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Chapter 1

Executive Summary

Deliverable 23 describes third year work within work-package WP6 “Introspection and Prediction through
Simulation”. Previous Deliverables (D9 and D16) from WP6 were focused on the development of the sim-
ulation environment. The third one still accounts for newer developments, but also includes applications
of the simulator with predictive purposes. According to the Technical Annex, D23 presents activities
connected to Tasks 3.1, 3.2, 3.3. The objectives of these are defined as:

• [Task 6.1]: Implementation of the engine core architecture and the representation
standards. The architecture of the application and design details will be determined according to
the precise description of the needs of the present and future users. This definition will deliver a
specification of the internal data of the simulator, and the interfaces to the basic modules that will
use it.

• [Task 6.2]: Development of the basic modules. The different modules of the simulator will be
developed following the next sequence, though some of them can be developed simultaneously: Core
modules (internal data management, communication, etc), and basic visualisation; robot oriented
plug-ins: sensor simulation, advanced hand models, etc; object collision detection; static modelling
(friction, contacts); dynamic modelling.

• [Task 6.3]: Implementation of the reasoning/prediction engine. The simulator developed
in task 6.2 will be the base to make hypothesis and predictions about the world. This task will be
responsible of implementing an engine that performs such operations. It will keep the representation
and modelling of the objects involved in the interactions and will also produce predictions of the
sensor perceptions (tactile, force and visual) to be obtained when the tasks are executed by real
hardware. This engine is critical to the arousing of surprise since the difference between the predicted
perceptions and real outputs is the first level of it.

The work in this Deliverable is related to Milestone 8: “Implementation of hybrid controllers for on-line
adaptive primitive grounding; evaluation in the simulator and on experimental platforms.”

The progress in WP6 is presented briefly below, and in more detail in the appendix containing attached
scientific publications and reports.

• Attachment A describes the whole work carried on the development of the simulator, OpenGRASP,
and describes several applications of the toolkit on grasping applications.

• Attachment B presents the description of the soft contact model which has been included in the
distribution of OpenGRASP. It discusses a detailed implementation of it and describes how can
it be used in order to simulate a real tactile sensor. The performance of the simulated sensor is
validated and it is demonstrated how it can be integrated on the simulation of a complete robot
grasping system.

• Attachment C describes two setups in which the simulator and real robots are integrated in order to
complete a manipulation task. On these two setups robots capture partial views of objects, and a
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simulator module predicts the whole shape of them, and plan grasps hypothesis according to these
predictions. Hypothesis are evaluated, and the best one is chosen, and executed, on the real robot.

The work presented is remarkable in two aspects. First, it shows an integration of hardware,
simulator and several modules in a unique framework: object shape prediction, grasp hypothesis
generation, and collision-free path planning. Second, it describes a case of a complete implementa-
tion of the predict-act-perceive loop.
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A toolkit for robot grasping simulation. In SIMPAR ’10: Proceedings of the 2st International Con-
ference on Simulation, Modeling, and Programming for Autonomous Robots, Darmstatd, Germany.
November 2010. Best Paper Award.

B Sami Moisio, Beartiz León, Pasi Korkealaakso, and Antonio Morales. Model of Tactile Sensors Using
Soft Contacts and its Application in Robot Grasping Simulation. Submitted to IEEE Transactions
on Robotics, special issue on Robotic Sense of Touch.

C Jeannette Bohg, Matthew Johnson-Roberson, Beatriz León, Javier Felip, Xavi Gratal, Niklas
Bergström, Danica Kragic, and Antonio Morales. Mind the gap - robotic grasping under incomplete
observation. In Proceedings of the IEEE International Conference on Robotics and Automation,
Shangai, China, May 2011. To appear.

7



OpenGRASP: A Toolkit for Robot Grasping
Simulation

Beatriz León1, Stefan Ulbrich2, Rosen Diankov5, Gustavo Puche1, Markus
Przybylski2, Antonio Morales1, Tamim Asfour2, Sami Moisio3, Jeannette

Bohg4, James Kuffner5, and Rüdiger Dillmann2 ?

1 Universitat Jaume I, Robotic Intelligence Laboratory, Castellón, Spain,
{len,puche,morales}@icc.uji.es

2 Karlsruhe Institute of Technology, Institute for Anthropomatics, Karlsruhe,
Germany,

{ulbrich,przybyls,asfour,dillmann}@ira.uka.de
3 Lappeenranta University of Technology, Centre of Computational Engineering and

Integrated Design, Finland,
smoisio@lut.fi

4 Royal Institute of Technology, Computer Vision and Active Vision Laboratory,
Stockholm, Sweden,
bohg@csc.kth.se

5 Carnegie Mellon University, Institute for Robotics, USA,
{rdiankov,kuffner}@cs.cmu.edu

Abstract. Simulation is essential for different robotic research fields
such as mobile robotics, motion planning and grasp planning. For grasp-
ing in particular, there are no software simulation packages, which pro-
vide a holistic environment that can deal with the variety of aspects asso-
ciated with this problem. These aspects include development and testing
of new algorithms, modeling of the environments and robots, including
the modeling of actuators, sensors and contacts. In this paper, we present
a new simulation toolkit for grasping and dexterous manipulation called
OpenGRASP addressing those aspects in addition to extensibility, inter-
operability and public availability. OpenGRASP is based on a modular
architecture, that supports the creation and addition of new function-
ality and the integration of existing and widely-used technologies and
standards. In addition, a designated editor has been created for the gen-
eration and migration of such models. We demonstrate the current state
of OpenGRASP’s development and its application in a grasp evaluation
environment.

Keywords: software toolkit, grasping simulation, robot modeling

1 Introduction and Related Work

Robot simulators have accompanied robotics for a long time and have been an
essential tool for the design and programming of industrial robots. Almost all
? The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme under grant agreement n◦ 215821.
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industrial manipulator manufacturers offer simulation packages accompanying
their robotic products. These tools allow the users to program and test their
applications without using the real hardware or even building it since such tools
allow the analysis of behaviours and performance beforehand. In robotics re-
search, simulators have an important role in the development and demonstration
of algorithms and techniques in areas such as path planning, grasp planning, mo-
bile robot navigation, and others. There are several reasons for the use of robot
simulations. First, they allow exhaustive testing and tuning of mechanisms and
algorithms under varying environmental conditions. Second, they avoid the use,
or misuse, and wearing of complex and expensive robot systems. Finally, simu-
lation software is cheaper than real hardware.

Often, simulation tools used to support research are specifically developed
for particular experiments. However, there have been some successful attempts
to develop general robot simulators specifically for mobile robotics.

Stage and Gazebo are respectively 2D and 3D simulator back-ends for Player
[1, 4], which is a widely used free software robot interface. Gazebo [2] in particu-
lar, implements a 3D multi-robot simulator which includes dynamics for outdoor
environments. It implements several robot models, actuators and sensors. US-
ARSim [5] has a similar functionality. It is a free mobile robot simulator based
on a gaming engine. Microsoft provides its Robotics Studio [3], a framework for
robot programming that includes a visual simulation environment. OpenHRP [7]
is an open software platform with various modules for humanoid robot systems
such as a dynamics simulator, a view simulator, motion controllers and motion
planners. OpenHRP is integrated with CORBA, with each module, including
the dynamics simulator implemented as a CORBA server. Commercial options
include Webots [6], a product which has been widely successful in educational
settings.

The variety of simulation tools for robotic grasping is rather limited. The
most renowned and prominent one is GraspIt!, a grasping simulation environ-
ment [9]. GraspIt! includes models of several popular robot hands, implements
the dynamics of contacting bodies, includes a grasp planner for a Barrett hand
and has recently included a simple model of the human hand. However, GraspIt!
has several limitations. Its rather monolithic and less modular architecture makes
it difficult to improve, add functionality and integrate with other tools and frame-
works. In addition, it does not provide a convenient Application Programming
Interface (API), which allows script programming. Furthermore, it does not in-
clude sensor simulation.

Another existing and publicly available software framework is OpenRAVE,
the Open Robotics and Animation Virtual Environment [10]. It has been de-
signed as an open architecture targeting a simple integration of simulation, vi-
sualization, planning, scripting and control of robot systems. It has a modular
design, which allows its extension and further development by other users. Re-
garding robot grasping simulation, it provides similar functionality to GraspIt!
and various path planning components. It provides the models of several robot
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arms and hands and allows the integration of new ones. It also enables the de-
velopment of virtual controllers for such models.

In this paper we introduce a simulation toolkit specifically focused on robot
grasping and manipulation. The principal design issues have been extensibility,
interoperability and public availability (see Sec. 2). The core of the toolkit is an
improved version of OpenRAVE, which has been enhanced with a Robot Editor
and the adoption of the COLLADA file format [12] and Physics Abstraction
Layer (PAL) [11] to enable standardization and flexibility (see Sec. 3). Finally,
several applications which demonstrate the utility of the toolkit are presented
(see Sec. 4).

This work is the result of a team funded by the European Commission within
the project GRASP [21]. Within the project the toolkit is used as the main tool
for reasoning and prediction of object properties as well as task constraints of
manipulation and grasping activities executed by robots. Thus, it is a key tool
for constructing a world model and understanding the robot environment.

2 Requirements for a Grasp Simulator

From a scientific point of view, a novel simulator for robot grasping should
provide primarily a realistic simulation of dynamic properties of, at least, rigid
objects and advanced contact models including soft contacts and deformable
surfaces. From a practical and user point of view, it should include the models
of the most popular robot hands, and provide the possibility of easily creating
and adding new ones. Furthermore, it should provide realistic simulations of
real actuators and sensors, which would enable the use of the same API as in
their real counterparts. Regarding sensors, a grasping simulator has to provide
simulations of specific grasping sensors, such as force/torque, contact and tactile.
Finally, it should provide a rich and detailed visualization of simulations.

With respect to software engineering, a novel robot grasping simulator must
be implemented in a modular way that enables on the one hand, an easy ex-
tension by both developers and users and on the other hand, the integration
with commonly-used robotics software frameworks. In order to increase its op-
portunities of being adopted and used in the scientific community, the simulator
should be open source and make use of open standards for file formats and
other representations. In addition, the simulator should have appropriate tools
to import/export robot and object models to/from standard representations.

To our best knowledge, none of the existing simulation tools and software
packages fulfill all of these requirements. Therefore, we present a software toolkit
for grasping simulation OpenGRASP [8], which is built on top of OpenRAVE to
meet the requirements discussed above.

3 Toolkit Description

In order to develop a tool that meets the requirements listed in the previous
section, we adopted a basic practical principle: Do not reinvent the wheel. This
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means, first to review the existing software paying special attention to those that
already meet part of the requirements and second to make use of existing open
and widely-available software packages and standards.

After a wide review of existing simulators, physics engines, 3D render en-
gines, and CAD 3D modelers, we concluded that OpenRAVE is the tool that
most closely meets our requirements. So our efforts have focus on improving and
extending OpenRAVE capabilities and features towards the realization of an ad-
vanced grasping simulator. In addition, we developed a robot editor allowing to
create and modify new robot models. In the following sections we describe these
extensions in more detail.

3.1 OpenRAVE Architecture

OpenRAVE is a planning architecture developed at the Carnegie Mellon Uni-
versity Robotics Institute. It is designed for autonomous robot applications and
consists of three layers: a core, a plugins layer for interfacing to other libraries,
and scripting interfaces for easier access to functions (see Fig.1).

Fig. 1. OpenRAVE Architecture (Picture reproduced from [22])

The Scripting Layer enables network scripting environments like Octave,
Matlab and Python to communicate with the core layer in order to control
the robot and the environment. It is possible to send commands to change any
aspect of the environment, read any of its information, move real robots, or
change physics/collision libraries. The scripts also enable the control of multi-
ple OpenRAVE instances across the network, thus allowing different users to
independently see and interact with the environment.

OpenRAVE is designed as a plugin-based architecture, which allows the cre-
ation of new components to continuously improve its original specifications. Each
plugin is an implementation of a standard interface that can be loaded dynam-
ically without the need to recompile the core. Following this design, different
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plugins can be created for components such as sensors, planners, controllers or
physics engines. The core layer communicates with the hardware through the
plugins using more appropriate robotics packages such as Player and the Robot
Operating System (ROS) [30].

A GUI can be optionally attached to provide a 3D visualization of the envi-
ronment. It periodically queries the core to update the world’s view and allows
the user to change the position of the objects in the scene. As viewers are pro-
vided through plugins, a single OpenRAVE instance can allow multiple viewers
to communicate with multiple copies of the environment. A more detailed de-
scription of the OpenRAVE architecture can be found in [10, 22].

Although many plugins are already implemented to provide basic functional-
ity, the current grasp simulation functionality has several shortcomings. In order
to make OpenRAVE suitable for our purposes, we require:

– Implementation of plugins for specific sensors used to improve the grasping
capabilities of the robot.

– Implementation of more physics engines and collision checkers that help to
compare and improve simulation performance.

– Implementation of a standard plugin interface for a basic actuator and im-
plementations of different motors. This would allow us to accurately simulate
the robot’s arm and hand articulations.

We have taken these considerations into account in our toolkit design. We
have developed two new sensor plugins to be used mainly for anthropomorphic
robot hands. One is a tactile sensor, commonly used in finger tips such as in the
Barrett hand, which detects and calculates the forces on the predefined sensory
area and returns them as an array. The other is a force sensor, placed for example
in the wrist, to measure the forces applied while grasping.

Additionally, as models for actuators were not included in OpenRAVE, we
have developed a new plugin interface called ActuatorBase. Using this interface,
we implemented a new plugin to simulate the motor of the arm and hands joints
which can be controlled using angles, velocities or voltages.

We have created a model of the Schunk PG70 parallel jaw gripper using the
tactile sensor plugin to simulate the Weiss Robotics sensor (DSA 9205) attached
to each finger. We have also provided the Gripper Sensor plugin which returns
the distance between fingers, their current and velocity. Finally, a model of the
gripper actuator was also included which can control the velocity of the fingers
and the maximum current applied.

In order to use different physics engines, we have implemented a plugin which
makes use of the physics abstraction layer (PAL), which is addressed in more
detail in the following section.

Visualisation is an important part of the simulation. At the moment Open-
RAVE uses Coin3D/Qt to render the environment, but we are extending it to
communicate with Blender given that our RobotEditor (see Section 3.4) is de-
veloped on top of it. Because both Blender and OpenRAVE provide a Python
API, it is possible to use Blender as a front-end for not just visualization, but
also for calling planners, controlling robots, and editing robot geometry.
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3.2 Physics Simulation

Nowadays, there exist many available physics engines, both commercial and
open-source. Some of them are high-precision engines that require higher com-
putational power while others sacrifice this accuracy to work in real time. The
methods they use to simulate physics are also different. Some of them use penalty
methods, some rely on physical laws using constraint equations, and others use
methods based on impulses.

None of these engines are perfect, they all have advantages and disadvantages
which makes it very difficult to decide which one to use for a simulator. It basi-
cally depends on what we want to simulate in addition to what the application
of the simulator will be.

The Physics Abstraction Layer (PAL) [11] is a software package created by
Adrian Boing that saves us from having to decide at the start what physics
engine to use. This layer provides an interface to a number of different physics
engines allowing us to dynamically switch between them. This functionality adds
incredible flexibility to our simulator offering us the possibility to, depending on
our specific environment and use, decide which engine would provide us the best
performance [14]. Using their interface, it is also possible test and compare our
own engines with existing ones.

The OpenRAVE Physics Engine interface allows the simulator to run using
different engines. It also has an interface to implement different collision checkers.
Each one of them has to be created as a plugin, extending either the Physic-
sEngineBase or the CollisionCheckerBase class. The basic version of OpenRAVE
only offers the ODE (Open Dynamics Engine) implementation within the oder-
ave plugin. We have created a new plugin to use PAL, called palrave. This plugin
is able to initialize PAL with the specific engine we want to use, without the need
of creating different plugins for each one of them.

3.3 COLLADA File Format for Robot Models

For the storage of models of robot manipulators and hands, we were looking
for an open, extensible and already widely accepted file format that supports
the definition of at least kinematics and dynamics. This is necessary in order to
enable the exchange of robot models between supporting applications, leading to
greater flexibility in the selection of appropriate tools. Another important aspect
was the ability to convert to and from other formats. Among the large variety
of file formats for 3D models, there are only a few that are both public domain
and not limited to storing only geometric information. Typically, a simulator
environment does not only rely on geometric structures but also, for instance,
on information about dynamics, kinematics, sensors and actuators of the robot.

Its acceptance as an industry standard and its wide distribution (3D Studio,
Blender, OSG, OGRE, Sony, etc.), in addition to a clear and extensible design,
led to the choice of COLLADA [12] as the preferred file format for the simulator.
In addition, there are open source frameworks available that facilitate integration
into new applications.
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Since version 1.5, the standard contains many useful constructs dedicated
to describing kinematic chains and dynamics that can be used directly for the
description of robot models. COLLADA is an XML-based file format that enables
and encourages developers to extend the specification to their needs without
having to violate the underlying schema definition.

In order to support specific robot features like sensors and actuators, we
have used this mechanism to extend COLLADA partially using the original
OpenRAVE file definition. These additions are specific to the simulator and are
hidden to all other applications so that compatibility remains guaranteed. So
far, basic support for COLLADA import and export has been included in the
simulator.

3.4 Robot Editor

With the creation of a simulator for grasping the need also arises for a large
data base of geometrical, kinematic and dynamic models of robot arms and
manipulators. To fill this gap, the development of a modeling tool, the Robot
Editor, has been started. Its main goal is to facilitate modeling and integration
of many popular robots. The development is driven by the following key aspects:

– Geometric modeling: The creation of new robots models requires a tool
that excels in modeling of the geometric components (i.e., meshes).

– Semantic modeling: Even more important is the ability to allow the de-
scription of semantic properties, such as definitions of kinematic chains, sen-
sors and actuators, or even specify algorithms.

– Dynamics modeling: Another necessary aspect is the ability to define
physical attributes of the robot’s elements. At the moment, the focus lies on
the dynamics of rigid bodies.

– Conversion: Robot models usually come in a variety of different file for-
mats. The modeling tool needs to be capable of processing these formats and
converting them into the COLLADA standard. GraspIt! files in particular,
being an already widely-used standard with many conform models available,
should be readily usable by the simulator.

To our knowledge, there is no existing solution openly available that could meet
all these requirements. Therefore, we decided to develop a new modeling tool
based on available open source software. The conceptual design of the Robot
Editor hence relies on two techniques: on the one hand the open data format
COLLADA and on the other hand on the open source project Blender [15].
Blender is a very versatile, powerful and extensible 3D editor that has been
chosen because of its convenient 3D modeling capabilities and the built-in sup-
port for many CAD file formats and rigid body kinematics. Furthermore, it can
be easily extended via a Python scripting interface and offers high-quality ray
tracing.

Blender itself, however, lacks the functionality and the appropriate inter-
face for the convenient definition of robot components. In addition, conversions
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between certain file formats need to be improved or implemented, namely the
import of the COLLADA format and GraspIt! robot models.

The scripting interface mechanism mentioned above allowed us to build the
modeling tool on top of Blender. On the scripting level, one gains access to all
relevant data structures. The robot model can be augmented by the required
data structures and conserved within the native file format. The scripting mech-
anism also allows the creation of user-interface that is highly specialized for use
in robotics (see Fig. 2(a)). For instance, you can define kinematics via Denavit-
Hartenberg parameters. In the long run, the Robot Editor will provide interfaces
for essential robotics algorithms, such as the computation of dynamics charac-
teristics from the geometric meshes and conversions between kinematics repre-
sentations. Adjacency information of joints and the impact of joint movements
to the robot are additional computational information which, in the future, will
be useful for developers’ planning algorithms.

In the current Blender version (2.49), COLLADA support [17] is limited to
documents in the older specification 1.4 which excludes the newly introduced
kinematics and dynamics. The additional data required by the simulator also
needs to be included in the resulting document. This led to the further develop-
ment of COLLADA compatibility which now enables the Robot Editor to create
valid documents suitable for simulation. Fig.2(a) shows a functional model of
the Karlsruhe anthropomorphic hand [16] modified using the Robot Editor and
Fig.2(b) the resulting COLLADA file loaded into the simulator .

(a) (b)

Fig. 2. Modeling the Karlsruhe anthropomorphic robot hand. a) The user interface of
the Robot Editor and b) Screenshot of the complete model in the simulator.

Robot Models As stated in Section 2, it is of great importance to have models
of the most popular robot hands included in the toolkit. The modeling capabil-
ities of the Robot Editor already enable quick and easy creation of new models.
So far, a selection of robot hands has been transformed into COLLADA 1.5 for
use within the simulator (see Fig. 3). In addition to these new models, there are
various models available in the older XML file format which is still supported.
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(a) (b) (c) (d)

(e) (f)

Fig. 3. Different robot models generated with the Robot Editor (ray-traced images).
(a) A myoelectric upper extremity prostheses of Otto Bock, the Schunk (b)SAH and
(c)SDH hands, (d) the Shadow hand, (e) the Barrett hand and the Kuka KR5 sixx
R850 arm, and (f) the humanoid robot ARMAR-III.

4 Applications

4.1 Planning and Grasping

Using the functions provided by OpenRAVE, we can easily build a set of stable
grasps and quickly get our robots to manipulate various objects in their envi-
ronment. Figure 4 shows the grasp simulation process by analyzing the contact
points between the robot and the target object. Recently Przybylski et al. [26]
used OpenGRASP to develop a new grasp planning method based on the Medial
Axis of objects to reduce the search space of candidate grasps. The algorithm
exploits structural and symmetry information contained in the Medial Axis in
order to reduce the search space for promising candidate grasps.

In order to get the robot to autonomously manipulate objects in the en-
vironment, we would need an inverse kinematics solver that can quickly map
grasp locations into robot configuration joints. Recently, OpenRAVE started
providing an analytical inverse kinematics equation solver called ikfast. With
it we can generate C++ code that can return all possible IK solutions while
simultaneously handling degenerate cases. By combining the automatically gen-
erated grasp sets, inverse kinematics solvers and planners, robots developed in
our RobotEditor can manipulate everyday objects.

Grasping Known Objects Using the planning and grasping capabilities of
the simulator, we have successfully grasped known objects in the real world with
the robotic platform consisting of the Karlsruhe Humanoid Head (see [27, 28])
and a Kuka KR5 sixx R850 arm equipped with a Schunk Dextrous hand 2.0.
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Fig. 4. Grasping simulated for several robot hands.

A complete description of known objects is provided by the KIT object model
database [29]. The object description consists of geometry described by a mesh
and physical properties like mass. Using the grasp simulation process, different
grasp hypotheses are tried out off-line. Only those that result on force closure
are then saved to a data base. Using an active vision system [23] in combination
with rigid point set registration [24], the robot can explore the current scene and
recognize where and in which pose these known objects are (see an example in
Fig. 5). This information is sent to OpenGRASP which reproduces the state of
the environment. Using the planning plugins, the selected force closure grasps are
executed. The ones that collide with the environment or that are not reachable
given the current configuration of the robot are discarded.

a. b. c.

Fig. 5. Grasping a known object: a) real object, b) mesh geometry and c) example of
a scene visualization after its recognition

Grasping Unknown Objects We have also used OpenGRASP to manipu-
late unknown objects with the above mentioned robotic platform. This task is
more complex since no information about the objects is available. Thus, the
grasp simulation process cannot be executed off-line. The robot uses the above
mentioned active vision system [23] to explore the scene and segment unknown
objects. From the reconstructed stereo point cloud, a mesh is created as an ap-
proximation of the object’s geometry. This mesh and its location are sent to
the simulator which uses an available library for decomposing it into a reduced
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number of convex hulls to simplify its collision detection. Given this mesh, there
is an unlimited number of grasp configurations that can be applied to the object
and tested for force closure. For reducing the search space and thereby online
processing time, we apply a grasp point detection method [25] to the segmented
object. The simulator then tries only grasp configurations with the fingers of the
robotic hand being aligned with the grasp points. Those that are in force clo-
sure are saved in a database before being executed with the planner to check for
collisions and reachability. An example of the successful grasping of an unknown
object is shown in Fig. 6.

Fig. 6. A successful grasp of an unknown object with the Kuka KR5 R850 arm and a
Barret hand.

5 Conclusion and Future Work

In this paper we have presented a fully operational simulation toolkit for robot
grasping and manipulation. Its main design principles are extensibility, interop-
erability and public availability. In its development we have used existing and
widely-available components to ensure its standardization and easy adoption.
We have also emphasised providing additional tools and features that provide
users with a fast start to enhance utility through features such as the robot
editor based on Blender, COLLADA file format, a Physics Abstraction Library,
and models of existing robot hands. The utility of OpenGRASP is demonstrated
through a series of applications cases.

In future, we are looking to improve the toolkit in three directions. First a
novel contact modelling for soft contacts and body deformation is being imple-
mented and validated. It will be included as a library to allow the modelling of
complex contact interactions. Second, OpenGRASP is being extended to offer
full support for ROS thus offering a common control interface for simulated and
real robots. Finally, several interfaces are being created in order to offer the user
several options to visualize and record the simulated systems.
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Model of Tactile Sensors Using Soft Contacts and
its Application in Robot Grasping Simulation

Sami Moisio, Beatriz León, Member, IEEE, Pasi Korkealaakso and Antonio Morales, Member, IEEE

Abstract—In the context of robot grasping and manipulation,
realistic simulation requires an accurate modeling of contacts
between bodies and, in a practical level, an accurate simulation
of touch sensors. This paper addresses the problem of simulat-
ing a tactile sensor considering soft contacts and full friction
description. Firstly, a complete theoretical model of contact is
developed. It is based on a penalty (soft-contact) approach. It
consists of a surface contact patch described by a mesh of contact
elements. For each element, a full friction description is built
considering stick-slip phenomena. On a further stage, the model
is implemented and used to build a realistic simulation of a
real tactile sensor. The performance of the simulated sensor is
validated. It is also demonstrated how it can be integrated on
the simulation of a complete robot grasping system.

Index Terms—Force and Tactile Sensing, Contact Modelling,
Grasping, Animation and Simulation.

I. INTRODUCTION

ROBOTIC manipulators have been used extensively for
many years in both research and commercial applica-

tions. These applications vary from usual industrial operations
such as assembly, drilling and welding in the car manufactur-
ing process, to more sophisticated tasks such as performing
surgery, repairing a space station and assisting with house
cleaning tasks.

Over the years, the change from structured scenarios to real
environments has made the development of different sensors a
priority to enable robots to cope with significant uncertainties.

Touch, combined with vision, are the main senses that
allow humans to perform dexterous manipulation. For this
reason, sensors that can retrieve tactile information have been
developed in order to equip robot hands with such a sense (see
[1], [2] for a review).

Tactile sensors can measure different properties of the
objects they make contact with. They can be mechanical prop-
erties including pressure, normal and shear forces, torques,
slip and vibrations, or other properties like temperature or
moisture. In this study the mechanical properties of the sensor
are covered.

The performance of the real tactile sensors developed until
now is far from human sensing. Nevertheless, they have been
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used in robot manipulation in the last few years for different
purposes including reactive robot control, collision detection
and object recognition.

In reactive control, the robot has to cope with the inaccuracy
of the vision systems when working in unstructured environ-
ments. In such cases, the robot should be able to archive a
grasp, even if the pose of the object is not perfectly known,
using tactile information [3]. Usually a tactile sensor placed
on the robot’s palm will report when a contact occurs while
approaching the object. This contact point is assumed to be
the position of the object and then used to recenter the object
inside the hand [4]. Combining tactile information with vision
and force feedback enables more complex manipulation tasks
such as door handle grasping, door opening or grasping books
from a bookshelf [5], [6]. Recent studies have also shown how
tactile-sensing-based algorithms can be employed to detect and
react to contacts encountered during the execution of a grasp
[7] as well as how tactile sensor information can be used to
infer knowledge about grasp stability [8].

In the field of object recognition, tactile sensors are used
to explore the 3D shape of unknown objects and use their
feedback to create or improve the object’s model. Some prop-
erties of the object can be derived from the contact information
such as stiffness, texture or friction coefficient [9]. The tactile
information can enable a robot to identify objects from its
observations [10], [11]. Using the tactile sensor matrix, a small
imprint of the object can be taken and used to recognize
surface features [12].

These various applications of tactile sensors show the
importance of their use in robot manipulation. In this area,
simulation is a major tool used to support research, adding
both flexibility and reproducibility to the experiments. Having
a tactile sensor model that replicates the behaviour of the real
sensor will be of great benefit to the robotics community.

Robot simulation has great advantages over using real hard-
ware. Changing or repeating a configuration with the real robot
can be very time consuming but in simulation these situations
are easily and efficiently solved, by changing the simulation
parameters. In addition, the simulation model is not limited to
existing hardware thus allowing easy changes like the sensors
type or position. Another advantage of using a simulator is
the availability of different information. The real hardware
always requires an actual sensor but the simulator has all
the information related to the virtual world available. This
availability of information enables the construction of virtual
sensors such as querying the distance to the nearest object from
the manipulator’s end effector. These virtual sensors offer great
possibilities for research in grasping without being restricted
by existing hardware. They might even offer new ideas for
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constructing new types of hardware sensors.
Some simulation environments such as GraspIt! [13], [14]

have been developed for the purposes of robot manipulation.
However, in the most of the cases, robotic grasping simulations
are solved using kinematics instead of dynamics. The problem
is that the use of soft contacts in kinematic systems is a
difficult task. This is due to the fact that they do not include
any degree of freedom as the motion is carried out using forced
motions and there is no need to solve contact or actuator
forces. In addition, the use of kinematics usually results in
incorrect object mass and inertial data being used in the
simulations making the results incomparable to the real case.
For this reason, it is preferred to use the dynamics simulation
approach in the case of soft contacts where the contact forces
can gradually take place over several time-steps. On the other
hand, when the soft contacts are compared to non-penetrating
contacts the collision detection results in major assumptions
in terms of contact area as it does not exist any penetration
between objects.

This study presents the development of a simulated tactile
sensor element with the same physical properties as a real
tactile sensor would have: compressibility, friction, etc. In
order to create a model of the sensor dynamics three different
areas were addressed: tactile sensor construction, modeling
soft contacts and friction modeling. All these areas were
combined to make a physical model of a tactile sensor. The
sensor element type itself is universal and can be used to model
any kind of tactile sensor. A model was created that enables the
calculation of surface pressure as well as the holding torque
around the contact surface and the stick-slip phenomenon.

In order to test the proposed model, different experiments
were conducted. First, the basic physical properties of the
simulated tactile sensor were validated. Then, experiments on
robot grasping were carried out by a robot hand grasping
an object and by the corresponding model on the simulator
performing the same actions. Furthermore, an experiment
demonstrating how the simulated tactile sensor could be used
in object recognition was also carried out.

The paper is organized as follows. The previous work on
contact models and grasping in simulation is reviewed in
Section II. The model proposed in this paper is detailed on
Section III. An implementation of the theoretical model has
been developed for an open-source simulator and is presented
in Section IV. In Section V, experiments on robot grasping
are presented, followed by an analysis of their results. Section
VI concludes the paper with a summary, a discussion of the
experiment’s results and proposed future work.

II. PREVIOUS WORK

This section first presents a review of the contact models
used in simulation, explaining their advantages and disadvan-
tages followed by the relevant work on simulation of robot
grasping.

A. Contact Models

Contact models can be divided into three different cate-
gories: analytical, impulse and penalty methods. Rigid body

assumption for collisions is used in the analytical [15] and in
the impulse methods [16], [17] while continuous contact mod-
els are used in the penalty methods [18]–[20]. In this context
rigid body assumption means non-penetrative or colliding con-
tact in which the exact impact moment is solved after which
the surfaces are prevented from penetrating each other. In the
impulse based approach contact between bodies is considered
as a collision at a specific point in time and without needing
to solve the contact forces, instead the change in the objects’
velocities is applied directly to the bodies over one time-step.
The method is fast and easy to implement but a problem
arises with steady contacts in static configurations. Analytical
methods are based on the use of constraints to handle contacts.
In contrast to impulse-based methods, these methods are stable
in steady contacts, however, due to simultaneous solving of
all contacts, they are also computationally expensive. Penalty
methods are called penetrative or soft contacts (also non-
colliding contacts) because they allow for small penetrations in
the colliding objects. Consequently, contact forces are obtained
using temporal nonlinear springdamper elements at the contact
point. Based on the elasticity of the bodies in contact, the
parameters of the spring-damper element can be defined using
the Herzian contact theory [21].

Analytical and impulse methods give accurate descriptions
for contacts and are often used when no interpenetrations
are allowed between the contacting bodies. These methods
also allow longer time-steps compared to penalty methods
with stiff springs. However these methods lead to complicated
equations especially in the case of multiple contact points and
contacts with friction. Furthermore, in the case of mechatronic
machines such as robots, the machine dynamics require the use
of small time steps making penalty methods more suitable,
especially for real time applications. It is also important to
note that rigid body assumptions do not take into account
small deformations during collisions, instead there occur in-
stantaneous changes in velocities. For this reason, continuous
contact models give more accurate descriptions of contact
forces during the contact period.

Conventional penalty methods use only the deepest contact
point for contact forces. In [22], a geometry-based approach
is used in order to find exact contact areas of the polygons
applying contact forces to multiple points. However, in most
cases the algorithm is not efficient enough for real time
simulation and it is highly dependent on the body geometry
construction. One of the advantages in using penalty methods
is the straightforward applicability for solving surface pres-
sures from contacts due to the fact that the objects are allowed
to form a real contact surface. In non-penetrative contacts
the surface has to be formed using guesses or assumptions
since the objects are not allowed to penetrate and form a real
contact surface. This in turn complicates various calculations
such as holding torque around the contact area. For this reason
a penalty method was chosen to be used in the sensor model
developed in this paper.

B. Grasping in Simulation
Grasping in robotics using simulated tactile sensors is a

new field of research. Some research has been done but the
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developed methods are derived from existing non-penetrating
contact models such as in [23]. In general, robot grasping
simulations have traditionally been using kinematics instead
of dynamics. This could be due to the fact that the simula-
tions community has not cooperated extensively enough with
the robotic grasping community or to the simple fact that
simulated grasping is a very challenging problem. The most
common simulation method for robot grasping has been the
impulse method (GraspIt! [14], ODE [24], Bullet [25], etc.).
The impulse method is a very effective method for simulating
structures that form open kinematic chains which robotic
manipulators usually are. The drawback of using impulse
methods for solving the constraints between the bodies is
that the accuracy of the joint constraints is dependent on the
mass ratio of the two objects. This means that if the robotic
manipulator has very light grippers attached to a heavy wrist
the joints connecting the bodies can suffer from instability.
This in turn increases the difficulty of modeling grasping.
This mass ratio dependency is also a problem when grasping
different objects using the impulse methods [16], [17]. The
problem occurs when a very light (Barrett hand fingertip is
approximately 50 g) object tries to collide with a very heavy
object (3 kg payload). Using a penalty method this mass
dependency can be avoided in the collisions but the solution
becomes sensitive to variables such as the time-step due to the
stiffness of the system.

III. TACTILE SENSOR MODEL

The purpose of this work was to make a simulation model
of a real tactile sensor, not just by emulating the function but
by modeling the actual physical properties starting from the
formation of an actual contact patch to including a full friction
description.

The chosen method consists of using a contact patch with
several contact elements in order to form the tactile sensor.
Single tactile elements are used in order to determine collisions
against other objects and to calculate the resulting collision
forces. This provides an accurate and fast solution for solving
the collision equations. Currently the number of contact points
is equal to the number of tactile elements in the tactile sensor
but in the future a single tactile element can be modified to
include several contact elements in order to further increase
the resolution of the sensor.

The contact forces are calculated on each contact point and
are used by the simuator to grasp the object and for the tactile
sensor feedback.

The tactile sensors produced by Weiss Robotics [26], specif-
ically the DSA 9205 model, were used as the base line to
validate our model. Before continuing, the working principle
and limitations of these sensors are presented.

A. Weiss Tactile Sensors

Each sensor consists of 84 discrete sensor cells (texels)
forming a homogeneous matrix of 6 x 14, which is able to
detect an applied load profile. In order to do that, a resistive
working principle detailed in [27] is used, which places a
common electrode and sensing electrodes covered with an

elastic rubber foam on each cell. The electrical resistance
is measured as a function of the contact area between the
electrode and the foam. When a force is applied to the cell,
a deformation of the foam occurs, the contact area rises, thus
lowering the electrical resistance of the material. This change
in resistance is interpreted as an increasing load which is
quantified and returned as an image of the applied pressure
profile [28], [29].

These sensors are widely used by the robotics community
because they were specifically developed to be used on robot
hands. However, there are some known problems with their
measurements [10], [30] that have made the validation of
our tactile model a difficult task. The problems include the
following:

• The sensors show significant hysteresis, even when texels
are not loaded to their maximum value.

• Due to the layer of rubber foam, a considerable low-
pass characteristic of the spatial impulse response can be
observed.

• When exactly the same force is applied to two sensors,
the texel values and their sum differ remarkably.

• Calibration of the sensor is difficult due to its working
principle and initial values should be taking into account.

The values given out by these sensors are not actual forces
or pressures. Instead they are called intensities. The simulated
tactile sensor knows the exact forces in each sensor element
which then have to be converted to tactile intensities. This
is done using a linear conversion, based on a preliminary
measurement on a real tactile sensor, by knowing that a certain
load produces a certain tactile value sum. These conversions
turn out to be very difficult to model due to the major
differences in the tactile value sums between individual tactile
sensors.

This also complicates the simulation model by adding a
conversion to the model.

Knowing the limitations of the real tactile sensor helped us
to create the simulated sensor model and to understand the
results of the experiments presented in Section V which will
illustrate the above problems.

In the following sections a detailed description of the tactile
sensor model is presented.

B. Geometry-based tactile

The simulated tactile sensor element can be formed based
on a triangularized geometry. This was done so that differently
shaped sensor elements could be easily defined. For example
a finger tip with a tactile sensor is not flat and it would
therefore be difficult to describe it in order to form the tactile
sensor array to encompass the finger tip. Using our model, the
geometry of the simulated tactile sensor can be formed directly
based on the finger tip geometry. In Fig. 1 two different
variations of a tactile pad element array are presented: a simple
grid (1a) and a spherical surface (1b). The arrows represent
the normal directions of the different triangles.

The array of the simulated tactile sensor elements is con-
structed using the vertices from the sensor geometry. In the
case of a tactile sensor array with 6 rows and 8 columns, one
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(a)

(b)

Fig. 1. Example of tactile sensor geometries: (a) a simple grid and (b) a
spherical surface.

would draw a 5x7 grid having 6x8 vertices to represent the
centers of the simulated tactile elements (see Fig. 2).

(a) (b) (c)

Fig. 2. Example of a simulated tactile sensor construction: (a) real tactile
sensor, (b) geometry of the sensor and (c) simulated tactile sensor elements

For each vertex, the sum of all normals of the triangles
connected to it is calculated and used as a normal direction
to the sensor element. The sensor element’s maximum pen-
etration needs to be defined in the sensor parameters. It is
used to place the beginning of a vector pointing in the normal
direction to the vertex. This vector in turn is used to calculate
the intersection against all possible targets which creates a
contact point. The forces calculated at this point are explained
in the following section.

C. Contact Force Model

When a collision between the sensor element and an object
occurs, the contact information (position, relative velocity,
penetration, etc.) is used to calculate the force in a single
tactile element.

Fig. 3. Contact between bodies i and j.

The kinematics of the contact points between two bodies
i and j can be described using knowledge of the geometries
and states of the bodies (see Fig. 3).

The distance between contact points Pi and Pj can be
written as follows:

s = rPj − rPi (1)

where rPi and rPj are the position vectors of each contact
point in the global reference frame. If Ri and Rj are defined
as the center position vector of each body, the distance can be
written as:

s = Rj +Aj ūPj −Ri −AiūPi (2)

where Ai and Aj are rotation matrices from the body
reference frame to the global reference frame and ūPi and
ūPj are the position vectors of the contact points within the
body reference frames.

The relative velocity between the contact points can be
calculated by:

ṡ = Ṙj + ω̃jAj ūPj − Ṙi − ω̃iAiūPi (3)

where Ṙi and Ṙj are the velocity vectors of bodies i and
j, and ω̃i and ω̃j are skew-symmetric matrices of the angular
velocities.

By defining a contact plane between the bodies as the
tangential plane to the normal of the bodies, the distance in
the normal direction can be written as:

d = sTnPij (4)

where sT is the transpose vector of s and nPij is the normal
vector of the contact plane. Accordingly, the velocity in the
direction of the normal of the contact plane can be written as:

ḋ = ṡTnPij (5)

The relative velocity in the tangential direction of the
contact plane can be obtained as follows:

ṡt = ṡ− ḋnPij (6)
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Contact forces are described using the soft contact approach
which allows small penetration between contacting bodies
taking into account local deformations.

On each contact point, the contact force (FC) can be written
as:

FC = Fn + Ft (7)

where Fn is the normal force produced by the soft contact
and Ft is the tangential force represented by friction.

In its simplest form, the contact force in the normal direction
of the plane (Fn) can be written as a linear spring-damper
element:

Fn = −(kd+ cḋ)nPij = fnn
Pij (8)

where k and c are spring and damping coefficients, respec-
tively, and fn is the magnitude of the normal force component.

The tangential friction forces can be evaluated using the
LuGre friction model [31] which accounts for both static and
sliding phenomena based on a bristle deflection interpretation.
Accordingly, the LuGre model captures the dynamic behavior
of the contact surface using the first order differential equation
for bristle deflections, which can be written in vector form as
follows:

ż = ṡt − σ0
| ṡt |
g(ṡt)

z (9)

where z is bristle deflection and σ0 is the stiffness co-
efficient of the contacting surfaces. In (9), g(ṡt) is used to
capture the Stribeck effect [32] in order to describe stick-slip
phenomena, and can be calculated as follows:

g(ṡt) = α0 + α
−(

ṡT
t

ṡt

ẋ2
0

)

1 (10)

where x0 is the Stribeck velocity and the parameters α0 and
α1 are defined as follows:

α0 = Fnµd (11)
α1 = Fn(µs − µd) (12)

where Fn is contact force in the direction of the normal of
the contact surface, and µs and µd are the static and dynamic
friction coefficients, respectively. Using state variables of
friction and adding a viscous term, the friction force can be
written as follows:

Ft = σ0z + σ1ż + cṡt (13)

where σ1 is the friction damping coefficient. For bodies i
and j, the resulting contact force can be applied as follows:

F i
C = FC (14)

F j
C = −FC (15)

Accordingly, the resulting torque of contact can be written
as follows:

T i
FC

= ÃiūPiF i
C (16)

T j
FC

= Ãj ūPjF j
C (17)

where ÃiūPi and Ãj ūPj are skew-symmetric matrices.
Having these equations, the forces and torques can be

calculated on each contact point. These forces are applied to
the body where the tactile sensor is attached as well as to the
body that the tactile sensor is colliding with. They are also
used to retrieve sensor feedback information.

In summary, these are the steps needed to construct the
simulated tactile sensor and to calculate the contact forces:

• Create a mesh representing the real sensor geometry. 2b).
• Create the simulated sensor elements by placing a vertex

on the center of each of the mesh polygons.
• Parametrize the sensor elements with the maximum pen-

etration and the values needed to calculate friction (k, c,
µs, µd, σ0, σ1, α1).

• Place a vector pointing to each vertex of the simulated
sensor element with a magnitude equal to the maximum
penetration.

• Each time-step, calculate the intersection of this vector
with the target objects. If they are in collision, create a
contact point on this intersection.

• on each contact point, calculate the contact force in the
normal direction (8) and the tangential friction (13), and
add these two components to get the contact force.

• Calculate and apply the forces (14,13) and torques (16,
17) to the sensor and target bodies.

• Convert the forces to tactile values.
• Compare this tactile values with the real tactile sensor

values and adjust the conversion if necessary.

IV. IMPLEMENTATION ON THE OPENGRASP TOOLKIT

The tactile sensor model presented in the previous section
has been implemented using OpenRAVE [33], a planning
architecture developed at the Carnegie Mellon University
Robotics Institute. It is an open architecture targeting a simple
integration of simulation, visualization, planning, scripting and
control of robot systems. It enables the user to easily extend
its functionality developing its own custom plugins.

Following its design, the Tactile Sensor Plugin has been
developed and is available in OpenGRASP [34], a simulation
toolkit for grasping and dexterous manipulation consisting of a
set of OpenRAVE plugins and other tools like the RobotEditor.

The development of the tactile sensor plugin included the
definition of the tactile sensor geometry, the tactile sensor data
and the implementation of the sensor interface specified by
OpenRAVE.

The tactile sensor requires a set of parameters to be specified
for each sensor. The model presented on this study allows the
creation of sensors based on any geometry which is specified
by the mesh of the body to which the sensor is attached. For
each sensor, the parameters necessary to calculate the contact
forces (see Section III) and its thickness need to be defined.
An example of a sensor definition using the OpenRAVE XML
format can be seen in Table I.
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TABLE I
EXAMPLE OF AN OPENRAVE TACTILE SENSOR DEFINITION

< AttachedSensor >

< link > object1 < /link >

< sensorname = “T1” type = “SimTactileSensor” >

< shapeBaseOnGeom > true < /shapeBaseOnGeom >

< thickness > 0.005 < /thickness >

< sigma0a> 2e2 < /sigma0 >

< sigma1b> 5e− 1 < /sigma1 >

< alfa1c> 10.5 < /alfa1 >

< musd> 0.9 < /mus >

< mude> 0.6 < /mud >

< k > 1e3 < /k >

< c > 1e1 < /c >

< /sensor >

< /AttachedSensor >

a sigma0=σ0 b sigma1=σ1 c alfa1=α1
d mus=µs e mud=µd

The tactile sensor data is the structure returned by the tactile
sensor when it is requested. It contains the size of the tactile
array, a vector with the tactile values calculated in each cell
and the sum of all the tactile values. This structure is the
same as the one used by the real tactile sensor, which makes
the real and simulated sensors feedback appear identical to the
controllers.

The plugin is an implementation of the sensor interface.
OpenRAVE creates a new tactile sensor when specified on a
robot definition. Each time step, when the sensor is updated, it
gets the positions and velocities of the sensor and objects and
checks if they are colliding. On each contact point, it calculates
the contact forces with the equations detailed in Section III-C.
These forces and torques are applied to the sensor and objects.
Finally, the tactile intensities are calculated using the linear
conversion and the tactile data structure is updated. Controllers
can query and use this tactile sensor feedback as required.

V. EXPERIMENTS ON ROBOT GRASPING

In order to determine the simulated tactile sensor perfor-
mance, some experiments were carried out.

The basic physical properties of the simulated sensor were
tested in various ways. To verify the theoretical correctness
of the equations used in the force calculation a certain load
was set on top of the sensor and the tactile force sum was
compared to the load applied. Also the friction properties of
the tactile sensor were tested by moving an object in contact
with the sensor at an increasing velocity. The friction force
data was then plotted to determine the shape of the friction
force in relation to the sliding velocity. The simulated tactile
sensor passed these tests successfully.

However, the focus of this section is to present the results
when testing the sensor performance in a real grasping situa-
tion. The natural selection of a test case was a simple grasping
task. The selected test case was executed by the real robot after
which the same situation was replicated using the simulator.
The model was then modified to validate the consistency of
the simulation results.

A. Experiment Setup

A simple task of grasping and picking up a cube using a
Schunk PG70 parallel jaw gripper was selected as the test
scenario. Each finger of the gripper had a DSA 9205 tactile
sensor attached to it. The tactile sensor feedback was used to
control the grasping force and to determine the stability of the
grasp.

The idea was to perform the same task using this robot and
compare the results with the ones obtained by executing the
same actions in the simulator. In order to accomplish this, a
high level controller was implemented using a new abstraction
architecture presented in [35] which is also available in Open-
GRASP [36]. This architecture uses a hierarchical approach for
decomposing a manipulation task into a sequence of actions
represented as finite state machines. Each action consists
of primitive actions implemented using a single low-level
controller responsible for the control of the robot hardware.
This approach ensures the ability to use it with different
embodiments and to use multiple sensors and sensor types.

Following its design, the experiment was defined as an
abstract action consisting of five primitive actions: approach,
grasp, lift, move down and release. The controller turns this
abstract information into the gripper specific primitives and
transitions. It then drives the Schunk actuator using velocity
control until the first contact with the tactile sensors is de-
tected. After the initial touch the controller switches to force
control by setting the maximum current of the Schunk gripper
based on the tactile sensor feedback. The tactile value sums
are used as the reference for the force control. This particular
case shows the function of the tactile sensor in combination
with the robot controller.

Given the abstraction architecture’s ability to be embodi-
ment independent, the same controller was used to control the
real robot as well as the simulated case. This feature makes
possible to demonstrate the capabilities of the simulated tactile
sensor in comparison to the real one.

B. Experimental Results for the Real Robot

The real robot performed the task close to what was
expected. An image sequence of the real work cycle with the
tactile images produced by each sensor, can be seen in Fig. 4.
The experiment was performed with the tactile sensor covering
30 percent of its area when touching the cube.

The actions were executed as expected but closer investiga-
tion of the tactile values revealed some problems.

When grasping the cube, even pressure was applied to each
tactile sensor that should return, as a result, very similar
tactile images. However, significant differences between the
individual tactile elements can be seen in the bottom row of
Fig. 4 where one sensor tactile image is substantially lighter
than the other in most cases, when touching the cube.

The tactile value sum retrieved for the tactile sensors in each
time-step can be seen in Fig. 5a. This graph also shows that
opposite tactile sensors give out significantly different value
sums when they should have been very similar. It can also be
seen that the controller has difficulties in reaching the desired
tactile value which is most likely due to the friction in the
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Fig. 4. Real robot performing the chosen work cycle. On the top row, pictures of the robot performing the task on each stage. On the bottom, the tactile
images generated by left and right sensors.

(a) (b)

Fig. 5. Tactile value sums retrieved by the tactile sensors each time-step when grasping a cube covering 30% of the sensor tactile area: (a) real robot and
(b) simulated robot

Schunk gripper. The low velocity stick-slip friction can cause
the controller to not reach this value.

C. Experimental Results for the Simulated robot

The simulated robot performed the same work cycle as the
real one. Images of the robot on each work cycle phase are
shown in Fig. 6 with the corresponding tactile images at the
bottom.

Closer inspection of the tactile values reveals that the
sensors perform exactly as expected. Under even pressure,
the individual tactile element values are the same in the area
touching the cube. Opposite sensors also return similar tactile
values. The tactile value sum retrieved for the simulated tactile
sensors in each time-step can be seen in Fig. 5b. This graph
also shows that opposite tactile sensors give out very similar
values and that the tactile value sum rises to the desired value
swiftly.

To test the performance of the tactile sensors under different
conditions the same work cycle was performed on the simula-
tor by changing the robot’s starting height. This resulted in the
gripper grasping the cube using different coverage percentages
of the tactile sensor. The results are shown in Fig. 7 and reveal
the consistency in all trials of this experiment. The tactile
model becomes stiffer the more surface is touching the object.
This can be easily seen in the rising slopes of the diagrams.
The softest case with 15 percent coverage rises to the desired
value much more slowly than the stiffest case at 100 percent
coverage. The change in the controller stage can also be seen
quite clearly in the beginning of the graph where there is a
jump in the value when the controller switches from velocity to
force control. The stiffer the system the uneasier the transition
to a stable grasp is.
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Fig. 6. Simulated robot performing the chosen work cycle. On the top row, pictures of the simulated robot performing the task on each stage. On the bottom,
the tactile images generated by left and right sensors.

(a) (b) (c)

Fig. 7. Tactile value sums from the different test executed by the simulated robot varying the robot’s starting height, and thus covering: (a) 15%, (b) 60%
and (c) 100% of the tactile sensor area.

D. Comparing Experimental Results

The simulation trials show that the simulated tactile sensor
element can be used to perform as the real one. The simulation
model shows consistent results whereas the real tactile sensor
results vary on each work cycle. This is due to the fact that
in simulation there are no manufacturing flaws or problems
from wearing. The system consistently performs the same way
under the same conditions. In addition, the detection tolerances
from individual elements do not pose a problem.

If the tactile images in the real (Fig. 4) and simulated
trials (Fig. 6) are compared, it can be seen that the tactile
values differ. These differences are explained by the non-ideal
performance of the real tactile elements. It can also be seen
that the shape of the tactile value sum curves (Fig. 5a) and
(Fig. 5b) also differ. This can be due to the missing calculation
of the stiction in the simulated gripper actuator. When using
low velocities and forces, stiction becomes a significant factor
in force control. In this respect the simulator behaves ideally
allowing the controller to reach the desired value without the
accuracy problem caused by the stick-slip phenomenon.

Using the most important features of a tactile sensor [10]
(spatial and temporal resolution, noise, hysteresis, creep and
aging) as criteria, the simulated and real sensor can also be
compared. The real sensor’s spatial and temporal resolution

are both hardware dependent. In the simulated sensor the
resolution can be changed somewhat freely. Currently the
simulated sensor stiffness changes when adding resolution
which causes the need for changing the model parameters.
From the real sensor’s results it can also be seen that the tactile
values suffer from noise in the results whereas the simulated
sensor reports the changes in the force directly without any
interference or error caused by the hardware. The hysteresis
in the real tactile can also be significant due to the material
covering the tactile elements. The hysteresis effect is included
in the simulation model as a damping value which can be
controlled. The real sensor material also causes some creep
in the results as the foam cover resistance changes over time
even under constant pressure. This change settles after some
time but there is always some creep even after an extended
period. The simulated sensor does not suffer from this creep as
there is no material modelled. The cover material also causes
aging to be a problem when using the real tactile.

All these features of the real tactile sensor can be added
to the tactile sensor model. The difficulty is that the variance
from sensor to sensor can be quite considerable as shown in
(Fig. 5a).
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E. Shape Recognition Using the Simulated Robot

The simulated robot was further tested by running a scenario
where the simulated tactile sensor was used to recognize object
shapes given that, as mention in the introduction, this is one
of the main applications of this type of sensor.

In these experiments, the target object was modified to have
differently-shaped holes on each side. One side of the cube has
a cross-shaped hole and the other a square, as shown in Fig. 8.
This image shows the tactile values from each sensor and its
respective position on each of the graspable faces of the cube.
As it can be seen, the tactile sensors give out consistent results.
The pressures in the opposite sides are not exactly even as the
graspable cube was not centered between the fingers at the
beginning of the grasp. This enables the cube to stick to the
table thus creating an uneven pressure spread on the sensor.

Fig. 8. Experiment showing tactile sensor values that can be used for shape
recognition. On the left, the simulated robot grasping the cube. On the right,
tactile images and positions of the left and right simulated tactile sensors
showing the shape of the face they are touching.

VI. CONCLUSION

In this study, a simulation model of a tactile sensor was
presented. The simulation model is based on soft contact
modelling with a full friction description. The sensor was
tested using the most common use cases of tactile sensors in
robotic grasping. The simulated tactile sensor performed all the
tests including stable grasping as well as pattern recognition
without any errors and can be used as an ideal universal tactile
sensor model. The model can be updated to behave in the exact
same manner as a specified type of tactile sensor such as one
from Weiss Robotics. This would entail modifying the stiffness
to be non-linear as well as adding delays that are due to the
covering material and other electrical properties.

The experiment results of the tactile sensor model show
good performance in being able to produce tactile feedback.
Problems arise when trying to calibrate the tactile model to
correspond exactly to a certain real tactile sensor. This is due
to the variations in the real tactile values which makes the
process extremely difficult.

Due to the tolerances in the real sensors, the simulated sen-
sors function better than the real ones. This enables researchers

to do experiments that should be theoretically possible but,
due to the current limitations in the existing hardware, are
still difficult.

The experiments also show that in order to accurately model
the whole control system, the actuator models need to be
upgraded to include better friction models. This would allow
the simulator to be used in non-ideal conditions.

The tactile model can also be made more accurate. Cur-
rently, it is a perfectly linear measuring unit. In the Weiss
Robotics sensor the covering material greatly determines the
properties of the measurements. This material effect can be
added by measuring the compression of different materials
and adjusting the sensor model’s normal force accordingly.
The material seems to be adding a slight delay in the sensor,
which could also be taken into account. These modifications
would however be Weiss-sensor specific and not in accordance
with a universal tactile sensor model.

The model was not made to be used in real time simulations
and therefore is not optimized in terms of calculation speed.
Currently it uses a brute force method for the collision search
algorithm, checking all possible primitives. This makes the
simulations slow. The work cycle for the real robot takes about
45 seconds where as the simulation takes approximately 2
minutes on an Intel Pentium 2.8 GHz dual core processor.
The simulation efficiency can be greatly improved by adding
optimizations to this algorithm.
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Mind the Gap - Robotic Grasping under Incomplete Observation

Jeannette Bohg, Matthew Johnson-Roberson, Beatriz León, Javier Felip,
Xavi Gratal, Niklas Bergström, Danica Kragic and Antonio Morales

Abstract— We consider the problem of grasp and manipu-
lation planning when the state of the world is only partially
observable. Specifically, we address the task of picking up
unknown objects from a table top. The proposed approach to
object shape prediction aims at closing the knowledge gaps in the
robot’s understanding of the world. A completed state estimate
of the environment can then be provided to a simulator in
which stable grasps and collision-free movements are planned.

The proposed approach is based on the observation that
many objects commonly in use in a service robotic scenario
possess symmetries. We search for the optimal parameters of
these symmetries given visibility constraints. Once found, the
point cloud is completed and a surface mesh reconstructed.

Quantitative experiments show that the predictions are valid
approximations of the real object shape. By demonstrating the
approach on two very different robotic platforms its generality
is emphasized.

I. INTRODUCTION

Many challenging problems addressed by the robotics
community are currently studied in simulation. Examples are
motion planning [1], [2], [3] or grasp planning [4], [5], [6]
in which the knowledge of the complete world model or of
specific objects is assumed to be known. However, on a real
robotic platform this assumption breaks down due to noisy
sensors or occlusions. Consider for example the point cloud
in Fig. 1 that was collected with an active stereo head from
a table top scene with several objects standing on it.

Due to occlusions, no information about the backside of
objects or about the region behind them is available from
pure stereo reconstructed data. There are gaps in the scene
and object representations. Additionally, noise causes the
observed 3D structure of an object or scene to deviate from
its true shape. Although the previously mentioned planners
might be applied on real robotic platforms, a mismatch
between the real world and the world model is usually not
dealt with explicitly.

Exceptions are reactive grasping strategies that adapt their
behavior based on sensor information collected during ex-
ecution time [7], [8]. Other approaches aim at predicting
unknown parts of the world and plan the robot’s course of
action based on this [9].

In this paper, we consider the scenario of picking up
unknown objects from a table top. Therefore, the robot is

This work was supported by the EU through the project GRASP, IST-FP7-
IP-215821. J. Bohg, M. Johnson-Roberson, X. Gratal, N. Bergström and
D. Kragic are with CVAP/ CAS at KTH, Stockholm, Sweden. {bohg,
mattjr, gratal, nbergst, dani}@csc.kth.se.
B. León, J. Felip and A. Morales are with the Robotic Intelligence
Laboratory at the Department of Computer Science and Engineering, UJI,
Castellón, Spain {len, jfelip, morales}@uji.es

Fig. 1. Example for a point cloud representing a whole scene merged from
different view points. Left: View from the side. Right: View from the top.

confronted with scenes similar to those in Fig. 1. To accom-
plish grasp and motion planning based on this information,
we follow the idea of filling in the gaps in the scene rep-
resentation through predicting the full shape of each object.
We make use of the observation that many, especially man-
made objects, possess one or more symmetries. Given this,
we can provide the simulator with an estimated complete
world model under which it can plan actions or predict sensor
measurements.

The contributions of this paper are (i) a quantitative
evaluation of the shape prediction on real-world data con-
taining a set of objects observed from a number of different
viewpoints. This is different from related work by Thrun
and Wegbreit [10] in which only qualitative results in form
of point clouds are presented rather than quantitative results
on polygonal meshes. (ii) We reduce the search space for the
optimal symmetry parameters through a good initialization.
And (iii), we demonstrate the applicability of the predicted
object meshes in a service robotic scenario by supporting
execution in the real-world with grasp and motion planning
in simulation.

The paper is outlined as follows. In the next section,
we will motivate the use of the symmetry assumption and
explain the method for object shape prediction and polygonal
mesh reconstruction. Thereafter, the two experimental plat-
forms are described. In Section IV the simulating environ-
ment OpenGRASP is presented. In the experimental section,
we show how the proposed prediction mechanism produces
valid complete object models and is advantageous for grasp
planning and execution.

II. PREDICTING OBJECT SHAPE THROUGH SYMMETRY

Estimating the occluded and unknown part of an object
has applications in many fields, e.g. 3D shape acquisition,



3D object recognition or classification. In this paper, we
are looking at this problem from the perspective of service
robotics and are therefore interested in the advantages of
shape completion for collision detection and grasp planning.

Psychological studies suggest that humans are able to
predict the portions of a scene that are not visible to them
through controlled scene continuation [11]. The expected
structure of unobserved object parts are governed by two
classes of knowledge: i) Visual evidence and ii) completion
rules gained through prior visual experience. A very strong
prior that exists in especially man-made objects is symmetry.

In [10] it has been shown that this symmetry can
be detected in partial point clouds and then exploited for
shape completion. The authors developed a taxonomy of
symmetries in which planar reflection symmetry is the most
general one. It is defined as the case in which each surface
point P can be uniquely associated with a second surface
point Q by reflection on the opposite side of a symmetry
plane. Furthermore, in a household environment, objects are
commonly placed such that one of their symmetry planes is
perpendicular to the supporting plane. Exceptions exist such
as grocery bags, dishwashers or drawers.

Given these observations, for our scenario we can make
the assumption that objects commonly possess one or sev-
eral planar symmetries of which one is usually positioned
perpendicular to the table from which we are grasping. By
making these simplifications, we can reduce the search space
for the pose of this symmetry plane significantly. As it will
be shown in the experimental section, our method produces
valid approximations of the true object shape in very different
viewpoints and for varying levels of symmetry.

A. Detecting Planar Symmetry

Since we assume the symmetry plane to be perpendicular
to the table plane, the search for its pose is reduced to a
search for a line in the 2 1/2D projection of the partial
object point cloud. This line has 3 degrees of freedom (DoF):
the 2D position of its center and its orientation. We follow
a generate-and-test scheme in which we create a number
of hypotheses for these three parameters and determine the
plausibility of the resulting mirrored point cloud based on
visibility constraints.

We bootstrap the parameter search by initializing it with
the major or minor eigenvector ea or eb of the projected point
cloud. As shown in Section V, this usually yields a good
first approximation. Further symmetry plane hypotheses are
generated from this starting point by varying the orientation
and position of the eigenvectors as outlined in Fig. 2. In the
following, we will describe the details of this search.

1) Initial Plane Hypothesis: The first hypothesis for the
symmetry axis is either one of the two eigenvectors of the
projected point cloud. Our goal is to predict of the unseen
object part. We therefore make the choice dependent on the
inverse viewing direction v: the eigenvector that is most

ea

eb

c

αi

dj

dj+1

dj+2

Fig. 2. A set of hypotheses for the position and orientation of the symmetry
plane. ea and eb denote the eigenvectors of the projected point cloud. c is
its center of mass. αi denotes one of the variations of line orientation along
which the best pose of the symmetry plane is searched. The (green) lines
at positions dj to dj+2 are three further candidates with orientation αi.

perpendicular to v is used as the symmetry plane s.

s =

{
ea if ea · v ≤ eb · v
eb if ea · v > eb · v

(1)

where ea and eb denote the major and minor eigenvectors of
the projected point cloud, respectively.

2) Generating a Set of Symmetry Hypothesis: Given this
initial approximation of the symmetry plane s of the con-
sidered point cloud, we sample n line orientations αi in the
range between −20◦ and 20◦ relative to the orientation of
s. The 2D position of these n symmetry planes is varied
based on a shift dj in m discrete steps along the normal
of the symmetry plane. Together this yields a set S =
{s(0,0) · · · s(0,j) · · · s(i,j) · · · s(n,m)} of n×m hypotheses.

3) Mirroring the Point Cloud: Let us denote the original
point cloud as P containing points P . Then given some
symmetry plane parameters s(i,j), the mirrored point cloud
Q(i,j) with points Q is determined as follows:

Q = R−1αi
(−Rαi(P + dj − c)) + c (2)

with Rαi
denoting the rotation matrix corresponding to αi.

4) Computing the Visibility Score: The simplest source
of information about visibility constraints are the binary
2D segmentation masks O that separate an object from the
background. The mirroring process aims at adding points Q
to the scene that were unseen from the original viewpoints.

Let us assume a mirrored point cloud Q(i,j) has been
generated, then there are three cases for where a reflected
point Q can be positioned. i) If it coincides with a point in P
(the original point cloud), then it supports the corresponding
symmetry hypothesis. ii) If Q falls into previously occluded
space, it provides information about potential surfaces not
visible from the original viewpoint. And finally iii), if Q is
positioned into the space that has been visible before, then
it contradicts the symmetry hypothesis.

Based on this intuition, the vote v(i,j) consists of two
parts. First, we back project each Q(i,j) into the original
image giving us a set of pixels. For all these pixels q that do
not lie inside the original object segmentation mask O, we
compute the squared distance δ1(q, p) to the nearest pixel p in
the segmentation mask using the distance transform. Second,
for all q that lie within the segmentation mask and have a



smaller depth relative to the camera than the corresponding
(occluded) pixel p, we compute the depth difference δ2(q, p)
between them. Summarizing, the vote v(i,j) is computed
as the sum of the expected values of these two distance
measures:

v(i,j) = E
q/∈O

[δ1(q, p)] + E
q∈O

[δ2(q, p)]. (3)

In case the plane parameters are chosen such that there
is a large overlap between the original point cloud P and
the mirrored cloud Q(i,j), the second part of Eq. 3 will
be relatively large compared to the first part. The bigger
dj , i.e. shift of the symmetry plane as visualized in Fig. 2,
Eq∈O [δ2(q, p)] will increase and Eq/∈O[δ1(q, p)] decrease.
We are searching for the global minimum in the space of all
votes

ŝ(i,j) = argmin
S
v(i,j) (4)

that corresponds to a reflected point cloud Q(i,j) with the
smallest amount of points that contradict the symmetry
hypothesis.

B. Surface Approximation

After the prediction of the backside of an object point
cloud, we create a surface mesh approximation to support
grasp planning and collision detection.

We use Poisson reconstruction proposed by Kazhdan et.
al [12] as a solution to the problem of surface reconstruction
from oriented points. To determine the normals, we use a kd-
tree as proposed in [13]. A local plane fit is estimated for the
k-nearest neighbors of the target point. This plane is assumed
to be a local approximation of the surface at the current
point. More advanced normal estimation techniques have
been proposed which could perhaps increase the performance
of the surface reconstruction at the cost of computation
speed [14], [15]. Following normal estimation, we ensure
that the normals of the mirrored points are consistent with
the mirrored viewing direction reflected across the plane of
symmetry.

Finally the Poisson reconstruction is performed. The single
steps are briefly outlined below. For details, we refer to [12].

1) Inputting the points and normals to an octree.
2) Computing an implicit function over this adaptive grid.
3) Finally using marching cubes to extract an iso-surface

as a watertight triangular mesh.
It should be noted while Poisson surface reconstruction is
robust to some noise, it is sensitive to normal direction. We
therefore filter outliers from the segmented point cloud prior
to the reconstruction step.

III. EXPERIMENTAL PLATFORMS AND GRASP CYCLE

To emphasize the generality of the proposed approach, we
evaluate and demonstrate it on two robotic platforms being
either used at the Royal Institute of Technology (KTH) or at
the Universitat Jaume I (UJI). They differ in both, hardware
and implementation of a grasp cycle.

Fig. 3. Left: KTH robot. Right: UJI robot (Tombatossals)

A. Hardware

1) KTH: The platform (see Fig. 3 left) consists of an Ar-
mar III robotic head [16] equipped with two stereo cameras,
a peripheral (wide-field) and a foveal (narrow-field) one. The
robotic head has 7 DoF. Five of these are used for controlling
the viewing direction while the remaining two mainly vary
the vergence angle between the left and right camera systems,
thereby enabling fixation on objects. As a manipulator, we
use a 6 DoF Kuka arm1 that is equipped with a three-fingered
Schunk Dexterous Hand 2.0 (SDH)2.

2) UJI: The torso system, called Tombatossals has 23
DOF (see Fig. 3 right). It is composed of two 7 DOF
Mitsubishi PA10 arms. The left arm has a 4 DOF Barrett
Hand3 and the right arm has a parallel jaw gripper. Each arm
has a JR3 Force-Torque sensor attached on the wrist between
the arm and the hand. The visual system is composed of a
TO40 4 DOF pan-tilt-verge head with two Imaging Source
DFK 31BF03-Z2 cameras. Attached to the center of the pan-
tilt there is a Videre DCSG-STOC stereo camera. For this
work only the left arm, the pan-tilt head and the Videre stereo
system are used.

B. Grasp Cycle

For the scenario of grasping unknown objects from
a table top, a grasp cycle is outlined in Algorithm 1.
The functions serve as place holders for operations that
are common to both robotic platforms but are imple-
mented differently. Exceptions to this are the function
PredictObjectShape, the simplification of the trian-
gular mesh through ConvexDecomposition and the
grasp and arm trajectory planners named PlanGrasp and
PlanArmTrajectory. They are identical in both systems
and are explained in Section II and Section IV, respectively.
The remaining functions of Algorithm 1 are not the focus
of this paper. Therefore, in the below we will only briefly
outline how they are implemented in each robotic system
and refer to our previous work.

1) KTH: As a step prior to the shape analysis of an object
and the grasping of it, the robot needs to segregate potential
objects from the background. In the KTH system, the func-
tion GetObjectHypotheses to obtain a segmented point
cloud is implemented as explained in detail in our previous
work [17]. Given this point cloud which only represents the
visible part of an object, its backside can be predicted as
described in Section II.

1http://www.kuka-robotics.com
2http://www.schunk.com
3http://www.barrett.com



Algorithm 1: Pseudo Code for a Table Top Scenario
Data: Embodiment, Table Plane
Result: Cleaned Table Top
begin

S = GetObjectHypotheses()
for i = 0; i < |S|; i++ do Grasp Cycle per Object Hypothesis

ŝi = PredictObjectShape(si)
ŝi = ConvexDecomposition(si)
G = GetGraspCandidates(ŝi)
for j = 0; j < |G|; j ++ do

success = PlanGrasp(gj)
if success then Grasp Candidate gives Stable Grasp

t(i,j) = PlanArmTrajectory(gj)
if t(i,j) 6= 0 then Collision-Free Trajectory Exists

T = InsertTrajectory(T , t(i,j), gj)
end

end
end
k = 0
repeat

success = ExecuteGrasp(T, k)
k ++

until success
end

end

With the complete object shape as an input,
GetGraspCandidates implements the technique
presented in [18] to detect two grasping points. These points
are the target positions for the fingers of the SDH. In detail,
we apply a pinch grasp in which the thumb is opposite the
two fingers. Then for applying a grasp to an object, the
vector between the thumb and the two fingers has to be
aligned with the vector between the two grasping points.

These grasp candidates are then simulated on the predicted
object shape and a collision-free path for the arm planned.
Details on this will be given in Section IV. After a suitable
grasp and arm trajectory has been selected through simula-
tion, it is executed by the robot in an open loop procedure.

2) UJI: The vision system on the UJI platform imple-
menting GetObjectHypotheses is quite simple. The
Videre stereo system gathers images and produces an un-
segmented 3D point cloud of the scene. The table and
background are black to simplify the segmentation. The point
cloud is segmented finding its connected components using
a clustering method as implemented in ROS PCL 4.

The complete object shape is predicted as described in
Section II. GetGraspCandidates is implemented such
that the vector between the thumb and two fingers is going
through the object’s centroid (see Section IV for more detail).

Approaching the pre-grasp position is also executed in
open loop following the collision free trajectory obtained
from the simulator. For the grasping action, a reactive sensor
based strategy is used. This algorithm is fully described in
[7], basically it tries to align the hand with the object and
performs a power grasp adapting the hand pose to the object
pose using tactile and force feedback.

IV. OPENGRASP

The simulation platform chosen to perform the experi-
ments is OpenGRASP [19], a simulation toolkit for grasp-

4http://www.ros.org/wiki/pcl

ing and dexterous manipulation. It is based on the Open-
RAVE [20], an open architecture targeting a simple inte-
gration of simulation, visualization, planning, scripting and
control of robot systems. It enables the user to easily extend
its functionality developing their own custom plugins.

The simulator is used to perform the grasp before the
real robot makes an attempt. It allows for testing different
alternatives, choosing the one with the highest probability of
success. This will not only take considerably less time than
performing it with the real hardware but also prevents dam-
aging the robot by avoiding collisions with the environment.

OpenRAVE implements a combined motion and grasp
planner plugin [2]. This BiSpace planner has elements from
the bidirectional RRT and the RRT-JT algorithms [3]. The
use of RRTs [1] is a well known approach to the arm motion
planning problem. It has been the starting point for most
of the current state of the art motion planners. For collision
detection that is necessary for motion planning, the simulator
needs complete object models. When known objects are
used, an accurate model of the objects can be created off-line
using different technologies, like laser scans. In the case of
unknown objects, an approximate model has to be created
on-line. In Section II, an approach to create this model was
presented and it is evaluated in Section V. The experimental
results show that even if the object model is not an exact
representation of reality, it is close enough to enable the
simulator to try different grasp alternatives and select an
appropriate one.

The obtained triangular mesh has thousands of vertices
which makes the collision detection process computationally
expensive. To ameliorate this problem, we pre-process the
mesh by ConvexDecomposition, a library that was
originally created by John Ratcliff [21] and that is imple-
mented in OpenRAVE. It approximates a triangular mesh as
a collection of convex components. This process takes only a
few seconds and drastically speeds up the grasp and motion
planning.

A. Generation of Grasp Candidates

The first step for selecting an appropriate grasp consists
of creating a set of grasp candidates and evaluating them
using OpenRAVE. This set can be stored and used later,
anytime the same robot has to grasp the same object. Each
grasp candidate is simulated moving the end-effector until it
collides with the object; then the fingers will close around it
and finally the contacts are used to test on force closure. In
Algorithm 1, this process is referred to as PlanGrasp.

Each grasp candidate has the following parameters: the
approach vector, the hand pre-shape, the approach distance
and the end-effector roll. The number of different values
that these parameters can take has to be chosen considering
the time-constraints imposed by the on-line execution of
PlanGrasp.

OpenRAVE has a default algorithm to generate a set of
approach vectors. It first creates a bounding box of the object
and samples its surface uniformly. For each sample, a ray is
intersected with the object. At each intersection, an approach



Fig. 4. Example of the approach vectors generated for a spray bottle by
Left) the OpenRAVE grasper plugin, Middle) the UJI proposed algorithm
using the object’s centroid and Right) the KTH proposed algorithm using
the grasp points in blue.

vector is created that is aligned with the normal of the
object’s surface at this point. An example output is shown in
Fig. 4 Left). Dependent on the choice of the other parameters,
the time to simulate all the corresponding grasps can vary
from few minutes to more than an hour. These execution
times are acceptable for objects that are known beforehand
because the set of grasp candidates can be generated off-
line. When the objects are unknown, this process has to be
executed on-line and long waiting times are not desirable.

For this reason, we use two methods to reduce the number
of approach vectors. The first one, applied on the KTH
platform, computes two grasp points as in [18]. To grasp
the object at these points, there are an infinite number
of approach vectors on a circle with the vector between
the two grasping points as its normal. We sample a given
number, typically between 5 and 10 of these between 0◦ and
180◦ degrees. Figure 4 (Right) shows the detected grasping
points along with the generated approach vectors. The second
method, used at UJI, calculates the approach vectors in a
similar way only that the center of the circle is aligned with
the object’s centroid and its major eigenvector ea. Another
circle, perpendicular to the first one, is added in order to
compensate the possible loss of vector quality due to the
lack of grasp points. Figure 4 (Middle) shows an example.

Having the list of approach vectors reduced, the other
parameters were also adjusted for our purposes. As a hand
pre-shape, we defined a pinch grasp for each hand. The
approach distance is varied between 0 to 20 cm. Finally, the
roll is chosen dependent on the two grasping points (such
that the fingers are aligned with them) or on the orientation
of the circle on which the selected approach vector is defined.
Using these parameters, we were able to reduce the amount
of time taken to generate and save the set of grasp candidates
to less than a minute.

B. Grasp Execution Using Motion Planners

The next step PlanArmTrajectory in Algorithm 1,
consists of selecting a stable grasp from the set of grasp
candidates that can be executed with the current robot con-
figuration without colliding with obstacles. For each stable
grasp, it first moves the robot to the appropriate grasp pre-
shape, then uses RRT and Jacobian-based gradient descent
methods to move the hand close to the target object, closes
the fingers, grabs the object, moves it to the destination while
avoiding obstacles and releases it.

If the robot successfully grabs the object and moves it
to the destination, the stable grasp is returned for execution
with the real robot. Otherwise, the next stable grasp from the
set is tried. Fig. 5 shows snapshots of the grasp execution
using the simulator and the real robots.

V. EXPERIMENTS

In this section, we will present quantitative experiments
showing that the completion of incomplete object point
clouds based on symmetry produces valid object models.
Furthermore, we will show how the estimated complete
object model helps when using a simple grasp strategy based
on the center of an object.

A. Evaluation of the Mesh Reconstruction

In this section, we will evaluate how much the recon-
structed mesh differs from the ground truth mesh.

1) Dataset: The database we used for evaluating the point
cloud mirroring method is shown in Figure 6. For each of the
objects in this database, with the exception of the toy tiger
and rubber duck, we have laser scan ground truth5. The test
data was captured with the KTH vision system and contains
12 different household or toy objects. Four of them are used
both, when standing upright or lying on their side. Thereby,
the database contains 16 different data sets. Each set contains
8 stereo images showing the object in one of the following
orientations: 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ or 335◦.
An example for the toy tiger is shown in Figure 7. As an
orientation reference we used the longest object dimension
when projected down to the table. 0◦ then means that this
reference axis is parallel to the image plane of the stereo
camera. This can be observed in Figure 6 in which all objects
are shown in their 0◦ pose. Therefore, the database contains
128 stereo images along with their point clouds.

From all point clouds, we reconstructed the complete
meshes based on the method described in Section II. We
used the two different values of 5 and 7 as the octree depth
parameter of the Poisson surface reconstruction. By limiting
this parameter, we enable mesh reconstruction in near real-
time. With a tree depth of 5, the meshes are more coarse
and blob-like but less sensitive to noise in the point cloud
and normal estimation. With a depth of 7, the reconstructed
surface is closer to the original point set. However, outliers
strongly affect the mesh shape and it is more sensitive to
noise.

To obtain the ground truth pose for each item in the
database, we applied the technique proposed in [22]. It allows
to register the laser scan object meshes to the incomplete
point clouds.

2) Baseline: As a baseline, we reconstructed a mesh
without mirroring. To do this, we applied a Delaunay tri-
angulation6 to the projection of a uniformly sampled subset
of 500 points from the original point cloud. Spurious edges
are filtered based on their length in 2D and 3D. Furthermore,

5The ground truth object models were obtained from http://
i61p109.ira.uka.de/ObjectModelsWebUI/

6http://opencv.willowgarage.com



Fig. 5. Example of the grasp performed by the simulated robot and the real one, using Right) KTH platform and Left) UJI platform.

Fig. 7. One of the Datasets from Figure 6 shown in Orientation 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 335◦.

Fig. 6. The 12 Objects in the Database in varying poses yielding 16 Data
Sets. Objects are shown in their 0◦ position, i.e, with their longest dimension
parallel to the image plane. Ground truth meshes are existing for all objects
except the toy tiger and the rubber duck.

we extract the outer contour edges of this triangulation and
span triangles between them which produces a watertight
mesh. Figure 8 shows the result of this Delaunay based mesh
reconstruction for the toy tiger.

3) Mesh Deviation Metric: To assess the deviation of
the Delaunay meshes and the mirrored meshes from the
ground truth we use MeshDev [23]. As a metric we evaluated
geometric deviation, i.e., the distance between each point
on the reference mesh to the nearest neighbor on the other
mesh. We applied the uniform sampling of the surface of the
reference mesh as proposed in [23] to calculate this deviation.

4) Results: Figure 10 shows the mean and variance of
the mesh deviation between the ground truth mesh and
the reconstructed meshes for all object orientations over all
objects. We can state that the mirrored point clouds are on
average always deviating less from the ground truth than

Fig. 8. Delaunay based Meshes of Toy Tiger in the following Orientations:
0◦, 45◦, 135◦, 225◦. 1-4: Front View. 5-8: Top View.

the Delaunay based meshes. The average deviation for the
mirrored meshes over all orientations amounts to 7mm.

Figure 11 shows the same error measure for each ob-
ject independently averaged over all its orientations. The
deviation measure is not normalized to the overall object
size. Therefore, for bigger objects, like the Brandt box or
the Burti and Spray bottle, the mean geometric deviation
between the Delaunay meshes and the ground truth exceed
20mm. The mirroring yields a significant improvement for
most objects. The green and white cup pose a challenging
problem to the Poisson surface reconstruction because they
are hollow. Modelling the void is difficult due to viewpoint
limitations. On the other hand, holes in the point clouds
due to non-uniform texture are usually closed by the surface
reconstruction.

Since, we do not have the ground truth models available
for the toy tiger and the rubber duck, we show their recon-
structed meshes with tree depth 7 in Figure 9. The overall
shape of the quite irregular toy objects is well reconstructed.
However, because of the complexity of the objects if an
incorrect mirroring plane is chosen, we obtain toy animals
with either two heads or two tails. In such cases, there are
strong violations of the visibility constraints. Thresholding of
the vote in Equation 3 could address this. This is considered
as future work.

B. Deviation of the Object Centroid

A very simple but effective grasping strategy of unknown
objects is to approach the object at its center. However,
estimating the centroid is not a trivial problem when the
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Fig. 11. Evaluation of the Deviation between the Ground Truth Mesh and i) Mesh based on 3D Point Cloud only (Del), ii) Mesh based on mirroring
and Poisson Surface Reconstruction with Tree Depth 5 (Mir5) or iii) with Tree Depth 7 (Mir7). Pose of mirroring plane chosen over a set of different
positions and orientations. Mean and Variance are computed for each object over all eight orientations.

Fig. 9. Meshes based on Mirroring. First Row: Toy Tiger. Second Row:
Rubber Duck.

object is unknown. Reactive grasping strategies are proposed
to cope with the uncertainty in the object information during
the grasp [8], [7]. The method proposed in [7] is applied
for the grasp execution on the UJI platform. The more
accurate the initial estimate of the object centroid, the fewer
unnecessary contacts with the object occur in a reactive
grasping scheme.

In this section, we therefore evaluated the accuracy of
object center estimation as a simple placeholder for grasp
quality. We compared the center of mass of the Delaunay
mesh and of the mirrored mesh with the ground truth center.
To render this comparison independent of the distribution of
vertices (especially for the ground truth meshes), we applied
the same uniform sampling of the mesh surface as in the
previous section [23]. The center of mass is then the average
over all the samples.

Figure 12 shows the error between the estimated and real
centroid of an object per viewing direction and averaged over
all objects. The deviation is normalized with the length of
the diagonal of the oriented object bounding box. We can
observe that the deviation ranges from approximately 5% to
10% of the total object size.

C. Real-World Experiments

We demonstrated the approach proposed in this paper on
the two robotic platforms described in Section III. A video
of the experiment can be found at http://opengrasp.
sourceforge.net/Videos/BohgICRA11.mp4.
Fig. 5 shows snapshots of the grasp execution in simulation
on the predicted objects and with the real robots on the
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Fig. 10. Evaluation of the Deviation between the Ground Truth Mesh and
i) Mesh based on 3D Point Cloud only (Del), ii) Mesh based on mirroring
and Poisson Surface Reconstruction with Tree Depth 5 (Mir5) or iii) with
Tree Depth 7 (Mir7).

real objects. At KTH, several objects were placed on the
table emphasizing the benefit of object shape prediction for
motion planning. Furthermore, it shows that the prediction
mechanism can deal with some occlusions. This is due to the
enforced visibility constraints. One of the main differences
between the runs at UJI and KTH is the resolution of
the point clouds that is due to the use of camera systems
with different focal lengths. While the KTH point clouds
usually consist of 40000 points, UJI point clouds contained
around 3000 points. However, a suitable mesh could still
be generated with the advantage of a lower runtime. When
running the whole generate and test procedure (with n = 6
and m = 5 yielding 35 hypotheses) on a single core of an
I7 CPU with 2.8 GHz, we achieved the following run-times:
16.46 seconds for a point cloud with 39416 points and 0.31
seconds for a point cloud with 2100 points. Please note,
that we have not exploited the possibility to parallelize this
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Centroid.

process yet. These runtimes also show that downsampling
the point clouds before mirroring can speed up the shape
completion without a big loss of precision. To investigate
these optimizations is considered as future work.

VI. CONCLUSIONS

In this paper, a method that estimates complete object
models from partial views is proposed. We have validated
these complete models using laser scan ground truth. The
results show effectiveness of the technique on a variety of
household objects in table top environments. Furthermore,
the proposed technique has been demonstrated on two dif-
ferent robotic platforms, validating the feasibility of the
predicted mesh for grasp and motion planning.

We feel that the proposed technique is a first step towards
bridging the gap between simulation and the real world. In
future, we hope to develop planners that take uncertain shape
information explicitly into account to generate better grasp
hypotheses and motion plans.
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