. 

Currently, the number of part functional affordances 
supported by the system is quite limited. We plan to extend the 
number and range of the supported functional affordances in 
the future. This would also necessitate more advanced 
algorithms for the attributed graph matching. Furthermore, the 
current system is geared towards robotic grasping and 
manipulation while being capable of functional class level 
object recognition. As such, it uses only range information for 
the processing, without the need for 2D/3D databases. 
Extension of the scheme to perform instance level object 
recognition will necessitate the use of these databases. 
Moreover, while current system has been evaluated on a stand-
alone system, actual deployment of the system on a robot with 
an arm and gripper for grasping is ongoing research. Finally, 
while the current system is intended to serve as a core 
component for goal-directed object recognition and 
manipulation, it can be used in a more holistic system for 
semantic visual perception such as the K-COPMAN.  
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Figure 3. (a) Sample scene 1 (b) Input depth map (c) Diffused depth map (d) Depth normals after surface regularization (e) Concavity map (f) Object candidates 

(g) Object map (h) Part map (i) Regularized scene (j) Superquadric fitting of parts along with grasp points 

 



 
Figure 4. (a) Sample scene 2 (b) Input depth map (c) Diffused depth map (d) Depth normals after surface regularization (e) Concavity map (f) Hole map (g) Object 

candidates (h) Object map (i) Part map (j) Superquadric fitting of parts 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Combining 2D and 3D Object Categorization

with Task-Constrained Grasping

Marianna Madry, Dan Song and Danica Kragic

Abstract— The main objective of this work is to enable
transfer of grasp knowledge between object categories, defined
using geometric properties and functionality. To this end, we
present an object categorization system integrated with a grasp
planning system. The categorization system employs both 2D
(RGB image) and 3D (extracted point cloud) information about
an object. We present and evaluate several 2D-3D integration
strategies. The system is tested on real data collected using an
active stereo robot head, capable of vergence and foveation.
The data is generated in natural scenes, for a number of
household object categories. The system is built upon an
active scene segmentation module, able of generating object
hypotheses and segmenting them from the background in real-
time. The output of categorization is used in a probabilistic
grasp planning system that encodes task, object and action
properties. The experimental evaluation compares individual
2D and 3D categorization approaches with the integrated
system as well as and it demonstrates the usefulness of the
categorization in goal-directed grasping.

I. INTRODUCTION

Robotics poses several challenges to visual processing that

go beyond the current work in the area of computer vision.

The mainstream approaches in computer vision attempt to

model the world through inference on 2D data, in robotic

applications the aim is to allow a robot to model and

understand the world by acting in and interacting with the

environment. Our aim is to leverage on some recent advances

on object categorization considering both 2D and 3D data

and show how it can facilitate robot grasping. Fig. 1 shows

our Object Categorization System (OCS), that consists of:
• a front-end with an active robot head equipped with

foveal and peripheral cameras that provide input to the

real-time scene segmentation system [1];

• a back-end, the probabilistic grasp reasoning system,

that encodes task-related grasping [2][3].

The authors are with KTH - Royal Institute of Technology, Sweden, as
members of the Computer Vision & Active Perception Lab., Centre for Au-
tonomous Systems, e-mail: madry,dsong,danik@csc.kth.se.
This work was supported by EU project GRASP, IST-FP7-IP-215821 and
Swedish Foundation for Strategic Research.

Fig. 1. From categorization to task based grasping. After data acquisition using a robot head, objects are segmented and categorized using our 2D-3D
Object Categorization Systems (OCSs). Then, grasping hypotheses are generated, taking the task into account. The image is best viewed in color.

We are motivated by the fact that humans classify an object

according to its functionality, which is naturally linked to

what kind of task it affords [4]. The grasp reasoning system

uses a Bayesian network (BN) representation, trained on a

number of example grasping tasks. The system models the

conditional dependencies between the grasping tasks and the

object class variables. We demonstrate that, by using the

integrated system, the robot can not only choose the objects

in a 3D scene that afford the assigned task, but also plan the

grasp such that it satisfies the constraints posed by the task.

Thus, grasp knowledge can be transferred between objects

that belong to the same category, though the details of the

geometry and physical properties may vary.

From the stereo system we have access to both 2D images

and a 3D point cloud representation of the scene. Ideally,

an object categorization system should be able to exploit

both to improve robustness. Since each channel (2D and 3D)

has different characteristics, fusion of 2D-3D categorization

can provide a more comprehensive description of an object.

Finally, integration may result in a system that is resilient

to the degradation of one of the cues, e.g. for low textured

objects in case of 3D or for lightning changes in case of

2D. In this work, we also analyze robustness of different 2D

and 3D feature representations in realistic scenes, and assess

their diversity to better understand the requirements for their

integration.

As shown in Fig. 1 (middle column), we train a separate

OCS for each descriptor/representation and then fuse evi-

dences from a few OCSs to obtain the final categorization.

Results from the extensive experiments on real data for

eleven object categories show that: (a) the proposed 2D-

3D object categorization system achieves high categorization

rate (92%), significantly better than any of the classic single

cue OCSs in the same task; (b) simple linear cue integration

methods are more efficient than complex methods in case of

the limited amount of data, as in our case.
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II. RELATED WORK

The knowledge of object categories is useful for task-

related grasping: for humans, it is natural to use and ma-

nipulate objects based on their functionality or current task

[4] – when pouring from an object, the fingers should

not be occluding the opening of the object. For the object

category that can be used to pour liquid from, the knowledge

of how to grasp it to allow pouring may be transferred

between objects that belong to the same category. Although

partial object knowledge has been used recently in grasping

applications [5][6], integration of task-related grasp planning

and categorization in real scenes is a clear novelty.

In [2] and [3], we have developed a probabilistic frame-

work using Bayesian network (BN) to represent the task-

related grasping. The semantic task requirements are encoded

through the conditional dependencies between a task variable

and a set of object and grasp features. Using this task

constraint BN, we have demonstrated that the robot is able

to: (i) reason at the symbolic level, and (ii) make detailed

decisions on sensorimotor level, e.g. plan grasps that afford

pouring.

This work, however, was mostly done in a simulation

environment and the inference engine assumed the object

class unknown. Learning of the network structure in [3]

revealed the importance of the categorical information. Thus,

we integrated OCS based on real sensory data with the task

constraint model using BNs. We show that in the integrated

system, the robot can not only choose the objects in a scene

that affords the assigned task, but also plan the grasp to

satisfy task constraints.

The use of the system in real scenes demands robustness to

noise and occlusions, as well as to viewpoint, illumination

and resolution changes. Object categorization imposes im-

portant requirements: the object representation has to ensure

accurate discrimination between object categories and, at the

same time, handle high within-class variations. An important

assumption, determining the usefulness of the cue integra-

tion, is that the information provided by the different cues is

complementary. Intuitively, we can expect that the integration

of descriptors capturing different object properties (such as

appearance, color, shape) is most effective.

Several descriptors have been proposed in the field of

computer vision to encode object appearance (SIFT [7],

textones [8]), color (opponentSIFT [9]) and contour shape

(HoG [10]). The studies on 2D cue integration [11] show

that contour- and shape-based methods are adequate for

handling the generalization requirements needed for object

categorization but are not robust to occlusions. On the

other hand, appearance- and color-based descriptors have

been successfully applied in object (instance) recognition

and detection [7], [8]. However, their performance drops

significantly in case of clutter and illumination changes. In

the field of object retrieval and computer graphics, a number

of 3D shape descriptors have been proposed [12]. Only a

few of them are applicable to real 3D data that covers only

a visible part of the object: spin images [13], RSD [14],

FPFH [15],[16]. We show that the 3D descriptors cope better

with the viewpoint changes than 2D descriptors, but they

are poor at discriminating categories of similar shape (e.g.

citrus/ball). Integration of different descriptors significantly

increases performance and robustness of our system.

Another important approach in computer vision are meth-

ods for part-based representations of objects. These methods

differ with respect to the amount of spatial information

they encode. Object parts can, for example, be treated as

geometrically independent (bag-of-words BoW model [17]).

Another approach may be to store only a coarse global spatial

information (spatial pyramids [18]) or more explicit spatial

information (constellation models [19], [20], including meth-

ods based on probabilistic modeling [21]). Our system uses

the BoW and spatial pyramid methods due to their short

training-time (small number of parameters to estimate) and

short run-time due to the low computational complexity.

Regarding cue integration, several approaches have been

applied to object recognition and categorization based on 2D

data. These methods can be divided into: low level integra-

tion and high level integration. The low level integration op-

erates on feature vectors, and the examples are mostly limited

to the early work in object recognition [22] due to the curse

of dimensionality [23, p.170]. The high level integration is

commonly accomplished by an ensemble of classifiers or

experts. The most common techniques include [24]: majority

voting of classifiers [11] and methods based on algebraic

combination of classifier outputs. The classifier outputs can

be combined using linear [25] or nonlinear [26] combination

of evidences. Our results clearly demonstrate that in case of

real applications where the amount of training data is limited,

the simpler linear algebraic methods are more efficient.

In the literature, there are only very few examples of com-

bining 2D and 3D descriptors for object categorization. In

the recent work [27], authors built a hierarchical OCS system

in which 3D descriptor (Global RSD) is used to narrow

choice of categories to those of similar shape, and then 2D

descriptor (SURF) is applied. However, the generalization

ability of this system is low. Its performance drastically drops

from 98% when trained and tested on the same data, to

50% when tested on the new data. We present a systematic

study on combining different 2D and 3D features for object

categorization with application in natural scenes, revealing

the challenges of real settings.

III. 2D-3D OBJECT CATEGORIZATION SYSTEM

As shown in Fig. 1, we first build a single cue OCS for

each feature descriptor which are then integrated to provide

the final categorization. All single cue OCSs implement the

following methodology: (a) data acquisition (Section III-A),

(b) feature extraction (Section III-B), and (c) classification

(Section III-C). The methods used to integrate these single

cue OCSs will be described in Section III-D.

A. Data Acquisition

Prior to categorization, a scene including multiple objects

is first segmented using our multi-cue scene segmentation

system reported in [1] (see Fig. 1). In short, the method relies
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on attentional mechanisms in the peripheral view to direct

cameras towards regions of interest, subsequently grouping

areas close to the center of fixation as the foreground. The

disparity maps, computed using the Stable Matching [28],

are converted into 3D points. An assumption of a supporting

plane is used to provide a better segmention from the

background. The points are labeled as belonging either to

the object (foreground), supporting plane (flat surface) or

the background. The important fact to stress here is that the

system generates object hypotheses without relying on the

learnt categories which is a common approach in the liter-

ature. Since our long term interest is also to incrementally

learn new object categories, our approach is rather natural.

The segmented point cloud is further processed to remove

outliers and equalize point density. We rely on the statistical

outlier removal and voxel grid filters from the ROS PCL [29].

The resulting point cloud contains ca. 2000 points and

represents a visible part of an object. In order to save compu-

tational time we do not reconstruct the whole object from its

partial view as in Marton et al. [14][27]. Such reconstruction

methods often assume objects to be symmetrical which is not

always the case. The segmented parts of RGB images do not

require any further pre-processing before feature extraction.

B. Feature Extraction

The choice of a proper object representation is crucial

for achieving good categorization rates. Ideally, the object

representation should have high discriminative power, be

robust to noise, occlusions and viewpoint changes, illumina-

tion and resolution aspects. For cue integration, information

provided by the different cues has to be complementary.

Therefore, from a segmented part of an image, we extract

multiple 2D descriptors encoding different object attributes:

appearance (SIFT [7]), color (opponentSIFT [9]), contour

shape (HoG [10])2. The final object representation for 2D

descriptors follows a concept of the spatial pyramid [18]. The

3D shape properties of an object are obtained by applying

the FPFH descriptor [15] to each 3D point in the segmented

point cloud. It was shown that the normal-based descriptors

obtain high performance for the task [16]. To obtain the final

object representation, the BoW model [17] is employed.

C. Classification

For classification, we use SVMs with a χ2 kernel, success-

fully applied in previous studies [9][10][27]. For the purpose

of cue integration, we need information about the confidence

with which an object is assigned to a particular class. Several

studies were devoted to find confidence estimates for large

margin classifiers [30], [25]. In principle, they interpret the

value of the discriminative function as a distance of a sample

to the optimal hyperplane. The closer the sample is to the

hyperplane the lower is the probability (confidence) of a

correct classification. In this work, we use the One-against-

All strategy for M -class SVMs and the confidence measure

for a sample x is calculated as [31]:

C(x) = Dj ∗ (x)− max
j=1...M,j 6=j∗

{Dj(x)} (1)

where Dj(x) is equal to the difference between the average

distance of the training samples to the hyperplane and the

distance from x to the hyperplane. In the preliminary experi-

ments this approach was superior to the Platt’s method [30].

D. Cue Integration

The 2D-3D object categorization system is created by

integrating evidences from the single cue OCSs at the high

level, i.e. after the single-cue classification is performed.

We use methods based on an algebraic combination of

classifier outputs since they are the most robust to noisy cues

(see Section II). We evaluate both the linear and nonlinear

algebraic techniques.

In case of the linear techniques, the total support for

each class is obtained as a linear weighted sum, product or

max function F (·) of the evidences provided by individual

classifiers. The final decision is made by choosing the class

with the strongest support. Let us assume that dij is an

evidence provided by classifier i for a category j, and wi

is a weight for classifier i (both are normalized to sum up

to one for all L classifiers and M categories), then the class

with the strongest support j0 ∈ {1, . . . ,M} is chosen as:

j0 = arg max
j=1,...,M

F(d1j , . . . , dLj ;w1, . . . , wL)
∑M

j=1 F(d1j , . . . , dLj ;w1, . . . , wL)
. (2)

The weights wi|i=1,...,L are estimated during training. In

this setup, the sum rule is equvalent to the Discriminative

Accumulation Scheme (DAS) proposed in [25].

In case of the nonlinear techniques, we have used an

approach where an additional SVM classifier is trained

to model the relation between evidences provided by the

different single cue OCSs [26]. The outputs from the single

cue OCSs are concatenated to build a feature vector that is

fed to the subsequent SVM classifier. During the training,

parameters of the nonlinear function F (·), that is equal

to the classifier kernal function, are estimated. We have

evaluated the performance of the following three nonlinear

function: (a) radial basis function (RBF), (b) χ2 function,

and (c) histogram intersection.

The linear methods are simple and have low computational

complexity. However, to infer weights wi|i=1,...,L, an exhaus-

tive search over parameter values is needed which becomes

an intractable task for a large number of cues. The nonlinear

methods owing to more complex function may better adapt

to the varying properties of the cues. However, they also

require a larger training dataset what may be unfeasible in

real applications.

IV. MODELING TASK CONSTRAINTS

In [2], [3], we developed a unified framework for

embodiement-specific grasp representation. It consists of a

probabilistic graphical model, the Bayesian network (BN),

and a new multi-variate discretization method. BN models

the conceptual task requirements through conditional depen-

dencies among a set of task, object, action and constraint

variables. The discretization model provides a compact data

representation that allows efficient learning of the conditional

structures in the BN.
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Fig. 2. Examples of objects used to create the database presented in Section V-A. The data for all the
110 objects can be viewed at our web site http://www.csc.kth.se/~madry/research/

stereo_database/index.php.

(a) (b)

Fig. 3. Examples of imperfect segmentation in
both 2D and 3D: (a) only a part of an object is
detected, or (b) the segmentation mask contains
background points (background points are marked
in red).

The model is trained using a synthetic database of objects,

grasps generated on them, and the task labels provided by

the human. The data generation is based on the toolbox

BADGr [32] in the simulation environment provided by

GraspIt! [33]. BADGr provides the ways of object 3D shape

approximation, grasp planning, execuation and also grasp-

related feature extraction and task labeling. We refer the

reader to the detailed process of data generation in [2], [3].

Both the structure and the parameters of the BN were

trained using the task related grasp database. The BN

structure encodes the dependencies among the set of task-

related variables, and the parameters encode their conditional

probability distributions. Figure 4 shows the learned structure

of the BN, and the features represented in this BN are listed

in Table I. Once trained, the model can be used to infer

local distribution on each individual or small set of variables,

based on partial or complete observation of others. For

example, we could obtain P (pos|task, obcl), the probability

of the grasp position pos, given the observed object class

obcl, and an assigned grasping task task.

V. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of

our 2D-3D object categorization system integrated with the

task-constrained grasp planner on the real stereo data. The

description of the dataset and experimental setup is given in

Section V-A and V-B. First, we study robustness of different

2D and 3D descriptors under varying viewpoint condition

and their applicability to cue integration (Section V-C).

Then, we present the systematic evaluation of several 2D-3D

integration strategies (Section V-D). Finally, we demonstrate

the results of an integrated system considering categorization

for task-constrained object grasping (Section V-E).

TABLE I

FEATURES USED FOR THE TASK CONSTRAINT BAYESIAN NETWORK.

Name Dimension States Description

task - 4 Task Identifier

obcl - 6 Object Class

size 3 8 Object Dimensions

cvex 1 4 Convexity Value [0, 1]
ecce 1 4 Eccentricity [0, 1]
dir 4 15 Approach Direction (Quaternion)

pos 3 12 Grasp Position

upos 3 8 Unified Spherical Grasp Position

fcon 11 6 Final Hand Configuration

coc 3 4 Center of Contacts

fvol 1 4 Free Volume

A. Database

Most of the databases used for categorization purposes

are storing only 2D image information [34]. Although there

are databases for 3D object retrieval [35], these do not

contain both 2D images and 3D object structure. The KIT

ObjectModels Web Database [36], contains both 2D and

3D data, but was created for a purpose of object (instance)

recognition and contains only a small number of simple

shape categories [27]. Moreover, for each shape category

a number of models is small and a natural variability of

object appearance and shape within each category is not well

represented.

For these reasons, we created a new database that contains

11 object categories: ball, bottle, box, can, toy-car, citrus,

mug, 4-legged toy-animal, screwdriver, tissue and tube, each

with 10 different object instances per category (in total 110

objects, examples of objects for each category are presented

in Figure 2). Different objects were chosen for each category

in order to capture variations in appearance, shape and size

within each class. For each object, the 2D (RGB image) and

3D (point cloud) data were collected in 16 different views

around an object (separated by 22.5°) using the 7-joint Armar

III robotic head with foveal and peripheral stereo cameras,

see Figure 1. To differentiate an object from a background

we used the active segmentation method [1] that generated

good results in ca. 90% of cases. For some object categories,

such as toy-car, toy-animal and screwdriver, segmentation

was more challenging, see Figure 3.

B. Experimental Setup

The database was divided into four sets used for: (1) train-

ing, (2) validation of OCS parameters, (3) validation of the

cue integration parameters, and (4) testing. Objects were

randomly selected for each set with the ratio 4:1:1:4 objects

per category. In total, data for 44 objects were used for

task

obcl

size

ecce

cvex

coc

fvol

dir

upos

pos

fcon

Fig. 4. The structure of the Bayesian network task constraint model.
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Fig. 5. Setup-50. Objects from eight different viewpoints selected to train
the system (top row) and evaluate its performance (bottom row). The test set
contains 50% data collected from the different viewpoints than the training
data.

TABLE II

SETUP FOR EXPERIMENTS IN SECTIONS V-C AND V-D.

Descriptor Parameters

SIFT grid detector, spacing=6px, L2-normalized
opponentSIFT grid detector, spacing=6px, L2-normalized
HoG Canny detec., angle range∈ (0, 180), #bins=20

FPFH no_subdiv=11, kSearch=501

training and testing, and data for 11 objects for subsequent

validations. Due to the fact that we aim to test performance

of the system for the object categorization and not object

instance recognition, an object that was presented to the

system during the training phase was never used later to

evaluate the performance.

In order to train the system, we selected 8 views per

object separated by 45° (Fig. 5 top row). The system was

evaluated on the same amount of data. However, to assess

robustness of different object representations under varying

viewpoint condition, the test set includes also data collected

from the different viewpoints than the training data. We

varied a number of unknown viewpoints between 0 and 8

per object (it gives between 0-100% of the data in the test

set). We established the experimental setup in which half

of the objects is presented to the system from the unknown

viewpoint, Setup-50. It is illustrated in Figure 5. We assumed

that Setup-50 best reflects the real condition. The results are

reported for a single object view and information provided

by different views was not fused. To average the results each

experiment was repeated five times for randomly chosen

object instances. We report the average categorization rate

and standard deviation (σ).

C. Feature Selection

First, we evaluated performance of different descriptors

under varying viewpoint conditions. For that purpose, we

built four identical single cue OCSs, one for each descriptor.

We selected descriptors to provide a high recognition rate2

and encode different object properties: appearance (SIFT),

color (opponentSIFT), couture shape (HoG) and 3D shape

(FPFH). A segmented part of the image was resized, such

that the shorter dimension equals to 200 pixels. The SIFT and

opponentSIFT were extracted using a grid detector, and HoG

2Average categorization rate for other tested descriptors [9] (Setup-50):
rgbHistogram 36.8%, hueSIFT 59.1%, rgSIFT 83.5%, rgbSIFT 85.4%. We
are planning to evaluate other very recently presented 3D descriptors:
RSD [14] and VFH [16].

Fig. 6. Performance of descriptors under varying viewpoint. During testing,
we varied a number of cases in which object is presented to the system from
unknown viewpoint between 0 and 8 per object (0-100% test views).

TABLE III

RESULTS FOR THE FEATURE SELECTION EXPERIMENTS FOR Setup-50.

Descriptor Av. Categ.Rate σ

SIFT 82.8% 3.6%
opponentSIFT 86.0% 3.3%
HoG 79.9% 1.2%
FPFH 62.0% 2.8%

descriptor using the Canny edge detector. The final object

representation for the 2D descriptors follows a concept of

the spatial pyramid, and for the 3D descriptor BoW model

for words found using the KNN clustering. The experimental

setup is presented in Table II.

In order to assess the performance of the descriptors

under different viewpoints, we varied a number of unknown

viewpoints in the test set between 0 and 8 (see Section V-

B). The results are illustrated in Figure 6. All 2D descriptors

obtained rather high categorization rate when the viewpoint

was known (0%), but the performance dropped significantly

when as the viewpoint varies. The highest performance

was obtained for the color descriptor (opponentSIFT) which

naturally indicates that color information is less influenced

by the viewpoint changes than shape information (HoG). The

2D descriptors yielded higher categorization rates than the

3D descriptor. Most probably, it is related to the quality of

stereo data. However, the performance of the 3D descriptor is

only slightly affected by the viewpoint changes. Additionally,

we attach the numerical results for Setup-50 in Table III.

The additional question that we wanted to answer is related

to the diversity of descriptors. In the literature, different

feature diversity measures have been studied. However, no

consistent relationship between these measures and different

combination methods was detected [37]. In practice, to

judged complementary of the features confusion matrices are

studied. Figure 7 (a-c) presents confusion matrices obtained

for the color (opponentSIFT), contour shape (HoG) and 3D

shape descriptor (FPFH). We observed that shape descriptors

poorly discriminate between categories of similar shape such

as a mug/can or ball/citrus. In such cases, the color descriptor

demonstrated higher discrimination power.

D. Cue Integration

In this section, we present results from combining 2D and

3D categorization. The 2D-3D cue integration was obtained

by integrating evidences from the single cue OCSs. We

applied both the linear and nonlinear algebraic combination
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(a) opponentSIFT (b) HoG (c) FPFH (d) opponentSIFT+HoG+FPFH

Fig. 7. Confusion matrices obtained for: (a) color (opponentSIFT), (b) contour shape (HoG), (c) 3D shape (FPFH) descriptor, and (d) integrated
opponentSIFT+HoG+FPFH (linear combination method, sum rule). The images are best viewed in color.

methods to classifier outputs and results are given in Ta-

bles IV and V.

The following pairs/triples of the single cue OCSs

were combined: opponentSIFT+FPFH, opponentSIFT+HoG,

HoG+FPFH, and opponentSIFT+HoG+FPFH. An integration

of more than three OCSs imposes practical difficulties in

estimating system parameters. With respect to the type

of integrated descriptors, we observed the same trend in

performance for both the linear and nonlinear combination

methods. The best categorization rate was obtained for

fusion of all three descriptors (opponentSIFT+HoG+FPFH).

The second best for the combination of descriptors that

capture different object attributes and originate from different

channels (2D and 3D): 2D color and 3D shape descriptor

(opponentSIFT+FPFH). Then, the third performance was

obtained for the color and shape descriptor originating from

the same channel (opponentSIFT+HoG), and the lowest for

the two shape descriptors (HoG+FPFH).

In case of the linear algebraic methods, we tested the

wighted sum, product and max rule. For all combinations

of features, the approach based on the sum and product rule

improved the performance of the system in comparison to the

best single cue OCS (based on opponentSIFT), and the sum

rule was superior to the product rule. The max rule that in

case of two classifiers is equivalent to the majority voting,

yielded the lowest categorization rate. In case of the non-

linear algebraic methods (integration based on SVMs), we

evaluated the RBF, χ2 and histogram integration functions.

The difference in performance between nonlinear functions

is best visible for combination of all three descriptors, and

χ2 function yielded the highest categorization rate.

Finally, the overall best performance of 92% was obtained

for integration of the three descriptors using the linear

combination method. When comparing to the best single cue

OCS (based on opponetSIFT), the combination of 2D and

3D features improved performance of the system by 6%.

The final confusion matrix obtained for this experiment is

presented in Figure 7 (d). When comparing it to the confu-

sion matrices for the single cue OCSs, it is clearly visible

that cue integration significantly improved performance for

all the classes and the most difficult remained differentiation

between the ball and citrus category. In our study, the linear

algebraic integration methods outperformed the nonlinear

methods. It is most probably due to the fact that a small

set of data was used to train the SVM classifier for the

nonlinear methods. We can draw the conclusion that in case

of a limited amount of data, the simpler fusion methods are

more efficient.

E. Task-constrained Grasping

In this section, we show the results of an integrated

system considering categorization for task-constrained object

grasping. Our experimental scenario is to plan grasps on

multiple objects constrained by the assigned tasks, taking

into account robot’s embodiment. The robot is presented with

a scene containg several unknow objects and an example of

such a scenario is presented in Figure 8. The objects are

segmented from the background in a real time (as described

in Section III-A) and our 2D-3D object categorization system

is applied to each generated object hypothesis. In the given

scene, four objects are found and from left to right they

are correctly classified as a mug, screwdriver, bottle and

mug. Figure 9 presentes the classification confidence values

obtained in this expariment for the four object hypothesis.

In the future work, we plan to use the confidence values to

further improve generation of grasping points.

Next, given the assigned task, the robot need to decide

(1) which object should be grasped, and (2) how to grasp

it to fulfill the task requirements. For this purpose, we use

the embodiment-specific task constraint model. The model

is prior trained on the grasp database that includes the stable

grasps generated on a set of 48 objects using the hand

model of the humanoid robot Armar [38]. The 48 objects are

from the Princeton Shape Benchmark [39]. They cover the 6

object classes (8 models per class), each of which includes 4

different object shapes scaled to 2 sizes – small and average.

Three tasks were labeled: hand-over, pouring and tool-use.

The total training set include 1227 cases with 409 cases

Fig. 9. Classification confidence values obtained for the four objects in the
real scene presented in Fig. 8. The final classification decision is made by
choosing the class with the strongest support. For each object, the confidance
values are normalized to sum to one over all classes.
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(a) Hand-over (b) Pouring (c) Tool-use

Fig. 8. Generated grasp hypotheses and associated probabilities for three different tasks: (a) hand-over, (b) pouring and (c) tool-use, and four objects
classified as: a mug, screwdriver, bottle and mug (from left to right). The grasping probability around an object is indicated by color of a point and the
legend is presented in (d) (the brighter is the point the higher is the probability). The images are best viewed in color. For the accurate 3D information, we
kindly direct the reader to our web site http://www.csc.kth.se/~madry/research/task_constrained_grasping/index.php where
the movies with the experimental results are available.

TABLE IV

RESULTS FOR THE CUE INTEGRATION USING LINEAR ALGEBRAIC COMBINATION METHODS.

Descriptors Max Rule Product Rule Sum Rule

D1+D2(+D3) Average σ Av. Gain Average σ Av. Gain Average σ Av. Gain

Categ.Rate D1,D2,(D3) Categ.Rate D1,D2,(D3) Categ.Rate D1,D2,(D3)

opponentSIFT+HoG+FPFH 84.5% 5.8% -1.5,4.6,22.4% 89.9% 4.9% 3.9,10.0,27.9% 92.0% 2.8% 6.0,12.0,29.9%

opponentSIFT+FPFH 86.6% 3.7% 0.6%, 24.5% 87.8% 4.3% 1.9%, 25.9% 90.9% 3.2% 4.9%, 28.9%

opponentSIFT+HoG 81.9% 3.4% -4.1%, 2.0% 86.0% 0.8% 0%, 6.1% 87.4% 0.6% 1.4%, 7.5%

HoG+FPFH 79.9% 1.5% 0.0%, 17.9% 83.1% 6.3% 3.1%, 21.0% 83.4% 4.6% 3.5%, 21.4%

TABLE V

RESULTS FOR THE CUE INTEGRATION USING NONLINEAR ALGEBRAIC COMBINATION METHODS (SVM-BASED CUE INTEGRATION).

Descriptors RBF Kernel χ2 Kernel Hist. Intersection Kernel

D1+D2(+D3) Average σ Av. Gain Average σ Av. Gain Average σ Av. Gain

Categ.Rate D1,D2,(D3) Categ.Rate D1,D2,(D3) Categ.Rate D1,D2,(D3)

opponentSIFT+HoG+FPFH 87.6% 6.5% 1.6,7.7,25.6% 90.4% 0.3% 4.4,10.5,28.4% 89.8% 1.8% 3.8,9.9,27.8%

opponentSIFT+FPFH 87.2% 2.0% 1.2%, 25.2% 87.6% 1.6% 1.6%, 25.6% 87.2% 2.8% 1.2%, 25.2%

opponentSIFT+HoG 84.3% 5.4% -1.7%, 4.3% 84.8% 5.3% -1.1%, 4.9% 84.7% 3.1% -1.3%, 4.7%

HoG+FPFH 79.1% 1.8% -0.8%, 17.0% 79.5% 3.0% -0.4%, 17.5% 80.4% 1.2% 0.5%, 18.4%

per grasping task. Figure 4 shows the learned structure of

the task constraint Bayesian network. Table I describes each

feature represented by the network. Note that, compared to

other object features size, cvex and ecce, object class obcl is

directly conditioned by the task node. This is consistent with

our previous results on human-hand specific network [3].

This result confirmed that the object category information

is the most important object feature that represents its task

affordances.

Note that the BN allows us to infer local distribution on

each individual or small set of variables, based on partial or

complete observation of others. In this work we are interested

to infer, in the clustered 3D environment on the table top

shown in Figure 8, the most suitable grasp position pos given

the assigned task task and the categories of the objects obcl.

This can be demonstrated by a likelihood map on a set of

grasp position pos around each object, i.e. P (pos|task, obcl).
The point that has the highest P (indicated by the brightest

color) would imply the best grasp position for the task.

To do so, we first sampled a set of grasping points pos on

an ellipsoid around each object in the scene that is visible

by the camera (see Figure 8). Since pos in the Bayesian

network is represented in the object local coordinate, a

neccessary step is to convert the pos data sampled in the

world corrdinate frame to the object coordinate system. This

transformation requires the knowledge of object position and

orienation in the world coordinate. In this paper, we assume

that the orientation of the object is known, and the position of

the object is estimated by fitting the synthetic object model

with the same class to the point cloud of the real object.

Figure 8 shows the results of the experiment. From left to

right, we show the likelihood maps using colored sample

points of P (pos|task, obcl), when task is hand-over (a),

pouring (b) and tool-use (c) respectively. We see that for

the pouring task, the likelihood of the sample points around

the screwdriver is clearly lower than the other three objects,

indicating the screwdriver can not afford pouring task. While

the observation is opposite for the tool-use. And for the

hand-over task, all the four objects have high likelihood.

This indicate that using the object category information and

the task constraint BN, we can successfully select the object

according to their task affordance.

For the object that affords the assigned task, for example

the bottle and the two mugs in Figure 8 (b), the likelihood

maps show darker color on the top of the object. This is

because to pour the liquid, we should not grasp from the
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top and block the opening of the object. To hand-over the

screwdriver, in Figure 8 (a), we see that the network favors

the position around the tip of the screwdriver whereas leaving

the handle part for regrasp.

VI. CONCLUSIONS AND FUTURE WORK

Robots grasping objects in unstructured environments need

the ability to select grasps for unknown objects and transfer

this object between objects based on their categories and

functionalities. Altough object categorization is one step

toward this goal, it does not solve all the problems. The first

problem is the ability of a robot to perform this in real scenes,

thus generating object hypotheses for unknown objects and

also in 3D. Although for pure categorization 2D information

may be suffiecient, 3D information is neccessary if grasping

and manipulation of objects is the final goal.

We have presented a 2D-3D object categorization system

that is built upon an active scene segmentation module. The

system allows generating object hypotheses and segmenting

them from the background in real-time. Results from the

extensive experiments in the real environment showed that

the proposed system achieved high object recognition rate

(up to 92%), significantly better than the classic single cue

SVM in the same task. Moreover, the simple cue integration

method proposed in this paper is much more efficient and

effective especially in the situations where limited ammount

of data is available.

The categorization system is integrated with a task con-

strained model for goal-directed grasp planning. We showed

that the object category information can be efficiently used

to infer the task affordance of the observed objects. And

the integrated system allows reasoning and planning of

goal-directed grasps in the real-world scenes with multiple

objects.

One avenue for the future research is the integration of the

proposed system with the on-line stability estimation system

proposed in [40]. The aim will be to condition the choice of

grasps based on the perceptions available to a robot prior to

and while lifting and transporting an object.
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