
Project Acronym: GRASP
Project Type: IP
Project Title: Emergence of Cognitive Grasping through Introspection, Emulation and Surprise
Contract Number: 215821
Starting Date: 01-03-2008
Ending Date: 28-02-2012

Deliverable Number: D22
Deliverable Title : Closed-loop refinement of the representation attributes
Type (Internal, Restricted, Public): PU
Authors Ch. Papazov, D. Burschka, Janette Bohg, D. Kragic, H. Deubel
Contributing Partners TUM, KTH, LMU

Contractual Date of Delivery to the EC: 28-02-2011
Actual Date of Delivery to the EC: 28-02-2011

Contents

1 Executive summary 5

2 Description of Work 7

2.1 Surprise Detection from Observation of Human Actions 7

2.1.1 Manipulation-Relevant Object Representation . 8

2.1.2 Functionality Graph . 8

2.1.3 Performance of the Observation Approach . 9

2.2 Object Registration . 11

2.2.1 Model Preprocessing Phase . 11

2.2.2 Time Complexity . 11

2.3 Experimental Results for Scene Occlusions . 12

2.3.1 Deformable Registration . 14

2.4 Prediction and Verfication of Physical Object Properties 17

A List of Publications 19

3

GRASP 215821 PU

4

Chapter 1

Executive summary

Deliverable D22 is part of WP5 -“Surprise: Detecting the Unexpected and Learning from it”. According
to the Technical Annex, it presents the activities in the context of

• Task 5.2 - Evaluation of efficient methods to monitor changes in the environment that will be
insensitive to sensor inaccuracies and that compensate eigen-motions/actions of the system in the
environment. In collaboration with the WP4, an internal representation of the environment is
generated that will define the expectations of the system. This representation goes beyond a
geometric representation of the world and will define also contextual and dynamic information
about the world

• Task 5.3 - Validation of action primitives through combination of the sensor perception

The work in this deliverable relates to the following third year milestones:

• Milestone 7 - Observing consequences of grasping; vocabulary of robot action/interactions and
definition of a hierarchical structure of features

• Milestone 9 - Integrating contextual representation in the knowledge representation and develop-
ment of the attention system with view planning

In this reporting period, our focus was on: observing human actions and representing them in the
internal action model used for system’s own manipulation actions, extension of the shape registration
to deal with deformable and significantly occluded observations as indexing technique to our
a-priori knowledge database (Atlas), and prediction, validation and parametrization of a-priori
knowledge from interaction with the environment while transferring the knowledge from the Atlas to
the working memory.

5

GRASP 215821 PU

• Observing Human Actions - A human, who is manipulating objects in the scene, usually does
not repeat an action on exact the same trajectory but he or she repeats just certain properties of the
given manipulation. Consequently, a robot observing a manipulation should extract these properties
from the observation and generalize them instead of storing the exact 3D-trajectory. Some of the
extracted properties are related to the object itself (e.g. motion constraints). On the other hand,
the geometric position of an object determines the possible actions. Therefore, a Functionality Map

is introduced, which relates the manipulation-relevant object properties to the environment. The
environment is represented as abstract regions (Location Areas), which are relevant for the manip-
ulation of a specific object. Furthermore, an Object Container is used, which stores the properties
directly related to the object itself. The stored generalized knowledge is used to detect unexpected
changes in the observed properties of a manipulation task. Unexpected events (surprise) can be
detected efficiently at this level reducing the number of false positive alerts caused by variations in
the human manipulation examples. The proposed system uses a general, object-centric represen-
tation. This enables a transfer not only within the same, but additionally to similar environments.
Furthermore, the structure makes the system more independent of the perception source. This is
an important property to achieve the goal of combination of different sensor perception required in
the Task 5.3. It is important to notice, that neither the exact reconstruction of the environment
in the sense of navigation nor the pure repetition of an action is of interest here. The aim is the
understanding of the manipulation constraints for a given manipulation sequence.

• Shape registration to deal with deformable and significantly occluded observations -
Significant contribution in this reporting period is also the work on registration of objects with
rigid and deformable shape to the Atlas representation of the objects a-priori known to the system.
The registration is a basic component for indexing the knowledge in the database and the work was
extended from exact match to more generic descriptors. The deformable registration allows not
only a generalization of the object descriptions in the Atlas but it allows also to map knowledge
from human observation or previous interactions with similar objects to a modified geometry of
the new object. This allows to generate hypothesis how to interact with a novel object based on
similarities to the generic information in the Atlas.

• Prediction, validation and parametrization of a-priori knowledge - Finally, we started work
on estimation of dynamic, physical properties of objects through direct interaction with them. We
implemented an initial predict-act-observe loop which allows us to estimate the exact parameters of
an object in the scene based on the parametric information stored in the Atlas (a-priori) knowledge.
This work includes a fusion of dynamic engine predictions with observation of the camera to estimate
the non-observable parameters of the object like: mass, its center, distribution and rigidity among
others.

The following text is structured as follows. In Chapter 2.1, we give a short overview over our current
results in parsing of human actions. In Chapter 2.2, we present the current results in deformable indexing
to our generic object database. Chapter 2.4 presents our preliminary work on completion of physical
properties of the objects in the scene.

6

Chapter 2

Description of Work

2.1 Surprise Detection from Observation of Human Actions

The representation of the manipulation-relevant object knowledge consists of two main components: the
Object Container and the Functionality Map. The representation of the manipulation-relevant object
knowledge is independent of the method used for the trajectory acquisition. An example is given in
Fig. 2.1. It illustrates the Object Container with the object properties and the representation of the
actions in the Functionality Map. The Functionality Map consists of the Location Areas, between which
actions are performed. The properties of these actions are stored in the Functionality Map. Figure

Figure 2.1: Object Container and Functionality Map. The Object Container consists of object properties.
The Functionality Map is an abstract representation of the manipulation-relevant functionalities in the
environment.

7

GRASP 215821 PU

2.1.1 Manipulation-Relevant Object Representation

Robot’s environment can be very complex, containing varying objects in rooms with different furniture.
Consequently, the robot has to deal with human demonstrations in complex scenes. Such a complex
scene requires to focus the attention on the relevant information in the scene. The robot needs to detect
and observe the object, which is manipulated by the human and, therefore, currently relevant to the
robot. This mission-relevant object is considered foreground in contrast to the background, which is the
remaining geometric structure used for obstacle avoidance. The selection of the foreground object and its
monitoring is triggered by the human interaction with it. It is analogon to our earlier Vision Interaction
Cues (VICs) approach: For each object, its actions and its monitoring space around itself are defined by
the object, speeding up the processing of the human actions. The Atlas (Long-term memory) stores the
already attained, general object knowledge as well as a-priori knowledge. This general knowledge can be
mapped into the current scene (Fig. 2.2). The information about the object in the current scene is stored
in the Working Memory.

Figure 2.2: Object Container is mapped from Atlas to the Working Memory of the system.

Since a general knowledge of the object properties is of interest, not the simple records of a trajectory’s
x,y,z-coordinates but the abstract handling properties are of interest for comparison of human actions.
We consider as important property for each object: the orientation, the maximal allowed acceleration,
the mass and the center of gravity. Some of these properties are not observable with a pure vision-
based system or a pure tracking system. The handling properties themselves are constraints, which
limit the handling possibilities for an object in a certain situation. For example, an observed rotation
of a manipulated object indicates, that the object does not need to be kept in the initial orientation.
Consequently, the object-orientation does not put a constraint on the manipulation in this context. The
object-centric representation has the advantage, that the representation of a constraint is independent of
the exact position in space. It provides merely a constraint on the motion parameters. For example, a
cup filled with coffee must not be tilted during the manipulation. Therefore, the state of the cup implies
the constraint in this case. A change in handling is an indication on possible change in the state of
the object. It generates a surprise event in our system that forces the system to update the internal
knowledge about the object.

2.1.2 Functionality Graph

Functionality Graph represents the pose dependent actions on the object in a given environment. The
first element of the Functionality Map are the Location Areas. They encode the locations in 3D space,

8

GRASP 215821 PU

where a manipulation sequence started or ended. Location Areas are explicitly defined by the observed
resting position of the object. They are areas and not single points, since an object is usually placed in
a certain area and not on one exact spot. These observed Location Areas have the observed connections
between them representing possible transport goals. A Location Area does not necessarily correspond to
a geometric structure in the environment. The position of a handover of an object can also establish a
Location Area. The established Location Area is therefore not restricted to a surface, but to a region in
space.

The connections between Location Areas are the additional elements of the Functionality Graph. A
connection exists between two Location Areas, if an action has been performed directly between both
areas without visiting another Location Area. Manipulation properties of the actions, which are performed
on this connection. Of course, the propertiest factor are the objects themselves. The second factor are
the different manipulation alternatives, which can occur for each object. Therefore the system needs to
store the different alternatives, which can occur for each object and its manipulation alternatives. Two
exemplary objects of a Functionality Map can be seen in Fig. 2.3.

Figure 2.3: Functionality Graphs for different objects in the scene.

The properties stored in the Functionality Graph are the following:

• pushed object vs. lifted object - An object can be manipulated by lifting or by pushing it. A
pushed object needs just to be pushed in the desired direction, whereas lifting an object requires
much more e rt (e.g., knowledge about the way of grasping, the object’s weight).

• arbitrary movement vs. movement with a goal - The trajectory between two Location Areas
has either an arbitrary shape or it represents a movement with a goal. A movement with a goal
connects the Location Areas in a direct manner while avoiding detours. In contrast, an arbitrary
movement has not such a directed shape. Consequently, the movement with a goal sets a constraint
on the possible trajectories, whereas an arbitrary movement does not.

• action probabilities - The probabilities of the connections show the probability of a manipulation-
relevant property, based on the observed actions.

• max. speed during pick-up - The three phases defining an action are used: the pick-up, the
transportation and the placement phase. The maximal speed during the pick-up phase is stored in
the Functionality Map, since it is an indicator of the difficulty to pick up the object.

• grasp taxonomy - The grasp type is mainly important for the pick-up and placement phase of
the manipulation and is not part of this work.

• approach vector - The approach vector is, similarly to the grasp type, mainly important for the
pick-up and placement phase of the manipulation and is not part of this work. The approach vector
is the direction, from which the object is grasped in the object-centric point of view.

2.1.3 Performance of the Observation Approach

We observed human actions with our system and filled the Object Container and the Functionality Graph
with the appropriate information.

9

GRASP 215821 PU

Figure 2.4: Tracking of a line and curve motions of a milk carton and arbitrary motions of a cup

For the rotation classification, a leave-one-out cross validation is made. The results of the classification
show, that 42 of 45 of the movements without rotation are correctly labeled, and 30 of 45 movements
with rotation are correctly classified. The statistical measures show the learned capabilities in detail.
A basic measure is the accuracy, which gives the percentage of correctly classified sequences among all
sequences. This measure takes not into account, that there are different numbers of sequences for each
class. We refer to our publication in the appendix for numerical examples of achieved accuracies.

Figure 2.5: Result of the Location Areas - tracking data. The blue crosses show the computed stop-points
of all sequences (in mm). The black arrows are drawn to visualize the identified connections between the
Location Areas.

An example showing a real scenario and the tracked and segmented data is depicted in Fig. 2.6.

Figure 2.6: Trajectories of movements - vision data. Left: Examples of the trajectories, which are
recorded with the vision system. Right: The trajectory of an arbitrary movement is drawn after the
recording.

10

GRASP 215821 PU

2.2 Object Registration

We implemented an efficient algorithm for 3D object recognition in presence of clutter and occlusions in
noisy, sparse and unsegmented range data. The method uses a robust geometric descriptor, a hashing
technique and an efficient RANSAC-like sampling strategy. We assume that each object is represented
by a model consisting of a set of points with corresponding surface normals. Our method recognizes
multiple model instances and estimates their position and orientation in the scene. The algorithm scales
well with the number of models and its main procedure runs in linear time in the number of scene points.
Moreover, the approach is conceptually simple and easy to implement. Tests on a variety of real data sets
show that the proposed method performs well on noisy and cluttered scenes in which only small parts of
the objects are visible (Fig. 2.7).

Figure 2.7: Three views of a typical recognition result obtained with our method. The scene is shown as a
blue mesh and the four recognized model instances are rendered as yellow point clouds and superimposed
over the scene mesh.

2.2.1 Model Preprocessing Phase

For a given object model M, we sample all pairs of oriented points (u,v) = ((pu,nu), (pv,nv)) ∈ M×M
for which pu and pv are approximately at a distance d from each other. For each pair, the descriptor
f(u,v) = (f2(u,v), f3(u,v), f4(u,v)) is computed and stored in a three-dimensional hash table. Note
that since d is fixed we do not use f1 as part of the descriptor. Furthermore, we do not consider all
pairs of oriented points, but only those which fulfill ‖pu − pv‖ ∈ [d − δd, d + δd], for a given tolerance
value δd. This has several advantages. The space complexity is reduced from O(m2) to O(m), where
m is the number of points in M. For large d, the pairs we consider are wide-pairs which allow a much
more stable computation of the aligning rigid transform than narrow-pairs do. A further advantage of
wide-pairs is due to the fact that the larger the distance the less pairs we have. Thus, computing and
storing descriptors of wide-pairs leads to less populated hash table cells which means that we will have
to test less transform hypotheses in the online recognition phase and will save computation time.

Note, however, that the pair width d can not be arbitrary large due to occlusions in real world scenes.
For a typical value for d, there are still a lot of pairs with similar descriptors, i.e., there are hash table
cells with too many entries. To avoid this overpopulation, we remove as many of the most populated
cells as needed to keep only a fraction K of the pairs in the hash table (in our implementation K = 0.1).
This strategy leads to some information loss about the object shape. We take this into account in the
online phase of our algorithm.

The final representation of all modelsM1, . . . ,Mq is computed by processing eachMi in the way described
above using the same hash table. In order not to confuse the correspondence between pairs and models,
each cell contains a list for each model which has pairs stored in the cell. In this way, new models can be
added to the hash table without recomputing it.

2.2.2 Time Complexity

The complexity of the proposed algorithm is dominated by three major factors: (i) the number of itera-
tions, (ii) the number of pairs per hash table cell and (iii) the cost of evaluating the acceptance function
for each object hypothesis. In the following, we discuss each one in detail.

(i) Consider the scene S∗ consisting of |S∗| = n points and a model instance M therein consisting of

11

GRASP 215821 PU

|M| = m points. We we need

N =
ln(1− PS)

ln(1− PM)
(2.1)

iterations to recognize M with a predefined success probability PS , where PM is the probability of
recognizing M in a single iteration. In the classic RANSAC applied to 3D object recognition we have
PM ≈ 1/n3. Our sampling strategy and the use of the model hash table lead to a significant increase of
PM and thus to a reduction of the complexity. In the following, we estimate PM .

Let P (pu ∈ M,pv ∈ M) denote the probability that both points are sampled from M. Thus, the
probability of recognizing M in a single iteration is

PM = KP (pu ∈ M,pv ∈ M), (2.2)

where K is the fraction of oriented point pairs for which the descriptors are saved in the model hash
table. Using conditional probability and the fact that P (pu ∈ M) = m/n we get

PM = (m/n)KP (pv ∈ M|pu ∈ M). (2.3)

P (pv ∈ M|pu ∈ M) is the probability to sample pv from M given that pu ∈ M. We can assume
that pv is not independent of pu because it is sampled uniformly from the set L consisting of the scene
points which lie on the sphere with center pu and radius d, where d is the pair width used in the offline
phase. Under the assumptions that the visible object part has an extent larger than 2d and that the
reconstruction is not too sparse, L contains points from M. Thus, P (pv ∈ M|pu ∈ M) = |L ∩M|/|L| is
well-defined and greater than zero. |L ∩M|/|L| depends on the scene, i.e., it depends on the extent and
the shape of the visible object part. Estimating C = |L∩M|/|L| by, e.g., 1/4 (this is what we use in our
implementation) accounts for up to 75% outliers and scene clutter. Thus, we get for PM as a function of
n (the number of scene points)

PM (n) = (m/n)KC. (2.4)

Again, approximating the denominator in (2.1) by its Taylor series ln(1−PM (n)) = −PM (n)+O(PM (n)2)
we get for the number of iterations

N(n) ≈
− ln(1− PS)

PM (n)
=

−n ln(1− PS)

mKC
= O(n). (2.5)

This proves that the number of iterations depends linearly on the number of scene points. Furthermore,
it is guaranteed that the model instances will be recognized with the desired probability PS .

(ii) The number of pairs per hash table cell depends on the number of models as well on the number of
points of each model. An algorithm is considered to scale well with the number of models if its runtime is
less than the sum of the runtime needed for the recognition of each model separately. In other words, an
algorithm should need less time than it is needed for a sequential matching of each model to the scene.
The use of the model hash table ensures this in the case of our method. For almost all real world objects
it holds that a hash table cell does not store pairs from all models. Furthermore, not all pairs originating
from a model end up in the same hash table cell.

(iii) The acceptance function µ runs in O(l) time, where l is the number of model points. Note that µ
does not depend on the number of scene points since back projecting a model point in the range image
is performed in constant time.

2.3 Experimental Results for Scene Occlusions

Comparison with spin images and tensor matching In the first test scenario, we compare the
recognition rate of our algorithm with the spin images and the tensor matching approaches on occluded
real scenes. We test our method on the same 50 data sets as used in other approaches mentioned in the
appendix. This allows for a precise comparison without the need of re-implementing neither of the two
algorithms. The models of the four toys to be recognized are shown in the upper row of Fig. 2.8. Each
test scene contains the toys (not necessary all four of them) in different positions and orientations. Each
scene is digitized with a laser range finder from a single viewpoint which means that the back parts of the
objects are not visible. Furthermore, in most scenes the toys are placed such that some of them occlude

12

GRASP 215821 PU

���� ������	�ABAC�	�DE����F ����� �������
�� �� �� ��

���

���

���

���

��

�! �! �!

�����
�������

����
����

����A�D"�#����$
%C��D&'�$��

���

(�D�B$A��#�'

��
�A
$�
�#�
A�
D�
�#
�

)DA��B	��A�

Figure 2.8: (Upper left) The models used in the comparison test case. (Upper right) The continuous lines
indicate the recognition rate of our algorithm for each object as a function of its occlusion. The dashed
lines give the recognition rate of the spin images and the tensor matching approaches on the same scenes.
Note that our method outperforms both algorithms. The chef is recognized in all trials, even in the case
of occlusion over 91%. The blue dots represent the recognition rate in the three chicken test scenes in
which our method performs worse than the other algorithms. This is due to the fact that in these scenes
only the chicken’s back part is visible which contains strongly varying normals which makes it difficult
to compute a stable aligning transform. (Lower row) Four (out of 50) test scenes and the corresponding
recognition results. The recognized models are rendered as yellow point clouds and superimposed over
the scenes which are rendered as blue meshes. These are challenging examples since only small parts of
the objects are visible.

others which makes the visible object parts even smaller. The lower row of Fig. 2.8 shows exemplary four
(out of 50) test scenes with the corresponding recognition results obtained with our algorithm. Since our
algorithm is a probabilistic one we run 100 recognition trials on each scene and compute the recognition
rate for each object represented in the scene in the following way. We visually inspect the result of each of
the 100 trials. If object A was recognized n times (0 ≤ n ≤ 100) then the recognition rate for A is n/100.
Since the occlusion of every object in each scene is known we report the recognition rate for each object
as a function of its occlusion. The occlusion for an object model is given by 1− area of visible model surface

total area of model surface
.

The results of the tests and the comparison with the spin images and the tensor matching approaches
are summarized in the upper right part of Fig. 2.8.

Noisy and Sparse Scenes In the second scenario, we run tests under varying noisy conditions. The
models to be recognized are the same as in the last test case and the scene is the third one in the lower
row of Fig. 2.8. Next, several versions of the scene are computed by degrading it by zero-mean Gaussian
noise with different variance values σ. Again, we perform 100 recognition trials for each noisy scene and
compute the recognition rate, the mean number of false positives and the mean RMS error as functions of
σ. For a point set P, a (rigidly) transformed copy Q and a (rigid) transform T the RMS error measures
how close each point pi ∈ P comes to its corresponding point qi ∈ Q after transforming Q by T . Thus
RMS measures the quality of T . It is given by

RMS(T) =

√

√

√

√

1

N

N
∑

i=1

‖pi − T (qi)‖2, (2.6)

where N is the number of points in P. Since we know the ground truth location of each model in the
test scene the RMS error of the rigid transform computed by our method can be easily calculated. The
results of all noise tests are summarized in Fig. 2.9(a) – (c). Typical recognition results and four of the
noisy scenes are shown in Fig. 2.9(d).

Next, we demonstrate the ability of our method to deal with data sets corrupted by noise which is not
artificially generated but originates in scan device imprecision. We use a low-cost light section based
scanner which gives sparser and noisier data sets. The models used in this test scenario are shown in
Fig. 2.10. Typical recognition results of our method are shown in Fig. 2.7 and Fig. 2.11.

13

GRASP 215821 PU

��� ���

��
�
�	A
B	
BC
DE
F	
�A
E�

���

�
�
�	
F�
�A
�

�

�

��

AB	�C�EE�C�	�A�EF
� � � � � ��

�C�

�F
�A
��
���
A�
	�
C�
F

���

AB	�C�EE�C�	�A�EF

���
���
���
���
���

� � � � � ��
AB	�C�EE�C�	�A�EF�

���

���

���

�

��
��

�

� � � � � ��

���

� �

������ ����� ����� �����

Figure 2.9: (a) - (c) Recognition rate, mean number of false positives and mean RMS error as functions
of the σ of Gaussian noise. One σ unit equals 1% of the bounding box diagonal length of the scene. The
RMS units are in millimeters. (d) Typical recognition results for noise degraded data sets.

������ ����� 	A�BCD�EF �����D ���D

Figure 2.10: The models used for object recognition in scenes reconstructed with a low-cost light inter-
section based device.

Runtime In the last test scenario, we experimentally verify the two main claims regarding the time
complexity of our algorithm, namely that it needs less time than it is required for a sequential matching
of each model to the scene and that it has a linear complexity in the number of scene points.

First, we measure the runtime dependency on the number of models. The models used in this test case
are the ones shown in Fig. 2.8 and Fig. 2.10 and the scene is the leftmost one in Fig. 2.11. The recognition
time for each object (when it is the only one loaded in the hash table) is reported in Fig. 2.12(a). In
Fig. 2.12(b), the computation time of our algorithm as a function of the number of models loaded in the
hash table is compared with the time needed for a sequential matching of each model to the scene. The
difference in the performance is obvious.

Second, we measure how the runtime depends on the number of scene points. There are eleven different
data sets involved in this test case — a subset from the scenes used in the comparison test case. It is
important to note that we do not take a single data set and down/up-sample it to get the desired number
of points. Instead we choose eleven different scenes with varying scene extent, number of points and
number of objects. This suggests that the results will hold for arbitrary scenes. We report the results of
this test in Fig. 2.12(c).

2.3.1 Deformable Registration

We implemented also a new method for fast and robust deformable registration of 3D shapes. Our
algorithm is applicable to all kind of shape representations which consist of a finite set of points (which we
will call particles) with a neighborhood structure. Examples include range images, meshes and volumetric
grids, just to name a few. In contrast to most existing methods which convert the registration problem to
a minimization of a cost function, we formulate a new ordinary differential equation (ODE) which models
the deformation of a source shape towards a target shape. Integrating the ODE with a simple numerical

14

GRASP 215821 PU

Figure 2.11: Typical recognition results obtained with our method for three test scenes. The scenes
are shown as blue meshes and the recognized model instances are rendered as yellow point clouds and
superimposed over the meshes. Some of the scenes contain unknown objects (the left and the right one).
Note that the scene reconstruction contains only small portions of the objects.

��� ������

model comp. time (sec)

Chef
Para
T-Rex
Chicken
Rabbit
Snail
Chicken 2
Bottle
Vase

0.568
0.533
0.5
0.522
0.536
0.546
0.551
0.577
0.566

0.568
0.533
0.5
0.522
0.536
0.546
0.551
0.577
0.566

Figure 2.12: (a) Recognition time for each model. (b) Computation time for a simultaneous recognition
of multiple objects (solid line) compared to a sequential matching of each model to the scene (dashed
line). The runtime in the case of the sequential matching is the sum of the times reported in (a) for each
model. (c) Linear time complexity in the number of scene points for the simultaneous recognition of 9
models.

scheme avoids the repeated solution of (usually very) large linear systems necessary for the minimization
of non-linear functions. The ODE consists of two terms. The first one causes the deformation by pulling
the source shape particles towards positions on the target shape which are determined by nearest-point
search. The second term regularizes the deformation by drawing the particles towards locally-defined
rest positions. These are determined by rigidly matching the undeformed neighborhood of each source
particle to its current (deformed) neighborhood. The numerical solution of the ODE defines a trajectory
for each particle from its initial position to its end position on the target shape. We experimentally
demonstrate the efficiency of our method in terms of processing time on a variety of real range images.
We used hands in our example because they allow the easiest controlled deformation. The system is
designed to work with arbitrary object and was also tested on objects from the project.

(a) (b) (c)

Figure 2.13: Range images representing the back part of the same hand in two different poses. The data
sets were obtained with a fast 3D geometry scanner (see paper in the appendix). (a) The source shape
is shown in yellow (top) and the target shape is shown in blue (bottom). (b) Initial pose of the shapes
as captured with the scanner. (c) The result of our deformable registration.

We developed an efficient algorithm for deformable registration of 3D shapes. In contrast to many recent
methods, our approach is not based on optimization. The minimization of high-dimensional, nonlinear
cost functions is computationally very demanding since it involves the repeated solution of large linear
systems. Instead, we rely on a simple and effective numerical integration scheme and solve a system

15

GRASP 215821 PU

(a) (b) (c)

Figure 2.14: Registering two range images representing the front part of the same hand in two different
poses. The data sets are publicly available. (a) The source shape is the yellow mesh (top) and the target
shape is the blue one (bottom) (b) Initial pose of the shapes as captured from the scanner. (c) The result
of our deformable registration.

of ODEs which models the non-rigid motion of a source shape towards a target shape. The ODE we
proposed consists of an attraction and a regularization term. The attraction term is based on closest-point
computations and the regularizer is inspired from deformation modeling techniques recently proposed in
the computer graphics community. Furthermore we provided important implementation details for the
case of range image registration. We have proven that the proposed method performs well on noisy and
incomplete data.

This method can be used in the project to generalize shapes in the Atlas. The method can detect
similarities and deformations of them providing hints how to manipulate a novel object based on the
stored handling data for the generic representation in the Atlas.

16

GRASP 215821 PU

2.4 Prediction and Verfication of Physical Object Properties

We started work on evaluation of physical attributes of objects at TUM that cannot be observed without
a physical interaction with the object.

Figure 2.15: The Object Container stores geometric, physical, and handling properties.

The Fig. 2.15 will be extended by physical properties of the object like mass, center of mass, inertia,
handling forces for grasp points etc. We try to estimate the parameters through an initial excitation of
the object through the robot that observes the response of the object this response is compared with
a prediction from the Open Dynamics Engine that allows us to estimate the physical parameters of
the object from observation. The Object Container stores the possible ranges for the parameters to be
estimated in this active interaction step and reduces the parameter space for the search for the physical
attributes of the model.

Our first experiments allow us to estimate the mass and mass distribution properties of an object based
on simple excitation of the object which do not require any grasping.

Figure 2.16: Physical object properties in the Object Container are adjusted based on observations of
real world interaction.

17

GRASP 215821 PU

18

Appendix A

List of Publications

Susanne Petsch and Darius Burschka. Estimation of Spatio-Temporal Object Properties for Manipulation
Tasks from Observation of Humans. IEEE International Conference on Robotics and Automation (ICRA
2010), Anchorage, 2010

Susanne Petsch and Darius Burschka. Representatuion of Manipulation-Relevant Object Properties and
Actions for Suprise-Driven Exploration. In submission to IROS 2011

Chavdar Papazov and Darius Burschka. An Efficient RANSAC for 3D Object Recognition in Noisy
and Occluded Scenes. In Proceedings of the 10th Asian Conference on Computer Vision (ACCV’10),
November 2010. (oral presentation; acceptance rate: 4.7

Oliver Ruepp, Robert Bauernschmit, and Darius Burschka. Towards On-Line Intensity-Based Surface
Recovery from Monocular Images, British Machine Vision Conference, BMVC 2010.

Chavdar Papazov and Darius Burschka. Stochastic Global Optimization for Robust Point Set Registra-
tion. Invited paper submitted to Computer Vision and Image Understanding (CVIU) Journal.

Oliver Ruepp and Darius Burschka. Fast recovery of weakly textured surfaces from monocular image
sequences. In Proceedings of the 10th Asian Conference on Computer Vision (ACCV’10).

Matthew Johnson-Roberson, Jeannette Bohg, Gabriel Skantze, Joakim Gustafson, Ralf Carlsson, Babak
Rasolzahdeh and Danica Kragic. Enhanced Visual Scene Understanding through Human-Robot Dialogue.
In submission to IROS 2011

19

Estimation of Spatio-Temporal Object Properties for Manipulation
Tasks from Observation of Humans

Susanne Petsch and Darius Burschka

Abstract— We propose a system for vision-based estimation
of manipulation-relevant properties of objects in natural scenes
based on observation of human actions. The system consists of
an a-priori (Atlas) knowledge about known generic objects in
the scene and classifies the scene into mission relevant objects
and background geometry that is important only for collision
avoidance. We present the structure of our system consisting
of an Atlas representation and aWorking Memory storing the
current knowledge about the scene, the manipulated objects
and actions applied to them in the local environment.

We present experimental results how the system maintains
the information in the database and show the quality of the
results that can be obtained with our system.

I. M OTIVATION

Cognitive systems need to be capable of identifying the
mission relevance and of learning the model description of
objects by themselves during a joint action with a human
operator. Most generally, a model of context specifies the
entities to observe, the properties to measure and the relations
to detect according to [17]. Dey [6] proposed an operational
model for context aware perception. In this model, a situation
is defined as a configuration of entities and relations relative
to a task. The task serves to determine which entities and
relations are of interest and should be observed. We transfer
these findings into our environment representations, which
allows to decouple complex object recognition loops from
the low level 3D reconstruction.

Sensation and perception are key components of cognitive
systems. Cognition can be defined as “generation of knowl-
edge on the basis of perception, reasoning, learning and
prior-models”. Perception is the main source of information
for reasoning and learning capabilities. Scene classification
is an important task in cognitive systems. It helps in sensor-
based 3D model generation to discriminate between objects
interesting for missions (foreground) andbackground objects
relevant merely for localization and obstacle avoidance.

We aim to develop a system that defines its actions
as a response to the perception under consideration of its
knowledge about the current action context. A cognitive
system is one that is capable of interacting with humans
and other systems in an environment and that is capable
to respond to an unexpected event that we will refer to
as a surprise in the following text. Our system uses the

This work was supported by the European Communitys Seventh Frame-
work Programme FP7/2007-2013 under grant agreement 215821(GRASP
project)

Susanne Petsch and Darius Burschka are with the Machine Vision
and Perception Group, Department of Informatics, Technische Universität
München. 85748 Garching, Germany
{petsch|burschka}@in.tum.de

surprise to control the learning about the scene and to trigger
its own actions as responses to the external stimuli in the
environment. We use this to allow the system to deal with a
possible high complexity of the scene. Our system observes
a human operator who identifies the mission relevant objects
through a direct interaction with them (manipulation). This
way, our system does not need to identify and to learn about
all objects in the scene but only about the objects that were
used by the human. These objects define theforeground layer
of our representation while the geometrical model of the
entire scene remains as a global three-dimensional structure
in a background layer. Only a contact of a human hand
with an object followed by a change of its position renders
the action as something that the system should know about
(Fig. 1).

Fig. 1: System observes human actions and completes the
internal knowledge representation for objects relevant for a
manipulation task.

The target selection task is a challenging part of the system
and can be implemented as a manual or automatic process.
Examples in 2D image space are described in [14], [13] in
more detail. Interesting targets like single standing objects
in the scene need to be separated from the supporting planes
of the floor and walls that are merely relevant for collision
avoidance.

Single standing objects are categorized asforeground.
They need to be separated from the environment structure
(background) first. In an additional step, the remaining
foreground objects are classified according to their shape, ex-
tension and movement relative to the scene. Thebackground
structures are used in a subsequent classification process to

classify the scene structure according to the criteria described
above.

We consider the visual and haptic perception as the
stimuli generating the input for our cognitive processing.
This multi-modal sensor input will allow to extract the initial
information aboutforeground objects in the scene, to classify
them, and to match them to already known representations in
theAtlas (long-term memory) (Fig. 2). The visual observation
is a first step to acquire an initial guess about the object
properties from its appearance.

The paper is structured as follows: in the next section we
present details of our approach. We present the way how
the a-priori and working knowledge about the actual envi-
ronment is represented and how the processing of the robot
is implemented. In Section III, we present our experimental
results showing the different steps of the processing chain.
We conclude in Section IV with an evaluation of the current
system and present our future work in this area.

A. Related Work

Modayil and Kuipers [10], [11] developed a method
where a learning agent can autonomously learn about object
models, by detecting, tracking, and characterizing clusters
of foreground pixels in the sensory stream. Their agent is a
mobile robot that receives a stream of sensory information
from a laser range-finder. Grauman and Darrel [7] learned
feature masks for object categories by embedding sets of
unordered image features into a space where they cluster
according to their partial-match correspondences. Weber et
al. [16] focused on learning object models that are repre-
sented as flexible constellations of rigid parts. Savarese and
Fei-Fei [12] proposed a model to represent and learn generic
3D object categories by linking together diagnostic parts of
the objects from different viewing points. All these methods
learn models for particular objects or object categories from
a database of static images under different viewpoints and
different backgrounds. Our approach works in 3D space
providing a more robust segmentation and registration per-
formance.

In the field of object tracking, Comaniciu et al. [5]
proposed a kernel-based tracking algorithm where an object
is represented by an ellipsoidal region in the image and
the mean-shift tracker maximizes the appearance similarity
iteratively. Isard and Blake [8] presented a particle filter
based tracking algorithm where object shape is represented
by B-splines. Yilmaz et al. [19] proposed a contour-based
tracking method using the color and texture models in a
band around the objects boundary. Tran and Davis presented
a robust object tracking method using regional affine invari-
ant features [15]. In our approach, we use our previously
presented 6DoF system VGPS that tracks the structure in
monocular images and provides in real-time all six motion
parameters.

II. A PPROACH

The robot needs to know about the geometric and physical
properties of the object to perform a successful manipulation.

Hypotheses about the possible grasp points for the robotic
manipulator need to be generated based on the shape and
the physical properties like mass and friction of an object.
The properties that we currently consider as important for a
successful manipulation are: mass, center of gravity, shape
to find appropriate surfaces for a successful grasp with a
given manipulator, and allowed actions that can be applied
to an object. Not all of these properties are observable with
a camera and, therefore, we use an additional information
databaseAtlas in our system (Fig. 2) to represent the
“experience” (a-priori information) of the system.

Fig. 2: The system moves the knowledge from a-priori
database (Atlas) and instantiates it in the Working Memory
representing the actual setup of the manipulation task.

We use for the knowledge representation in the Atlas an
analogy to the cognitive capabilities of the human brain
and its different strategies, how to store and process the
information in the most efficient way. The brain does not
store memories in one unified structure. Instead, different
types of memory are stored in different regions of the brain.
Long-term memory in the brain is memory that can last
as little as a few days or as long as decades. It differs
structurally and functionally fromworking memory or short-
term memory, which stores items for only a short time.
Working memory (also referred to as short-term memory,
depending on the specific theory) is a theoretical construct
within cognitive psychology that refers to the structures
and processes used for temporarily storing and manipulating
information. There are numerous theories as to both the
theoretical structure of working memory as well as to the
specific parts of the brain responsible for working memory.
Baddeley and Hitch (1974) introduced and made popular the
multi-component model of working memory [1].

We follow the structure suggested by Baddeley with the
long-term memory and the short-term memory maintained
by the central executive (Mapping of the Knowledge in
Fig. 2). Our system consists of two databases storing a-priori
knowledge about the world (the Atlas) corresponding to
the long-term memory and aWorking Memory representing

the current visual an spatial representation of the world
(visuospatial sketchpad). In this layer, the episodic buffer is
implemented as a system storing the typical actions applied
to a mission relevant object.

The two layers (Fig. 2) have the following representation:

• Atlas Representation (Experience of the System)-
this information represents a-priori knowledge given
to the system from an expert or representations of
the environment collected in previous operations in the
same or similar environment. An important difference
of the proposed system to many other systems suggested
before is that it is supposed to interact with its environ-
ment in a cognitive way. This means that the system
does not operate based on a set of pre-defined rules
but it tries to learn from its own actions and actions of
other agents in the environment (human or other robots).
The information stored in the Atlas represents a generic
knowledge about a class of object.

• Working Memory - Working memory is a theoretical
construct within cognitive psychology that refers to the
structures and processes used for temporarily storing
and manipulating information. In our system, theexpe-
rience needs to be grounded to a given environment.
We expect to operate in highly complex environments,
where the system must not try to analyze all elements
of the scene as it is often the case in other current
manipulation systems but it needs to focus itsattention
on mission relevant objects whose properties need to be
explored for a successful interaction with the world.

An important novelty in the presented system is that
the objects are represented not only with their spatial and
physical properties (shape, mass, friction) but include also
temporal handling information which is essential for the sys-
tem to handle the object with the same constraints regarding
its orientation relative to the gravity vector and accelerations
in the translational and rotational motions as presented bythe
human. The following processing chain allows us to extract
this information from the visual system of the robot.

Our system depicted in Fig. 3 contains the entire process-
ing chain for the visual interpretation of a human action. It
starts with the detection of candidates for mission-relevant
objects in the world using in our first implementation a sim-
ple Supporting Plane Removal algorithm presented already
in [2], [4]. In the next step, we use our Vision Interaction
Cues (VICs) approach [18] to speed up the processing of
human actions. In our system, the human triggers any new
knowledge acquisition by presenting new actions to the
system. Each cluster segmented in the initial segmentation
step defines aninteraction space where gestures are actually
analyzed. It is only necessary to do it if the hand is in
the vicinity of a given object. Once a grasp gesture at a
given cluster is detected the system starts tracking the 6DoF
pose of the object to understand the action performed by the
user. It stores the corresponding trajectory for later analysis
until the object is released. In a final step, a registration
step is performed to match the given cluster to the known

Fig. 3: Overview of the approach. The boxes represent the
single modules of the system. Each box contains a dashed
box, where the implementations can be found, which are
used for the realization of the modules here.

geometries in theAtlas using the shape representations stored
in there. The system has the choice to use direct shape
registration for known objects or parametric shape analysis to
categorize the shape to a specific generic class representation
in the Atlas.

A. Knowledge Representation

We can tell from Fig. 2 that theAtlas contains several
distinctive object representations that provide information
which is important for the recognition of an object (geo-
metric shape for direct 3D shape registration, and parametric
shape description for generalized object class representation)
and additional information which is important to initialize
parameters which are not observable by the system. These
additional parameters are mass, center of gravity and friction
leading to specific grasp point representation, and actionsthat
are known to be associated with a given object (e.g., motion
constraints on cups or glasses that my contain water).

This a-priori information (experience) from the Atlas
needs to be mapped on the current environment represen-
tation surrounding the robot, which is stored in theWorking
Memory. TheWorking Memory contains the geometric shape
description as well which is now complete in opposite to the
current sensor reconstruction that usually provides only a
partial view due to occlusions in the scene. The registration
step to theAtlas information allows a completion here.
Additionally, now the system is able to store also the texture
information representing the appearance of an actual instance

of an object in the scene. Now we know not only that there
is e.g., a cup, but we also know that this is a cup with a
specific texture or logo on it. We move the initial hypothesis
about the grasping points and actions from theAtlas to the
Working Memory. Finally, we get also hypotheses about the
mass range, center of gravity position, friction and stiffness
of the object as an initial guess for the first interaction of
the robot with the object. This information is provided as a
container for other processing steps and not considered in
this paper.

B. Action Representation

An important novelty in our object description is the
representation of the temporal changes to the object. We
decided to use an object-centric representation of actions.
We consider the robot and the human as agents that can
imply changes to the state of an object. We are interested in
this context only in three phases of the change depicted in
Fig. 4

Fig. 4: Three phases defining an action: the type of pickup,
the way the transportation is done, and the placement of an
object.

The pickup and the placement is mostly concerned with
the grasp type performed by the human operator and not
part of this paper. This is an information, which is important
for an emulation of the grasp by the robot and requires
a hand gesture recognition which is provided by a project
partner. In this paper, we are interested in the analysis of the
transportation phase of the action. It is important for us inthis
stage of the project, how free the motion of the object can be
(which enforces constraints of coupling between the jointsof
the robot to ensure a specific orientation relative to, e.g.,the
gravitational vector) is and where the object is usually placed
in the scene. We found it not necessary to safe any actual
trajectories presented by the human since our focus is on a
detailed description of object properties here. For an object it
is not important which way it took through the environment
but only how it was handled (speeds, orientations) and where
it was picked up and placed. This is the information that we
need to extract from the vision system.

C. Scene Clustering

In order to detect the object in the plane, a plane-
subtraction is applied first, which is described in [2], [4].The
approach uses the fact that there is a homography between
the(u, v, D) coordinates of the disparity image ([u, v]-image
coordinates and disparity D) and the corresponding Cartesian
coordinates from the 3D scene. According to [2], the planar
surfacePr can be represented as

Pr : arx + bry + crz = dr. (1)

It is shown in [4], that the equivalent disparity plane is given
by

D(u, v) =





ρ1

ρ2

ρ3





·





u

v

1



 = n∗

r ·





u

v

1



 (2)

with the disparityD(u, v) at image coordinates(u, v), ρ1 =
ar

k
, ρ2 = br

k
, ρ3 = cr

k
, k = dr

B
and baselineB.

The next step is the search for the planar candidates. These
candidates depend on the gradient of the disparity-map: A
high gradient or low gradients with different directions refer
to the border of a planar plane, whereas pixel with low
gradients of the same direction form a plane. The biggest
area with low gradients of the same direction is assumed to
be a part of the plane. This area is used for the estimation of
the normal vectorn∗

r
of the plane. The vectorn∗

r
is estimated

according to (6) in [4]:




∑

ui · Di
∑

vi · Di
∑

Di



 =





∑

u2

i

∑

uivi

∑

ui
∑

uivi

∑

v2

i

∑

vi
∑

ui

∑

v2

i

∑

1





· n∗

r (3)

The direction vectorn∗

r
enables a comparison between the

observed disparity of a pixel and the expected disparity of the
plane at the position of the pixel according to the direction
vector n∗

r
of the plane. If the difference between both is

higher than a certain threshold, the pixel is assumed to not
belong to the plane. All pixel, which belong to the plane,
are deleted in the disparity-map. Consequently the objects,
which are placed on the plane, remain in the disparity-map.
An example of the plane subtraction is given in Fig. 5.

Fig. 5: Results of plane subtraction.Left column: Original
color image.Middle column: Disparity image of the color
image on its left.Right column: Remaining object in the
disparity image after the plane subtraction.

For the further processing the outer bounding box of the
object as the biggest connected component is taken as region
of interest. Any other representation could be applied as well.

D. Parsing of Human Action

The manipulation of the objects is going to be parsed as
follows.

The first step is the detection of the contact of the object
and the hand, which will take the object. The position of the
object is detected as described before. Since the position of
the object is not changing until its contact with the hand,
the computation of the position of the object has not to be
computed again. The position of the hand can be determined
in different ways, a blob-detector is used here. Therefore the

color-image is split in HSV-planes and appropriate thresholds
are applied. Just the pixel with the color of the hand remain
in the image. If the hand touches the region of interest, a
contact is detected. Otherwise the procedure for the contact
detection is repeated until a contact is detected.

After the detection of the contact between the hand and
the region of interest (the object), the tracking of the features
of the object is initialized. The features are selected in the
region of the object. If an outer bounding box is used as
region of interest, there will be features, which are not on
the object and cannot be used for the tracking of the object.
The positions of these features do not contain disparity after
the plane-subtraction and the features can be deleted. The
valid features on the object are used for the tracking of
the manipulated object. The contact between the hand and
the object is assumed to be lost, when the object and its
features are not moving any more. Therefore the tracking of
the objects features is finished when all features stop moving.
The extended KLT [9] is used here for feature detection and
tracking. An example of the contact detection and the tracked
features is given in Fig. 6.

Fig. 6: Contact detection and object tracking.Left: The
tracking is initialized after the contact detection between the
hand and the region of interest. The small red boxes are the
valid features, whereas the blue ones are the deleted features,
which are not on the box. The top left corner of the image
shows the position of the hand, when the contact occurs.
Right: Example of features during the tracking. The tracked
features are shown in red, the assumed position of the lost
features are drawn in green.

The recorded trace of the tracked features of the manip-
ulated object enables the computation of its rotation and
translation. V-GPS is used for the computation of the rotation
and translation [3]. The computed angles and the translation
during the movement determine the possible movements of
the objects. Additionally the trace of lost features can be
reconstructed.

III. R ESULTS

In this section the results of the experiments are presented.
The used sequences (seq.) have different motion properties,
shown in Table I. The movement was either a straight line
or an arbitrary motion, the object was either tilted or not. All
movements were tested with two different boxes. The scene
was recorded with a Firewire Marlin FO46C camera. The
following settings were used: image size = 780x582 pixel
(width x height). OpenCV, XVision, extended KLT [9] and

V-GPS [3] were used in the algorithm, which was running
on a Linux system.

TABLE I: Properties of the used sequences

Seq.: Box 1 Box 2 Movement Rotation # Images
1 x line 705
2 x line x 740
3 x arbitrary 1055
4 x arbitrary x 1035
5 x line 725
6 x line x 870
7 x arbitrary 860
8 x arbitrary x 1600

A. Clustering of Object Candidates on a Table

The first part of the experiment is the plane subtraction,
as described in II-C, in order to get the position of the object
as the region of interest. A sliding-average window was used
to get a fill holes in the disparity-map, although that results
in smoother transitions between an object and the plane.
Just one sequence (seq. 6) required the modification of two
additional parameters (a larger kernel for the expected size
of the ROI and a higher number of neighbors considered
for the comparison of the direction of the gradient) because
of a too smooth transition between the object and the table,
which included the box as a candidate region for background
subtraction.

Fig. 7 shows the result of seq. 6. The result of seq. 3 has
already been presented in Fig. 5. The ROI is successfully
detected for all sequences, the size of the all ROI is given in
table II. The boxes used for the experiments have different
sizes (box 2 is larger than box 1), therefore, the algorithm
computes correctly a larger ROI for box 2.

Fig. 7: Results of plane subtraction (Seq. 6).Left column:
Original color image.Middle column: Disparity image of the
color image on its left.Right column: Remaining object in
the disparity image after the plane subtraction.

B. Tracking of Human-Induced Motions on the Objects

After the detection of the ROI, the manipulated object
is tracked as described in II-D. The tracking is initialized
when a contact between the hand and the object is de-
tected. The feature tracking is implemented with extended
KLT tracker [9]. The rotation and translation are computed
with V-GPS approach [3]. The rotation and translation is
also used for the reinitialization of lost features, since the
assumed position of the lost feature can be computed from
the estimated rotation and translation of the object. The
initialization of the tracker and features during the tracking
have already been shown in Fig. 6. An example for the

used feature set and the object trajectory is shown in Fig. 8.
The trajectory is computed from the position of the tracked
features using V-GPS. All sequences show that the trace of
a tracked arbitrary feature in the sequence is similar to its
projected 3D trajectory.

Fig. 8: Tracking of the object (6DoF from monocular)
(Seq. 3).Left: Example of feature set used for tracking. The
tracked features are shown in red, the predicted position of
the lost features is drawn in green.Right: the object trajectory
is shown in green.

Table II contains also the number of features at the
beginning and at the end of the sequence. Additionally, the
number of features, which were tracked during the whole
sequence without a reinitialization, can be seen. The number
of features which are tracked during the whole sequence
without any reinitialization decreases with the length of
the sequence (seq. 3,4,8) and the influence of rotation
(seq. 2,4,6,8). The table shows also that the reinitialization
of lost features is successful, especially seq. 8.

TABLE II: ROI and number of tracked features

Seq.: Size ROI (pixel) # features: start end whole seq.
1 27.945 20 15 7
2 25.488 22 13 4
3 27.800 14 11 3
4 20.088 11 8 2
5 39.026 10 9 8
6 48.830 16 9 5
7 52.398 41 37 30
8 52.832 34 21 7

C. Analysis of the Trajectories

The calculated information about the rotation and trans-
lation of the manipulated object during tracking enables the
computation of several properties of the manipulation. As
already described in III-B, the computation of the object
trajectory is possible. Furthermore, the rotation of the object
can be computed at each step as well as the speed of
the object along the trajectory. Fig. 9 shows the rotation,
translation and speed of the object in seq. 7. The orientation
of the vertical axis of the object is drawn every 50 steps.
We assume, that at the beginning of the trajectory the object
orientation is aligned with the calculated normal vector of
the table since we do not use any model information for
the object. Moreover, Fig. 9 depicts the shape of the speed
curve during manipulation. The speed at each position is the

average of the past 50 steps in Cartesian coordinates in the
3D Scene. The speed increases during the task.

Fig. 9: Rotation, translation and speed of the object (Seq. 7).
Left: The development of the rotated and translated normal
vector of the table is shown in green.Right: The development
of the speed along the trajectory is shown in different colors:
green = no movement, yellow = slow movement, red =
movement, blue = fast movement.

Fig. 10 shows the rotation, the translation and the speed
of the manipulation in other trials. The rotation of the
object is visible for seq. 4 and 8 while seq. 5 does not
contain any rotation of the object. It is a translation along
a straight line. Besides the shown rotations and translations
of some sequences, the translation and (if applied) rotation
of the objects have been drawn for all sequences. Fig. 10
contains also the shape of the speed during the manipulation
of the object. The manipulation of the object in seq. 5
along a straight line shows clearly the increasing speed
after the pickup, the (in average) constant speed during the
transportation and the decreasing speed before the placement.

The results of the angle analysis between the original
position of the object and its rotated position during the
manipulation are in Table III. The magnitude of the average
angle along the trajectory indicates if the object needs to
be kept in a vertical orientation or can be tilted during
manipulation. As it can be seen, Seq. 2, 6 and 8, which
contain rotations, have a clearly higher average angle than
seq. 1, 5 and 7 without rotations. In seq. 3 and 4 the system
switched to wrong features during tracking resulting in a bias
in angle estimates. As table II shows, the number of tracked
features in seq. 3 and 4 is really low, therefore, it is obvious
that the computation of the rotation and translation, whichis
based on these features and their number, is challenging for
the complex movements in seq. 3 and 4. The fact that there is
a small average angle for seq. 1, 5 and 7, which do actually
not contain rotations, is also caused by the human operator,
since it is hardly possible to move an object without any
rotation at all. The results for the maximum angles between
the original position and the rotated position (table III) show
a similar result: The maximum angle of seq. 2, 6 and 8, which
contain rotations, is much higher than for seq. 1, 5 and 7
without rotations. The remaining angle between the original
position and the final position should be close to zero, since
the object is placed on the table again. The results in table III
show, that there is a relatively high remaining angle in seq.2
and 6. These sequences have a small number of constantly
tracked features, similar to seq. 3 and 4. The remaining angle

Fig. 10: Rotation and translation of the object in different
sequences (Seq. 4, 5, 8).Left column: The drawn coordinate
system shows the computed rotation and translation of the
tracked object. The object trajectory is drawn in yellow.
Right column: The development of the speed of the object
trajectory is shown in different colors: green = no movement,
yellow = slow movement, red = movement, blue = fast
movement.

of seq. 7 reaches with 0.36 nearly zero. This sequence has
the highest number of constantly tracked features among all
sequences, therefore it can be concluded that the number of
constantly tracked features influences the performance.

TABLE III: Analyzed angles of the sequences

Seq.: Average Maximum Remaining angle (end)
1 4.28 11.11 5.54
2 10.36 31.99 19.69
3 10.08 20.72 4.57
4 6.60 14.23 1.83
5 4.40 10.87 4.86
6 11.30 21.50 20.07
7 5.47 11.28 0.36
8 10.33 25.99 4.08

IV. CONCLUSIONS ANDFUTURE WORK

The initial representation developed in the current system
is the our testbed how to represent knowledge in a manipula-
tion system and how to define action representations that are
necessary for a successful surprise detection. The detection
accuracy is already sufficient and will be improved through
usage of a bifocal setup in the near future, where the object
is observed with a long focal length camera that will allow
an even better spatial resolution.

Our next goal is to focus more on the representation of
actions in the local environment and to include them in
the predictions of the system. We started already work on
registration of generic shape descriptions that will allow
a classification of objects to a global category. This will
allow to provide a-priori suggestion about the manipulation
capabilities of an object which may still be unknown to the
system.

REFERENCES

[1] A.D. Baddeley and G.J. Hitch. Working Memory.New York: Academic
Press, vol. 8, 1974.

[2] D. Burschka and G. Hager. Scene Classification from DenseDisparity
Maps in Indoor Environments. InProc. ICPR, 2002.

[3] D. Burschka and G. Hager. V-GPS – Image-Based Control for3D
Guidance Systems. InProc. of IROS, pages 1789–1795, October 2003.

[4] D. Burschka and G.D. Hager. Vision-Based 3D Scene Analysis for
Driver Assistance.ICRA, 2005.

[5] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based Object Tracking.
Transactions on Pattern Analysis and Machine Intelligence, vol. 25,
pages 564–577, 2003.

[6] A.K. Dey. Understanding and Using Context. InPersonal and
Ubiquitous Computing, volume 5(1), pages 4–7, 2001.

[7] K. Grauman and T. Darell. Unsupervised learning of categories
from sets of partially matching image features.IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June, 2006.

[8] M. Isard and A. Blake. CONDENSATION - Conditional Density
Propagation for Visual Tracking.International Journal of Computer
Vision, vol. 29, no. 1, pages 5–28, 1998.

[9] E. Mair, K. Strobl, M. Suppa, and D. Burschka. Efficient Camera-
Based Pose Estimation for Real-Time Applications.IROS, 2009, to
appear.

[10] J. Modayil and B. Kuipers. Bootstrap learning for object discovery.
IROS, 2004, vol. 1.

[11] J. Modayil and B. Kuipers. Autonomous Shape Model Learning for
Object Localization and Recognition.IEEE Int. Conf. on Robotics and
Automation, 2006.

[12] S. Savarese and F. Li. 3D Generic Object Categorization, Localization
and Pose Estimation.IEEE International Conf. in Computer Vision
(ICCV), 2007.

[13] C. Schmid, R. Mohr, and C. Bauckhage. Comparing and evaluating
interest points.Proc. of International Conference on Computer Vision,
1998.

[14] S. Simhon and G. Dudek. Selecting targets for local reference frames.
Proc. IEEE Int. Conf. on Robotics and Automation, pages 2840–2845,
1998.

[15] S. Tran and L. Davis. Robust Object Trackinng with Regional Affine
Invariant Features.IEEE 11th International Conference on Computer
Vision, pages 1–8, 2007.

[16] M. Weber, M. Welling, and P. Perona. Unsupervised learning of
models for recognition.Proc. ECCV, vol. 1, pages 18–32, 2000.

[17] T. Winograd. Architecture of Context. InHuman Computer Interac-
tion, volume 16, pages 401–419.

[18] Guangqi Ye, Jason Corso, Darius Burschka, and Gregory D. Hager.
VICs: A Modular Vision-Based HCI Framework. InProceedings of
3rd International Conference on Computer Vision Systems, pages 257–
267, 2003.

[19] A. Yilmaz, X. Li, and M. Shah. Contour-based Object Tracking with
Occlusion Handling in Video Acquired using Mobile Camera.IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 11, pages 1531–1536, 2004.

Representation of Manipulation-Relevant Object Properties and Actions
for Surprise-Driven Exploration

Susanne Petsch and Darius Burschka

Abstract— We propose a framework for sensor-based es-
timation of manipulation-relevant object properties and for
abstraction of the known actions in a learning setup from
observation of humans. The introduced descriptors consist of
a representation constraining the motion of the object during
the manipulation task and an action graph spanning between
the typical places where the object is placed. This framework
allows to abstract the strongly varying actions of a human
operator and monitors for unexpected new actions (surprise)
that require a modification of the knowledge stored in the
system. The usage of a general and object-centric structure
enables the transfer of knowledge not only to the same situation,
but also to similar environments. Furthermore the information
can be derived from different sensing modalities.

The proposed system consists of the manipulation-relevant
properties, which are directly related to the object (Object
Container), and the actions performed with the object in its
environment (Functionality Map with Location Areas). We
present experimental results on real human actions, showing
the quality of the results that can be obtained with our system.

I. M OTIVATION

A robot should be able to learn unsupervised through ob-
servation of human actions in its environment. Unfortunately,
humans do not follow exact trajectories while performing
repetitive manipulation tasks in an environment. The system
needs to be able to abstract the manipulation actions to
focus only on information which is necessary to imitate the
manipulation or to cooperate with the human in the given
environment. A mismatch between the expectation of the
observer system and a current human action, which we will
call a surprise event in the following text, should occur
only in situations, when the stored information needs to be
actually refined or modified. The important examples here are
the cases when in the object transport phase suddenly motion
constraints are changed (e.g., a cup carried always uprightis
now tilted arbitrarily) or when an object is suddenly places
on an unexpected place, e.g. cup on the floor. This usually
is an indication that the physical properties of the object
(e.g., level of the liquid in the object) or their function (not
a drinking cup but a dirty dish) changed. This needs to be
considered in the internal representation of the manipulation
system. The robot has to be able to detect new information
efficiently in its known environment (surprise detection).

This work was supported by the European Communitys Seventh Frame-
work Programme FP7/2007-2013 under grant agreement 215821 (GRASP
project)

Susanne Petsch and Darius Burschka are with the Machine Vision
and Perception Group, Department of Informatics, TechnischeUniversiẗat
München. 85748 Garching, Germany
{petsch|burschka}@in.tum.de

Fig. 1: The system creates an abstract map of different
functionalities in the environment.

Our aim is to define a model that allows to map different
physical properties of the object to modifications in the way
how an object is carried and that efficiently abstracts the
known actions applied to a given object to be able to correctly
predict the often strongly varying transport trajectoriesand
goals. This second property of the system allows to reason
about changes in the function of a specific object in a given
environment, e.g. a tool is not used for a specific adjustment
but just put away. It is important to consider, that the robot
might face different sources of information. One source is of
course the observation of human e.g. with a vision system,
which can be useful in a household. But there are also
other sources of knowledge like a data base, which provides
knowledge in another form (e.g. the exact trajectories of
actions in a chemical laboratory). Therefore, the system
needs to be able to deal with different representations of
knowledge.

The model for the stored properties and actions need to ab-
stract from an exact Cartesian motion. An a-priori knowledge
about an object class is stored in anAtlas introduced in [18].
It contains already known properties of the objects as well
as a-priori knowledge about the objects handling. Of course
different handling properties might occur for the same object
depending on the context. The correct alternative alternatives
has to be selected based on the observation. This property
may change over time. This modifications are triggered by
a mismatch between the expectation and the observation of
the human action. The general knowledge can be mapped
into the current context and stored in the Working Memory,
in order to use information in the current scene.

It is important to consider, that not only the object itself
(e.g. its properties or physical states) is defining the way
how it is manipulated, but also the locality of the object can
change its function in an environment. Different locationsin

the environment are used for different actions, which have
certain properties. For example washing the dishes is nor-
mally done in the sink and not on the flat table without any
water source in the neighborhood. The conclusion is, that we
need a collection of object properties (Object Container),but
also a map of the environment (Functionality Map), which
provides the functionalities in this environment (see Fig.1).
It is important to notice, that we are not interested in the exact
reconstruction of the environment in the sense of navigation,
but in an abstract representation of the functionalities inthe
environment.

We split the representation of the knowledge about the
human actions into an object-centric representation reflecting
the physical properties of an object stored in anObject
Container and a Functionality Map representing possible
transport relations between places in the environment. While
the Object Container is linked only to the object, theFunc-
tionality Map is anchored in to the geometric model of the
environment. This framework allows us to limit unexpected
events (surprise events) that cannot be explained with the
current knowledge to situations where the physical state or
the function of an object changed. The system is insensitive
to variations in human actions.

Mismatches to predictions based on the information stored
in Object Container or the Functionality Map signal new,
unknown events, which require an update of the stored
information. As already mentioned, the robot should be able
to deal with several sources of information. Since our system
is built on properties of the object and object’s function, we
are not relying on a trajectory in a certain representation
like x,y,z-coordinates, or on a certain colored pattern of an
object. The properties in our system have to be powerful
enough to provide information for a manipulation. At the
same time, they have to be generic and extractable from
different sources.

The goal of this paper is the presentation of a system,
which provides the manipulation-relevant knowledge in a
manner that the described requirements can be met.

The paper is structured as follows: the detailed approach
is presented in the next section. First the manipulation-
relevant object knowledge and the Functionality Map of the
environment are described, followed by the presentation of
the knowledge extraction. The results of the experiments with
real human actions are described in Section III. We end with
the conclusions and future work in Section IV.

A. Related Work

A lot of work exists in the field of imitation learning.
In [1], HMMs are used for imitation learning of arm move-
ments in manipulation tasks for humanoid robots, in order to
achieve a human-like reproduction of the motions. It is im-
portant to point out the difference between our approach and
non-object-centric approaches. Such approaches are for ex-
ample the imitation/ learning of motor skills or the imitation
of movements with Dynamic Movement Primitives (DMP),
which encode the trajectories themselves directly [9], [16].
This paper does not aim to encode the trajectories as, e.g.,

DMP or the model in [12]. Calinonet. al use imitation
learning, in order to learn control strategies [3]. Moreover,
approaches related to Reinforcement Learning [22] are used
for imitation learning, using the observations of humans as
reward [23], [2]. In contrast to the described work in the field
of imitation learning, our aim goes beyond imitation learning.
A more general representation of object properties and their
functionality in the environment is provided, in order to get
a further understanding of the knowledge in different tasks
and environments.

The intention in imitation tasks is addressed by Jansen and
Belpaeme [10]. They train their agent in a grid with blocks in
a computer simulation. In contrast, this work deals with more
complex, real-world environments and the system needs
much less training instances than the one presented in [10].
A real-world example of capturing the user’s intention about
sequential task constraints is presented in [15]. Their system
reasons about the existence of sequential dependencies of
operations, in contrast to a further understanding of the
object’s functionality itself in this paper.

In order to achieve a further understanding of the object’s
functionality, the object’s motion has to be analyzed. The
work in [13] takes into account the effect on the object.
The object properties and its state are also of interest in
this paper, but the difference between their approach and
ours is to get information about the manipulation properties
directly related to the object and, furthermore, to the objects
functionality in the environment. Function from motion is
analyzed in [5] for “primitive motions”, which are trans-
lations or rotations relative to the main axes of primitive
objects. Our approach goes further to more and more general
manipulation-relevant object properties. In [24], functional
roles of objects like “pour out” have been explicitly intro-
duced. These roles do not refer to the object’s properties,
which are directly observable during manipulation. It is
important to distinguish the analysis of the object’s function-
ality through the observation of humans in this paper from
reasoning about shape descriptions for object functions [21].

Once again, it should be to pointed out, that the recon-
struction or the analysis of the environment, like [14], is
not of interest, since it focuses on the objects and their
functionalities in the environment. The relative/ absolute
position of objects to each other have been used [14] for the
consideration of the environment in manipulation properties.
In [4], a perceptual space (for the color and shape object
properties) and a situation space (for the displacement of
the objects in the scene) are introduced. In contrast, the
object properties in this paper are beyond the pure visual
current appearance of the object, since the manipulation-
relevant object properties are of interest. Furthermore, the
Functionality Map is not dealing with the object’s relative
position to each other, but it aims to understand the objects
and their functionalities in the environment. Additionally, an
analysis or a semantic labeling of the whole scene (e.g. [6],
[17]) is not our aim. In contrast, just the shape and the
position of the relevant manipulated object is determined as
possible object properties in the object’s environment.

II. A PPROACH

An overview of the system is given in Fig. 2. It illustrates
the Object Container with the object properties and the
representation of the actions in theFunctionality Map. The
Functionality Map contains the action properties. It repre-
sents a graph spanningLocation Areas between which the
actions are performed.

Fig. 2: Object Container and Functionality Map. The Object
Container stores the object properties. The FunctionalityMap
is an abstract representation of the manipulation-relevant
operating areas in the environment.

A. Manipulation-Relevant Object Properties

Since we are interested in a general knowledge of the
object properties, we do not want to list all the simple records
of a trajectory (traj.) in x,y,z-coordinates, but the abstract
handling properties. The properties we consider as important
for each object are the variation of orientation, the maximal
allowed acceleration, the type of grasp allowing a successful
grasp with a given manipulator, the mass and the center of
gravity. Some of these properties are not observable with e.g.
a pure vision-based system or a pure tracking system. There-
fore, the already described information database Atlas [18],
which contains the “experience” (a-priori information), is
used to provide initial information. The other properties need
to be extracted using for example a vision system.

The handling properties themselves are constraints, which
limit the handling possibilities of the object in a certain
situation. For example an observed rotation of a manipulated
object indicates that the object has not to be kept in a fix
orientation. Consequently, the object-orientation does not put
a constraint on the planning of manipulation in this context.

Our object-centric representation shows here the advan-
tage. The representation of a constraint does not rely on
a specific Cartesian position of space but considers only
the changes/derivatives of them. Every derivative removes
the constant offset from a descriptor letting the resulting
parameter float in the coordinate frame of the local area.
Possible variations in the actual Cartesian position of the
traj. do not modify these descriptors.

B. Functionality Map of the Environment

The first component of the Functionality Map are the
Location Areas. These areas are the locations in the 3D
space, where a manipulation sequence for a given object

can start or end. We define explicitly locationareas and not
single locations, since an object is usually placed in a certain
area and not on one certain point in space. These observed
Location Areas have observed connections between them
representing the edges of our Functionality Map. A Location
Area does not necessarily mean that the manipulated object
is standing on a surface. A hand-over step (e.g. changing
hands) can also establish a Location Area. The established
Location Area is, therefore, not necessarily connected to a
surface, but to an area in space.

The connections between different Location Areas are the
next component of the Functionality Map. A connection
exists between two Location Areas if an action has been per-
formed directly between both areas without visiting another
Location Area inbetween. It is important to consider that a
connection is directed here. Therefore a connection from A to
B is different from the connection in its opposite direction
from B to A. A connection itself consists of the different
manipulation properties of the actions, which are performed
on this connection. Of course the properties can depend on
different factors. The first factor are the objects themselves.
The other factor are the different manipulation alternatives
that can occur for each object. Therefore the system needs to
store the different properties, which can occur for the each
object and their manipulation alternatives. Two exemplary
objects of a Functionality Map can be seen in Fig. 3

(a) Part of the Functionality Map,
showing the information of one ob-
ject

(b) Part of the Functionality Map,
showing the information of another
object

Fig. 3: Functionality Map of the environment for two exem-
plary objects.

The properties, which are stored in the Functionality Map,
are the following:

• pushed object vs. lifted object - An object can
be manipulated by lifting or by pushing it. A pushed
object needs just to be pushed in the desired direction,
whereas lifting an object requires much more effort
(e.g. knowledge about the way of grasping, the objects
weight).

• arbitrary movement vs. constrained traj. - The shape
of the traj. between two Location Areas has either an
arbitrary shape or it is a movement with a goal. An
action with a goal connects the Location Areas in a
direct manner while avoiding deviations. In contrast an
arbitrary movement has not such a directed shape. Con-
sequently the movement with a goal sets a constraint on
the possible traj., whereas an arbitrary movement does
not.

• connection relevance- The connection relevance shows
the probability of a connection property, based on the
observed actions.

• velocity constraints during pick-up introduced in [18],
are used: - The three phases defining an action, the pick-
up, the transportation and the placement phase. The
maximal speed during the pick-up phase is stored as
velocity constraint in the Functionality Map. It is an
indicator of the difficulty to pick up the object. grasp
taxonomy

• grasp taxonomy - The grasp type is mainly important
for the pick-up and placement phase of the manipulation
and not part of this paper. The grasp taxonomy we
consider for the system is summarized in [7].

• grasp approach vector - The grasp approach vector
is similarly to the grasp type mainly important for
the pick-up and placement phase of the manipulation
and not part of this paper. The grasp direction is the
direction, from which the object is grasped in the object-
centric point of view.

The assignment of the properties to the Object Container
or the Functionality Map depends on the type of the property.
A property, which is related to the function in the environ-
ment, is assigned to the Functionality Map. For example
the velocity constraint during the pick-up is part of the
Functionality Map, since the possible velocity constraint
depends on the environment of the object (e.g. obstacles). In
contrast, a property, which is directly related to the object and
the state of the object in the context, is a part of the Object
Container. An example for such a property is the maximal
allowed acceleration for an object in a certain state (e.g. no
high acceleration for a filled cup) and a possible constraint
on the variation of orientation during manipulation.

C. Knowledge Extraction

The presented Object Container and Functionality Map
need to be filled with information. For example a scene can
be observed with a system, which provides a 6DoF-traj. of
the manipulated objects.

1) Object Container: The properties for the Object Con-
tainer, which we want to define in this paper, are the maximal
acceleration value and the variation of observed orientation
of the object during the manipulation.

a) Maximal Acceleration: The maximal acceleration
value is calculated from the change of two speed values
following each other. The speed is computed using two
consecutive samples.

b) Orientation: The observed orientation is determined
from the given 6DoF-traj.. For the constraints in the manip-
ulation task just the orientation change around the vertical
axis is of interest. The aim is to distinguish a movement
with rotation from a movement without rotation. We use
Hidden Markov Models (HMMs) [19] for classification.
HMMs are statistical classifiers, which use an observation
sequence for the estimation of the underlying state-sequence.
Here, discrete HMM withλ = (A,B,Π) are chosen. They
comprise a transition probability matrixA, an observation

symbol probability distribution matrixB and an initial state
distributionΠ.
HMM are used for the classification task because of their
ability of generalization. They are statistical classifiers,
which are able to detect the underlying state sequence of
the given observation sequence and they take into account
knowledge of the past (previous state) in the sequential input.

First the preprocessing takes place until a codebook of
the rotation information is built. An overlapping window
of 400 ms with a 200 ms overlap (according to [11]) is
applied on sequential input. The deviation of angle at the
start position to the current angle is computed around each
axis of rotation in this window. Depending on the object and
the way of recording its traj., different amounts of deviations
can occur for different objects. Since we need a relative
amount of change for each object, the deviation is normalized
for each object with its maximum deviation occurring in all
movements of the object.
After this preprocessing the collected data of the rotation
information is clustered with the K-mean algorithm [8]
independent of its time of occurrence, resulting in a 64
symbol rotation information codebook.

Then two HMM (each with 10 states) are built for the
classification of the occurrence of rotation of the object (λr)
or not (λnoR). The transition and emission probabilities for
each model are calculated with the maximum likelihood
estimation using the labeled training sequences.

For the evaluation, the system observes test sequences,
which are preprocessed as described above. The corre-
sponding symbols in each codebook are assigned by the k-
nearest-neighbors-method. To evaluate the classificationper-
formance of the trained HMMs, the maximum log likelihood
log P (otest|λi) of a given modelλi is computed for each
test sequence with observationsotest similar to [20]:

λ∗

r
= arg max[log P (otest|λnoR), log P (otest|λr)] . (1)

2) Functionality Map:
a) Location Areas: The possible Location Areas have

to be determined first. Therefore the available traj. are split
up in single sequences, which consist of the movement of
the object between two consecutive stops. A stop is a part of
the traj., in which the x,y,z-coordinates do not change. The
collected 3D-points of the stops are clustered and the re-
sulting cluster-centers are the centers of the Location Areas.
If objects of different heights have different height values
for the stop points on the same surface, a projection on the
corresponding plane makes the clustering more convenient.It
is possible, that the system detects two Location Areas,
which coincide in fact, but appear randomly as two. Since
these Location Areas are close to each other and have the
same connection properties, they can be fused.

b) Connection Properties: The next step is the deter-
mination of the connections between the detected Location
Areas and the corresponding properties of the connections for
each object. The properties, we are using in this paper, are the
distinction of a pushed vs. a lifted object, an arbitrary move-
ment vs. a movement with a goal, the velocity constraints

during the pick-up phase and the connection relevance of a
movement property on a certain connection. If possible, the
grasp type of the manipulation is determined.

Pushed Object vs. Lifted Object: An object is pushed,
if it is in contact with its background during the whole
manipulation.

Arbitrary Movement vs. Movement with Constrained Traj.:
A Principle Component Analysis PCA (with rescaling) is

performed for the distinction of an arbitrary movement and
a movement with a constrained traj.. The PCA is done on a
4.8 s window with a 2.4 s overlap, the resulting principal
components are normalized. Now we want to determine
the arbitrary movement, which has no main direction of
motion, but the movement is relatively large in all direc-
tions. Therefore we are especially interested in the third
component, since it shows the direction of the smallest
motion. If this motion has a high amplitude, the whole
motion has a relatively high amplitude in all directions,
since even the direction of the smallest motion is high.
Consequently it is an arbitrary movement. We define the
smallest motion as “high” in two cases. The first case is
a comparison with the main direction of motion (= the first
PCA-component): If the magnitude of the first and the third
component are relatively “close” to each other, there is hardly
any main direction of the movement and the movement is
arbitrary. “Close” means, that the component of the smallest
movement is multiplied with a factor (multiplication factor
arbitrary-movement), which determines, how many times the
component of the largest movement is maximally allowed to
be larger than the component of the smallest movement. The
second case of a “high” smallest motion is occurring, when
the third component is higher than a threshold (arbitrary-
movement-threshold). The arbitrary-movement-thresholdhas
to be chosen in the magnitude of the third PCA-component
of the arbitrary movements. If all the described criteria are
not met, the direction of the smallest motion is not high and
the movement is a movement with a constrained traj..

Velocity constraints during the pick-up: The pick-up phase
is defined manually here with 50 samples from the starting
position. As already described, the speed is computed for
two samples following each other.

Connection relevance: The connection relevance can eas-
ily be determined by dividing the number of occurrences of
a certain movement property on a connection by the number
of all movements on this connection.

Grasp Type: In the current implementation, grasp type is
determined by manual labeling.

III. R ESULTS

The proposed system is tested on sequences (seq.) of real
human actions. Firstly, we test our system on tracking data
(subsection III-A). The tracking data provides directly the
6DoF-traj. of the tracked markers, which are placed on top
of the manipulated objects (obj.). Afterward in subsectionIII-
B the system is evaluated on data, which is observed with a
vision system.

TABLE I: Left: Description of the movements with a con-
strained traj. and arbitrary movements. A pushed obj. is not
lifted from a plane.Right: Further description of the four
movements with a constrained traj. (seq. 1-4, 5-8, 9-12, 13-
16): The obj. is first lifted from the starting position on the
table to a higher position on a box. Then it is moved back.
Afterward, it is moved into the corner of the table, which
is on the same level of height like the starting position, and
moved back.

Seq.: Movement Rotation Seq.: Start Pos. End Pos.
1-2 constr.: line 1 table-start box
3-4 constr.: pushed 2 box table-start
5-8 constr.: curve 3 table-start corner
9-12 constr.: line x 4 corner table-start
13-16 constr.: curve x
17 arbitrary
18 arbitrary x

A. Basic Results on Tracking Data

The tracking data is recorded with a marker-based IR
tracking system1 at 50 Hz. The data is first preprocessed:
Each sample, which does not correspond to an at least
minimal movement of 0.005 m/s, is deleted. Furthermore, the
traj. are smoothed with a 1.4 s moving-average-window, in
order to eliminate high-frequency noise, which can especially
occur at the beginning of the movement. After this basic
preprocessing, the seq. vary between 4.3 s and 17.72 s, the
average is 7.45 s (example in Fig. 4a).

(a) Tracking seq.: cup (b) Vision seq.: box 2

Fig. 4: Traj. of movements. The arbitrary movements of
the tracking data (in mm) for the cup are shown in red
(without rotation) and in blue (with rotation) (line = original
movements, dotted line = result of the basic preprocessing).
The traj. of a pushed object (seq. 1) is shown for the vision
data.

The seq. are recorded with four different obj.: a milk
carton, a spoon, a cup and a vase. The cup is grasped twice:
at the handle and at the cylindrical part from the side. This
leads to five “different“ obj. for the test. For each obj.,
there are 18 different actions of a person, shown in Table I.
The implementation is done in Matlab (Statistics Toolbox:
PCA, HMM, K-mean algorithm. Bioinformatics Toolbox:
knn-classification.2).

1Advanced Realtime Tracking system. Advanced Realtime Tracking
GmbH, url: http://www.ar-tracking.de/ .

2Matlab: Statistics Toolbox, Bioinformatics Toolbox.

TABLE II: Statistical results of the classifications: Accuracy,
true positive rate and true negative rate. T = Tracking data,
V = Vision data.

Property: Accuracy True pos. rate True neg. rate
Rotation (T) 80.0% 66.7% 93.3%
Pushed Object (T) 98.9% 100.0% 87.5%
Arbitrary Movem. (T) 94.4% 80.0% 96.3%
Rotation (V) 77.5% 93.8% 66.7%
Pushed Object (V) 95.0% 87.5% 96.9%
Arbitrary Movem. (V) 80.6% 100.0% 78.6%

The parameters and the initial values for the knowledge
extraction (see Section II-C) are set as follows. The knn-
assignment of a new value to a cluster in the rotation
information codebook is done with k=3. For the classi-
fication as arbitrary movement in the Functionality Map,
the multiplication factor arbitrary-movement for the third
component is 15, and the arbitrary-movement-threshold is
0.06. Concerning the distinction pushed vs. lifted obj., the
height difference to the table is measured along the axis,
which is vertical to the table. The obj. is pushed, if its
height difference to the table is not changing (±5 mm). The
maximal acceleration is computed for a window of 8 ms.
Furthermore, the initialization of the cluster for the build-
up of the rotation information codebook is set. Otherwise
the results of the clustering are not always deterministic,
even though they look mostly very similar. The initialization
values are chosen between 0 and 1, since the input values
are the normalized changes of the angles.

1) Object Container: For the rotation classification, a
leave-one-out cross validation is made. The results show, that
42 of 45 of the motions without rotation are correctly labeled,
and 30 of 45 motions with rotation are correctly classified.
Therefore the system performs definitely better than guessing
the classification (ground truth: 50%), and performs quite
well (see Table II).

The final result of the Object Container can be seen
in Table III. In order to make the Object Container more
generic, acceleration classes are introduced. The number of
acceleration classes is set to three for illustration. Eachclass
represents an approximately equal sized part of the achieved
acceleration values within0.003− 0.01 m/s2.

2) Functionality Map: The three used location areas have
been correctly identified. A leave-one-out cross validation is
done for the classification of the (non-)arbitrary movements
(at first without the distinction of a pushed or lifted obj.).8
of 10 arbitrary movements are correctly labeled, and 77 of 80
movements with a constrained traj. are correctly classified.
This shows, that the system performs definitely better than
guessing (ground truth: 11%). For the true positive rate
(see Table II), one has to consider, that there are just
10 arbitrary movements among all 90 seq., leading to a
significant influence of every mislabeled arbitrary movement.

The classification of the pushed vs. the lifted obj. is
successful for all seq. except one spoon-sequence.

The results of the Functionality Maps show, that the

TABLE III: Result: Object Container. The number of obser-
vations per acceleration class and the rotation-classification
are shown. Legend: R = motion with rotation, Acc. class
= acceleration class: acc. class 1 forx < 0.006 m/s2,
acc. class 2 for0.006 m/s2 ≤ x < 0.009 m/s2 and
acc. class 3 for0.009 m/s2 ≤ x.

Acc. class 1 2 3

Objects Tracking no R R no R R no R R
Milk 3 3 6 3 3 0
Spoon 3 1 3 4 4 3
Cup-handle 2 4 3 8 1 0
Cup 5 2 8 1 2 0
Vase 10 4 4 0 0 0

Objects Vision no R R no R R no R R
Object 1 1 1 0 1 2 5
Object 2 3 0 0 0 4 3
Object 3 2 1 1 1 1 4
Object 4 0 2 2 2 1 3

system is able to deal with some misclassifications, since
it achieves correct high connection relevances for all obj.
except for the cup-handle. The best (= completely correct)
results are achieved for the cup and the milk (Fig. 5a). The
worst result is the Functionality Map of the cup-handle, since
it contains the highest number of misclassifications (two
misclassifications) among all Functionality Maps. In Fig. 5b,
The misclassified arbitrary movements (red self-loop LA2)
and the misclassified movement with a constrained traj.
(magenta connection from LA1 to LA 2) are drawn. The
results for the other two obj. show just one misclassification.

(a) Tracking seq.: milk (b) Tracking seq.: cup-handle

(c) Vision seq.: obj. 1 (d) Vision seq.: obj. 2

Fig. 5: Result: Functionality Maps. Red arrow = movement
with a constrained traj., green arrow = pushed obj., magenta
arrow = arbitrary movement.

B. Results from a Vision System

The vision data is recorded with a Firewire Marlin FO46C
camera at 30 Hz and an image size of 640x480 pixel (width
x height). The traj. are acquired as described in [18]. The
C++ Implementation of Hidden Markov Model by Dekang

TABLE IV: Sequence properties - vision system. 10 Seq.
are recorded with each of the 4 obj.. The start and end
positions are the bottom right (br), the bottom left (bl), the
top right (tr) and the top left (tl) of a table.

Seq.: Movement Rotation Start Pos. End Pos.
1, 11, 21, 31 constr.: push br tl
2, 12, 22, 32 constr.: push tl bl
3, 13, 23, 33 constr.: curve bl br
4, 14, 24, 34 arbitrary br br
5, 15, 25, 35 constr.: curve br tl
6, 16, 26, 36 constr.: curve tl br
7, 17, 27, 37 constr.: curve x br tr
8, 18, 28, 38 constr.: curve x tr br
9, 19, 29, 39 constr.: curve x br bl
10, 20, 30, 40 constr.: curve x bl br

Lin 3 is (slightly modified) is used for the implementation
of HMMs. The PCA, the K-means algorithm and the knn-
classification are done with OpenCV. The properties of the
recorded seq. of real human actions are listed in Table IV.
An example is shown in Fig. 4b.

Similarly to the tracking data, a basic preprocessing is
performed (minimal movement> 0.01/sample, 140 sample
moving-average-window). Furthermore the first and last 20
samples were cut of, in order to deal with the arbitrary
motions at the beginning and at the end of the seq.. The
angle-values are smoothed along each dimension separately.
The initialization and threshold values are set as for the
experiment with the tracking data, except for the arbitrary-
movement-threshold (0.06 for the vision data) and the win-
dow for the acceleration-computation (16 ms).

1) Object Container: The appearance of (non-) rotation
is correctly identified for 31 of 40 seq. (Table II). Eight seq.
are mislabeled as seq. with rotations. All of them show, that
one or both horizontal angles vary during the manipulation.
The variations are not as strong as for most of the seq. with
rotation, but it is still visible. Table III shows the final result
of the Object Container.

2) Functionality Map: The Location Areas themselves are
successfully determined. The assignment is successful for77
of 80 positions (96.3%). The missclassifications occur for the
end positions of seq. 8, 21 and 33. These misclassifications
are mainly caused by the z-components (the depth) of the end
positions, which are closer to the wrong Location Areas.

As the statistical measures in Table II show, the result of
the distinction between a pushed obj. and an obj., which is
lifted for the movement, is remarkable. There is just one
seq. mislabeled as pushed obj., and one seq. mislabeled as
raised obj.. The performance of the classification as arbitrary
movement or as movement with a constrained traj. achieves
a true positive rate of 100.0%. Consequently, no arbitrary
movement is mislabeled as non-arbitrary movement. Six
seq. are misclassified as arbitrary movements instead of
movements with constrained traj.. These movements contain
small parts with an arbitrary shape. The kind of grasp is

3Copyright (C) 2003 Dekang Lin, lindek@cs.ualberta.ca,
url: http://webdocs.cs.ualberta.ca/ lindek/hmm.htm .

TABLE V: Result: Connection properties of a fictional obj.,
which is built on all seq. of the vision data. The relevance
(probability P) of each connection property is shown.

COallij P(constr.) P(arbit) P(push)
COall00 0.00 0.75 0.25
COall01 0.60 0.40 0.00
COall02 0.75 0.25 0.00
COall03 0.43 0.14 0.43
COall10 0.86 0.14 0.00
COall12 1.00 0.00 0.00
COall20 0.67 0.33 0.00
COall22 1.00 0.00 0.00
COall30 1.00 0.00 0.00
COall31 0.00 0.00 1.00

analyzed according to [7]. All used grasps are power grasps
with an abducted position of the thumb.

The Functionality Maps of obj. 1 and 4 have just one
wrong assignment of an end location each, everything else
is correct (see obj. 1 in Fig. 5c). The Functionality Map
of obj. 2 suffers mainly from misclassifications as arbitrary
movements (see Fig. 5d). One movement of obj. 3 can be
seen a outlier, since its connection property, as well as the
assignment of its end location, are wrong. Besides one further
misclassified connection property, the Functionality Map of
obj. 3 is correct.

Most of the connections in the Functionality Maps are
correctly established, even though just one seq. is observed
for the connection. Taking this into account, the results of
the Functionality Maps are already very good, only the
Functionality Map of obj. 2 can be improved. If just one
manipulation is observed along a connection, each miss-
classification leads to another connection property in the
resulting Functionality Map. The observation of more seq.
enables a better usage of the connection relevance, which is
assigned to each connection. In order to give an impression of
this possibility, all observations of the four obj. are treated as
observations of the same fictional obj.. It should be pointed
out, that it is not the intention to sum up all observations
in general. The purpose is just to illustrate a Functionality
Map, based on some observations per connection.

Of course, the 3 seq. with misassigned end locations result
in wrong connections as well. The effect of a higher number
of observations per connections becomes clear in Table V.
The mislabeled connection properties have a lower relevance
than the correctly labeled connections properties (COall00,
COall01, COall02, COall03, COall10, COall20). Conse-
quently, the system shows its ability to deal with misclas-
sifications, if more than one observation is made for each
connection. It should be pointed out, that the system gets
a maximum of four observations per connection property
for most of the connections (exception: 8 observations on
COall10).

IV. CONCLUSIONS ANDFUTURE WORK

The proposed system is developed for abstract represen-
tation of manipulation-relevant knowledge of objects. This

system aims to monitor object properties and function in a
given environment The experiments on tracking and vision
data show that the system can derive the knowledge from
different sources, which provide the necessary information
for the system. The presented system allows an efficient
monitoring scheme for detection of unexpected (surprising)
event that require an update of the information in the internal
representation. The proposed framework allows to deal with
the strong variation in actions performed by a human oper-
ator reducing the number of false positive surprise events to
a minimum.

The proposed descriptors consisting of an Object Con-
tainer and a Functionality Map spanning typical object
locations in a graph allow a close monitoring for changes
in a physical state of the object and its function in a given
environment.

The results from the vision system show that a single
trajectory of a certain functionality is not enough to avoid
with a misclassification. An observation of multiple actions
in along a given edge of the Functionality Map (graph) allow
us though to estimate the function of the object in the world.
Our next goal is to focus more on unknown situations and
environments. They provide new information to the system.

REFERENCES

[1] T. Asfour, P. Azad, F. Gyarfas, and R. Dillmann. Imitation learning
of dual-arm manipulation tasks in humanoid robots.International
Journal of Humanoid Robotics, 5(2):183–202, 2008.

[2] G. Bombini, N. Di Mauro, T. M. A. Basile, S. Ferilli, and F. Esposito.
Relational Learning by Imitation. In A. H̊akansson et al., editor,KES-
AMSTA 2009, volume 5559, pages 273–282. Lecture Notes in Artificial
Intelligence, Springer-Verlag Berlin Heidelberg, 2009.

[3] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, andA. Billard.
Learning and Reproduction Gestures by Imitation.IEEE Robotics and
Automation Magazine, 17:44 – 54, 2010.

[4] A. Chella, H. Dindo, and I. Infantino. Learning high-level tasks
through imitation. InProceedings of the 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3648–3654,
2006.

[5] Z. Duric, J. A. Fayman, and E. Rivlin. Function from Motion.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(6):579–591, June 1996.

[6] M. Eich, M. Dabrowska, and F. Kirchner. Semantic Labeling:Classi-
fication of 3D Entities Based on Spatial Feature Descriptors. In IEEE
International Conference on Robotics and Automation: Workshop on
Best Practice Algorithms in 3D Perception and Modeling for Mobile
Manipulation, Anchorage, USA, 2010.

[7] T. Feix, R. Pawlik, H.-B. Schmiedmayer, J. Romero, and D. Kragic.
The generation of a comprehensive grasp taxonomy. InRobotics, Sci-
ence and Systems Conference: Workshop on Understanding the Human
Hand for Advancing Robotic Manipulation, Poster Presentation, June
2009.

[8] J.A. Hartigan and M.A. Wong. A k-means clustering algorithm.
Applied Statistics, 8(1):100–108, 1979.

[9] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement Imitation
with Nonlinear Dynamical Systems in Humanoid Robots. InIEEE
International Conference on Robotics and Automation, pages 1398–
1403, Washington, DC, USA, 2002.

[10] B. Jansen and T. Belpaeme. A Model for Inferring the Intention in
Imitation Tasks. InThe 15th IEEE International Symposium on Robot
and Human Interactive Communication, RO-MAN’06, pages 238–243,
2006.

[11] M. Kawato. Trajectory formation in arm movements: Minimization
principles and procedures. InAdvances in Motor Learning and
Control, ser. Human Kinetics, H. N. Zelaznik, Ed. Human Kinetics
Publishers, Chanpaign Illinois, pages 225–259, 1996.

[12] K.Ogawara, J.Takamatsu, K.Kimura, and K.Ikeuchi. Generation of a
task model by intergrating multiple observations of human demon-
strations. InProceedings of the IEEE Intl. Conf. on Robotics and
Automation (ICRA ’02), pages 1545–1550, May 2002.

[13] V. Krüger, D. L. Herzog, S. Baby, A. Ude, and D. Kragic. Learning
actions from observations.IEEE Robotics and Automation Magazine,
pages 30–43, June 2010.

[14] M. Mitani, M. Takaya, A. Kojima, and K. Fukunaga. Environment
Recognition Based on Analysis of Human Actions for Mobile Robot .
In The 18th International Conference on Pattern Recognition (IEEE),
pages 782–786, 2006.

[15] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zöllner. Incremental
Learning of Tasks From User Demonstrations, Past Experiences,
and Vocal Comments .IEEE Transactions on Systems, Man, and
Cybernetics - Part B: Cybernetics, 37(2):322–332, April 2007.

[16] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and
Generalization of Motor Skills by Learning from Demonstration. In
IEEE International Conference on Robotics and Automation, pages
763–768, Kobe, Japan, 2009.

[17] R. Paul and P. Newman. FAB-MAP 3D: Topological Mapping with
Spatial and Visual Appearance. InIEEE International Conference on
Robotics and Automation, pages 2649–2656, Anchorage, USA, 2010.

[18] S. Petsch and D. Burschka. Estimation of Spatio-TemporalObject
Properties for Manipulation Tasks from Observation of Humans. In
IEEE International Conference on Robotics and Automation, pages
192–198, Anchorage, USA, 2010.

[19] L. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition.IEEE, 77(2):257–286, 1989.

[20] C.E. Reiley and G.D. Hager. Task versus subtask surgical skill
evaluation of robotic minimally invasive surgery. InMedical Image
Computing and Computer-Assisted Intervention -MICCAI 2009, pages
435–442, 2009.

[21] L. Stark, K. Bowyer, A. Hoover, and D. B. Goldgof. Recognizing
Object Function Through Reasoning About Partial Shape Descriptions
and Dynamic Physical Properties. InProceedings of the IEEE,
volume 84, pages 1640–1656, 1996.

[22] R. S. Sutton und A. G. Barto.Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[23] D. Verma and R. P. N. Rao. Imitation Learning Using Graphical
Models. In J. N. Kok et al., editor,ECML 2007, volume 4701,
pages 757–764. Lecture Notes in Artificial Intelligence, Springer-
Verlag Berlin Heidelberg, 2007.

[24] R. D. Zöllner and R. Dillmann. Using multiple probabilistic hypothesis
for programming one and two hand manipulation by demonstration.
In IEEE International Conference on Intelligent Robots and Systems,
pages 2926–2931, Las Vegas, Nevada, USA, 2003.

Stochastic Global Optimization for Robust Point Set

Registration

Chavdar Papazov∗, Darius Burschka

Technische Universität München, Department of Computer Science

Boltzmannstr. 3, 85748 Garching, Germany

Abstract

In this paper, we propose a new algorithm for pairwise rigid point set reg-
istration. The main properties of our method are noise robustness, outlier
resistance and global optimal alignment. The problem of registering two
point clouds in space is converted to a minimization of a nonlinear cost func-
tion. We propose a new cost function based on an inverse distance kernel
that significantly reduces the impact of noise and outliers. In order to achieve
a global optimal registration without the need of any initial alignment, we
develop a new stochastic approach for global minimization. It is an adaptive
sampling method which uses a generalized BSP tree and allows for minimiz-
ing nonlinear scalar fields over complex shaped search spaces like, e.g., the
space of rotations. We introduce a new technique for a hierarchical decom-
position of the rotation space in disjoint equally sized parts called spherical
boxes. Furthermore, a procedure for uniform point sampling from spherical
boxes is presented. Tests on a variety of point sets show that the proposed
registration method performs very well on noisy, outlier corrupted and incom-
plete data. For comparison, we report how two state-of-the-art registration
algorithms perform on the same data sets.

Keywords: Rigid registration, robust cost function, stochastic global
optimization, generalized BSP tree, hierarchical decomposition of SO(3),
uniform sampling from spherical boxes

∗Corresponding author
Email addresses: papazov@in.tum.de (Chavdar Papazov), burschka@in.tum.de

(Darius Burschka)

Preprint submitted to Computer Vision and Image Understanding November 26, 2010

Figure 1: Pairwise rigid point set registration obtained with our method. The input point
sets, model and data, are shown in (a) and (b), respectively. Although rendered as meshes
no surface information (like, e.g., normals) is used for the registration. Note that the
scans are noisy and only partially overlapping. (c), (d) Our registration result (shown
from two different viewpoints) obtained without noise filtering, local ICP refinement [1]
or any assumptions about the initial pose of the input scans. (e) A closer view of the part
marked by the rectangle in (d). Observe the high quality of the alignment.

1. Introduction and Related Work1

Point set registration is a fundamental problem in computational geome-2

try with applications in the fields of computer vision, computer graphics,3

image processing and many others. The problem can be formulated as4

follows. Given two finite point sets M = {x1, . . . ,xm} ⊂ R
3 and D =5

{y1, . . . ,yn} ⊂ R
3 find a mapping T : R

3 → R
3 such that the point set6

T (D) = {T (y1), . . . , T (yn)} is optimally aligned in some sense to M. M7

is referred to as the model point set (or just the model) and D is termed8

the data point set. Points from M and D are called model points and data9

points, respectively.10

If T is a rigid transform, i.e., T (x) = Rx + t for a rotation matrix R and11

a translation vector t, we have to solve a rigid point set registration problem.12

This special case is of major importance for the tasks of object recognition,13

tracking, localization and mapping, and object modeling, just to name a few.14

The problem is especially hard when no initial pose estimation is available,15

the point sets are noisy, corrupted by outliers and incomplete. In Figure 1,16

a model and a data set are shown before and after rigid registration.17

1.1. Rigid Point Set Registration18

Algorithms for the registration problem belong to two general classes.19

One class consists of methods designed to solve the initial pose estimation20

2

problem1. These methods compute a (more or less) coarse alignment between21

the point sets without making any assumptions about their initial position22

and orientation in space. Classic initial pose estimators are the generalized23

Hough transform [2], geometric hashing [3] and pose clustering [4]. These24

algorithms are guaranteed to find the optimal alignment between the input25

point sets. However, because of their high computational cost and/or high26

memory requirements, these methods are only applicable to small data sets.27

Johnson et al. introduced in their work [5] local geometric descriptors,28

called spin images, and used them for pose estimation and object recogni-29

tion. The presented results are impressive, but no tests with noisy or outlier30

corrupted data were performed. Gelfand et al. [6] developed a local descrip-31

tor which performs well under artificially created noisy conditions, but still,32

defining robust local descriptors in the presence of significant noise and a33

large amount of outliers remains a difficult task.34

A more recent approach to the initial pose estimation problem is the ro-35

bust 4PCS algorithm introduced by Aiger et al. [7]. It is an efficient random-36

ized generate-and-test approach. It computes for an appropriate quadruple37

B (called a basis) of nearly coplanar points from the model set M the opti-38

mal rigid transform between B and each of the potential bases in the data39

set D and chooses the best one. In order to achieve high probability for40

success, the procedure is repeated several times for different bases B ⊂ M.41

Note, however, that the rigid transform, found by the algorithm, is optimal42

only for the two bases (i.e., for eight points). In contrast to this, the rigid43

transform we compute is optimal for all points of the input sets and thus we44

expect to achieve higher accuracy than the 4PCS algorithm. This is further45

validated in the experimental results in Section 5 of this paper.46

Since the accuracy of the pose computed by the above mentioned methods47

is insufficient for many applications, an additional pose refinement step needs48

to be performed. The pose refining algorithms represent the second class of49

registration approaches. The most popular one is the Iterative Closest Point50

(ICP) algorithm. Since its introduction by Chen and Medioni [8], and Besl51

and McKay [1], a variety of improvements has been proposed in the literature.52

A good summary as well as new results in acceleration of ICP algorithms have53

been given by Rusinkiewicz and Levoy [9]. A major drawback of ICP and54

all its variants is that they assume a good initial guess for the pose of the55

1Pose = position (translation) + orientation (rotation).

3

data point set (with respect to the model). This pose is improved in an56

iterative fashion until an optimal rigid transform is found. The quality of57

the solution depends heavily on the initial guess. A further disadvantage of58

the methods compared by Rusinkiewicz and Levoy [9] is that they use local59

surface features like surface normals which cannot be computed very reliably60

in the presence of noise.61

1.2. Optimization Based Point Set Registration62

Solving the registration problem by minimizing a cost function with a63

general-purpose optimization algorithm has already been introduced in the64

literature. Depending on the choice of either a global or a local optimization65

procedure the corresponding registration approach belongs to the class of66

initial pose estimators or pose refining methods, respectively.67

Breuel [10] and Olsson et al. [11] used deterministic branch-and-bound68

methods to minimize globally the sum of squared distances between corre-69

sponding points in M and D. Although these methods are guaranteed to70

find the globally optimal solution, the computational cost seems to be very71

high since in [10] only planar rigid transforms (with three degrees of freedom)72

were considered and the experimental results provided in [11] were based on73

point sets consisting of not more than 60 points. Furthermore, in [11], a74

pointwise correspondence between the point sets has to be known in advance75

which is very seldom the case in a real world setting.76

Mitra et al. [12], Pottmann et al. [13] and Fitzgibbon [14] also formu-77

lated the registration problem as a minimization of a geometric cost function.78

For its minimization, however, a local optimization method is used. This re-79

sults in the already mentioned strong dependence on a good initial transform80

estimation.81

1.3. Stochastic Optimization82

Stochastic optimization has received considerable attention in the liter-83

ature over the last three decades. Much of the work has been devoted to84

the theory and applications of simulated annealing (SA in the following) as85

a minimization technique [15, 16, 17]. A comprehensive overview of this field86

is given in [18]. A major property of SA algorithms is their “willingness”87

to explore regions around points in the search space at which the objective88

function takes values greater than the current minimum [19]. This is what89

makes SA algorithms able to escape from local minima and makes them suit-90

able for global minimization. A known drawback of SA algorithms is the91

4

fact that they waste a lot of iterations generating candidate points, evalu-92

ating the objective function at these points, and finally rejecting them [18].93

In order to reduce the number of rejections, Bilbro and Snyder [20] select94

candidate points from “promising” regions of the search space, i.e., from95

regions in which the objective function is likely to have low values. They96

achieve this by adapting a k-d tree to the objective function each time a new97

candidate point is accepted. If, however, the current point is rejected, the98

tree remains unchanged. This is a considerable waste of computation time99

since the information gained by the (expensive) evaluation of the objective100

function is not used. In contrast to this, our algorithm adapts a generalized101

BSP tree at every iteration and thus uses all the information collected during102

the minimization. Furthermore, the use of a generalized BSP tree allows for103

a minimization over complex shaped spaces and not only over rectangular104

regions as in the case of [20].105

1.4. Contributions and Overview106

Our registration algorithm aims to solve the initial pose estimation prob-107

lem robustly in the case of noisy, outlier corrupted and incomplete point sets.108

Our main contributions are (i) a noise and outlier resistant cost function, (ii)109

a stochastic approach for its global minimization, (iii) a technique for a hier-110

archical rotation space decomposition in disjoint parts of equal volume and111

(iv) a procedure for uniform sampling from spherical boxes. The work pre-112

sented here is a significant extension of the concept introduced in [21].113

The rest of the paper is organized as follows. In Section 2, we define the114

task of aligning two point sets as a nonlinear minimization problem and define115

our cost function. In Section 3, a stochastic approach for global minimiza-116

tion is presented. In Section 4, we motivate the choice of the rotation space117

parametrization we use in combination with our minimization approach and118

introduce a technique for a hierarchical rotation space decomposition. Fur-119

thermore, a procedure for uniform sampling from spherical boxes is described.120

Section 5 presents experimental results obtained with our registration algo-121

rithm as well as comparisons with two state-of-the-art registration methods.122

The paper ends with some conclusions in Section 6.123

2. Registration as a Minimization Problem124

Consider, we are given a model point set M = {x1, . . . ,xm} ⊂ R
3 and125

a data point set D = {y1, . . . ,yn} ⊂ R
3. Suppose, we have a continuous126

5

function S : R
3 → R, called the model scalar field, which attains small127

values at the model points xj , j ∈ {1, . . . , m} and increases with increasing128

distance between the evaluation point and the closest model point. Our aim129

is to find a rigid transform T : R
3 → R

3 of the form T (x) = Rx + t for a130

rotation matrix R and a translation vector t ∈ R
3 such that the functional131

F(T) =

n
∑

i=1

S(T (yi)), yi ∈ D (1)

is minimized. This definition of F is based on the following idea common for132

most registration algorithms: we seek a rigid transform that brings the data133

points as close as possible to the model points.134

2.1. Definition of the Model Scalar Field135

Given the model point set M = {x1, . . . ,xm}, we want our model scalar136

field S : R
3 → R to attain its minimal value at the model points, i.e.,137

S(xj) = smin ∈ R, ∀xj ∈ M, (2)

and to attain greater values for all other points in R
3, i.e.,138

S(x) > smin, ∀x ∈ R
3 \ M. (3)

Define139

dM(x) = min
xj∈M

‖x − xj‖ (4)

to be the distance between a point x ∈ R
3 and the set M, where ‖ · ‖ is the140

Euclidean norm in R
n. If we set141

S(x) = dM(x), (5)

we get an unsigned distance field which is implicitly used by ICP [1]. It is142

obvious that this choice for S fulfills both criteria (2) and (3).143

Mitra et al. [12] and Pottmann et al. [13] considered in their work more144

sophisticated scalar fields. They assumed that the model point set M consists145

of points sampled from an underlying surface Φ. The scalar field S at a point146

x ∈ R
3 is defined to be the squared distance from x to Φ. In this context, S147

is called the squared distance function to the surface Φ. We refer to [12] for148

details on computing the squared distance function and its approximation149

for point sets.150

6

The version of S given in (5) and the ones used by Mitra et al. [12] and151

Pottmann et al. [13] are essentially distance fields. This means that S(x)152

approaches infinity as the point x gets infinitely far from the point set. This153

has the practical consequence that a registration technique which minimizes154

a cost function based on an unbounded scalar field will be sensitive to outliers155

in the data set. This is because data points lying far away from the model156

point set will have great impact on the sum in (1) and thus will prevent157

the minimization algorithm from converging towards the right alignment. A158

similar problem arises in the case of model and data sets with low overlap.159

In this case, there will be a lot of data points which have no corresponding160

model points and vice versa. The distance between such a data point and the161

closest model point will be large and thus will deteriorate the sum in (1). A162

simple way to overcome this is just to exclude data points which are too far163

away from the model set. However, this strategy introduces discontinuities164

in the cost function which cause a problem for many optimization methods.165

Fitzgibbon presented in his work [14] a more convenient way to alleviate
these difficulties which does not lead to a discontinuous cost function. He
proposed to use either of the following two robust kernels:

S(x) = log

(

1 +
(dM(x))2

σ

)

(Lorentzian kernel) or (6)

S(x) =

{

(dM(x))2 if dM(x) < σ
2σdM(x) − σ2 otherwise

(Huber kernel). (7)

However, we still have limdM(x)→∞ S(x) = ∞ for both kernels as in the case166

of (5). Thus a cost function based on (6) or (7) will still be sensitive to167

outliers. We further validate this in the experimental results presented in168

Section 5 of the paper.169

To avoid this sensitivity, we propose to use a bounded scalar field satis-170

fying (2) and (3) and having the additional property171

lim
dM(x)→∞

S(x) = 0. (8)

We set172

S(x) = −ϕ (dM(x)) , (9)

where ϕ : R
∗ → R

∗, for R
∗ = {x ∈ R : x ≥ 0}, is a strictly monotonically

7

Figure 2: (a) The inverse distance kernel (defined in (12)) for three different α values. (b)
The model scalar field SM

α
(x) (defined in (13)) based on the inverse distance kernel from

(a) for α = 0.1 and α = 1. In this example, the Stanford bunny is used as the model set.
SM

α (x) is visualized by evaluating it at a number of points lying on the three planes and
visualizing the scalar values using a standard color mapping technique.

decreasing continuous function with

max
x∈R∗

ϕ(x) = ϕ(0) and (10)

lim
x→∞

ϕ(x) = 0. (11)

In our implementation, we use an inverse distance kernel of the form173

ϕ(x) =
1

1 + αx2
, α > 0 (12)

because it is computationally efficient to evaluate and can be controlled by174

a single parameter α (see Figure 2(a)). This results in the following model175

scalar field:176

SM

α (x) = −
1

1 + α (dM(x))2 , α > 0. (13)

It is easy to see that (2), (3) and (8) hold. Different values for α in (13) lead177

to different scalar fields. The greater the value the faster SM

α (x) convergences178

to zero as dM(x) → ∞ (see Figure 2(b)). In Section 2.2, we will discuss how179

to choose a suitable value for α and why this particular form of SM

α (x) leads180

to an outlier robust cost function.181

2.2. Cost Function Definition182

The group of all rigid transforms in R
3 is called the special Euclidean183

group and is denoted by SE(3). At the beginning of Section 2, we formulated184

8

the rigid point set registration problem as a functional minimization problem185

over SE(3). Using a parametrization of SE(3), the functional F in (1) can186

be converted to a real-valued scalar field F : R
6 → R of the form187

F (ϕ, ψ, θ, x, y, z) =

n
∑

i=1

SM

α (Rϕ,ψ,θyi + (x, y, z)), (14)

where y1, . . . ,yn are the data points, SM

α is the model scalar field defined in188

(13), Rϕ,ψ,θ is a rotation matrix parametrized by ϕ, ψ, θ and (x, y, z) ∈ R
3 is189

a translation vector. In order to achieve good optimization performance, it is190

very important to choose the right parametrization of the rotation group. We191

employ an axis-angle based parametrization which is especially well suited192

for our branch and “stochastic bound” minimization method. Furthermore,193

we introduce a new technique for a hierarchical decomposition of the rotation194

space in spherical boxes and describe a procedure for uniform sampling from195

them. Since the advantages of these techniques are best seen in the context of196

our minimization algorithm we postpone the detailed discussion to Section 4197

after the introduction of the minimization method in Section 3.198

A global minimizer x∗ ∈ R
6 of F defines a rigid transform that brings

the data points as close as possible to the model points. What makes the
proposed cost function robust to outliers is the fact that outlier data points
have a marginal contribution to the sum in (14) depending on α. More
precisely, given a positive real number d, we can compute a value for α such
that |SM

α (x)| is less than an arbitrary δ > 0, if dM(x) > d holds. In this way,
the contribution of an outlier point to the sum in (14) can be made arbitrary
close to zero and F will behave like an outlier rejector. However, too large
values for α will lead to the rejection of data points which do not have exact
counterparts in a sparsely sampled model set, but still are not outliers. In
our implementation we set

d =
1

4
min{bboxx(M), bboxy(M), bboxz(M)}, (15)

δ = 0.1, (16)

where bbox(M) denotes the bounding box of the model point set and bboxs(M),199

s ∈ {x, y, z} is the extent of the bounding box along the x, y or z axis. Using200

the absolute value of the right side of (13) and solving for α yields201

α =
1 − δ

δd2
. (17)

9

The cost function given in (14) is nonlinear and nonconvex. This results202

in a large number of local minima of F over the search space. Using a203

local optimization procedure—common for many registration methods in the204

literature—will lead in most cases to a local minimizer of F and thus will205

not give the best alignment between model and data. To avoid this, we206

employ a new stochastic approach for global minimization described in the207

next Section of this paper.208

3. Stochastic Adaptive Search for Global Minimization209

Our stochastic minimization approach is inspired by the simulated anneal-210

ing (SA) method of Bilbro and Snyder [20]. The main difference between their211

work and a typical SA algorithm is the way how the minimizer candidates are212

generated. As we already mentioned in Section 1.3, SA algorithms are known213

to waste many iteration in sampling candidate points from the search space,214

evaluating the cost function at these points and finally rejecting them [18]. In215

order to reduce the number of rejections, Bilbro and Snyder [20] sampled the216

points from a distribution which is modified iteratively during the minimiza-217

tion such that its modes are built around minimizers of the cost function.218

They achieved this by building a k-d tree and sampling the candidates from219

those leaves of the tree which cover “promising” regions of the search space,220

i.e., regions in which the cost function is likely to attain low values. Al-221

though this leads to fewer candidate rejections and thus saves computation222

time the method in [20] still has two drawbacks. First, the candidate points223

are sampled directly from the tree leaves which are n-dimensional boxes of224

the form [a1, b1] × ... × [an, bn], where [ai, bi] ⊂ R is a closed interval. This225

strategy is based on the implicit assumption that the search space can be226

covered efficiently by such boxes. This, however, is not the case if we have227

a more complex shaped space, e.g., the space of rotations (see Section 4).228

Second, the k-d tree used in [20] is updated only if the generated candidate229

is accepted. In the case of a rejection, the tree remains unchanged. This is230

a waste of computation time since the information gained by the expensive231

cost function evaluation is not used.232

We account for the first drawback by formulating our minimization al-233

gorithm using a more general spatial data structure, namely, a generalized234

binary space partitioning tree (we will call it a G-BSP tree in the following).235

As opposed to the classic BSP trees (see, e.g., [22]), we do not require that236

the subspaces represented by the tree nodes are convex sets. Thus we can237

10

minimize efficiently over more complex shaped search spaces like, e.g., the238

space of rotations (see Section 4). To avoid the second drawback, i.e., to use239

all the information gained by the cost function evaluation, we update the240

tree at every iteration—even in the cases of bad minimizer candidates. This241

apparently minor modification leads to a rather different algorithm (than242

[20]) and enables a faster rejection of the regions in which the cost function243

is likely to have high (i.e., poor) values and thus speeds up the convergence.244

3.1. Generalized BSP Trees245

A binary space partitioning tree (BSP tree) is a spatial data structure246

which decomposes the real space R
n in a hierarchical manner. At each sub-247

division stage, the space is subdivided by a (hyper)plane in two disjoint248

parts of arbitrary size. Thus the resulting decomposition consists of arbi-249

trarily shaped convex polygons [22]. Each node of the tree has exactly two250

or zero child nodes. A node with zero children is called a leaf. If we drop251

the assumption that the space subdivision is performed by planes we get a252

generalized BSP tree (G-BSP tree). This results in a decomposition made253

up of subspaces of arbitrary shape.254

3.2. Problem Definition255

Given a set X (called the search space) and a function f : X → R our256

aim is to find a global minimizer of f , i.e., an x∗ ∈ X such that257

f(x∗) ≤ f(x) ∀x ∈ X. (18)

The following assumptions about X should hold:258

• X ⊂ R
n is a bounded set of positive volume (Lebesgue measure in R

n).259

• There is an algorithm of acceptable complexity which can build a G-260

BSP tree for X such that each two subsets of X at the same level of261

the tree are of equal volume (have the same Lebesgue measure in R
n).262

• X is simple enough for sampling algorithms of acceptable complexity263

to be able to sample uniformly from the G-BSP tree nodes, i.e., from264

the subsets of X represented in the G-BSP tree.265

Furthermore, the cost function f is required to be bounded and defined266

at each x ∈ X.267

11

Figure 3: (a) An example of a two-dimensional G-BSP tree and a rectangular search space
X. In this case, the G-BSP tree is a two-dimensional k-d tree. (b) Expanding the leaf ηk

s
.

In this example, after the bisection of ηk
s , the point xs lies in the box Xs1, hence ηk+1

s1

adopts the pair (xs, f(xs)) from ηk
s . For the other child, ηk+1

s0 , a point xs0 is sampled
uniformly from Xs0 and the objective function is evaluated at that point.

3.3. Overall Algorithm Description268

We use a G-BSP tree to represent the n-dimensional search space X. The269

root η0
0 is at the 0th level of the tree and represents the whole space X0 = X.270

η0
0 has two children, η1

00 and η1
01, which are at the next level. They represent271

the subsets X00 and X01, respectively, which are disjoint, have equal volume272

and their union equals X0. In general, a node ηks (where k ≥ 0 and s is273

a binary string of length k + 1) is at the kth level of the tree and has two274

children, ηk+1
s0 and ηk+1

s1 , which are at the next, (k + 1)th, level. The volume275

of ηks is 1/2k of the volume of X. This concept is easily visualized in the case276

n = 2 and X and its subsets being rectangles (see Figure 3(a)).277

During the minimization, the G-BSP tree is built in an iterative fashion278

beginning at the root. The algorithm adds more resolution to promising279

regions in the search space, i.e., the tree is built with greater detail in the280

vicinity of points in X at which the objective function attains low values.281

The overall procedure can be outlined as follows:282

1. Initialize the tree (see Section 3.4) and set an iteration counter j = 0.283

2. Select a “promising” leaf according to a probabilistic selection scheme (see284

Section 3.5).285

3. Expand the tree by bisecting the selected leaf. This results in the creation286

of two new child nodes. Evaluate the objective function at a point which287

is uniformly sampled from the subset of one of the two children (see Sec-288

tion 3.6).289

12

4. If a stopping criterion is not met, increment the iteration counter j and go290

to step 2, otherwise terminate the algorithm (see Section 3.7).291

3.4. Initializing the Tree292

For every tree node ηks the following items are stored: (i) a set Xs ⊂ X293

and (ii) a pair (xs, f(xs)) consisting of a point xs, uniformly sampled from294

Xs, and the corresponding function value f(xs). The tree is initialized by295

storing the whole search space X and a pair (x0, f(x0)) in the root.296

3.5. Selecting a Leaf297

At every iteration, the search for a global minimizer begins at the root298

and proceeds down the tree until a leaf is reached. In order to reach a leaf,299

we have to choose a concrete path from the root down to this leaf. At each300

node, we have to decide whether to take its left or right child as the next301

station. This decision is made probabilistically. For every node, two numbers302

p0, p1 ∈ (0, 1) are computed such that p0 + p1 = 1. Arriving at a node, we303

choose to descend via either its left or right child with probability p0 or p1,304

respectively. We make these left/right decisions until we reach a leaf.305

Computing the Probabilities p0 and p1 The idea is to compute the proba-306

bilities in a way such that the “better” child, i.e., the one with the lower307

function value, has greater chance to be selected. We compute p0 and p1 for308

each node ηks based on the function values associated with its children ηk+1
s0309

and ηk+1
s1 . Let fs0 and fs1 be the function values associated with ηk+1

s0 and310

ηk+1
s1 , respectively. The following criterion should be fulfilled:311

fs0 < fs1 ⇔ p0 > p1. (19)

If fs0 < fs1 we set

p0 = (t+ 1)/(1 + 2t), p1 = t/(1 + 2t), (20)

for a parameter t ≥ 0. For t→ ∞ we get p0 = p1 = 1
2

and our minimization
algorithm becomes a pure random search. Setting t = 0 results in p0 = 1
and p1 = 0 and makes the algorithm deterministically choosing the “better”
child of every node which leads to the exclusion of a large portion of the
search space and in most cases prevents the algorithm from finding a global
minimizer. For fs1 < fs0 we set

p0 = t/(1 + 2t), p1 = (t+ 1)/(1 + 2t). (21)

13

Updating the Probabilities From the discussion above it becomes evident that312

t should be chosen from the interval (0,∞). For our algorithm the parameter313

t plays a similar role as the temperature parameter for a simulated annealing314

algorithm [15] so we will refer to t as temperature as well. Like in simulated315

annealing, the search begins at a high temperature level (large t) such that316

the algorithm samples the search space quite uniformly. The temperature317

is decreased gradually during the minimization process so that promising318

regions of the search space are explored in greater detail. More precisely, we319

update t according to the following cooling schedule:320

t = tmax exp(−vj), (22)

where j ∈ N is the current iteration number, tmax > 0 is the temperature at321

the beginning of the search (for j = 0) and v > 0 is the cooling speed which322

determines how fast the temperature decreases.323

3.6. Expanding the Tree324

After reaching a leaf ηks , the set Xs associated with it gets bisected in two325

disjoint subsets Xs0 and Xs1 of equal volume. The corresponding child nodes326

are ηk+1
s0 and ηk+1

s1 , respectively. In this way, we add more resolution in this327

part of the search space. Next, we evaluate the new children, i.e., we assign328

to the left and right one a pair (xs0, f(xs0)) and (xs1, f(xs1)), respectively.329

Note that the parent of ηk+1
s0 and ηk+1

s1 , namely, the node ηks , stores a pair
(xs, f(xs)). Since Xs = Xs0 ∪ Xs1 and Xs0 ∩ Xs1 = ∅ it follows that xs is
contained either in Xs0 or in Xs1. Thus we set

(xs0, f(xs0)) = (xs, f(xs)) if xs ∈ Xs0 or (23)

(xs1, f(xs1)) = (xs, f(xs)) if xs ∈ Xs1. (24)

To compute the other pair, we sample a point uniformly from the appropri-330

ate remaining set (Xs0 or Xs1) and evaluate the function at this point (see331

Figure 3(b) for the case n = 2 and X and its subsets being rectangles).332

Updating the Tree During the search we want to compute the random paths333

from the root down to a certain leaf such that promising regions—leaves with334

low function values—are visited more often than non-promising ones. Thus,335

after evaluating a new created leaf, we propagate its (possibly very low)336

function value as close as possible to the root. This is done by the following337

updating procedure. Suppose that the parent point xs is contained in the338

set Xs1 belonging to the new created child ηk+1
s1 . Therefore, we randomly339

14

generate xs0 ∈ Xs0, compute f(xs0) and assign the pair (xs0, f(xs0)) to340

the child ηk+1
s0 . Updating the tree consists of ascending from ηk+1

s0 (via its341

ancestors) to the root and comparing at every parent node ηju the function342

value f(xs0) with the function value of ηju, i.e., with f(xu). If f(xs0) < f(xu)343

we update the current node by setting (xu, f(xu)) = (xs0, f(xs0)) and proceed344

to the parent of ηju. The updating procedure terminates if we reach the root345

or no improvement for the current node is possible.346

Note that if f(xs0) is the lowest function value found so far, it will be347

propagated to the root, otherwise it will be propagated only to a certain348

level l ∈ {1, . . . , k + 1}. This means, that every node contains the minimum349

function value (and the point at which f takes this value) found in the subset350

associated with this node. Since the root represents the whole search space,351

it contains the point we are interested in, namely, the point at which f takes352

the lowest value found up to the current iteration.353

3.7. Stopping rule354

We break the search if the following two criteria are fulfilled. (i) The leaf355

ηks selected in the current iteration has a volume which is smaller than a user356

predefined value δv > 0. (ii) The absolute difference between the minimal357

function value found so far and the function value computed in the current358

iteration is less than a user specified δf > 0.359

The first condition accounts for the desired precision of the solution and360

the second one assures that the algorithm makes no significant progress any361

more.362

4. Processing in the Space of Rigid Transforms363

As already mentioned in Section 2.2, the choice of a parametrization of364

SE(3) (the group of rigid transforms) is an important issue since different365

parametrizations lead to different optimization performance. We decompose366

SE(3) into a translational and a rotational part. While parametrizing trans-367

lations is straightforward special care is needed when dealing with rotations368

since the geometry of the rotation space is more complex than the geometry369

of R
3. In the following, we concentrate on the rotation space.370

In view of our branch and “stochastic bound” minimization method, three371

specific problems have to be solved. (i) We need to parametrize rotations.372

(ii) We have to hierarchically decompose the rotation space in disjoint parts373

of equal volume. In other words, a G-BSP tree has to be computed in which374

15

the nodes are representing equally sized parts of the rotation space. (iii) We375

need to sample points (i.e., rotations) uniformly from each leaf of the G-BSP376

tree. These issues are discussed separately in the next three subsections.377

4.1. Parametrizing Rotations378

There are many ways how to parametrize 3D rotations. Discussing all of379

them is far beyond the scope of this paper. An excellent introduction to this380

topic is included in the books by Kanatani [23] and A. Watt and M. Watt [24]381

in the context of computer vision and computer graphics, respectively. The382

set of all 3 × 3 rotation matrices is a group (under matrix multiplication)383

which is referred to as SO(3). A parametrization of SO(3) is a mapping384

R : U → SO(3), where U is a subset of R
3 since every rotation has three385

degrees of freedom.386

Parametrizing rotation matrices using Euler angles is probably the most387

widely used technique which is, however, inefficient in conjunction with our388

minimization method. This is due to the fact that Euler angles are a redun-389

dant representation of rotations. In order to represent all elements in SO(3)390

the following range, E, for the three Euler angles is needed: E = [0, 2π) ×391

[0, 2π)× [0, π]. However, the corresponding parametrization R : E → SO(3),392

which is given in [23], is not one-to-one. There are infinitely many combina-393

tions of Euler angles (within the range E) which lead to the same rotation394

matrix (see [24]). A minimization method like ours which considers the whole395

search space will waste computation time exploring regions in E which should396

be completely ignored because they do not lead to “new” rotation matrices.397

The same applies to deterministic branch-and-bound methods (see, e.g., [25]).398

In order to avoid this difficulty, we employ a redundant-free rotation space399

parametrization based on the axis-angle representation of SO(3). According400

to Euler’s theorem (see [23]), each rotation in R
3 can be represented by an401

axis specified by a unit vector n and an angle θ of rotation around it. n can402

itself be parametrized using spherical coordinates ϕ and ψ:403

n = (sin(ψ) cos(ϕ), sin(ψ) sin(ϕ), cos(ψ)). (25)

Figure 4(a) visualizes this concept. In order to represent all rotation matrices,404

we need to consider the following range for the spherical coordinates (ϕ, ψ)405

and the rotation angle θ:406

(ϕ, ψ, θ) ∈ [0, 2π) × [0, π] × [0, π) = A. (26)

The parametrization R : A → SO(3), which can be found in [23], is a one-407

to-one mapping between A and SO(3).408

16

Figure 4: (a) The axis-angle based parametrization of SO(3). The two bold dots in the
figure represent a point before and after rotation by the angle θ around the axis defined by
the unit vector n, which is itself parametrized using spherical coordinates (ϕ, ψ). (b) The
rotation space represented as the open ball in R

3 with radius π. The spherical coordinates
(ϕ, ψ) of the point (shown as a bold dot) define the rotation axis and the distance to the
origin gives the angle of rotation θ. The bold lines depict a spherical box.

4.2. Hierarchical Decomposition of the Rotation Space409

According to the axis-angle representation and to (26), it is possible to410

express the set of rotations by the open ball in R
3 with radius π which we will411

denote by B3(π) (see Figure 4(b)). Thus a straightforward way to decompose412

the rotation space is to enclose B3(π) in the cube C3(π) = [−π, π]3 and413

to divide C3(π) into smaller cubes by simply bisecting the x, y or z axis.414

Hartley and Kahl [25] used this technique in conjunction with a deterministic415

branch-and-bound minimization method to estimate the essential matrix and416

to solve the relative camera pose problem. However, if combined with our417

minimization algorithm, this technique leads to two problems. First, the sub-418

cubes of C3(π) which do not lie within B3(π) have to be ignored since the419

rotations they represent are included in other cubes within B3(π). This gives420

rise to nodes in the corresponding G-BSP tree which have only one “legal”421

child. Second, the sub-cubes of C3(π) which are partially intersecting B3(π)422

represent a smaller region of the rotation space than sub-cubes at the same423

tree level which are fully enclosed in B3(π). Thus the minimization algorithm424

will prefer rotations which are close to the boundary of B3(π).425

We solve these two problems by changing the shape of the building blocks426

17

Figure 5: Decomposing the rotation space (represented as B
3(π)) into spherical boxes of

equal volume. In this example, only one spherical box at each splitting step is further
decomposed.

of the decomposition. Since we are dealing with a three-dimensional ball the427

most natural shape is the shape of a spherical box (see Figure 4(b)). In ball428

coordinates, we define a spherical box S3 to be a point set of the form429

S3 = {(ϕ, ψ, θ) : (ϕ, ψ, θ) ∈ [ϕ1, ϕ2) × [ψ1, ψ2) × [θ1, θ2)}, (27)

where [ϕ1, ϕ2)× [ψ1, ψ2) is the range of the spherical coordinates and [θ1, θ2)
limits the distance of the points to the origin. Decomposing the rotation
space means to hierarchically subdivide B3(π) into disjoint spherical boxes
of equal volume (see Figure 5). Note that the volume of S3 is given by

volS3(ϕ1, ϕ2, ψ1, ψ2, θ1, θ2) =

∫ ϕ2

ϕ1

∫ ψ2

ψ1

∫ θ2

θ1

θ2 sinψdθdψdϕ (28)

= (ϕ2 − ϕ1)(cosψ1 − cosψ2)
θ3
2 − θ3

1

3
. (29)

Our aim is to consecutively cut S3 along the ϕ, ψ or θ axis such that the430

resulting pieces have the same volume. Since volS3 depends in a different431

way from each of the ball coordinates ϕ, ψ and θ we get a different rule for432

cutting along each axis. We are looking for433

ϕ ∈ (ϕ1, ϕ2), ψ ∈ (ψ1, ψ2), θ ∈ (θ1, θ2) (30)

such that

volS3(ϕ1, ϕ) = volS3(ϕ, ϕ2), (31)

volS3(ψ1, ψ) = volS3(ψ, ψ2), (32)

volS3(θ1, θ) = volS3(θ, θ2), (33)

18

where, for the sake of clarity, volS3 is expressed as a function of two variables434

only, namely, the ones defining the interval which is currently cut. Using435

(29) to solve the equations (31)–(33) leads to436

ϕ =
ϕ1 + ϕ2

2
, ψ = arccos

(

cosψ1 + cosψ2

2

)

, θ =
3

√

θ3
1 + θ3

2

2
. (34)

Thus we fully specified how to hierarchically decompose the space of437

rotations in disjoint equally sized parts such that a G-BSP tree can be built.438

Furthermore, the shape of the parts is optimally tailored to our minimization439

algorithm.440

4.3. Uniform Sampling from Spherical Boxes441

Our method for sampling points uniformly from a spherical box is grounded442

on the following basic result from Statistics called the inverse probability in-443

tegral transform. Since it is proved in many textbooks (like, e.g., in [26]) we444

state it here without a proof.445

Theorem 1. Let F be a cumulative distribution function (c.d.f.) on R and446

let U be a random variable uniformly distributed in [0, 1]. Then the random447

variable X = F (U)−1 has c.d.f. F .448

Based on this result we perform the uniform sampling from a spherical449

box S3 = [ϕ1, ϕ2) × [ψ1, ψ2) × [θ1, θ2) in three steps:450

1. Sample a ϕ uniformly from [ϕ1, ϕ2).451

2. Sample a ψ from [ψ1, ψ2) according to a c.d.f. F2 such that the point452

in R
3 with spherical coordinates (ϕ, ψ) is uniformly distributed on the453

spherical patch S2 = [ϕ1, ϕ2) × [ψ1, ψ2).454

3. Sample a θ from [θ1, θ2) according to a c.d.f. F3 such that the point455

in R
3 with ball coordinates (ϕ, ψ, θ) is uniformly distributed in the456

spherical box S3.457

Step 1 is easy to perform. In step 2, we need to compute the area of a spherical
patch (of the unit 2-sphere) as a function of an interval [ϕ1, ϕ2) × [ψ1, ψ2):

areaS2(ϕ1, ϕ2, ψ1, ψ2) =

∫ ϕ2

ϕ1

∫ ψ2

ψ1

sinψdψdϕ (35)

= (ϕ2 − ϕ1)(cosψ1 − cosψ2). (36)

19

Thus the c.d.f. we need in step 2 is given by

F2(ψ) =
areaS2(ϕ1, ϕ2, ψ1, ψ)

areaS2(ϕ1, ϕ2, ψ1, ψ2)
(37)

=
cosψ1 − cosψ

cosψ1 − cosψ2

, (38)

Analogously, we see that the c.d.f. in step 3 is given by

F3(θ) =
volS3(ϕ1, ϕ2, ψ1, ψ2, θ1, θ)

volS3(ϕ1, ϕ2, ψ1, ψ2, θ1, θ2)
(39)

=
θ3 − θ3

1

θ3
2 − θ3

1

, (40)

where (40) follows from (29). Note that both F2 and F3 can easily be inverted458

and we can use Theorem 1 to sample according to F2 and F3 and hence459

uniformly from the spherical box S3.460

4.4. Computing the Search Space and the G-BSP Tree461

Now since all details regarding the parametrization and decomposition of462

SO(3) and the sampling from spherical boxes are given, we define the search463

space X and specify how to build the corresponding G-BSP tree. We set464

X = A × bbox(M), (41)

where A is, according to (26), the domain of the axis-angle based parametriza-465

tion of SO(3) and bbox(M) (the bounding box of the model M) represents466

the translational part of the search space. Since bbox(M) is a rectangular467

box of the form [x1, x2] × [y1, y2] × [z1, z2] ⊂ R
3 it can easily be broken up468

into smaller boxes of the same size by simply bisecting it along the x, y or z469

axis.470

The root η0
0 of the G-BSP tree represents the whole set X. The child471

nodes of the root, namely, η1
00 and η1

01, represent the subsets X0 and X1,472

respectively, resulting from cutting the 0th interval of X—which is [0, 2π)473

in (26)—using the rule (34)1. In general, a node ηks (where k ≥ 0 and s is474

a binary string of length k + 1) is at the kth level of the tree, represents a475

subset Xs of the 6D search space and has two children, ηks0 and ηks1. The476

child nodes represent the sets Xs0 and Xs1, respectively, which are computed477

by cutting the (k mod 6)th interval of Xs according to (34) if 0 ≤ k mod 6478

≤ 2 (rotational part) or by dividing it in the middle if 3 ≤ k mod 6 ≤ 5479

(translational part).480

20

Figure 6: (Top row) The model set is shown as a blue mesh (note that only the mesh
vertices are used for the registration). The outlier corrupted data sets are rendered as
yellow point clouds. The number of outliers as percentage of the original number of
input points is shown below each figure. Further note that the data sets are incomplete
and sparsely sampled compared to the model. (Bottom row) Typical registration results
obtained with our algorithm using the model scalar field (13) based on the inverse distance
kernel (12). Observe the high quality of the alignment even in the presence of a significant
amount of outliers.

5. Experimental Results481

In this Section, we test our registration method on a variety of point sets.482

Since our algorithm is a probabilistic one, it computes each time a (slightly)483

different result. In order to make a statistical meaningful statement about its484

performance, we run 100 registration trials for each pair of inputs and report485

the mean performance values. We measure the success rate and the accuracy486

under varying amount of noise and outliers in the input sets. The success rate487

gives the percentage of registration trials in which a transform which is close488

to the global optimal one is found. The accuracy is measured using the RMS489

error (see [6]). The type of noise added to some of the model and data sets490

is Gaussian and the outliers are simulated by drawing points from a uniform491

distribution within the bounding box of the corresponding point set. We also492

measure the number of cost function evaluations and the computation time493

21

Figure 7: (a) The success rate as a function of the percentage of outliers in the data sets
shown in Figure 6. The success rate of the registration is shown when using the inverse
distance kernel (12) (our kernel) and the Huber kernel (7). Note that our kernel leads to
an almost constant success rate of 100% even in the presence of a very large amount of
outliers whereas at the level of 100% outliers the registration completely fails if the Huber
kernel is used. (b) The RMS error between the ground truth pose for each data set and
the estimated pose is shown as a function of the percentage of outliers. Only the successful
trials are used for computing the RMS error. Note that our kernel leads to much more
precise registration results which are almost independent of the amount of outliers. (c), (d)
We compare our method with the robust 4PCS algorithm [7] and a local descriptor based
approach (LD). A combination of a spin-image based descriptor and integral invariants
are used as local descriptors (see [7]). Note that the graphs corresponding to LD and
4PCS end by σ = 4.0 and 40% outliers. This is because the authors in [7] did not test
their methods on point sets with more noise or outliers whereas we did. Observe that our
algorithm is quite insensitive to noise and outliers and it outperforms both other methods.
The alignment error is measured using the RMS error between the model and the data
after registration. One unit corresponds to 1% of the bounding box diagonal length of the
model set.

for varying cooling speed v (defined in (22)). We compare the robustness of494

our method using two different kernels in the cost function. Furthermore, we495

report how two state-of-the-art registration approaches perform on the same496

point sets. In the following, we describe each test scenario in detail.497

First, the success rate and the accuracy of our method are tested with498

two different kernels, namely, the inverse distance kernel (12) used in our cost499

function and the Huber kernel (7) used in [14]. The point sets used in this500

test together with some typical registration results are shown in Figure 6.501

Note that outliers are added to the data set only and it is a subset of the502

model. This case occurs in real world scenarios in which one has a complete503

(relatively clean) model of an object and wants to align it to a low quality504

data set which only partially represents the object (due to visibility issues505

like, e.g., occlusion and scene clutter). As already mentioned in Section 2.1,506

we expect a registration method which minimizes a cost function based on507

22

Figure 8: Registration of partially overlapping noisy and outlier corrupted point sets. The
models are shown in blue whereas the data sets in yellow. (Top row) Partial scans of the
Coati model degraded by noise or outliers. The σ of the Gaussian noise or the amount of
outliers as percentage from the original number of input points is indicated below each fig-
ure. One σ unit equals 1% of the bounding box diagonal length of the corresponding point
set. (Bottom row) Typical registration results computed with our algorithm. The results
are obtained without any preprocessing of the input, ICP refinement [1] or assumptions
about the initial pose of the point sets.

the (unbounded) Huber kernel to have difficulties with outlier corrupted data508

sets. This is confirmed by the results of this test case which are summarized509

in the Figures 7(a) and 7(b).510

In the second test case, we align two partially overlapping parts of the511

Coati model under varying conditions. This time, noise and outliers are512

added to both the model and the data set. This situation occurs in practice513

when building a complete object model out of multiple partially overlap-514

ping scans. We compare our results with the ones reported in [7] which are515

obtained with the robust 4PCS algorithm and a state-of-the-art local de-516

scriptor based approach. We perform the tests on the same point sets which517

are used in [7]. This allows for a precise comparison without the need of518

re-implementing neither of the two algorithms. The model and data sets519

23

Figure 9: From left to right: success rate, RMS error, number of cost function evaluations
and computation time of our registration algorithm as a function of the cooling speed
v (defined in (22)). Model and data used in this test case are copies of the outlier-free
version of the data set shown in the top row of Figure 6. One RMS error unit equals 1%
of the bounding box diagonal length of the point set. All tests presented in this paper
were performed on a 3GHz laptop and the algorithm is implemented in C++.

Figure 10: (Left) The complete model of a box (shown in green) and three views of the
very low quality data set (shown in red). The data was obtained by a correlation based
stereo algorithm under poor lighting conditions. (Right) Our method robustly achieves the
visually right alignment. The high amount of noise and outliers which almost completely
destroy the shape of the object makes this a challenging example.

together with some typical registration results obtained with our method are520

shown in Figure 8. In the Figures 7(c) and 7(d) we plot our results together521

with the ones reported in [7].522

Next, we measure the performance of our algorithm for varying cooling523

speed v defined in (22). We report the results in Figure 9. Our algorithm524

achieves a success rate of 100% and an RMS error below 0.5 for less than 2.5525

seconds.526

Finally, we demonstrate the ability of our method to deal with partially527

overlapping and very sparsely sampled point sets corrupted by noise and528

outliers which are not artificially generated but originate in scan device im-529

24

Figure 11: Registration result in the case of a noisy and very sparsely reconstructed data
set (shown by the red “curve”) and a complete noise-free model (transparent green mesh).
Note that in this case the state-of-the-art integral volume descriptor (used in [6]) will fail
since the curve which represents the data set does not enclose a volume in R

3. Local
descriptors which use surface normals like, e.g., spin images [5] will fail as well since in
general the normal of a curve which lies on a surface does not match the surface normal.

Figure 12: Registration of noisy point sets with low overlap. Although rendered as meshes
only points are used for the registration. Note that the input scans, (a) and (b), represent
different parts of the face and the model set, shown in (a), contains no parts of the neck.
(c) – (e) A typical registration result obtained with our method shown from three different
viewpoints.

precision. In Figure 10, we show that our method successfully computes the530

right registration even in the case of an extremely degraded data set which531

represents only a subset of the model. Figure 11 illustrates the stability of532

our algorithm when dealing with very sparsely sampled data sets. Figures 1533

and 12 show typical registration results for partially overlapping points sets.534

Note that our registration method could lead to incorrect results for a535

class of shapes for which several almost equally good alignments exist and536

the registration ambiguity can be dissolved by small scale features only. An537

example of such a shape is a large cup with a small handle. In this case, the538

corresponding point sets lead to a cost function with several local minima539

which are almost as “good” as the global one (see Figure 13).540

25

Figure 13: Point sets leading to a cost function which has two almost equally low minima.
The nearly optimal solution differs from the optimal one by a rotation of the data set by
180◦ about the axis which corresponds to the upright orientation of the bottle.

6. Conclusions541

We introduced a new technique for pairwise rigid registration of point542

sets. Our method is based on a noise robust and outlier resistant cost function543

which itself is based on an inverse distance kernel. One of the main messages544

of the paper is that a registration method which minimizes an objective545

function based on an unbounded kernel will be sensitive to outliers in the546

point sets. This was fully validated by comparisons between our kernel and547

the Huber kernel which were presented in the experimental part of the paper.548

A further property of our algorithm is that it does not rely on any ini-549

tial estimation of the globally optimal rigid transform. This was achieved550

by employing a new stochastic algorithm for global optimization. In order551

to minimize efficiently over complex shaped search spaces like the space of552

rotations we generalized the BSP trees and introduced a new technique for553

hierarchical rotation space decomposition. Furthermore, we derived a new554

procedure for uniform point sampling from spherical boxes.555

Tests on a variety of point sets showed that the proposed method is insen-556

sitive to noise and outliers and can cope very well with sparsely sampled and557

incomplete data sets. Comparisons showed that our algorithm outperforms558

a recently proposed generate-and-test approach and a state-of-the-art local559

descriptor based method in terms of accuracy and robustness.560

26

References561

[1] P. Besl, N. McKay, A Method for Registration of 3-D Shapes, IEEE562

Trans. PAMI 14 (1992).563

[2] Y. Hecker, R. Bolle, On Geometric Hashing and the Generalized Hough564

Transform, IEEE Trans. on Systems, Man, and Cybernetics 24 (1994).565

[3] H. Wolfson, I. Rigoutsos, Geometric Hashing: an Overview, Computa-566

tional Science & Engineering, IEEE 4 (1997) 10–21.567

[4] G. Stockman, Object Recognition and Localization via Pose Clustering,568

Computer Vision, Graphics, and Image Processing 40 (1987) 361–387.569

[5] A. Johnson, M. Hebert, Using Spin Images for Efficient Object Recog-570

nition in Cluttered 3D Scenes, IEEE Trans. PAMI 21 (1999) 433–449.571

[6] N. Gelfand, N. Mitra, L. Guibas, H. Pottmann, Robust Global Registra-572

tion, Eurographics Symposium on Geometry Processing (2005) 197–206.573

[7] D. Aiger, N. Mitra, D. Cohen-Or, 4-Points Congruent Sets for Robust574

Pairwise Surface Registration, ACM Trans. Graph. 27 (2008).575

[8] Y. Chen, G. Medioni, Object Modeling by Registration of Multiple576

Range Images, Robotics and Automation, Proceedings., IEEE Interna-577

tional Conference on 3 (1991) 2724–2729.578

[9] S. Rusinkiewicz, M. Levoy, Efficient Variants of the ICP Algorithm,579

3DIM (2001) 145–152.580

[10] T. M. Breuel, Implementation techniques for geometric branch-and-581

bound matching methods, Computer Vision and Image Understanding582

90 (2003) 258–294.583

[11] C. Olsson, F. Kahl, M. Oskarsson, Branch-and-Bound Methods for584

Euclidean Registration Problems, IEEE Trans. PAMI 31 (2009) 783–585

794.586

[12] N. Mitra, N. Gelfand, H. Pottmann, L. Guibas, Registration of Point587

Cloud Data from a Geometric Optimization Perspective, Symposium588

on Geometry Processing (2004) 23–32.589

27

[13] H. Pottmann, Q.-X. Huang, Y.-L. Yang, S.-M. Hu, Geometry and Con-590

vergence Analysis of Algorithms for Registration of 3D Shapes, Inter-591

national Journal of Computer Vision 67 (2006) 277–296.592

[14] A. W. Fitzgibbon, Robust registration of 2D and 3D point sets, Image593

Vision Comput. 21 (2003) 1145–1153.594

[15] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equa-595

tion of State Calculations by Fast Computing Machines, The Journal596

of Chemical Physics 21 (1953) 1087–1092.597

[16] V. Cerny, Thermodynamical Approach to the Traveling Salesman Prob-598

lem: An Efficient Simulation Algorithm, Journal of Optimization The-599

ory and Applications 45 (1985) 41–51.600

[17] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by Simmulated An-601

nealing, Science 220 (1983) 671–680.602

[18] P. Pardalos, E. Romeijn (Eds.), Handbook of Global Optimization 2,603

Nonconvex Optimization and Its Applications, Kluwer Academic Pub-604

lishers, 2002.605

[19] D. Bulger, G. Wood, Hesitant Adaptive Search for Global Optimisation,606

Math. Program. 81 (1998) 89–102.607

[20] G. Bilbro, W. Snyder, Optimization of Functions with Many Minima,608

IEEE Trans. on Systems, Man, and Cybernetics 21 (1991) 840–849.609

[21] C. Papazov, D. Burschka, Stochastic Optimization for Rigid Point Set610

Registration, in: Advances in Visual Computing, 5th International Sym-611

posium, Proceedings, volume 5875 of Lecture Notes in Computer Sci-612

ence, Springer, 2009, pp. 1043–1054.613

[22] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-614

Wesley, 1990.615

[23] K. Kanatani, Group-Theoretical Methods in Image Understanding,616

Springer Series in Information Sciences, Springer, 1990.617

[24] A. Watt, M. Watt, Advanced Animation and Rendering Techniques,618

Addison-Wesley, 1992.619

28

[25] R. I. Hartley, F. Kahl, Global Optimization through Rotation Space620

Search, International Journal of Computer Vision 82 (2009) 64–79.621

[26] N. Madras, Lectures on Monte Carlo Methods, American Mathematical622

Society, 2002.623

29

An Efficient RANSAC for 3D Object

Recognition in Noisy and Occluded Scenes

Chavdar Papazov and Darius Burschka

Technische Universität München (TUM), Germany
email: {papazov, burschka}@in.tum.de

Abstract. In this paper, we present an efficient algorithm for 3D object
recognition in presence of clutter and occlusions in noisy, sparse and
unsegmented range data. The method uses a robust geometric descriptor,
a hashing technique and an efficient RANSAC-like sampling strategy.
We assume that each object is represented by a model consisting of a set
of points with corresponding surface normals. Our method recognizes
multiple model instances and estimates their position and orientation
in the scene. The algorithm scales well with the number of models and
its main procedure runs in linear time in the number of scene points.
Moreover, the approach is conceptually simple and easy to implement.
Tests on a variety of real data sets show that the proposed method
performs well on noisy and cluttered scenes in which only small parts of
the objects are visible.

1 Introduction

Object recognition is one of the most fundamental problems of computer vi-
sion. In recent years, advances in 3D geometry acquisition technology have led
to a growing interest in object recognition techniques which work with three-
dimensional data. Referring to [1], the 3D object recognition problem can be
stated as follows. Given a setM = {M1, . . . ,Mq} of models and a scene S are
there transformed subsets of some models which match a subset of the scene?
The output of an object recognition algorithm is a set {(Mk1

, T1), . . . , (Mkr
, Tr)}

where Mkj
∈ M is a recognized model instance and Tj is a transform which

aligns Mkj
to the scene S. In this paper, we discuss a special instance of this

problem which is given by the following assumptions.

(i) Each model Mi is a finite set of oriented points, i.e., Mi = {(p,n) : p ∈
R

3,n is the normal at p}.
(ii) Each model is representing a non-transparent object.
(iii) The scene S = {p1, . . . ,ps} ⊂ R

3 is a range image.
(iv) The transform Tj which aligns Mkj

to S is a rigid transform.

Even under these assumptions the problem remains hard because of several
reasons: it is a priori not known which objects are in the scene and how they
are oriented; the scene points are typically corrupted by noise and outliers; the

2 C. Papazov and D. Burschka

Fig. 1. Three views of a typical recognition result obtained with our method. The scene
is shown as a blue mesh and the four recognized model instances are rendered as yellow
point clouds and superimposed over the scene mesh (see Section 4 for details).

objects are only partially visible due to scene clutter, occlusions and scan device
limitations.
Contributions and Overview In this paper, we introduce an efficient algo-
rithm for 3D object recognition in noisy, sparse and unsegmented range data.
We make the following contributions: (i) We use a hash table for rapid retrieval
of pairs of oriented model points which are similar to a sampled pair of oriented
scene points. (ii) A new efficient RANSAC-like sampling strategy for fast gener-
ation of object hypotheses is introduced. (iii) We provide a complexity analysis
of our sampling strategy and derive the number of iterations needed to recognize
model instances with a predefined success probability. (iv) A new measure for
the quality of an object hypothesis is presented. (v) We use a non-maximum sup-
pression to remove false positives and to achieve a consistent scene explanation
by the given models.

The rest of the paper is organized as follows. After reviewing previous work in
Section 2, we describe our algorithm in Section 3. Section 4 presents experimental
results. Conclusions are drawn in the final Section 5 of the paper.

2 Related Work

Object recognition should not be confused with object classification/shape re-
trieval. The latter methods only measure the similarity between a given input
shape and shapes stored in a model library. They do not estimate a transform
which maps the input to the recognized model. Moreover, the input shape is
assumed to be a subset of some of the library shapes. In our case, however, the
input contains points originating from multiple objects and scene clutter.

There are two major classes of 3D object recognition methods. One class
consists of the so-called voting methods. Well-known representatives are the gen-
eralized Hough transform [2] and geometric hashing [1]. The generalized Hough
transform has a favorable space and time complexity of O(nk3), where n is the
number of scene points and k is the number of bins for each dimension of the
discretized rotation space. Unfortunately, the method scales bad with the num-

An Efficient RANSAC for 3D Object Recognition 3

ber of models since one has to match sequentially each one of them to the scene.
The geometric hashing approach [1] allows for a simultaneous recognition of all
models without the need of sequential matching. However, it tends to be very
costly since its space complexity is O(m3) and its worse case time complexity is
O(n4), where m and n are the number of model and scene points, respectively.
A more recent voting approach is the tensor matching algorithm [3]. It performs
well on complex scenes but the authors did not present tests on noisy and sparse
data sets.

The correspondence based methods belong to the second class of object recog-
nition approaches. First, correspondences between the models and the scene are
established usually using local geometric descriptors. In the second step, the
aligning rigid transform is calculated based on the established correspondences.
There is a vast variety of descriptors which can be used in a correspondence based
object recognition framework. A list includes, without being nearly exhaustive,
spin images [4], local feature histograms [5], 3D shape context, harmonic shape
context [6] and integral invariants [7]. In [8], classic 2D image descriptors were
extended to the domain of 2-manifolds embedded in R

3 and applied to rigid and
non-rigid matching of meshes. Intrinsic isometry invariant descriptors were de-
veloped in [9] and shown to be effective for the matching of articulated shapes.
All correspondence based algorithms rely heavily on the assumption that the
models to be recognized have distinctive feature points, i.e., points with rare
descriptors. In many cases, however, this assumption does not hold. A cylinder,
for example, will have too many points with similar descriptors. This results
in many ambiguous correspondences between the model and the scene and the
recognition method degenerates to a brute force search.

In our recognition approach, we combine a robust descriptor, a hashing tech-
nique and an efficient RANSAC variant. A similar strategy was proposed in [10].
In contrast to [10], where a hash table is used only for fast indexing into a large
collection of geometry descriptors of single model points, we use a hash table
to store descriptors of pairs of oriented model points (called doublets). This not
only enables us to efficiently determine the model doublets which are similar to
a sampled scene doublet but also allows for a very easy computation of the align-
ing rigid transform since it is uniquely defined by two corresponding doublets.
Furthermore, in [10], a complex scene preprocessing is performed before run-
ning the actual object recognition: (i) multiple views of the scene are registered
in order to build a more complete scene description and (ii) a scene segmen-
tation is executed to separate the object from the background. In contrast to
this, our method copes with a single view of the scene and does not require any
segmentation. Moreover, the scenes used in all tests presented in [10] contain a
single object and some background clutter. In this paper, we deal with the more
challenging problem of object recognition and pose estimation in scenes which
contain multiple object instances plus background clutter.

Before we describe our algorithm in detail, we briefly review the surface reg-
istration technique presented in [11] and include a short discussion on RANSAC
[12] since both are of special relevance to our work.

4 C. Papazov and D. Burschka

Fast Surface Registration [11] To put it briefly, the task of rigid surface
registration is to find a rigid transform which aligns two given surfaces. Let
S be a surface given as a set of oriented points. For a pair of oriented points
(u,v) = ((pu,nu), (pv,nv)) ∈ S× S, a descriptor f : S× S→ R

4 is defined by

f(u,v) =









f1(u,v)
f2(u,v)
f3(u,v)
f4(u,v)









=









‖pu − pv‖
∠(nu, nv)

∠(nu, pv − pu)
∠(nv, pu − pv)









, (1)

where ∠(a, b) denotes the angle between a and b. In order to register two
surfaces S1 and S2, oriented point pairs (u,v) ∈ S1 × S1 and (ũ, ṽ) ∈ S2 × S2

are sampled uniformly and the corresponding descriptors f(u,v) and f(ũ, ṽ)
are computed and stored in a four-dimensional hash table. The hash table is
continuously filled in this way until a collision occurs, i.e., until a descriptor of
a pair from S1 × S1 and a descriptor of a pair from S2 × S2 end up in the same
hash table cell. Computing the rigid transform which best aligns (in least square
sense) the colliding pairs gives a transform hypothesis for the surfaces.

According to [11], this process is repeated until a hypothesis is good enough,
a predefined time limit is reached or all combinations are tested. Non of these
stopping criteria is well-grounded: the first two are ad hoc and the last one is com-
putationally infeasible. In contrast to this, we compute the number of iterations
required to recognize model instances with a user-defined success probability.
Furthermore, a direct application of the above described registration technique
to 3D object recognition will have an unfavorable computational complexity
since it will require a sequential registration of each model to the scene.
RANSAC [12] can be seen as a general approach for model recognition. It
works by uniformly drawing minimal point sets from the scene and computing a
transform which aligns the model with the minimal point set.1 The score of the
resulting hypothesis is computed by counting the number of transformed model
points which lie within a certain ǫ-band of the scene. After a given number of
trials, the model is considered to be recognized at the locations defined by the
hypotheses which achieved a score higher than a predefined threshold. In order
to recognize the model with a probability PS we need to perform

N =
ln(1− PS)

ln(1− PM)
, (2)

trials, where PM is the probability of recognizing the model in a single iteration.
The RANSAC approach has the advantages of being conceptually simple,

very general and robust against outliers. Unfortunately, its direct application to
the 3D object recognition problem is computationally very expensive. In order to
compute an aligning rigid transform, we need at least three pairs of corresponding
model ↔ scene points. Under the simplifying assumption that the model is

1 A minimal point set is the smallest set of points required to uniquely determine a
given type of transform.

An Efficient RANSAC for 3D Object Recognition 5

completely contained in the scene, the probability of drawing three such pairs
in a single trial is PM (n) = 3!

(n−2)(n−1)n , where n is the number of scene points.

Since PM (n) is a small number we can approximate the denominator in (2) by
its Taylor series ln(1−PM (n)) = −PM (n)+O(PM (n)2) and get for the number
of trials as a function of the number of scene points:

N(n) ≈
− ln(1− PS)

PM (n)
= O(n3). (3)

Assuming q models in the library the complexity of RANSAC is O(qn3).
There are many modifications of the classic RANSAC scheme. Some recently

proposed methods like ASSC [13] and ASKC [14] significantly improve outlier
robustness by using a different score function. However, these variants are not
designed to enhance the performance of RANSAC. In [15], an efficient RANSAC-
like registration algorithm was proposed. However, it is not advisable to directly
apply the method to 3D object recognition since it will require a sequential
matching of each model to the scene. In [16], another efficient RANSAC variant
for primitive shape detection was introduced. The method is related to ours since
the authors also used a localized minimal point set sampling. Their method,
however, is limited to the detection of planes, spheres, cylinders, cones and tori.

3 Method Description

Like most object recognition methods, ours consists of two phases. The first
phase — the model preprocessing — is done offline. It is executed only once for
each model and does not depend on the scenes in which the model instances have
to be recognized. The second phase is the online recognition which is executed
on the scene using the model representation computed in the offline phase.

3.1 Model Preprocessing Phase

For a given object model M, we sample all pairs of oriented points (u,v) =
((pu,nu), (pv,nv)) ∈ M × M for which pu and pv are approximately at a
distance d from each other. For each pair, the descriptor f(u,v) = (f2(u,v),
f3(u,v), f4(u,v)) is computed as defined in (1) and stored in a three-dimensional
hash table. Note that since d is fixed we do not use f1 as part of the descriptor.
Furthermore, in contrast to [11], we do not consider all pairs of oriented points,
but only those which fulfill ‖pu − pv‖ ∈ [d − δd, d + δd], for a given tolerance
value δd. This has several advantages. The space complexity is reduced from
O(m2) to O(m), where m is the number of points in M (this is an empirical
measurement further discussed in [17]). For large d, the pairs we consider are
wide-pairs which allow a much more stable computation of the aligning rigid
transform than narrow-pairs do [17]. A further advantage of wide-pairs is due
to the fact that the larger the distance the less pairs we have. Thus, computing
and storing descriptors of wide-pairs leads to less populated hash table cells

6 C. Papazov and D. Burschka

which means that we will have to test less transform hypotheses in the online
recognition phase and will save computation time.

Note, however, that the pair width d can not be arbitrary large due to occlu-
sions in real world scenes. For a typical value for d, there are still a lot of pairs
with similar descriptors, i.e., there are hash table cells with too many entries.
To avoid this overpopulation, we remove as many of the most populated cells
as needed to keep only a fraction K of the pairs in the hash table (in our im-
plementation K = 0.1). This strategy leads to some information loss about the
object shape. We take this into account in the online phase of our algorithm.

The final representation of all models M1, . . . ,Mq is computed by processing
each Mi in the way described above using the same hash table. In order not to
confuse the correspondence between pairs and models, each cell contains a list
for each model which has pairs stored in the cell. In this way, new models can
be added to the hash table without recomputing it.

3.2 Online Recognition Phase

The online recognition phase can be outlined as follows:

1. Initialization
(a) Compute an octree for the scene S to produce a modified scene S∗.
(b) T ← ∅ (an empty solution list).

2. Compute a number of iterations N needed to achieve a probability for suc-
cessful recognition higher than a predefined value PS .

[repeat N times]

3. Sampling

(a) Sample a point pu uniformly from S∗.
(b) Sample pv ∈ S∗ uniformly from all points at a distance d± δd from pu.

4. Estimate normals nu and nv at pu and pv, respectively, to get an oriented
scene point pair (u,v) = ((pu,nu), (pv,nv)).

5. Compute the descriptor fuv = (f2(u,v), f3(u,v), f4(u,v)) (see (1)).

6. Use fuv as a key to the model hash table to retrieve the oriented model point
pairs (uj ,vj) similar to (u,v).

[repeat for each (uj ,vj)]

(a) Get the model M of (uj ,vj).
(b) Compute the rigid transform T that best aligns (uj ,vj) to (u,v).
(c) Set T ← T ∪ (M, T) if (M, T) is accepted by an acceptance function µ.

[end repeat]

[end repeat]

7. Filter conflicting hypotheses from T .

For our algorithm to be fast, we need to search efficiently for closest points
(in step 4) and for points lying on a sphere around a given point (in step 3b).
These operations are greatly facilitated if a neighborhood structure is available

An Efficient RANSAC for 3D Object Recognition 7

for the point set. Note that the 2D range image grid defines such a structure
which, however, is not well suited for the above mentioned geometric operations.
This is due to the fact that points which are neighbors on the gird are not
necessarily close to each other in R

3 because of perspective effects and scene
depth discontinuities. A very efficient way to establish spatial proximity between
points in R

3 is to use an octree.

Step 1, Initialization In step 1a of the algorithm, we construct an octree
with a fixed leaf size L (the edge length of a leaf). The full octree leaves (the
ones which contain at least one point) can be seen as voxels ordered in a regular
axis-aligned 3D grid. Thus, each full leaf has unique integer coordinates (i, j, k).
We say that two full leaves are neighbors if the absolute difference between their
corresponding integer coordinates is ≤ 1. Next, we down-sample S by setting the
new scene points in S∗ to be the centers of mass of the full leaves. The center of
mass of a full leaf is defined to be the average of the points it contains. In this
way, a one-to-one correspondence between the points in S∗ and the full octree
leaves is established. Two points in S∗ are neighbors if the corresponding full
leaves are neighbors.

Step 2, Number of Iterations This step is explained in Section 3.3.

Step 3, Sampling In the sampling stage, we make extensive use of the scene
octree. As in the classic RANSAC, we sample minimal sets from the scene. In
our case, a minimal set consists of two oriented points. However, in contrast to
RANSAC, they are not sampled uniformly. Only the first point, pu, is drawn
uniformly from S∗. In order to draw the second point, pv, we first retrieve the set
L of all full leaves which are intersected by the sphere with center pu and radius
d, where d is the pair width used in the offline phase (see Section 3.1). This
operation can be implemented very efficiently due to the hierarchical structure
of the octree. Finally, a leaf is drawn uniformly from L and pv is set to be its
center of mass.

Step 4, Normal Estimation The normals nu and nv are estimated by per-
forming a Principal Component Analysis. nu and nv are set to be the eigenvec-
tors corresponding to the smallest eigenvalues of the covariance matrix of the
points in the neighborhood of pu and pv, respectively. The result is the oriented
scene point pair (u,v) = ((pu,nu), (pv,nv)).

Steps 5 and 6, Hypotheses Generation and Testing Step 5 involves the
computation of the descriptor fuv = (f2(u,v), f3(u,v), f4(u,v)) (see (1)). In
step 6, fuv is used as a key to the model hash table to retrieve all model pairs
(uj ,vj) which are similar to (u,v). For each (uj ,vj), the modelM corresponding
to (uj ,vj) is retrieved (step 6a) and the rigid transform T which best aligns (in
least squares sense) (uj ,vj) to (u,v) is computed (step 6b). The result of these
two sub-steps is the hypothesis that the model M is in the scene at the location
defined by T . In order to save the hypothesis in the solution list, it has to be
accepted by the acceptance function µ.

Step 6c, The Acceptance Function µ measures the quality of a hypothesis
(M, T) and consists of a support term and a penalty term. As in RANSAC,
the support term, µS , is proportional to the number mS of transformed model

8 C. Papazov and D. Burschka

points (i.e., points from T (M)) which fall within a certain ǫ-band of the scene.
More precisely, µS(M, T) = mS/m, where m is the number of model points. To
compute mS , we back project T (M) in the scene range image and count the
number of points which have a z-coordinate in the interval [z − ǫ, z + ǫ], where
z is the z-coordinate of the corresponding range image pixel.

In contrast to RANSAC, our algorithm contains a penalty term, µP , which
is proportional to the size of the transformed model parts which occlude the
scene. It is clear that in a scene viewed by a camera a correctly recognized (non-
transparent) object can not occlude scene points reconstructed from the same
viewpoint. We penalize hypotheses which violate this condition. We compute the
penalty term by counting the number mP of transformed model points which are
between the projection center of the range image and a valid range image pixel
and thus are “occluding” reconstructed scene points. We set µP (M, T) = mP /m,
where m is the number of model points.

For (M, T) to be accepted as a valid hypothesis it has to have a support higher
than a predefined S ∈ [0, 1] and a penalty lower than a predefined P ∈ [0, 1].
Step 7, Filtering Conflicting Hypotheses We say that an accepted hypoth-
esis (M, T) explains a set P ⊂ S∗ of scene points if for each p ∈ P there is
a point from T (M) which lies within the octree leaf corresponding to p. Note
that the points from P explained by (M, T) are not removed from S∗ because
there could be a better hypothesis, i.e., one which explains a superset of P. Two
hypotheses are conflicting if the intersection of the point sets they explain is
non-empty. At the end of step 6, many conflicting hypotheses are saved in the
list T . To filter the weak ones, we construct a so called conflict graph. Its nodes
are the hypotheses in T and an edge is connecting two nodes if the hypotheses
they represent are conflicting ones. To produce the final output, the solution list
is filtered by performing a non-maximum suppression on the conflict graph: a
node is removed if it has a better neighboring node.

3.3 Time Complexity

The complexity of the proposed algorithm is dominated by three major factors:
(i) the number of iterations (the loop after step 2), (ii) the number of pairs per
hash table cell (the loop in step 6) and (iii) the cost of evaluating the acceptance
function for each object hypothesis (step 6c). In the following, we discuss each
one in detail.
(i) Consider the scene S∗ consisting of |S∗| = n points and a model instance
M therein consisting of |M| = m points. We already saw in the discussion on
RANSAC at the end of Section 2 that we need

N =
ln(1− PS)

ln(1− PM)
(4)

iterations to recognize M with a predefined success probability PS , where PM is
the probability of recognizing M in a single iteration. Recall from Section 2 that
in the classic RANSAC applied to 3D object recognition we have PM ≈ 1/n3.

An Efficient RANSAC for 3D Object Recognition 9

Our sampling strategy and the use of the model hash table lead to a significant
increase of PM and thus to a reduction of the complexity. In the following, we
estimate PM .

Let P (pu ∈M,pv ∈M) denote the probability that both points are sampled
from M (see step 3 in Section 3.2). Thus, the probability of recognizing M in a
single iteration is

PM = KP (pu ∈M,pv ∈M), (5)

where K is the fraction of oriented point pairs for which the descriptors are
saved in the model hash table (see Section 3.1). Using conditional probability
and the fact that P (pu ∈M) = m/n we can rewrite (5) to get

PM = (m/n)KP (pv ∈M|pu ∈M). (6)

P (pv ∈ M|pu ∈ M) is the probability to sample pv from M given that
pu ∈M. Recall from Section 3.2 that pv is not independent of pu because it is
sampled uniformly from the set L consisting of the scene points which lie on the
sphere with center pu and radius d, where d is the pair width used in the offline
phase. Under the assumptions that the visible object part has an extent larger
than 2d and that the reconstruction is not too sparse, L contains points from
M. Thus, P (pv ∈ M|pu ∈ M) = |L ∩M|/|L| is well-defined and greater than
zero. |L ∩M|/|L| depends on the scene, i.e., it depends on the extent and the
shape of the visible object part. Estimating C = |L∩M|/|L| by, e.g., 1/4 (this is
what we use in our implementation) accounts for up to 75% outliers and scene
clutter. Thus, we get for PM as a function of n (the number of scene points)

PM (n) = (m/n)KC. (7)

Again, approximating the denominator in (4) by its Taylor series ln(1−PM (n)) =
−PM (n) +O(PM (n)2) we get for the number of iterations

N(n) ≈
− ln(1− PS)

PM (n)
=
−n ln(1− PS)

mKC
= O(n). (8)

This proves that the number of iterations depends linearly on the number of
scene points. Furthermore, it is guaranteed that the model instances will be
recognized with the desired probability PS .
(ii) The number of pairs per hash table cell depends on the number of models as
well on the number of points of each model. An algorithm is considered to scale
well with the number of models if its runtime is less than the sum of the runtime
needed for the recognition of each model separately [10, 18]. In other words, an
algorithm should need less time than it is needed for a sequential matching of
each model to the scene. The use of the model hash table ensures this in the
case of our method. For almost all real world objects it holds that a hash table
cell does not store pairs from all models. Furthermore, not all pairs originating
from a model end up in the same hash table cell.
(iii) The acceptance function µ runs in O(l) time, where l is the number of
model points. Note that µ does not depend on the number of scene points since
back projecting a model point in the range image is performed in constant time.

10 C. Papazov and D. Burschka

���� ������	�ABAC�	�DE����F ����� �������
�� �� �� ��

���

���

���

���

��

�! �! �!

�����
�������

����
����

����A�D"�#����$
%C��D&'�$��

���

(�D�B$A��#�'

��
�A
$�
�#�
A�
D�
�#
�

)DA��B	��A�

Fig. 2. (Upper left) The models used in the comparison test case. (Upper right) The
continuous lines indicate the recognition rate of our algorithm for each object as a
function of its occlusion. The dashed lines give the recognition rate of the spin images
and the tensor matching approaches on the same scenes as reported in [3]. Note that our
method outperforms both algorithms. The chef is recognized in all trials, even in the
case of occlusion over 91%. The blue dots represent the recognition rate in the three
chicken test scenes in which our method performs worse than the other algorithms.
This is due to the fact that in these scenes only the chicken’s back part is visible which
contains strongly varying normals which makes it difficult to compute a stable aligning
transform. (Lower row) Four (out of 50) test scenes and the corresponding recognition
results. The recognized models are rendered as yellow point clouds and superimposed
over the scenes which are rendered as blue meshes. These are challenging examples
since only small parts of the objects are visible.

4 Experimental Results

Comparison with spin images [4] and tensor matching [3] In the first
test scenario, we compare the recognition rate of our algorithm with the spin
images [4] and the tensor matching [3] approaches on occluded real scenes. We
test our method on the same 50 data sets which are used in [3]. This allows
for a precise comparison without the need of re-implementing neither of the
two algorithms. The models of the four toys to be recognized are shown in the
upper row of Fig. 2. Each test scene contains the toys (not necessary all four
of them) in different positions and orientations. Each scene is digitized with a
laser range finder from a single viewpoint which means that the back parts of
the objects are not visible. Furthermore, in most scenes the toys are placed such
that some of them occlude others which makes the visible object parts even
smaller. The lower row of Fig. 2 shows exemplary four (out of 50) test scenes
with the corresponding recognition results obtained with our algorithm. Since
our algorithm is a probabilistic one we run 100 recognition trials on each scene

An Efficient RANSAC for 3D Object Recognition 11

��� ���

��
�
�	A
B	
BC
DE
F	
�A
E�

���

�
�
�	
F�
�A
�

�

�

��

AB	�C�EE�C�	�A�EF
� � � � � ��

�C�

�F
�A
��
���
A�
	�
C�
F

���

AB	�C�EE�C�	�A�EF

���
���
���
���
���

� � � � � ��
AB	�C�EE�C�	�A�EF�

���

���

���

�

��
��

�

� � � � � ��

���

� �

������ ����� ����� �����

Fig. 3. (a) - (c) Recognition rate, mean number of false positives and mean RMS error
as functions of the σ of Gaussian noise. One σ unit equals 1% of the bounding box
diagonal length of the scene. The RMS units are in millimeters. (d) Typical recognition
results for noise degraded data sets.

and compute the recognition rate for each object represented in the scene in the
following way. We visually inspect the result of each of the 100 trials. If object
A was recognized n times (0 ≤ n ≤ 100) then the recognition rate for A is
n/100. Since the occlusion of every object in each scene is known we report the
recognition rate for each object as a function of its occlusion. According to [4],
the occlusion for an object model is given by 1 − area of visible model surface

total area of model surface . The
results of the tests and the comparison with the spin images [4] and the tensor
matching [3] approaches are summarized in the upper right part of Fig. 2.
Noisy and Sparse Scenes In the second scenario, we run tests under varying
noisy conditions. The models to be recognized are the same as in the last test
case and the scene is the third one in the lower row of Fig. 2. Next, several
versions of the scene are computed by degrading it by zero-mean Gaussian noise
with different variance values σ. Again, we perform 100 recognition trials for
each noisy scene and compute the recognition rate, the mean number of false
positives and the mean RMS error as functions of σ. For a point set P, a (rigidly)
transformed copyQ and a (rigid) transform T the RMS error measures how close
each point pi ∈ P comes to its corresponding point qi ∈ Q after transforming
Q by T . Thus RMS measures the quality of T . It is given by

RMS(T) =

√

√

√

√

1

N

N
∑

i=1

‖pi − T (qi)‖2, (9)

12 C. Papazov and D. Burschka

������ ����� 	A�BCD�EF �����D ���D

Fig. 4. The models used for object recognition in scenes reconstructed with a low-cost
light intersection based device.

Fig. 5. Typical recognition results obtained with our method for three test scenes. The
scenes are shown as blue meshes and the recognized model instances are rendered as
yellow point clouds and superimposed over the meshes. Some of the scenes contain un-
known objects (the left and the right one). Note that the scene reconstruction contains
only small portions of the objects.

where N is the number of points in P. Since we know the ground truth location
of each model in the test scene the RMS error of the rigid transform computed
by our method can be easily calculated.2 The results of all noise tests are sum-
marized in Fig. 3(a) – (c). Typical recognition results and four of the noisy scenes
are shown in Fig. 3(d).

Next, we demonstrate the ability of our method to deal with data sets cor-
rupted by noise which is not artificially generated but originates in scan device
imprecision. Note that the scenes used in [4] and [3] are dense and have a rel-
atively good quality. We use a low-cost light section based scanner which gives
sparser and noisier data sets. The models used in this test scenario are shown in
Fig. 4. Typical recognition results of our method are shown in Fig. 1 and Fig. 5.

Runtime In the last test scenario, we experimentally verify the two main claims
regarding the time complexity of our algorithm, namely that it needs less time
than it is required for a sequential matching of each model to the scene and that
it has a linear complexity in the number of scene points.

First, we measure the runtime dependency on the number of models. The
models used in this test case are the ones shown in Fig. 2 and Fig. 4 and the

2 The ground truth rigid transform for the models for each scene is available on the
webpage of the authors of [3].

An Efficient RANSAC for 3D Object Recognition 13

��� ������

model comp. time (sec)

Chef
Para
T-Rex
Chicken
Rabbit
Snail
Chicken 2
Bottle
Vase

0.568
0.533
0.5
0.522
0.536
0.546
0.551
0.577
0.566

0.568
0.533
0.5
0.522
0.536
0.546
0.551
0.577
0.566

Fig. 6. (a) Recognition time for each model. (b) Computation time for a simultaneous
recognition of multiple objects (solid line) compared to a sequential matching of each
model to the scene (dashed line). The runtime in the case of the sequential matching
is the sum of the times reported in (a) for each model. (c) Linear time complexity in
the number of scene points for the simultaneous recognition of 9 models.

scene is the leftmost one in Fig. 5. The recognition time for each object (when it
is the only one loaded in the hash table) is reported in Fig. 6(a). In Fig. 6(b), the
computation time of our algorithm as a function of the number of models loaded
in the hash table is compared with the time needed for a sequential matching of
each model to the scene. The difference in the performance is obvious.

Second, we measure how the runtime depends on the number of scene points.
There are eleven different data sets involved in this test case — a subset from
the scenes used in the comparison test case. It is important to note that we
do not take a single data set and down/up-sample it to get the desired number
of points. Instead we choose eleven different scenes with varying scene extent,
number of points and number of objects. This suggests that the results will hold
for arbitrary scenes. We report the results of this test in Fig. 6(c).

The algorithm presented in this paper is implemented in C++ and all tests
were performed on a laptop with an Intel Core 2 Duo 3GHz CPU and 4GB
RAM.

5 Conclusions

In this paper, we introduced a new algorithm for multiple 3D object recogni-
tion in noisy, sparsely reconstructed and unsegmented range data. The method
combines a robust descriptor, a hashing technique and an efficient RANSAC-
like sampling strategy. We provided a complexity analysis of the algorithm and
derived the number of iterations required to recognize the model instances with
a given probability. In the experimental part of the paper, it was verified that
the proposed algorithm scales well with the number of models and that it has a
linear time complexity in the number of scene points. Furthermore, we showed
that our method performs well on noisy, sparse and unsegmented scenes in which
only small parts of the objects are visible. A comparison showed that our method
outperforms the spin images [4] and the tensor matching [3] approaches in terms
of recognition rate.

14 C. Papazov and D. Burschka

References

1. Lamdan, Y., Wolfson, H.: Geometric Hashing: A General And Efficient Model-
based Recognition Scheme. In: ICCV. (1988) 238–249

2. Ballard, D.H.: Generalizing the Hough Transform to Detect Arbitrary Shapes.
Pattern Recognition 13 (1981) 111–122

3. Mian, A.S., Bennamoun, M., Owens, R.A.: Three-Dimensional Model-Based Ob-
ject Recognition and Segmentation in Cluttered Scenes. IEEE TPAMI 28 (2006)
1584–1601

4. Johnson, A., Hebert, M.: Using Spin Images for Efficient Object Recognition in
Cluttered 3D Scenes. IEEE TPAMI 21 (1999) 433–449

5. Hetzel, G., Leibe, B., Levi, P., Schiele, B.: 3D Object Recognition from Range
Images Using Local Feature Histograms. In: CVPR. (2001) 394–399

6. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing Objects in
Range Data Using Regional Point Descriptors. In: ECCV. (2004) 224–237

7. Gelfand, N., Mitra, N., Guibas, L., Pottmann, H.: Robust Global Registration. In:
Eurographics Symposium on Geometry Processing. (2005) 197–206

8. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface Feature Detection and
Description with Applications to Mesh Matching. In: CVPR. (2009) 373–380

9. Sun, J., Ovsjanikov, M., Guibas, L.J.: A Concise and Provably Informative Multi-
Scale Signature Based on Heat Diffusion. Comput. Graph. Forum 28 (2009) 1383–
1392

10. Matei, B., Shan, Y., Sawhney, H.S., Tan, Y., Kumar, R., Huber, D.F., Hebert, M.:
Rapid Object Indexing Using Locality Sensitive Hashing and Joint 3D-Signature
Space Estimation. IEEE TPAMI 28 (2006) 1111–1126

11. Winkelbach, S., Molkenstruck, S., Wahl, F.M.: Low-Cost Laser Range Scanner
and Fast Surface Registration Approach. In: Pattern Recognition, 28th DAGM
Symposium, Proceedings. (2006) 718–728

12. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24 (1981) 381–395

13. Wang, H., Suter, D.: Robust Adaptive-Scale Parametric Model Estimation for
Computer Vision. IEEE TPAMI 26 (2004) 1459–1474

14. Wang, H., Mirota, D., Hager, G.D.: A Generalized Kernel Consensus-Based Robust
Estimator. IEEE TPAMI 32 (2010) 178–184

15. Chen, C.S., Hung, Y.P., Cheng, J.B.: RANSAC-Based DARCES: A New Approach
to Fast Automatic Registration of Partially Overlapping Range Images. IEEE
TPAMI 21 (1999) 1229–1234

16. Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for Point-Cloud Shape De-
tection. Comput. Graph. Forum 26 (2007) 214–226

17. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points Congruent Sets for Robust Pairwise
Surface Registration. ACM Trans. Graph. 27 (2008)

18. Shan, Y., Matei, B., Sawhney, H.S., Kumar, R., Huber, D.F., Hebert, M.: Linear
Model Hashing and Batch RANSAC for Rapid and Accurate Object Recognition.
In: CVPR. (2004) 121–128

RUEPP, BURSCHKA, BAUERNSCHMITT: MONOCULAR SURFACE RECOVERY 1

Towards On-Line Intensity-Based Surface

Recovery from Monocular Images

Oliver Ruepp1

ruepp@in.tum.de

Darius Burschka1

burschka@cs.tum.edu

Robert Bauernschmitt2

bauernschmitt@dhm.mhn.de

1 Institut für Informatik VI

Technische Universität München

Boltzmannstraße 3

85748 Garching, Germany

2 Deutsches Herzzentrum München

Lazarettstr. 36

80636 München, Germany

Abstract

We present a novel method for vision-based recovery of three-dimensional structures

through simultaneous model reconstruction and camera position tracking from monoc-

ular images. Our approach does not rely on robust feature detecting schemes (such as

SIFT, Good Features to Track etc.), but works directly on intensity values in the cap-

tured images. Thus, it is well-suited for reconstruction of surfaces that exhibit only little

texture due to partial homogenity of the surfaces.

1 Introduction

Tracking and reconstruction of surfaces from video data is a problem that has been subject

of extensive research work, and a number of methods exist for this problem. Many of the

established methods, however, rely on presence of salient image features, such as SIFT [11]

features, Good Features to Track [22], FAST corner detection [20] and so on. In some

settings, however, the objects one is dealing with do not exhibit much structure, which makes

it very hard to find robust, dense feature sets using traditional methods. In such situations, it

pays off to use intensity-based methods, which is what we have investigated.

Originally, our idea was to generalize an approach developed by Ramey et al. [19] for

efficient tracking of the disparity map in stereo video streams. Their method is quite general

in that it can be used in conjunction with arbitrary parametric models of disparity maps,

and it is especially efficient if the model is linear in parameters. In their test setups, they

have used a B-Spline surface to represent the disparity map. We wanted to generalize their

approach in the sense that the cameras do not need to be mounted on a stereo rig, but instead

they are allowed to move independently from each other.

As an intermediate step towards this goal, we developed the method presented in this pa-

per, which allows simultaneous model reconstruction and camera localization from monoc-

ular images in static scenes. In comparison to the two-camera scenario described above, this

is equivalent to a situation where two cameras are present, but only one of them is moving,

and the observed scene is static.

c© 2010. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.

2 RUEPP, BURSCHKA, BAUERNSCHMITT: MONOCULAR SURFACE RECOVERY

���������	ABC

DECF�E��CE�F�����C��	��F�F�A����	A	���

Figure 1: Schematic overview of the main idea of our algorithm.

Some examples of real-time dense reconstruction methods are described in papers by

Palaanen et al. [16], Pan et al. [17], and in the recent work by Newcombe et al. [14]. All of

these methods have in common, however, that they rely on some kind of feature detecting

scheme, which is what we want to avoid here.

A number of offline methods for model-based bundle-adjustment have been described

with applications to face modeling [5, 21]. Our method is different in that it tries to build the

model during run-time, starting out with a very crude initial model (a plane) and refining the

model in each step.

A part of the problem of surface reconstruction from image intensities is the surface

modeling and reconstruction methodology itself. A thorough treatment of that problem has

been done recently [1, 3], and results have been established using feature-based methods.

Ramey’s tracking method [19] that inspired our development basically employs the Gauss-

Newton minimization algorithm for tracking. The generalization that we have performed

leads to an optimization problem that corresponds to intensity-based bundle-adjustment that

is restricted to two frames. An in-depth survey of the original bundle-adjustment method is

given in the book by Hartley and Zisserman [9]. The paper by Triggs et al. [23] provides

a good overview of bundle adjustment variants and related methods. There is also a more

recent paper evaluating the status of real-time bundle adjustment methods [4].

We are interested in recovering the surface of a 3D object on-line from a stream of

monocular camera images. The object we are interested in must be static. Furthermore,

since we are also tracking the object of interest, it is required that during the video sequence,

sight of the object is not lost. Occlusions or self-occlusions are, until now, not accounted for.

However, such problems have already been examined by other researchers, e.g. [6, 18], and

we expect it to be possible to incorporate similar techniques into our solution.

The basic concept of the algorithm is visualized in Figure 1. It can be summarized as

follows: In traditional bundle adjustment, coordinates of 3D points that are associated with

feature points are recovered from a set of 2D feature position measurements. This approach

will obviously work only if a feature detecting scheme can be used at all. It has the advantage

that the images can be taken from very different camera positions. In our case, we do not

assume that robust feature extraction is possible, and thus we do not work with 2D positions,

RUEPP, BURSCHKA, BAUERNSCHMITT: MONOCULAR SURFACE RECOVERY 3

Figure 2: Left, middle: Surface under two different camera positions. Right: Warping of

surface coordinates from left to right image.

but with image intensities. This is only feasible if the camera positions of subsequent images

are not too far away from each other.

In the next section, we give a detailed explanation of the method we have developed.

Results have been obtained from real world data sets as well as synthetic data sets, and are

presented in Section 3.

2 Method

2.1 Overview

There are many possibilities for representing a model of a scene, with the most straightfor-

ward one being a point cloud. This is a very general representation that is actually used

in the traditional bundle adjustment algorithm, where it works well under the assumption

that points can be reliably identified. Unfortunately, this assumption can not be used for

intensity-based methods, since identifying a point based on its intensity is obviously bound

to fail. This disqualifies the point cloud model for our purposes.

The usual approach taken to address this problem is the introduction of additional con-

straints in form of a parametric surface model of type S : Rk ×R
2 →R

3, on which the points

lie. Mathematically speaking, S maps a set of k parameters together with surface coordinates

u,v to three-dimensional spatial coordinates. Such a model is especially suitable for repre-

sentation of scenarios that can be described with a small parameter set. Compared to the

point cloud representation, it constitutes a loss of generality, but this is a compromise that

seems to be necessary to make.

Inspired by the method of Ramey et al. [19], we do not directly model the scene as a 3D

surface. Instead, we choose the model to be a depth map of some object of interest for some

reference image of the video stream. A 3D surface model can easily be retrieved from that

representation, as will be shown later.

Observing a static, three-dimensional smooth surface S under two different camera posi-

tions will essentially yield two images that are related to each other via a “warping” function.

If, for two snapshots of a scene, we exactly know the corresponding extrinsic camera param-

eters and we have a perfect mathematical description of the surface that we are observing,

we can, for each surface pixel in one image, determine the position of that pixel in the other

image. In other words, we can formulate a function of type R
2 → R

2 that transforms pixel

4 RUEPP, BURSCHKA, BAUERNSCHMITT: MONOCULAR SURFACE RECOVERY

coordinates from one image to another, and we would expect the corresponding image values

to be equal. Figure 2 shows an example for the warping function.

Because we require the surface to be completely visible at all times, it would not make

sense to try to establish a depth map for the whole image, points could very easily be lost

immediately after initialization as a result of minor camera movements. Instead, if we focus

on only a certain region of interest within the image, it is easier for the user to assure that

that region is always visible. Thus, before starting the actual reconstruction process, we have

the user choose such an area within a reference image.

2.2 Mathematical Model

We do not take into account all pixels in the region of interest because the optimization

process is quite costly. Instead, we only focus on a number of reference pixels that are

selected according to a weak criterium that will be described later. These pixels are picked

from a user-defined region of interest in a reference image and tracked through the entire

image sequence.

As we have mentioned earlier, we are modeling the depth map of the region of interest

that has been chosen by the user. That depth map is then a function Sd(u,v) mapping a

k-dimensional parameter vector d together with image coordinates (u,v) ∈ R
2 to a depth

value λ ∈ R at the specified coordinate. Given intrinsic camera parameters, this depth map

can actually be interpreted as a 3D surface. Before we start to derive the image warping

function, we want to give an overview of definitions and notations. In the following, images

are numbered consecutively, and the numbering starts with n = 0. Then, let

• dn denote the k-dimensional vector of parameters of the model describing the depth

map.

• Sd(u,v) denote a function of type R
k ×R

2 → R that maps model parameters together

with image pixel coordinates to 1D pixel depth values.

• pn = (tn,qn) denote the extrinsic camera parameters corresponding to image n, con-

sisting of translation vector tn ∈ R
3 and rotation quaternion qn ∈ R

4.

• T (t,q,p) : R3 ×R
4 ×R

3 → R
3 is a transformation mapping 3D spatial coordinates p

to 3D coordinates in the camera frame described by a translation vector t and a rotation

quaternion q.

• π(p) be the projection of a 3D point p to 2D image coordinates, according to the

internal camera calibration parameters of the camera used.

• In(x,y) be the image function of image n, containing all pixel values. I0 is hence the

reference image function.

• (u1,v1), . . . ,(um,vm) denote the pixel coordinates of the m reference pixels, chosen

from the ROI in the reference image.

For the monocular camera, we assume a pinhole model with projection function

π(p) =

(

p1 fx

p3
+ cx,

p2 fy

p3
+ cy

)T

(1)

RUEPP, BURSCHKA, BAUERNSCHMITT: MONOCULAR SURFACE RECOVERY 5

where fx, fy are focal lengths in terms of pixel dimensions, cx,cy describe the location of

the camera center, and (p1,p2,p3)
T is a vector of Cartesian point coordinates. In case of

significant radial distortions, the images can be rectified before usage.

If we associate the camera frame in image 0 with the reference frame, each pixel of the

region of interest corresponds to a ray originating from the camera position (which coincides

with the origin) that intersects the object surface at a certain depth. The pixel color then

corresponds (ignoring possible specularities) to the color of the surface texture at that posi-

tion. The ray corresponding to pixel coordinates (u,v) can then be parameterized by depth

λ , yielding a function ru,v(λ):

ru,v(λ) = λ ·

(

u− cx

fx

,

v− cy

fy

,1

)T

. (2)

It is obvious then that the composite function ru,v(Sd(u,v)) is a description of the three-

dimensional model shape. If that model is observed from a different camera position pn,

yielding a different image with index n, we need to rotate and translate the 3D coordinates

produced by above function. This can be achieved by using the formula T (pn,ru,v(Sd(u,v)).
If we knew the perfect model parameters d and exact camera parameters pn for image n,

we would expect the relationship In(π(T (pn,ru,v(Sd(u,v))) = I0(u,v) to hold for all model

surface coordinates (u,v).
Thus, we assume that the correct camera position and the correct model parameters to-

gether minimize some difference measure c (e.g. least squares) on intensity values, which

can be formulated as

c(In(π(T (pn,ru,v(Sd(u,v)))))− I0(u,v)). (3)

As has been mentioned before, the optimization process necessary for determining camera

and model parameters is quite computationally intensive. Thus, we will not include all possi-

ble pixel (u,v) coordinates in the optimization process, but only the coordinates of m chosen

reference points. The corresponding objective function o(d,pn) can then be defined as

o(d,pn) =
m

∑
i=1

(c(In(π(T (pt ,rui,vi
(Sd(ui,vi)))− I0(ui,vi)))

2
(4)

Our problem of finding a warping function from the template image I0 to the current image In

could then be stated as the problem of minimizing the error function with respect to camera

and depth map parameters.

There are two minor issues that we should also address: Because quaternions are used to

represent the rotation of the camera frame, we need to constrain the corresponding parame-

ters qn to represent a unit quaternion, and thus, a unit vector. This can trivially be formulated

as a constraint h1(qn) = 0 with h1(qn) = |qn|
2−1. Furthermore, it is well-known that recon-

struction from monocular images can only be done up to scale. However, it is desireable then

at least to enforce a constant scale during the reconstruction process. This can be achieved

with the formulation of a constraint h2(dn) = 0 with h2(dn) = Sdn(u1,v1)− l for some con-

stant l.

Since through optimizing above function, we implicitly try to track point positions through

intensity values, our approach will have difficulties tracking points in areas with completely

homogeneous intensity. Thus, whereever possible, the reference points are chosen from the

ROI in such a way that they lie at pixel positions where the image derivative is non-zero.

6 RUEPP, BURSCHKA, BAUERNSCHMITT: MONOCULAR SURFACE RECOVERY

Furthermore, reference points should be distributed in the region of interest such that

the parameters determining the depth map are well constrained. For a B-Spline depth map

model, one will, e.g., need at least a number of reference points that is equal to the number

of control points used.

2.3 Optimization Method

It is clear that, to actually recover the model parameters from the scene, we need some

method to minimize the cost function described above. Since we are dealing with a con-

strained problem, an adequate method for optimization is Sequential Quadratic Programming

(SQP). For a more detailed description of the method, the reader is referred to [15].

The basic idea is as follows: Let f : Rk → R be the scalar function to be minimized, and

let h : Rk → R
l be a function that describes a constraint of the form h(x) = 0 on solutions. It

is well-known that for such problems, the so-called Karush-Kuhn-Tucker (KKT) conditions

must hold for any value x∗ that is a minimum. These conditions can be formulated in equation

form as:
(

∇L(x,λ)
h(x)

)

=

(

0

0

)

with L (x,λ) = f (x)+λ
T h(x). (5)

The term λ ∈R
l is the Lagrange multiplier associated with the minimum. This is, in general,

a nonlinear system of equations. The Lagrange-Newton-Method can be applied to these

equations, and we can compute an update ∆x to x and a new Lagrange multiplier λ+ by

solving the equation system

(

∇2
xxL (x,λ) ∇xh(x)
∇xh(x)T 0

)(

∆x

λ+

)

=−

(

∇x f (x)
h(x)

)

. (6)

Ultimately, we need to compute the Hessians ∇2
xxL as well as the transposed Jacobian

∇xh of h. Since f is, in our case, a quite complex composition of multi-dimensional func-

tions, it is not straightforward to compute the full precision Hessian. Instead, it is common

practice to use the Gauss-Newton approximation of the Hessian, as detailed below.

In our case, the objective function f is the composition c ◦ g of a scalar cost function c

with some multi-dimensional comparison function g. The cost function could, e.g., be the

least-squares cost g(x) = xT x, but since we also want our optimization to be robust against

outliers, we will use something more robust, like the Blake-Zisserman [2] cost function. In

any case, the Hessian approximation that we are going to use is:

∇2
xx(c◦g)(x)≈ (∇xg)(x) · (∇2

xxc)(f (x)) · (∇xg)T (x)

A technique introduced for the popular method of Levenberg-Marquardt optimization [10,

13] is addition of a damping term λ I to the Hessian. This allows the method to interpolate

between Gauss-Newton and gradient descent steps, and greatly enhances the robustness of

the method. This idea has been applied with success to the SQP method, e.g., in the work by

Gong et al. [7].

The Jacobians of f and h are computed using mainly Automatic Differentiation [8].

The only exception for this is the image function, which is interpolated and derivatives are

computed by hand. All of the involved matrices exhibit a high degree of sparsity. After

computation of the Jacobian is finished, the approximate Hessian can be evaluated and the

QP system is solved repeatedly using a sparse LDLT Cholesky transformation on the whole

RUEPP, BURSCHKA, BAUERNSCHMITT: MONOCULAR SURFACE RECOVERY 7

Figure 3: Left: Sample from artificial sequence, Right: Sample from real-world sequence.

system. Our SQP algorithm has been implemented using the efficient Eigen 1 linear algebra

library. As has been indicated above, we have used the Blake-Zisserman cost function in all

of our experiments.

2.4 Dealing with Large Displacements

After we had implemented the optimization process as described above, it was evaluated

on some image sequences. We found out that it works well on image sequences where

camera movement is sufficiently smooth and no large pixel displacements occur between

subsequent frames. However, problems occured when that was not the case. This was to

be expected, since the algorithm operates on intensity values and will have trouble aligning

with the correct values again if they are too far away.

The typical way to deal with this would be a pyramidal approach: One could start with

the optimization on a coarse scale, and then move up to finer scales. This idea could prob-

ably be incorporated into our optimization approach. However, the idea has also been used

by Lucas and Kanade [12] for their optical flow algorithm, which is well-established and

implementations of which are readily available.

Thus, instead of incorporating the pyramidal approach directly into our method, we for

now chose to implement a two-step technique: The first step when optimizing the model and

aligning it to a new image would be to compute the optical flow between the previous image

and the current image and perform optimization based solely on the 2D pixel coordinates of

the reference points. The point position estimates derived from the optical flow algorithm

shall in the following be denoted by (u′i,v
′
i). The objective function that we use for that opti-

mization is just a simplified version of the cost function for the intensity based optimization,

namely
m

∑
i=1

c′((u′i,v
′
i)−π(T (pn,rui,vi

(Sd(ui,vi))))) (7)

This is basically the original objective function, with the mapping from 2D coordinates to

image intensities removed and with a different cost function c′ instead of c. The cost func-

tion we used was the robust Pseudo-Huber cost function [9, p. 619]. The optimization is

1http://eigen.tuxfamily.org

http://eigen.tuxfamily.org

8 RUEPP, BURSCHKA, BAUERNSCHMITT: MONOCULAR SURFACE RECOVERY

performed only with respect to camera parameters, since outliers in optical flow are quite

common and tend to significantly disturb surface parameters in a full optimization step.

In the next step, we apply the original intensity based optimization process to realign

the points to the reference intensity values and further optimize the surface parameters. This

essentially prevents drifting away from the original point intensity values, which could easily

occur over time if only optical-flow based optimization was used.

3 Results

We have tested our algorithm on a set of artificial rendered image sequences, as well as on

sequences of real scenes. The artificial data set was useful for generating images with known

ground truth, while the sequences of real images have been used to show that the approach

also works in the “real world.” As depth map model, we have used B-Spline surfaces of

varying order and complexity.

Our first tests were on artificial images generated by a renderer. Here, we show results for

one of the used sequences. Figure 3 shows an example image from the sequence, showing a

surface with a very difficult to track texture. Because we wanted to get a rough idea of how

well traditional approaches would work on that sequence, we ran a SIFT feature detector on

some of the images. The feature detection process resulted in about 20 features, depending

on the actual image. Even when assuming that all features can be reliably identified through

the whole sequence, and that no false feature matchings occur, this is by far not enough to

fully describe the complexity of the actual surface. The surface is a quadratic spline surface

determined by 25 control points (5 in each direction).

Figure 4 shows a plot visualizing the reconstruction quality achieved by our algorithm

as compared to the ground truth of the artificial sequence. The left plot indicates the differ-

ence (measured by normalized cross correlation, since the reconstruction is only up to scale)

between the surface parameters determined by our algorithm and the ground truth used by

the renderer. The reconstruction can be seen to be pretty accurate, even though it is not

100% stable and temporarily diverges from a previously found accurate model. This can be

attributed to problems in determining the optical flow. However, as can also be seen from

the plot, the algorithm is able to recover after a small number of steps.

The right plot in Figure 4 shows a comparison of camera parameters to ground truth.

Camera rotation is compared based on the dot product between rotation axes. Note that the

dot product between rotation axes is equal to the cosine of the angle between the axes, thus

1 is the best value one can achieve here. We have also compared rotation angle magnitude

and camera translation direction, and results were almost equivalent, thus further plots are

omitted.

The artifical sequences have been used because it is really difficult in a real-world sce-

nario to determine the ground truth. Still, it is important to show that our approach also

works on actual data generated from a camera. Hence, we have tested our method an scene

that was showing a piece of cloth draped over a cup. You can see one image of the recorded

sequence in Figure 3. Figure 5 shows two views of the resulting 3D model.

Due to the piece of cloth being quite wrinkled, we were actually expecting more difficul-

ties in reconstructing the real-world scene. However, we have seen that a spline surface with

only 12×12 control points was already enough to model the scene.

As for running times: Our algorithm has been tried on a system with a 1.86 GHz dual

core CPU. Using only one of the two CPU cores, framerates of about 10 frames per second

RUEPP, BURSCHKA, BAUERNSCHMITT: MONOCULAR SURFACE RECOVERY 9

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300

N
C

C

Image number

Depth Parameters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

D
ot

 P
ro

du
ct

Image number

Rotation Axis

Figure 4: Left: Plot showing comparison between ground truth depth map parameters and

recovered depth map parameters. Right: Analogous comparison of camera parameters.

Figure 5: Reconstruction result from real-world scenario.

10 RUEPP, BURSCHKA, BAUERNSCHMITT: MONOCULAR SURFACE RECOVERY

were achieved. The performance is promising, and we expect it to be possible to further

improve performance, e.g., by utilizing GPU hardware.

4 Conclusion

The basis for further research has been established with our monocular model recovery and

validation algorithm. There are many possible extensions and improvements to this tech-

nique.

First of all, while the reference-point based reconstruction works surprisingly well, it

would probably constitute a major improvement if we were able to capture, in addition to

point intensity values, some characteristics of the surface texture surrounding a reference

point, thus introducing a patch-based correlation function. We would expect this to improve

the stability and convergence speed of the optimization method considerably.

Furthermore, we did not address the issue of changing illumination conditions. We would

like to be able to deal with changes in brightness, but also with specularities, which would,

in the current approach, both cause severe problems. However, some techniques for dealing

with problems of that kind have already been developed, e.g., normalized cross-correlation

matching for brightness-invariant matching. It should be possible to integrate them into our

method.

We would also like to extend the approach such that deformable surfaces can be recon-

structed and tracked. For tackling this problem, we intend to use a setup of two independently

moving cameras. Based on such an idea, we would like to introduce a method for determin-

ing deformation parameters, allowing us also to predict and simulate deformations. We see

applications for such a technique mainly in medical imaging.

References

[1] Adrien Bartoli, Mathieu Perriollat, and Sylvie Chambon. Generalized thin-plate spline

warps. Int. J. Comput. Vision, 88(1):85–110, 2010. ISSN 0920-5691. doi: http://dx.

doi.org/10.1007/s11263-009-0303-4.

[2] Andrew Blake and Andrew Zisserman. Visual Reconstruction. MIT Press, 1987. ISBN

0-262-02271-0.

[3] F. Brunet, A. Bartoli, N. Navab, and R. Malgouyres. Nurbs warps. In British Machine

Vision Conference (BMVC), London, September 2009.

[4] C. Engels, H. Stewénius, and D. Nistér. Bundle adjustment rules. In Photogrammetric

Computer Vision (PCV). ISPRS, September 2006.

[5] P. Fua. Using model-driven bundle-adjustment to model heads from raw video se-

quences. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International

Conference on, volume 1, pages 46–53 vol.1, 1999. doi: 10.1109/ICCV.1999.791196.

[6] Vincent Gay-Bellile, Adrien Bartoli, and Patrick Sayd. Direct estimation of nonrigid

registrations with image-based self-occlusion reasoning. IEEE Trans. Pattern Anal.

Mach. Intell., 32(1):87–104, 2010.

RUEPP, BURSCHKA, BAUERNSCHMITT: MONOCULAR SURFACE RECOVERY 11

[7] Rubin Gong and Gang Xu. Quadratic surface reconstruction from multiple views using

sqp. pages 197–217, 2004.

[8] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Tech-

niques of Algorithmic Differentiation. Number 105 in Other Titles in Applied Mathe-

matics. SIAM, Philadelphia, PA, 2nd edition, 2008. ISBN 978–0–898716–59–7.

[9] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-

bridge University Press, ISBN: 0521540518, second edition, 2004.

[10] K. Levenberg. A method for the solution of certain non-linear problems in least squares.

Quarterly Journal of Applied Mathmatics, II(2):164–168, 1944.

[11] David G. Lowe. Object recognition from local scale-invariant features. In ICCV, pages

1150–1157, 1999.

[12] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with

an application to stereo vision (darpa). In Proceedings of the 1981 DARPA Image

Understanding Workshop, pages 121–130, April 1981.

[13] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear param-

eters. SIAM Journal on Applied Mathematics, 11(2):431–441, 1963. doi: 10.1137/

0111030. URL http://link.aip.org/link/?SMM/11/431/1.

[14] Richard Newcombe and Andrew Davison. Live dense reconstruction with a single

moving camera. In 2010 IEEE Conference on Computer Vision and Pattern Recogni-

tion CVPR’10, 2010.

[15] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, August 2000.

ISBN 0387987932. URL http://www.worldcat.org/isbn/0387987932.

[16] Pekka Paalanen, Ville Kyrki, and Joni-Kristian Kamarainen. Towards Monocular

On-Line 3D Reconstruction. In Workshop on Vision in Action: Efficient strate-

gies for cognitive agents in complex environments, Marseille France, 2008. Markus

Vincze and Danica Kragic and Darius Burschka and Antonis Argyros. URL http:

//hal.inria.fr/inria-00325795/en/.

[17] Q. Pan, G. Reitmayr, and T. Drummond. ProFORMA: Probabilistic Feature-based

On-line Rapid Model Acquisition. In Proc. 20th British Machine Vision Conference

(BMVC), London, September 2009.

[18] D. Pizarro and A. Bartoli. Feature-based non-rigid surface detection with self-occlusion

reasoning. In Fifth International Symposium on 3D Data Processing, Visualization and

Transmission, May 2010.

[19] Nicholas A. Ramey, Jason J. Corso, William W. Lau, Darius Burschka, and Gregory D.

Hager. Real Time 3D Surface Tracking and Its Applications. In Proceedings of Work-

shop on Real-time 3D Sensors and Their Use (at CVPR 2004), 2004.

[20] Edward Rosten and Tom Drummond. Machine learning for high-speed corner de-

tection. In European Conference on Computer Vision, volume 1, pages 430–443,

May 2006. doi: 10.1007/11744023_34. URL http://mi.eng.cam.ac.uk/

~er258/work/rosten_2006_machine.pdf.

http://link.aip.org/link/?SMM/11/431/1
http://www.worldcat.org/isbn/0387987932
http://hal.inria.fr/inria-00325795/en/
http://hal.inria.fr/inria-00325795/en/
http://mi.eng.cam.ac.uk/~er258/work/rosten_2006_machine.pdf
http://mi.eng.cam.ac.uk/~er258/work/rosten_2006_machine.pdf

12 RUEPP, BURSCHKA, BAUERNSCHMITT: MONOCULAR SURFACE RECOVERY

[21] Ying Shan, Zicheng Liu, and Zhengyou Zhang. Model-based bundle adjustment with

application to face modeling. In Computer Vision, 2001. ICCV 2001. Proceedings.

Eighth IEEE International Conference on, volume 2, pages 644–651 vol.2, 2001. doi:

10.1109/ICCV.2001.937687.

[22] Jianbo Shi and Carlo Tomasi. Good features to track. In 1994 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’94), pages 593 – 600, 1994.

[23] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bun-

dle adjustment - a modern synthesis. In ICCV ’99: Proceedings of the International

Workshop on Vision Algorithms, pages 298–372, London, UK, 2000. Springer-Verlag.

ISBN 3-540-67973-1.

	Executive summary
	Description of Work
	Surprise Detection from Observation of Human Actions
	Manipulation-Relevant Object Representation
	Functionality Graph
	Performance of the Observation Approach

	Object Registration
	Model Preprocessing Phase
	Time Complexity

	Experimental Results for Scene Occlusions
	Deformable Registration

	Prediction and Verfication of Physical Object Properties

	List of Publications

