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Chapter 1

Executive summary

Deliverable D25 presents the fourth year developments within WP1 - “Learning to Observe Human
Grasping and Consequences of Grasping”. According to the Technical Annex, deliverable D25 presents
the activities in the context of Tasks 1.3, 1.4 and 1.5:

• [Task 1.3] Observing humans: Definition and development of a system that detects and tracks
humans and their movements in particular. Activities in this task will focus on the important
problem of acquiring real 3D motion of the arms while the human is interacting with objects. The
tracking should be successful also in cases when the robot does not have a frontal view of the human.

• [Task 1.4] Observing human grasping: Definition and development of a computational method
that detects, tracks and represents human hands in action. The derived representation includes
aspects and features in the full 4D spatiotemporal space (3D space and time dimensions). The aim
is to extract from a sequence of stereoscopic hand observations, the information that is necessary
and sufficient for subsequent (WP2) parsing and interpretation of observed hand activities that, in
turn, support future repeats by a robotic hand. Activities within this task will address important
subproblems such as figure-ground segmentation (environmental modelling, motion/colour based
segmentation, coarse object categorisation) tracking humans/hands in 2D/3D (feature selection,
hand models, representation of prior knowledge of motion models, prediction and search strate-
gies), etc. [Task 1.4] Observing consequences of grasping: The observation of human grasping is
considered in the context defined by the interaction of a human hand with its ecological niche. The
aim is to derive valuable constraints on the observation of a hand through its interaction with known
environmental structures and to extract properties of environmental structures as a consequence of
the knowledge regarding the activities in which a hand is engaged.

The work in this deliverable relates to the following third year Milestone:

• [Milestone 11] Integration and evaluation of scenarios on multiple experimental platforms, demon-
stration of cognitive capabilities of robots.

Still, the WP1 work carried out during the 4th year is highly relevant to other project milestones:

• [Milestone 2] Definition of initial ontology based on human studies; acquisition (perception and
formalisation) of knowledge through hand-environment interaction.

• [Milestone 4] Analysis of action-specific visuo-spatial processing, vocabulary of human ac-
tions/interactions for perception of task relations and affordances.

• [Milestone 6] Integration and evaluation of human hand and body tracking on active robot heads,
demonstration of a grasping cycle on the experimental platforms.

• [Milestone 7] Observing consequences of grasping; vocabulary of robot action/interactions and
definition of a hierarchical structure of features.

The progress in WP1 is presented in the below summarized scientific publications, attached to this
deliverable.
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• In Attachment A, we first observe that due to occlusions, the estimation of the full pose of a human
hand interacting with an object is much more challenging than pose recovery of a hand observed
in isolation. In this work we formulate an optimization problem whose solution is the 26-DOF
hand pose together with the pose and model parameters of the manipulated object. Optimization
seeks for the joint hand-object model that (a) best explains the incompleteness of observations
resulting from occlusions due to hand-object interaction and (b) is physically plausible in the sense
that the hand does not share the same physical space with the object. The proposed method is
the first that solves efficiently the continuous, full-DOF, joint hand-object tracking problem based
solely on camera input. Additionally, it is the first to demonstrate how hand-object interaction
can be exploited as a context that facilitates hand pose estimation, instead of being considered as
a complicating factor. Extensive quantitative and qualitative experiments with simulated and real
world image sequences as well as a comparative evaluation with a state-of-the-art method for pose
estimation of isolated hands, support the above findings.

• In Attachment B, we present a novel solution to the problem of recovering and tracking the 3D
position, orientation and full articulation of a human hand from markerless visual observations
obtained by a Kinect sensor. We treat this as an optimization problem, seeking for the hand
model parameters that minimize the discrepancy between the 3D structure and appearance of
hypothesized instances of a hand model and actual hand observations. This optimization problem
is effectively solved using a variant of Particle Swarm Optimization (PSO). The proposed method
does not require special markers and/or a complex image acquisition setup. Being model based, it
provides continuous solutions to the problem of tracking hand articulations. Extensive experiments
with a prototype GPU-based implementation of the proposed method demonstrate that accurate
and robust 3D tracking of hand articulations can be achieved in near real-time (12Hz).

• In Attachment C, we propose a method that relies on markerless visual observations to track the
full articulation of two hands that interact with each-other in a complex, unconstrained manner.
We formulate this as an optimization problem whose 54-dimensional parameter space represents all
possible configurations of two hands, each represented as a kinematic structure with 26 Degrees of
Freedom (DoFs). To solve this problem, we employ Particle Swarm Optimization (PSO), an evolu-
tionary, stochastic optimization method with the objective of finding the two-hands configuration
that best explains the RGB-D observations provided by a Kinect sensor. To the best of our knowl-
edge, the proposed method is the first to attempt and achieve the articulated motion tracking of
two strongly interacting hands. Extensive quantitative and qualitative experiments with simulated
and real world image sequences demonstrate that an accurate and efficient solution of this problem
is indeed feasible.

• In Attachment D, we start by observing that a dynamic scene and, therefore, its visual observations
are invariably determined by the laws of physics. We demonstrate an illustrative case where physical
explanation, as a vision prior, is not a commodity but a necessity. By considering the problem of
ball motion estimation we show how physics-based simulation in conjunction with visual processes
can lead to the reduction of the visual input required to infer physical attributes of the observed
world. Even further, we show that the proposed methodology manages to reveal certain physical
attributes of the observed scene that are difficult or even impossible to extract by other means. A
series of experiments on synthetic data as well as experiments with image sequences of an actual
ball, support the validity of the proposed approach. The use of generic tools and the top-down
nature of the proposed approach make it general enough to be a likely candidate for handling even
more complex problems in larger contexts.

• In Attachment E, We present a generic computational framework that exploits GPU processing to
cope with the significant computational requirements of a class of model-based vision problems.
We study the structure of this class of problems and map the involved processes to contemporary
GPU architectures. The proposed framework has been validated through its application to various
instances of the problem of model-based 3D hand tracking. We show that through the exploitation of
this framework near real-time performance is achieved in problems that are prohibitively expensive
to solve on CPU-only architectures. Additional experiments performed in various GPU architectures
demonstrate the scalability of the approach and the distribution of the execution time among the
involved processes.

• Finally, Attachments F and G, present two posters that have been submitted to the COGSYS’2012
conference and which summarize our work on model based tracking of hand articulations.

6



Appendix A

Attached papers

[A] I. Oikonomidis, N. Kyriazis and A.A. Argyros, Full DOF tracking of a hand interacting with an
object by modeling occlusions and physical constraints, in Proceedings of the 13th IEEE International
Conference on Computer Vision (oral presentation), ICCV2011, Barcelona, Spain, Nov. 6-13, 2011.

[B] I. Oikonomidis, N. Kyriazis and A.A. Argyros, Efficient model-based 3D tracking of hand articulations
using Kinect, in Proceedings of the 22nd British Machine Vision Conference, BMVC2011, University of
Dundee, UK, Aug. 29-Sep. 1, 2011.

[C] I. Oikonomidis, N. Kyriazis and A.A. Argyros, Tracking the Articulated Motion of Two Strongly
Interacting Hands, submitted to the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’2012, under review).

[D] N. Kyriazis, I. Oikonomidis and A.A. Argyros, Binding vision to physics based simulation: The case
study of a bouncing ball, in Proceedings of the 22nd British Machine Vision Conference, BMVC2011,
University of Dundee, UK, Aug. 29-Sep. 1, 2011.

[E] N. Kyriazis, I. Oikonomidis, A.A. Argyros, A GPU-powered computational framework for efficient
3D model-based vision, Technical Report TR420, Jul. 2011, ICS-FORTH, 2011.

[F] I. Oikonomidis, N. Kyriazis and A.A. Argyros, ”Efficient model-based tracking of the articulated
motion of hands”, poster submission at COGSYS’2012, under review.

[G] N. Kyriazis, I. Oikonomidis, A.A. Argyros, A GPU-powered computational framework for efficient
3D model-based vision, poster submission at COGSYS’2012, under review.

7



2011 IEEE International Conference on Computer Vision
978-1-4577-1102-2/11/$26.00 c©2011 IEEE

2088



2089



2090



2091



10 20 30 40 50
0

20

40

60

80

PSO generations
(a)

D
 (

m
m

)

 

 

10 20 30 40 50
0

20

40

60

80

PSO generations
(b)

D
 (

m
m

)

 

 

10 20 30 40 50
0

20

40

60

80

PSO generations
(c)

D
 (

m
m

)
 

 

10 20 30 40 50
0

20

40

60

80

PSO generations
(d)

D
 (

m
m

)

 

 

0 1 2 3 4 5 6 7 8
0

20

40

60

80

D
 (

m
m

)

number of views
(e) 

 

 

32
64
96
128

32
64
96
128

16
32
64
96
128

16
32
64
96
128

PEHI
HOPE

2092



0 2 4 6 8
0

10

20

30

40

number of views

D
 (

m
m

)

 

 
HOPE
PEHI

2093



2094



2095



OIKONOMIDIS ET AL.: TRACKING HAND ARTICULATIONS USING KINECT 1
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Abstract

We present a novel solution to the problem of recovering and tracking the 3D po-
sition, orientation and full articulation of a human hand from markerless visual obser-
vations obtained by a Kinect sensor. We treat this as an optimization problem, seeking
for the hand model parameters that minimize the discrepancy between the appearance
and 3D structure of hypothesized instances of a hand model and actual hand observa-
tions. This optimization problem is effectively solved using a variant of Particle Swarm
Optimization (PSO). The proposed method does not require special markers and/or a
complex image acquisition setup. Being model based, it provides continuous solutions
to the problem of tracking hand articulations. Extensive experiments with a prototype
GPU-based implementation of the proposed method demonstrate that accurate and ro-
bust 3D tracking of hand articulations can be achieved in near real-time (15Hz).

1 Introduction

The 3D tracking of articulated objects is a theoretically interesting and challenging problem.
One of its instances, the 3D tracking of human hands has a number of diverse applications [6,
14] including but not limited to human activity recognition, human-computer interaction,
understanding human grasping, robot learning by demonstration, etc. Towards developing
an effective and efficient solution, one has to struggle with a number of complicating and
interacting factors such as the high dimensionality of the problem, the chromatically uniform
appearance of a hand and the severe self-occlusions that occur while a hand is in action. To
ease some of these problems, some very successful methods employ specialized hardware
for motion capture [21] or the use of visual markers as in [25]. Unfortunately, such methods
require a complex and costly hardware setup, interfere with the observed scene, or both.

Several attempts have been made to address the problem by considering markerless vi-
sual data, only. Existing approaches can be categorized into model- and appearance-based.
Model-based approaches provide a continuum of solutions but are computationally costly
and depend on the availability of a wealth of visual information, typically provided by a

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 OIKONOMIDIS ET AL.: TRACKING HAND ARTICULATIONS USING KINECT

Figure 1: Graphical illustration of the proposed method. A Kinect RGB image (a) and
the corresponding depth map (b). The hand is segmented (c) by jointly considering skin
color and depth. The proposed method fits the employed hand model (d) to this observation
recovering the hand articulation (e).

multicamera system. Appearance-based methods are associated with much less computa-
tional cost and hardware complexity but they recognize a discrete number of hand poses that
correspond typically to the method’s training set.

In this paper, we propose a novel model-based approach to the problem of 3D tracking
of hand articulations which is formulated as an optimization problem that minimizes the
discrepancy between the 3D structure and appearance of hypothesized 3D hand model in-
stances, and its actual visual observations. Observations come from an off-the-shelf Kinect
sensor [13]. Optimization is performed with a variant of an existing stochastic optimization
method (Particle Swarm Optimization - PSO). The most computationally demanding parts
of the process have been implemented to run efficiently on a GPU. Extensive experimental
results demonstrate that accurate and robust tracking is achievable at 15Hz. Thus, to the best
of our knowledge, the proposed method is the first that simultaneously (a) provides accurate,
continuous solutions to the problem of 3D tracking of hand articulations (b) does not require
a complex hardware setup (c) relies solely on markerless visual data (d) is rather insensitive
to illumination conditions and (e) runs in near real-time.

1.1 Related work

Moeslund et al. [14] provide a thorough review covering the general problem of visual hu-
man motion capture and analysis. Human body and human hand pose recovery are problems
sharing important similarities such as the tree-like connectivity and the size variability of the
articulated parts. A variety of methods have been proposed to capture human hand motion.
Erol et al. [6] present a review of such methods. Based on the completeness of the output,
they differentiate between partial and full pose estimation methods, further dividing the last
class into appearance- and model-based ones.

Appearance-based methods typically establish a mapping from a set of image features
to a discrete, finite set of hand model configurations [3, 19, 20, 22, 26]. The discriminative
power of these methods depends on the invariance properties of the employed features, the
number and the diversity of the postures to be recognized and the method used to derive the
mapping. Due to their nature, appearance-based methods are well suited for problems such
as hand posture recognition where a small set of known target hand configurations needs
to be recognized. Conversely, such methods are less suited for problems that require an
accurate estimation of the pose of freely performing hands. Moreover, generalization for
such methods is achieved only through adequate training. On the positive side, training is
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OIKONOMIDIS ET AL.: TRACKING HAND ARTICULATIONS USING KINECT 3

performed offline and online execution is typically computationally efficient.

Model-based approaches [5, 7, 15, 16, 18, 23, 24] generate model hypotheses and eval-
uate them on the available visual observations. Essentially, this is performed by formulating
an optimization problem whose objective function measures the discrepancy between the
visual cues that are expected due to a model hypothesis and the actual ones. The employed
optimization method must be able to evaluate the objective function at arbitrary points in
the multidimensional model parameters space, so, unlike appearance-based methods, most
of the computations need to be performed online. The resulting computational complexity
is the main drawback of these methods. On the positive side, such methods do not require
training and are also more easily extendable.

Another categorization can be defined, based on how partial evidence regarding the indi-
vidual rigid parts of the articulated object contributes to the final solution. We differentiate
among disjoint evidence methods that consider individual parts in isolation prior to evalu-
ating them against observations [7, 18, 22, 24] and joint evidence methods [3, 5, 15, 16,
19, 20, 23, 26] that consider all parts in the context of full object hypotheses. Disjoint evi-
dence methods usually have lower computational requirements than joint-evidence ones, but
need to cope explicitly with the difficult problem of handling part interactions such as col-
lisions and occlusions. In joint-evidence methods, part interactions are effortlessly treated
but their computational requirements are rather high. Until recently, the only available joint-
evidence methods were appearance-based. As an example, Shotton et al. propose in [22] an
appearance-based, disjoint evidence method for human body pose estimation with remark-
able computational performance.

This paper presents a model-based method that treats 3D hand pose recovery as a mini-
mization problem whose objective function is the discrepancy between the 3D structure and
appearance of hypothesized 3D hand model instances, and visual observations of a human
hand. Observations come from an off-the-shelf Kinect sensor. Optimization is performed
through a variant of PSO tailored to the needs of the specific problem. Other versions of
PSO have been employed in the past for human body pose tracking [9] and multicamera-
based hand pose estimation [15].

Under the taxonomy of [6], the present work is a full, model-based pose estimation
method that employs a single hypothesis. Furthermore, according to the categorization in-
troduced earlier, it is a joint-evidence method. From a methodological point of view, the
mostly related existing method [15] treats the problem of 3D hand pose estimation as an op-
timization problem that is solved through canonical PSO. However, the observations in [15]
are 2D silhouettes of a hand extracted from a multicamera system. In the present work, the
observation is the RGB plus depth images provided by a Kinect sensor. As a direct conse-
quence, the objective function is different, the computational requirements are much smaller,
the required camera setup is greatly simplified and the resulting system can be operational in
situations where illumination conditions may vary substantially.

Another closely related work is that of Hamer et al. [7]. In both works the input is range
data and a model-based approach is adopted. Hamer employs Belief Propagation which
is well-suited for specific interdependency patterns among the parameters: the dependency
graph must be a tree. Since the fingers usually interact (occlude or touch) with each other,
special, explicit handling of such interactions is required. In our work, self-occlusions are
naturally and effortlessly treated since we adopt a joint-evidence approach.
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2 Tracking hand articulations based on the Kinect
The input to the proposed method (see Fig.1) is an image acquired using the Kinect sensor,
together with its accompanying depth map. Skin color detection followed by depth segmen-
tation is used to isolate the hand in 2D and 3D. The adopted 3D hand model comprises of a
set of appropriately assembled geometric primitives. Each hand pose is represented as a vec-
tor of 27 parameters. Hand articulation tracking is formulated as the problem of estimating
the 27 hand model parameters that minimize the discrepancy between hand hypotheses and
the actual observations. To quantify this discrepancy, we employ graphics rendering tech-
niques to produce comparable skin and depth maps for a given hand pose hypothesis. An
appropriate objective function is thus formulated and a variant of PSO is employed to search
for the optimal hand configuration. The result of this optimization process is the output of
the method for the given frame. Temporal continuity is exploited to track the hand articula-
tion in a sequence of frames. The remainder of this section describes these algorithmic steps
in more detail.

2.1 Observing a hand
The input to the method is a 640× 480 RGB color image of a hand and a corresponding
depth image, as these are provided by the Kinect sensor [13]. Skin color is detected as in [2]
and the resulting largest skin colored blob is kept for further consideration. A conservative
estimation of the hands spatial extend is computed by dilating this blob with a circular mask
of radius r = 5. Given the estimation of the 3D position of the tracked hand for the pre-
vious frame, skin colored 3D points that are within a preset depth range (25cm) from that
estimation are kept, whereas the remaining depth map is set to zero. The observation model
O = (os,od) that feeds the rest of the process consists of the 2D map os of the segmented
skin color and the corresponding depth map od .

2.2 Modeling a hand
The employed hand model consists of a palm and five fingers. The palm is modeled as an
elliptic cylinder and two ellipsoids for caps. Each finger consists of three cones and four
spheres, except for the thumb which consists of an ellipsoid, two cones and three spheres.
Similarly to [15] we build all the necessary geometric primitives for the hand using two
basic 3D geometric primitives, a sphere and a cylinder, enabling a high degree of computa-
tional parallelism (see Sec. 2.5). The hand model is depicted in Fig. 1(d) with color-coded
geometric primitives (yellow: elliptic cylinders, red: ellipsoids, green: spheres, blue: cones).

The kinematics of each finger is modeled using four parameters encoding angles, two
for the base of the finger and two for the remaining joints. Bounds on the values of each
parameter are set based on anatomical studies [1]. The global position of the hand is rep-
resented using a fixed point on the palm. The global orientation is parameterized using the
redundant representation of quaternions. The resulting parameterization encodes a 26-DOF
hand model with a representation of 27 parameters.

2.3 Evaluating a hand hypothesis
Having a parametric 3D model of a hand, the goal is to estimate the model parameters that
are most compatible to the visual observations (Sec. 2.1). To do so, given a hand pose
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hypothesis h and camera calibration information C, a depth map rd(h,C) is generated by
means of rendering. By comparing this map with the respective observation od , a “matched
depths” binary map rm(h,C) is produced. More specifically, a pixel of rm is set to 1 if the
respective depths in od and rd differ less than a predetermined value dm or if the observation
is missing (signified by 0 in od), and 0 otherwise. This map is compared to the observation
os, so that skin colored pixels that have incompatible depth observations do not positively
contribute to the total score (Sec. 2.3, Eq.( 2)).

A distance measure between a hand pose hypothesis h and the observation maps O is
established. This is achieved by a function E(h,O) that measures the discrepancy between
the observed skin and depth maps O computed for a given frame and the skin and depth maps
that are rendered for a given hand pose hypothesis h:

E(h,O) = D(O,h,C)+λk · kc(h). (1)

In Eq.(1), λk is a normalization factor. The function D in Eq.(1) is defined as

D(O,h,C) =
∑min(|od− rd |,dM)

∑(os∨ rm)+ ε
+λ

(
1− 2∑(os∧ rm)

∑(os∧ rm)+∑(os∨ rm)

)
. (2)

The first term of Eq.(2) models the absolute value of the clamped depth differences between
the observation O and the hypothesis h. Unless clamping to a maximum depth dM is per-
formed, a few large depth discrepancies considerably penalize an otherwise reasonable fit.
This fact, in turn, creates large variations of the objective function’s value near the optimum,
hindering the performance of any adopted optimization strategy. A small value ε is added
to the denominator of this term to avoid division by zero. The second term of Eq.(2) models
the discrepancies between the skin-colored pixels of the model and the observation. λ is a
constant normalization factor. The sums are computed over entire feature maps.

The function kc in Eq.(1) adds a penalty to kinematically implausible hand configura-
tions. An elaborate collision scheme was considered for kc, taking into account all pos-
sible pairs of relatively moving hand parts. Experimental results have demonstrated that
for the majority of encountered situations, it suffices to penalize only adjacent finger inter-
penetration. Thus, in the current implementation: kc(h) = ∑p∈Q−min(φ(p,h),0), where Q
denotes the three pairs of adjacent fingers, excluding the thumb, and φ denotes the difference
(in radians) between the abduction-adduction angles of those fingers in hypothesis h. In all
experiments, λ was set to 20 and of λk to 10. The depth thresholds were set to dm = 1cm and
dM = 4cm.

2.4 Stochastic optimization through particle swarms
Particle Swarm Optimization (PSO) was introduced by Kennedy and Eberhart in [10, 11].
PSO is a stochastic, evolutionary algorithm that optimizes an objective function through the
evolution of atoms of a population. A population is essentially a set of particles that lie in
the parameter space of the objective function to be optimized. The particles evolve in runs
which are called generations according to a policy which emulates “social interaction”.

Every particle holds its current position (current candidate solution and kept history) in
a vector xk and its current velocity in a vector vk. Vector Pk stores the position at which each
particle achieved, up to the current generation k, the best value of the objective function.
Finally, the swarm as a whole, stores in vector Gk the best position encountered across all
particles of the swarm. Gk is broadcast to the entire swarm, so every particle is aware of the
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6 OIKONOMIDIS ET AL.: TRACKING HAND ARTICULATIONS USING KINECT

global optimum. The update equations that reestimate each particle’s velocity and position
in every generation k are

vk+1 = w(vk + c1r1(Pk− xk)+ c2r2(Gk− xk)) (3)

and
xk+1 = xk + vk+1, (4)

where w is a constant constriction factor [4]. In Eq. (3), c1 is called the cognitive component,
c2 is termed the social component and r1,r2 are random samples of a uniform distribution in
the range [0..1]. Finally, c1 + c2 > 4 must hold [4]. In all performed experiments the values
c1 = 2.8, c2 = 1.3 and w = 2/

∣∣∣2−ψ−
√

ψ2−4ψ

∣∣∣ with ψ = c1 + c2 were used.
Typically, the particles are initialized at random positions and zero velocities. Each di-

mension of the multidimensional parameter space is bounded in some range. If, during the
position update, a velocity component forces the particle to move to a point outside the
bounded search space, a handling policy is required. A variety of alternative policies have
been proposed in the relevant literature [8]. The “nearest point” method was chosen in our
implementation. According to this, if a particle has a velocity that forces it to move to a point
po outside the bounds of the parameter space, that particle moves to the point pb inside the
bounds that minimizes the distance |po− pb|.

In this work, PSO operates in the 27-dimensional 3D hand pose parameter space. The
objective function to be optimized (i.e., minimized) is E(O,h) (Eq. 1) and the population
is a set of candidate 3D hand poses hypothesized for a single frame. Thus, the process
of tracking a human hand requires the solution of a sequence of optimization problems,
one for each acquired frame. By exploiting temporal continuity, the solution over frame
Ft is used to generate the initial population for the optimization problem for frame Ft+1.
More specifically, the first member of the population hre f for frame Ft+1 is the solution for
frame Ft ; The rest of the population consists of perturbations of hre f . The variance of these
perturbations is experimentally determined as it depends on the anticipated jerkiness of the
observed motion and the image acquisition frame rate. The optimization for frame Ft+1 is
executed for a fixed amount of generations. After all generations have evolved, the best
hypothesis hbest is dubbed as the solution for time step t +1.

The above described PSO variant successfully estimates the 6D global pose of the hand.
However, the estimation of the 20 remaining parameters that are related to finger angles
is not equally satisfactory. The swarm quickly converges to a point close to the optimum
in a behavior that in the relevant literature [11] is termed “swarm collapse”. However the
estimation of the parameters for the fingers often gets stuck to local minima. To overcome
this problem and increase accuracy, we employed a PSO variant that performs randomization
on the 20 dimensions corresponding to finger joint angles, similar to that suggested in [27].
More specifically, every ir generations, half of the particles are disturbed, each in a different,
randomly chosen finger joint dimension dr. The value that is assigned to xt [dr] is a sample of
the uniform distribution in the permitted range for dr. The value of ir was set to 3 generations
in all experiments.

2.5 GPU acceleration
The most computationally demanding part of the proposed method is the evaluation of a
hypothesis-observation discrepancy E(h,O) and, especially, its term D. The computation of
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Figure 2: Quantitative evaluation of the performance of the method with respect to (a) the
PSO parameters (b) the distance from the sensor (c) noise and (d) viewpoint variation.

D involves rendering, pixel-wise operations between an observation and a hypothesis map
and summation over the results. We exploit the inherent parallelism of this computation
by performing these operations on a GPU. Furthermore, by evaluating simultaneously the
function D for many hypotheses hi (i.e., for all the particles of a PSO generation), we mini-
mize the overhead of communication between the CPU and the GPU. Hardware instancing
is employed to accelerate the rendering process, exploiting the fact that the hand model is
made up of transformed versions of the same two primitives (a cylinder and a sphere). The
pixel-wise operations between maps are inherently parallel and the summations of the maps
are performed efficiently by employing a pyramidal scheme. More details on the GPU im-
plementation are provided in [12].

3 Experimental evaluation

The experimental evaluation of the proposed method was based on synthetic data with
ground truth information and on real-world sequences obtained by a Kinect sensor. The
proposed method runs on a computer equipped with a quad-core Intel i7 950 CPU, 6 GBs
RAM and an Nvidia GTX 580 GPU with 1581GFlops processing power and 1.5 GBs mem-
ory. On this system, the average frame rate is 15Hz. As discussed in [12] there is still room
for performance improvements.

Synthetic data were used for the quantitative evaluation of the proposed method. This is
a common approach in the relevant literature [7, 15] because ground truth data for real-world
image sequences is hard to obtain. The employed synthetic sequence consists of 360 consec-
utive hand poses that encode everyday hand motions as simple as waving and as complex as
object grasping. Rendering was used to synthesize the required input O for each considered
hand pose. To quantify the accuracy in hand pose estimation, we adopt the metric used in [7].

Citation
Citation
{Kyriazis, Oikonomidis, and Argyros} 2011

Citation
Citation
{Kyriazis, Oikonomidis, and Argyros} 2011

Citation
Citation
{Hamer, Schindler, Koller-Meier, and {Van Gool}} 2009

Citation
Citation
{Oikonomidis, Kyriazis, and Argyros} 2010

Citation
Citation
{Hamer, Schindler, Koller-Meier, and {Van Gool}} 2009



8 OIKONOMIDIS ET AL.: TRACKING HAND ARTICULATIONS USING KINECT

More specifically, the distance between corresponding phalanx endpoints in the ground truth
and in the estimated hand model is measured. The average of all these distances over all the
frames of the sequence constitutes the resulting error estimate ∆.

Several experiments were carried out to assess the influence of several factors to the per-
formance of the method. Figure 2(a) illustrates the behavior of the method with respect to
the PSO parameters (number of generations and particles per generation). The product of
these parameters determines the computational budget of the proposed methodology, as it
accounts for the number of objective function evaluations. The horizontal axis of the plot
denotes the number of PSO generations. Each plot of the graph corresponds to a different
number of particles per generation. Each point in each plot is the median Md of the error
∆ for 20 repetitions of an experiment run with the specific parameters. A first observation
is that Md decreases monotonically as the number of generations increase. Additionally, as
the particles per generation increase, the resulting error decreases. Nevertheless, employing
more that 25 generations and more than 64 particles results in insignificant improvement of
the method’s accuracy. The gains, if any, are at most 0.5mm. For this reason, the configura-
tion of 64 particles for 25 generations was retained in all further experiments.

Another investigation considered the effect of varying the distance of the hand from the
hypothesized sensor. This explores the usefulness of the method in different application
scenarios that require observations of a certain scene at different scales (e.g., close-up views
of a hand versus distant views of a human and his/her broader environment). To do this,
we generated the same synthetic sequences at different average depths. The results of this
experiment are presented in Fig. 2(b). At a distance of half a meter the error is equal to 5mm.
As the distance increases, the error also increases; Interestingly though, it doesn’t exceed
7.5mm even at an average distance of 2.5m.

The method was also evaluated with respect to its tolerance to noisy observations. Two
types of noise were considered. Errors in depth estimation were modeled as a Gaussian dis-
tribution centered around the actual depth value with the variance controlling the amount of
noise. Skin-color segmentation errors were treated similarly to [19], by randomly flipping
the label (skin/non-skin) of a percentage of pixels in the synthetic skin mask. Figure 2(c)
plots the method’s error in hand pose estimation for different levels of depth and skin seg-
mentation error. As it can be verified, the hand pose recovery error is bounded in the range
[5mm..25mm], even in data sets very heavily contaminated with noise.

We also assessed the accuracy in hand pose estimation with respect to viewpoint varia-
tions. This was achieved by placing the virtual camera at 8 positions dispersed on the surface
of a hemisphere placed around the hypothesized scene. The data points of Fig. 2(d) demon-
strate that viewpoint variations do not significantly affect the performance of the method.

Several long real-world image sequences were captured using the PrimeSense Sensor
Module of OpenNI [17]. The sequences exhibit hand waving, palm rotations, complex finger
articulation as well as grasp-like hand motions. The supplemental material accompanying
the paper1 provides videos with the results obtained in two such sequences (1341 and 1494
frames, respectively). Indicative snapshots are shown in Fig. 3. As it can be observed, the
estimated hand model is in very close agreement with the image data, despite the complex
hand articulation and significant self occlusions.

Finally, besides tracking, we tested the capability of the proposed method to perform
automatic hand model initialization, i.e., single-frame hand pose estimation. Essentially, this
boils down to the capability of PSO to optimize the defined objective function even when

1Also available at http://www.youtube.com/watch?v=Fxa43qcm1C4
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Figure 3: Indicative results on real-world data.
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Figure 4: Performance of single-frame hand pose estimation.

parameter ranges are very broad. To do so, the proposed algorithm run many times, each
initialized at different hand positions and orientations close to the observed hand (the largest
skin color blob). The best scoring hypothesis of this process was kept as the recovered pose.
To assess the method, a set of 45 frames was selected at regular intervals from a real-world
sequence and each hand pose recognition was performed 20 times. For the quantitative
assessment of the hand pose recognition accuracy, we used as a reference the hand model
parameters that were recovered from an experiment that tracked the hand articulation over the
whole sequence. Figure 4 shows the histogram of estimation error Md for all the performed
(20× 45) experiments. As it can be verified, in 74% of them, the estimated pose deviated
4cm or less from the tracked pose. The secondary histogram peak around 8cm corresponds
to some ambiguous poses for which sometimes the mirrored pose was estimated.

4 Discussion

We proposed a novel model-based method for efficient full DOF hand model initialization
and tracking using data acquired by a Kinect sensor. The combination of (a) a careful model-
ing of the problem (b) a powerful optimization method (c) the exploitation of modern GPUs
and, (d) the quality of the data provided by the Kinect sensor, results in a robust and efficient
method for tracking the full pose of a hand in complex articulation. Extensive experimental
results demonstrate that accurate and robust 3D hand tracking is achievable at 15Hz. Thus,
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it is demonstrated that model-based joint-evidence tracking is feasible in near real-time. It is
important to note that there is no inherent limitation that prevents the proposed method to be
used on any other type of depth images resulting, for example, from standard dense stereo
reconstruction methods.
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Abstract

We propose a method that relies on markerless visual ob-
servations to track the full articulation of two hands that in-
teract with each-other in a complex, unconstrained manner.
We formulate this as an optimization problem whose 54-
dimensional parameter space represents all possible con-
figurations of two hands, each represented as a kinematic
structure with 26 Degrees of Freedom (DoFs). To solve this
problem, we employ Particle Swarm Optimization (PSO),
an evolutionary, stochastic optimization method with the
objective of finding the two-hands configuration that best
explains the RGB-D observations provided by a Kinect sen-
sor. To the best of our knowledge, the proposed method
is the first to attempt and achieve the articulated motion
tracking of two strongly interacting hands. Extensive quan-
titative and qualitative experiments with simulated and real
world image sequences demonstrate that an accurate and
efficient solution of this problem is indeed feasible.

1. Introduction
The problem of tracking the articulation of the human

body from markerless visual observations is of both theo-
retical interest and practical importance. From a theoretical
point of view, the problem is intriguing since humans solve
it effortlessly and effectively. From an applications ori-
ented perspective, a solution to this problem facilitates non-
intrusive human motion capture and constitutes a funda-
mental building block towards human activity recognition,
human-computer interaction, robot learning by demonstra-
tion, etc.

Despite the significant progress in the last years, the
problem remains unsolved in its full extent [12]. Difficul-
ties stem from the high dimensionality of the configuration
space of the human body, the varying appearance of humans
and the self-occlusions of human parts.

In this work we are particularly interested in the problem
of tracking hand articulations. We define a hand pose to be a
point in a 26-dimensional configuration space that spans the
global position and orientation of the hand plus the 20 joint

Figure 1. Left: A view of two interacting hands. Right: The con-
figuration of the two hands as estimated by the proposed method,
superimposed on the left frame (cropped 320× 240 regions from
the original 640× 480 images).

angles between various hand parts. Because of its flexibility
that induces generally a concave shape, a performing hand
is severely self occluded even when observed from purpose-
fully selected viewpoints. Thus, the markerless tracking of
a hand constitutes a high dimensional search problem that
needs to be solved based on incomplete and possibly am-
biguous observations.

Tracking two hands in interaction with each other is an
even more interesting problem. The interest stems from the
fact that a plethora of human activities (object grasping and
manipulation, sign language, social interaction) involve col-
laborative use and strong interaction of both hands. Con-
sider, as an example, the situation shown in Fig. 1. For a
human observer, the interpretation of the joint configuration
of the two hands is immediate. Even more interestingly, this
interpretation is associated to the joint hand configuration
rather than to each individual hand. Thus, the availability
of computational techniques that are able to jointly infer the
full articulation of the hands in such scenarios, opens new
avenues in the interpretation of human activities.

Compared to the already difficult problem of tracking the
articulation of a single hand, the problem of tracking two
hands is even more challenging. If the two hands are clearly
separated in the field of view of the observer, it would
suffice to solve two instances of the single-hand tracking
problem. However, if hands interact with each other, the
situation becomes much more complicated. Besides the
self-occlusions of each individual hand, further occlusions
are introduced because of the complex inter-relations of

1



the two hands, each hiding important observations of the
other. Even further, the available, fewer observations be-
come more ambiguous since the existence of parts from two
hands increase the number of potential interpretations. Es-
sentially, each hand acts as a distractor to the interpretation
of the other.

The direct implication of the above observations is that
it is very difficult for any tracker of a single hand to cope
effectively with the problem of tracking two interacting
hands. The configuration of each hand can only be inferred
in the context of its interaction with the other. This calls for
a holistic approach, in which a joint model of the two in-
teracting hands is considered. In such a framework, the de-
sired outcome is the two-hands configuration that not only
best explains all available observations, but also the ones
that are missing due to the hands interaction.

In this paper we follow this approach. We consider a
model of two interacting hands and we formulate an opti-
mization problem whose solution is the position, pose and
full articulation of two hands that best explain the set of all
available visual observations. We also demonstrate that de-
spite its large dimensionality, this problem can be solved
both effectively and efficiently.

1.1. Related work

To the best of our knowledge, there is no existing work
that addresses the problem of tracking the full articulation of
two interacting hands from markerless visual observations.
We therefore provide an overview of works on single-hand
articulation tracking and discuss their potential extendabil-
ity to the problem of tracking two interacting hands.

Single hand pose estimation and tracking methods can
be categorized into appearance- and model-based ones [6].
Appearance-based methods employ an offline training pro-
cess for establishing a mapping from a set of image features
to a finite set of hand model configurations [3, 19, 23, 18,
20]. The discriminative power of these methods depends
on the invariance properties of the employed features, the
number and the diversity of the postures to be recognized
and the method used to derive the mapping. Appearance-
based methods are appropriate for recognizing a small set
of known and diverse target hand configurations and less
suitable in situations where accurate pose estimation of a
freely performing hand is required. The suitability of such
methods in scenarios involving two hands seems question-
able. This is because the offline training process should
consider the combinatorial space of the configurations of
the two hands as well as the change in appearance of these
configurations because of the different viewpoints of obser-
vation.

Model-based approaches [17, 21, 22, 5, 7, 13, 14, 15]
generate hand model hypotheses and evaluate them on the
available visual observations. Essentially, this is performed

by formulating an optimization problem whose objective
function measures the discrepancy between observed and
synthesized visual cues that are generated based on a cer-
tain hand model hypothesis. The employed optimization
method should be able to evaluate the objective function at
arbitrary points in the multidimensional model parameters
space. Thus, unlike appearance-based methods, most of the
computations need to be performed online. On the posi-
tive side, such methods avoid the time and effort consuming
task of training and they provide continuous solutions to the
problem of hand pose recovery.

Another categorization is based on how partial evidence
regarding the individual rigid parts of the articulated ob-
ject contributes to the final solution [14]. Disjoint evidence
methods [17, 22, 7, 20] consider individual parts in isola-
tion prior to evaluating them against observations. Joint ev-
idence methods [13, 14, 15, 21, 5, 3, 19, 23, 18] consider all
parts in the context of complete articulated object hypothe-
ses. By construction, joint-evidence methods treat part in-
teractions effortlessly, but their computational requirements
are rather high. Disjoint evidence methods usually have
lower computational requirements than joint-evidence ones,
but need to cope explicitly with part interactions such as col-
lisions and occlusions. Since such issues are pronounced in
the problem of two hands tracking, disjoint evidence meth-
ods are expected to perform worse than joint evidence meth-
ods in this problem.

1.2. Contribution

In terms of the previously described classifications, this
paper presents a model-based, joint-evidence method for
tracking the full articulation of two interacting hands. Ob-
servations come from an off-the-shelf Kinect sensor. Two
hands tracking is formulated as an optimization problem.
The objective function to be minimized quantifies the dis-
crepancy between the 3D structure and appearance of hy-
pothesized configurations of two hands and the correspond-
ing visual observations. Optimization is performed through
a variant of a stochastic, evolutionary optimization method
(Particle Swarm Optimization - PSO) tailored to the needs
of the specific problem.

From a methodological point of view, the proposed ap-
proach combines the merits of two recently proposed, state-
of-the-art methods for tracking hand articulations [14, 15].
More specifically, in [14], Oikonomidis et al. proposed a
joint-evidence method for tracking the full articulation of a
single, isolated hand based on the RGB-D data provided by
a Kinect sensor. We extend this approach so that it can track
two strongly interacting hands.

Our method is also related to the one presented in [15]
that tracks a hand interacting with a known rigid object. The
fundamental idea behind that work is to model hand-object
relations and to treat occlusions as a source of information



rather than as a complicating factor. We extend this idea by
demonstrating that it can be exploited effectively in solv-
ing the much more complex problem of tracking two articu-
lated objects (two hands). Additionally, this more complex
problem is solved based on input provided by a compact
Kinect sensor, as opposed to the multicamera calibrated sys-
tem employed in [15].

Experimental results demonstrate that the accuracy
achieved in two hands tracking is in the order of 6mm, in
scenarios involving very complex interaction between two
hands. Interestingly, despite the large increase in the di-
mensionality of the problem compared to [14] (from 27 to
54 problem dimensions), the computational budget required
for achieving this accuracy is only slightly increased.

The major contributions of this work can be summarized
as follows:

• We present the first method for accurate, robust and ef-
ficient tracking of the articulated motion of two hands
in strong interaction, a problem that has never been ad-
dressed before.

• We demonstrate that the core method presented in [14]
can be naturally extended to handle the problem of
tracking the articulation of two interacting hands.

• We demonstrate that the idea of modeling context
and occlusions as presented in [15] can be exploited
towards tracking the articulation of two interacting
hands.

• We demonstrate that despite the doubling of the di-
mensionality of the problem compared to [14], the pro-
posed approach achieves comparable accuracy with a
comparable computational budget.

2. Tracking two interacting hands

The proposed method achieves tracking of two interact-
ing hands by directly attributing sensory information to the
joint articulation of two synthetic and symmetric 3D hand
models, of known size and kinematics (see Fig. 2). For
given articulations of two hands we are able to coarsely
predict what the Kinect would perceive, by simulating the
acquisition process, i.e. producing synthetic depth maps
for specific camera-scene calibrations. Having established
a parametric process that produces comparable data to the
Kinect’s input, we perform tracking by searching for the pa-
rameters that produce depth maps which are most similar to
the actual input.

Tracking is performed in an online fashion, where at
each step and for every new input an optimization problem
is solved. A variant of the PSO search heuristic is used to
minimize the discrepancy between the actual Kinect input

and simulated depth maps, generated from hypothesized ar-
ticulations. The best scoring hypothesis constitutes the so-
lution for the current input. The discrepancy measure is
carefully formulated so that robustness is achieved. To-
wards computational efficiency, temporal continuity is ex-
ploited at each optimization step.

2.1. Input/preprocessing

The input of the Kinect [11] consists of a RGB image I
and a corresponding depth map D, i.e. a depth value for ev-
ery pixel in I . The dimensions of both arrays are 640×480.
A skin color map os is produced from I , by means of [2].
From os and D a new depth map od is computed, where
only depth values of D that correspond to skin colored pix-
els in os are kept.

2.2. Model/search space

We define a parametric model of the joint kinematics of
two hands. As already discussed, it is of vital importance to
consider both hands cojointly, so that we can effectively per-
form inference over their interaction. The parametric model
of the two hands coincides with the search space of each op-
timization step. Each of the hands has 27 parameters, that
represent the hand’s pose (3-D position and 4-D quaternion-
encoded orientation) and 4-D articulations of each of the 5
fingers (a 2-D revolute joint that connects the palm with
the finger and two 1-D revolute joints that connect adja-
cent phallanges). The ranges of parameter values are lin-
early bounded, according to anatomical studies [1]. For two
hands the dimensionality of the search space amounts to
twice the dimensionality for one hand (i.e. 54), as we do
not consider any additional constraints over their joint mo-
tion.

2.3. Simulation/comparable features

For each point h in the search space (see Sec. 2.2) a
mapping to the feature space of the actual observations is
required. We simulate the acquisition process of the depth
sensor of the Kinect by means of rendering. Each point h
defines two 3D skeletons by applying forward kinematics
over the parameters detailed in Sec. 2.2. These skeletons
are skinned with appropriately transformed instances of 3D
spheres and cylinders. The usage of only two primitives
proves to be computationally efficient (see Sec. 2.7). Given
the calibration information C for the Kinect, we rasterize
a depth map rd(h,C) from the implicit 3D structure de-
scribed so far. The resulting model is very similar to the
one used in [14]. The rendered 3D structure is depicted in
Fig. 2(d).

2.4. Discrepancy/objective function

The objective function to be optimized is essentially a
penalty function to be minimized. This penalty is defined



Figure 2. By masking the depth information (b), with a skin color detection performed upon RGB data (a), a depth map (c) of image
regions corresponding to hands is extracted, from Kinect input. The proposed method fits the 54-D joint model of two hands (d) onto these
observations, thus recovering the hand articulation that best explains the observations (e).

with respect to a tracking frame’s observationO = {os, od}
and a rendered depth map rd(h,C) that is generated from
a hypothesis h. The penalty function E(·) consists of two
terms, a prior term P (·) and a data term D(·):

E(O, h,C) = P (h) + λk ·D(O, h,C), (1)

where λk = 2 is a normalization factor.
The box bounds of the search space are not expressive

enough to tightly define the region of valid hand articula-
tions. Within these bounds, P (·) penalizes invalid articu-
lation hypotheses. In this work we invalidate articulations
where adjacent fingers inter-penetrate. Thus,

P (h) =
∑
p∈Q

−min(φ(p, h), 0), (2)

where Q amounts to the pairs of adjacent fingers, and φ is
the abduction-adduction difference (in rads) of adjacent fin-
gers. We have indeed tried elaborate and more computation-
ally expensive collision models to penalize inter-penetration
but we have found simple angle differences to efficiently re-
solve challenging tracking scenarios.

The term D(·) quantifies the incompatibility of input O
to an articulation hypothesis h. Essentially, it is the result
of the comparison of two parts. The first part consists of the
input depth map od and the skin map os. The other part, and
with respect to a hypothesis h, consists of a simulated depth
map rd(h,C) and an implicitly defined skin map rs(h,C),
that is set at points where rd(h,C) is occupied. The main
purpose of D(·) is to penalize depth discrepancies. How-
ever, to make it robust, a few more points need to be ad-
dressed.

Unless depth differences are clampled within a prede-
termined range, large differences, that can be due to noise,
dominate and produce a false high penalty. By clamping
we makeD(·) smoother and, thus, add noise tolerance in its
optimization. Moreover, we also consult the overlap of the
actual and simulated skin maps. More specifically, hypothe-
ses resulting in significant overlap with actual skin maps are
preferred even if they result in slightly greater depth dis-
crepancies. Empirical evaluation has proven that this ap-
proach eliminates strong local minima around the global

minimum and therefore facilitates the convergence of the
optimization process to its true optimum.

The aforementioned are encoded in the following
penalty function:

D(O, h,C) = λ

∑
min(|od − rd|, dM )∑

(os ∨ rm) + ε
+(

1− 2
∑

(os ∧ rm)∑
(os ∧ rm) +

∑
(os ∨ rm)

)
, (3)

where λ = 0.05 acts as a normalization factor and ε is
added to denominators in order to avoid possible divisions
by zero. Differences are normalized over their effective ar-
eas.

2.5. Search/optimization

The challenging task of optimization at each tracking
frame is delegated to the powerful Particle Swarm Opti-
mization (PSO) search heuristic [8, 9]. PSO is an evolution-
ary optimization algorithm that receives an objective func-
tion F (·) and a search space S and outputs the optimum
of F (·) in S, while treating it as a black box. Being evo-
lutionary, it is parameterized with respect to a population
of particles. These parameters amount to the particle count
N and the generation count G. Three additional parame-
ters, namely w (constriction factor [4]), c1 (cognitive com-
ponent) and c2 (social component), adjust the behavior of
the algorithm.

For each generation k and particle i PSO maintains a
state that consists of a global optimum position Gk, a local
optimum Pk,i, the current position xk,i and the current ve-
locity vk,i. Initially, particles are sampled uniformly in S.
At each generation, the velocity of each particle is updated
according to

vk+1,i = w(vk,i+c1r1(Pk,i−xk,i)+c2r2(Gk−xk,i)) (4)

and the current position of each particle is updated accord-
ing to:

xk+1,i = xk,i + vk+1,i. (5)

Pk+1,i is set to

Pk+1,i =

{
xk+1,i, F (xk+1,i) < F (Pk+1,i)
Pk,i, otherwise

(6)



Gk is set to the best scoring particle’s Pk,i:

Gk+1 = Pk+1,l, with l = arg min
m

(F (Pk+1,m)) . (7)

Variables r1, r2 represent uniformly distributed random
numbers in the range [0, 1].

As suggested in [4], we fix the behavioral parameters to
c1 = 2.8, c2 = 1.3 and

w = 2/
∣∣∣2− ψ −√ψ2 − 4ψ

∣∣∣. (8)

We have experimentally confirmed that for the w as de-
fined in Eq.(8), any combination that satisfies c1 + c2 = 4.1
achieves essentially the same optimization performance.

There are traits that make PSO attractive to use in a track-
ing method. It is derivative-agnostic, which makes it easy to
try and optimize arbitrary objective functions, with no limi-
tations over convexity, continuity etc. Moreover, its perfor-
mance depends on essentially two parameters, namely N
and G.

In the proposed method a variant of PSO is considered
that better suites our tracking requirements. As already
stated in [14], the original PSO algorithm has been effec-
tive in accurately recovering the pose of the hand’s palm (6
DoFs). However, less accuracy has been observed for the
fingers (the rest of the 20 DoFs). This occurs due to prema-
ture “collapsing” [9] of the population. In order to alleviate
this, we employ additional randomization over the remain-
ing parameters, so that their range is better explored [24].
This process is applied to the joint parameter space of both
hands (54 DoFs) and for the 40 parameters that regard the
10 fingers.

Additionally, we exploit the parallel nature of PSO by
delegating evaluations of individual particles to distinct
computational cores of a parallel platform. Each generation
is evaluated in parallel, given that the score of each parti-
cle is independent to any other. This introduces significant
benefits with respect to execution times.

2.6. Tracking loop

In order to perform tracking across time we iterate over
instances of the same optimization problem. Each iteration
is performed on new input provided from the Kinect and
yields a new pose estimate. In order to provide such an es-
timate, E(·) is minimized by PSO. What differs from frame
to frame is the input and the effective search area that is
provided to PSO.

For every new frame, the newly acquired input is prepro-
cessed and mapped into the feature space of skin and depth
measurements, as variableO. All subsequent evaluations of
E(·) are performed based on this input. Every hypothesis
h that is generated by PSO is rendered and thus mapped to
the same feature space. PSO drives an exploratory course

Figure 3. Feature mapping of an entire generation of model hy-
potheses that can be generated and evaluated in sub-millisecond
time scale on a GPU.

in which multiple invocations (N × G) of E(O, h,C) are
made. The optimal hypothesis

hmax = arg min
h

E(O, h,C) (9)

is output as the inferred articulation for the current tracking
frame.

Although the original PSO requires a uniform initializa-
tion of its population in S we decide to exploit temporal
continuity and constrain the effective search area, for the
sake of convergence and computational efficiency. To do
so, for every next tracking frame we initialize the popula-
tion to be in the vicinity of hmax of the previous frame. The
optimum hmax of the previous frame is copied to the new
population. The rest of the population consists of random
perturbations of hmax.

2.7. Parallel implementation

The execution time of the presented tracking loop is
dominated by the evaluation of the data term D(·) of the
penalty function E(·) (see Eq. (1)). 3D rendering and oper-
ations over entire maps induce costs that are prohibitive for
mainstream CPUs but can be efficiently handled by con-
temporary GPUs. We exploit parallelism by considering
renderings of multiple hypotheses, simultaneously, in big
tiled renderings. Essentially, an entire generation is feature-
mapped upon a single 2D array, as shown in Fig.3. Per
pixel computations are implemented using shaders and the
required summations are performed by means of mip (mul-
tum in parvo) mapping with the addition operator. Follow-
ing the guidelines of [10], we employ hardware instancing
and multi-viewport clipping in order to efficiently cope with
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Figure 4. Quantitative evaluation of the performance of the method
with respect to the PSO parameters.

many model hypotheses that consist of homogeneous trans-
formations of just a sphere and a cylinder.

3. Experimental evaluation
Synthetic data as well as real-world sequences obtained

by a Kinect sensor were used to experimentally evaluate the
proposed method. Experiments were performed on a com-
puter equipped with a quad-core Intel i7 950 CPU, 6 GBs
RAM and an Nvidia GTX 580 GPU with 1581GFlops pro-
cessing power and 1.5 GBs of memory.

3.1. Experiments on synthetic data

The quantitative evaluation of the proposed method has
been performed using synthetic data. This approach is often
encountered in the relevant literature [7, 13, 15, 14] because
ground truth data for real-world image sequences is hard to
obtain. The employed synthetic sequence consists of 300
consecutive hand poses that encode typical interactions of
two hands. Rendering was used to synthesize the required
input O. To quantify the accuracy in hand pose estima-
tion, we adopt the metric used in [7]. More specifically, the
distance between corresponding phalanx endpoints in the
ground truth and in the estimated hand poses is measured.
The average of all these distances, for both hands, over all
the frames of the sequence constitutes the resulting error
estimate ∆. It is worth noting that these distances include
estimations for hand points that, because of occlusions, are
not observable.

The influence of several factors to the performance of the
method was assessed in respective experiments. Figure 4
illustrates the behavior of the method with respect to the
PSO parameters (number of generations and particles per
generation). The product of these parameters determines
the computational budget of the proposed methodology, i.e.
the number of objective function evaluations. The horizon-

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

16

18

20

M
d
(m

m
)

average depth (m)

Figure 5. Quantitative evaluation of the performance of the method
with respect to the average distance from the sensor.

tal axis of the plot denotes the number of PSO generations.
Each plot of the graph corresponds to a different number
of particles per generation. Each point in each plot is the
median Md of the error ∆ for 20 repetitions of an experi-
ment run with the specific parameters. A first observation
is that Md decreases monotonically as the number of gen-
erations increase. Additionally, as the particles per gener-
ation increase, the resulting error decreases. Nevertheless,
employing more that 45 generations and more than 64 par-
ticles results in disproportionally small improvement of the
method’s accuracy. The gains are at most 2mm or roughly
30%, for a 5-fold increase in computational budget. For this
reason, the configuration of 64 particles for 45 generations
was retained in all further experiments. In terms of compu-
tational performance, tracking is achieved at a framerate of
4Hz on the computational infrastructure described in Sec.3.

In another experiment we assessed the effect of varying
the distance of the hands from the hypothesized sensor, ex-
ploring the usefulness of the method in different application
scenarios that require observations of a certain scene at dif-
ferent scales (e.g., close-up views of hands versus distant
views of a human and his/her broader environment). To do
this, we generated the same synthetic sequences at different
average depths. The results of this experiment are presented
in Fig. 5. At a distance of 50cm the error is equal to 6mm.
As the distance increases, the error also increases; Interest-
ingly though, it doesn’t exceed 8.5mm even at an average
distance of 2.5m.

The tolerance of the method to noisy observations was
also evaluated. Two types of noise were considered. Er-
rors in depth estimation were modeled as a Gaussian dis-
tribution centered around the actual depth value with the
variance controlling the amount of noise. Skin-color seg-
mentation errors were treated similarly to [18], by randomly
flipping the label (skin/non-skin) of a percentage of pixels
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Figure 7. Quantitative evaluation of the performance of the method
with respect to viewpoint variation.

in the synthetic skin mask. Figure 6 plots the method’s er-
ror in hand pose estimation for different levels of depth and
skin segmentation error. As it can be verified, the hand pose
recovery error is bounded in the range [6mm..23mm], even
in data sets very heavily contaminated with noise.

The accuracy in hand pose estimation with respect to
viewpoint variations was also assessed. This was achieved
by placing the virtual camera at 8 positions dispersed on
the surface of a hemisphere placed around the hypothesized
scene. The data points of Fig. 7 demonstrate that viewpoint
variations do not significantly affect the performance of the
method.

In a final experiment, we measured the performance of
a single hand tracker [14] on the synthetic data set of the
previous experiments. To do so, we employed our own im-
plementation of that method. The resulting errorMd for this
experiment was 145mm. In practice, the single hand tracker
is able to track accurately one of the two hands while it is
not in interaction with the other. However, as soon as occlu-

Figure 8. Snapshots from an experiment where two hands inter-
act with each other (cropped 320 × 240 regions from the original
640× 480 images).

sions become extended due to hands interaction (for exam-
ple, when one hand passes in front of the other), the track is
often completely lost.

3.2. Experiments on real world sequences

Towards the qualitative evaluation of the proposed ap-
proach in real data, several long real-world image sequences
were captured using the PrimeSense Sensor Module of
OpenNI [16]. The supplemental material accompanying
the paper provides a video with the results obtained from



one such sequence (1776 frames). Indicative snapshots are
shown in Fig. 8. As it can be observed, the estimated hand
models are in very close agreement with the image data, de-
spite the complex articulation and strong interactions of the
two hands.

4. Discussion
We proposed a method for tracking the full articulation

of two strongly interacting hands, based on observations
acquired by the Kinect sensor. The problem was formu-
lated as an optimization problem in a 54-dimensional pa-
rameter space spanning all possible configurations of two
hands. Optimization seeks for the joint hand configuration
that minimizes the discrepancy between rendered hand hy-
potheses and actual visual observations. Particle Swarm
Optimization proved to be competent in solving this high
dimensional optimization problem. More specifically, ex-
tensive experimental results demonstrated that accurate and
robust tracking of two interacting hands can be achieved
with an accuracy of 6mm at a framerate of 4Hz. Exper-
imental results also demonstrated that in the presence of
strong hand interactions, the straightforward alternative of
solving two instances of a single hand tracking problem re-
sults in a much lower accuracy. The proposed approach is
the first to achieve a solution to this interesting and chal-
lenging problem. Hopefully, it will constitute an important
building block in a large spectrum of application domains
that critically depend on the accurate markerless perception
of bi-manual human activities.
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Abstract

A dynamic scene and, therefore, its visual observations are invariably determined by
the laws of physics. We demonstrate an illustrative case where physical explanation,
as a vision prior, is not a commodity but a necessity. By considering the problem of
ball motion estimation we show how physics-based simulation in conjunction with vi-
sual processes can lead to the reduction of the visual input required to infer physical
attributes of the observed world. Even further, we show that the proposed methodology
manages to reveal certain physical attributes of the observed scene that are difficult or
even impossible to extract by other means. A series of experiments on synthetic data as
well as experiments with image sequences of an actual ball, support the validity of the
proposed approach. The use of generic tools and the top-down nature of the proposed ap-
proach make it general enough to be a likely candidate for handling even more complex
problems in larger contexts.

1 Introduction
Computer vision is concerned with the understanding of the physical world through the anal-
ysis of its image(s). Such an understanding may be defined at various levels of abstraction.
Whatever the level of abstraction may be, this understanding is always associated with a
context, i.e. an assumption of a generative process that produces the observations. It is con-
venient to think about such a context as a set of rules that transform some initial conditions
into images. In this work, we are interested in deriving a physically plausible explanation of
a dynamic scene. Thus, the respective rules governing the generative process are the laws of
physics.

We argue that by exploiting this type of context as a prior, we can derive very useful
information for a dynamic scene, that is difficult or even impossible to derive by other means.
Consider for example the testbed scenario according to which we are interested in estimating
the state of a uniformly colored bouncing ball through its observation by a single or by
multiple calibrated cameras (Fig. 1). By employing standard computer vision techniques,
accounting for the position of the ball at each time step is not trivial. The possibly inadequate
acquisition frame rate may lead to aliasing and the possibly large shutter time may lead to

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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(a)

2D observation
Angular velocity
Estimation

(b)

Figure 1: A ball is thrown towards a table with a high back-spin. By incorporating physics-
based simulation, we infer the ball’s 3D trajectory (a), and its linear and angular velocities
from a single camera (cam. 7). The proposed method identifies that a back-spin is the cause
of the reduction of the outgoing angle of the bounce. The green ellipses in (b) are projections
of an equator of the ball and the arrows represent the direction of the estimated angular speed.

motion blur. On top of the above mentioned difficulties, for some aspects of the state of
the ball (i.e., its orientation and/or angular velocity) there is no direct evidence, whatsoever.
The problem becomes even more challenging when we are interested in solving the above
problems based on single-camera observations and/or when, due to occlusions, the available
set of visual observations becomes even more limited.

We show that through the direct incorporation of explicit physics we are able to tackle
these challenges. We demonstrate how hidden variables like the position of the ball when it is
occluded, its orientation and angular velocities, can be estimated. We highlight that physics
provide a strong prior, which permits the successful treatment of these challenges, even for
the case of single camera 2D observations that may be incomplete due to occlusions. The
incorporation of physics is performed in a clean, top-down fashion that could be generalized
and scaled towards solving larger problems in different contexts.

The proposed framework becomes possible because of the evolution of optimization
methods, the advancement of physics-based simulation and the availability of substantial
computational power. Powerful optimization techniques enable efficient optimization of
hard, multi-dimensional problems [16]. Physics simulation has advanced to a point where
computational demands can be efficiently handled, realism is a common denominator in
most physics simulators and the extension of simulators is easy due to their carefully de-
signed software architectures. Moreover, parallel multicore technologies like contemporary
CPUs and GPUs allow for the computation of thousands of simulations per second. Although
not exploited in this work, the latter further extends our method’s potential.

2 Relevant work
In the past, several researchers have stressed the benefits stemming from the consideration
of physics as integral part of computer vision processes. Although beyond the scope of this
work, we mention approaches [12, 17, 19, 25] that exploit the physical nature of light to
process images and estimate or predict otherwise unaccountable information.

The prevalent case study of employing physics in vision is the problem of 3D human
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tracking. The dynamics of the human body can be exploited towards the formation of strong
priors. Popović and Witkin [21] rectified 3D motion capture data to make them compli-
ant to physical constraints. Vondrak et al. [24] fused motion planning, contact dynamics
and a ground assumption to track humans from multiple cameras. Brubaker et al. [6, 7, 9]
employed realistic metaphors of the lower body dynamics to estimate and predict walking.
Going further, they incorporated a friction model for a ground that affords human motion
upon it [8].

There are also approaches that reflect physics implicitly or metaphorically. Brand et
al. [4, 5] exploited the physical notion of causality in order to perform qualitative reasoning
in computer vision problems. Delamarre [14] assigned a physical behaviour to a contour
model that drove the optimization process of recovering it. Chen et al. [11] were able to
track a basketball, while in the air and despite occlusions, by assuming the parabolic na-
ture of free flight. Papadourakis and Argyros [20] identified the physical notion of object
permanence as the ambiguity resolver for the case of multiple objects tracking. Sethi and
Roy-Chowdhury [22] gave physical substance to image features and used methods, usually
employed in physics, in order to model activities in image sequences.

This work is most closely related to the works in [3, 15, 18]. Metaxas and Terzopou-
los [18] defined a continuous Kalman filter that was able to track a deformable object. This
was achieved by a detailed motion model that was tightly coupled to the optimization pro-
cess. Although interesting, the extensibility of their approach is hindered by this tight cou-
pling. Bhat et al. [3] performed 3D tracking of an object by searching over parameterized
experiments that optimally project back to an image sequence. However, the shape of the
object and the restriction that it is tracked while in flight does not expose the full potential
of employing physics. Finally, Duff and Wyatt [15] used physical simulation and search
heuristics to track a fast moving ball, despite occlusions. They reasoned upon the ball’s 2D
position but they did not consider the 3D case, or the hidden variables of ball orientation and
angular velocity.

Despite the significant amount of existing work, no existing study demonstrates the full
potential of binding vision to physics-based simulation. We try to fill this gap by proposing
a method that is generic, top-down, simulation based and incorporates realistic simulation of
physics. As a result, and to the best of our knowledge, the proposed method is the first to
consider physical properties that can be estimated through physics-based simulation, even in
the case of single camera observations and severe occlusions.

3 Methodology
Let a colored ball be thrown on a table so that it bounces for several times and then rests.
The 2D image position of the ball can be easily recovered for every time step and for every
camera that views it for the case of moderate velocities. Accurate recovery is problematic
for the case of larger velocities and especially around bounces, due to blurring and aliasing
(see Fig. 1). These problems hinder a bottom-up resolution of the problem, but, as it will be
shown, they do not prevent a top-down approach from being effective.

We consider the physical explanation e of the bouncing of the observed ball. We assume
that certain scene properties (mass, inertia, collision properties) and initial conditions (posi-
tion and velocities of the throw), together with the laws of physics, generate a 3D trajectory
which optimally projects back to all cameras and matches the observations o. We define an
objective function S that quantifies the discrepancy between the actual observations and the
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Figure 2: The two phases of the bouncing ball (a) flight and (b) bounce. Red arrows represent
impulses and blue arrows represent velocities. Angular velocities are perpendicular to the
image plane. Black arrows represent the air flow with respect to the flying ball.

camera back-projection of a simulated parameterized ball throwing experiment. The latter
can be sub-sampled to match the acquisition rate of the actual camera set. This also accounts
for the aliasing effects of the acquisition process.

Since whatever is observed must be physically plausible, the physical explanation e is
the minimizer parameter vector x of this objective function. In notation:

e = argmin
x

S (o,x) where S (o,x) = BackProjectionError(o,Simulation(x)) . (1)

Our method receives 2D or 3D trajectories that represent the course of a bouncing ball and
outputs the parameters of a simulated experiment that optimally matches the observations. In
the next sections we describe in detail the parameter space of the simulations (search space
for e), the simulation procedure as well as the minimization process.

3.1 Physics of the bouncing ball
In order to account for the dynamics of the trajectory of a bouncing ball we explicitly reason
upon an idealized, yet sufficient, physics model. We identify two alternating phases, namely
ball flying and ball bouncing. The two phases are detailed in Fig. 2. Since we consider
average effects over generally small time intervals, we discuss impulses rather than forces.
For a time interval dt and a function of force ~f over that interval, the respective impulse is
defined as f̂ =

∫
~f dt.

During its flight (Fig. 2(a)), the ball undergoes velocity changes that are inflicted by the
gravitational attraction and the resistance of the air. Gravity constantly exerts a downwards
impulse of f̂g = m ·~g, where m is the mass of the ball and ~g is the gravitational acceleration.
Given enough air resistance, at each time step t, the linear velocity ~ut and angular velocity
~ωt are decreased in magnitude due to friction (linear damping dl and angular damping da).
Also, an impulse f̂m = K · (~ut ×~ωt) that is perpendicular to the linear velocity and the axis of
angular velocity, makes the ball travel in a curved trajectory [1]. For every part of the flight
the standard equations of motion hold and suffice in order to predict the state of the ball.

At every bounce (Fig. 2(b)), a portion of the ball’s vertical energy is lost according to
an elasticity factor β ∈ [0,1]. An amount of dynamic friction redistributes energy between
its linear and angular motion in the horizontal, according to a friction factor α ∈ [−1,1].
The friction model adopted here is an extension of [2] to the 3D case and identifies friction
as the reason that scales the total linear velocity ~vt+1 of the contact point. This modeling
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accounts for a great variety of frictions. For example, both the glass ball (no friction) and
the super ball (extreme friction) can be modeled for α = 1 and α = −1, respectively. The
vertical axis of rotation has no contribution to the horizontal contact. Moreover, the impulse
which changes the horizontal linear momentum is also the negative impulse that changes
the horizontal angular momentum. All the aforementioned constraints define a system of
equations:

Sy~ut+1 = −βSy~ut
Sy~ωt+1 = Sy~ωt
Sxz~vt+1 = αSxz~vt
m ·~p×Sxz (~vt+1−~vt) = −I ·Sxz (~ωt+1−~ωt)

with
Sy = Diag([0,1,0])
Sxz = Diag([1,0,1])
~vk =~uk +~p×~ωk

(2)

These equations linearly relate the pre-bounce velocities ~ut , ~ωt to post-bounce velocities
~ut+1, ~ωt+1. Solving this system for time t +1 yields the post-bouncing state of the ball.

3.2 Physics-based simulation
Ubiquitous physics simulators are already able to account for the most part of the pre-
sented physics modeling. They also ease the incorporation of more detailed models via
modular architectures that are carefully designed for that purpose. In our scenario we aug-
ment such a simulator by incorporating the effects of f̂g and f̂m and by adjusting the col-
lision module so that it also accounts for the exchange of horizontal energy. The verti-
cal is already in agreement with our equations. The parameter vector of a simulation is
(m, I,β ,α,dl ,da,K,~s0,~u0, ~ω0,T ). The state of the ball

(
~lt ,~qt ,~ut , ~ωt

)
is the result of the in-

vocation of the simulator for a given parameter vector, where t is a time step of the whole
duration T and~lt ,~qt ,~ut , ~ωt represent position, orientation, linear and angular velocity (all in
3D space).

3.3 Optimization through Differential Evolution (DE)
Differential Evolution (DE) [13, 23] is an evolutionary optimization method. It depends
on only a few parameters that have an intuitive explanation and exhibits remarkable per-
formance in difficult problems of large dimensionality. DE effectively handles real-valued
multidimensional, potentially non-linear and non-differentiable objective functions. It per-
forms optimization by evolving a set of NH hypotheses Hg and dimensionality D. Being
evolutionary, DE is defined via its mutation, crossover and selection mechanisms that are
applied at every generation g.

During mutation, every hypothesis hg,i ∈ Hg becomes a linear combination of three ran-
domly selected, pairwise different hypotheses of the previous generation g−1.

hg,i = hg−1,r1 +F
(
hg−1,r2 −hg−1,r3

)
,r j ∼U

(
0,
∣∣Hg
∣∣)∧ rk 6= rl∀k, l. (3)

Mutation is controlled by the differentiation factor F ∈ [0,2]. Each mutated hypothesis hg,i is
then combined with hg−1,i in order to produce a replacement candidate ĥg,i in the crossover
phase.

ĥg,i ( j) =
{

hg,i ( j) , r j ≤CR∨ j = idxg,i
hg−1,i ( j) , otherwise , j = 1, . . . ,D,r j ∼U (0,1) , idxg,i ∼U (1,D)

(4)
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In Eq. (4), hg,i ( j) denotes the j-th component of the i-th hypothesis in the g-th generation.
The crossover constant CR controls the combination of individual parameters of hg,i and
hg−1,i. A random parameter index idxg,i is preselected in order to ensure that at least one
parameter of the mutated vector will survive the crossover.

Finally, in the selection phase, the replacement candidate actually replaces the original
one in the next generation, if it scores better in the objective function.

The original algorithm is parallel, in the sense that two consecutive generations are two
distinct sets. We consider a serial variant, where the two generations are mixed. This means
that a mutation may be based on already mutated vectors in the same generation. We have
experimentally observed this mixing to add quicker reflexes to the algorithm, leading to
faster convergence. We also consider a dithering parameter δ that modulates F at each
generation. Dithering improves convergence and helps in avoiding local optima [10]. The
DE variant of our choice appears with the coding DE/rand/1/bin in [23]. The input of DE is a
real-valued objective function f (in our case, BackProjectionError in Eq. (1)), the number of
generations NG, hypotheses per generation NH and constants F,CR,δ . The output of DE is
the real-valued parameter vector that optimizes f . In all experiments we used the following
parameterization for DE: (NG,NH ,F,CR,δ ) = (300,72,0.9,0.9,1.5).

4 Experimental results
A series of experiments were conducted to assess our method’s ability to account for 3D and
2D observations of a bouncing ball. From an implementation point of view, we used the DE
implementation of the SwarmOps1 library, the Newton Game Dynamics2 simulator and the
MATLAB3 platform for the rest of the logic.

4.1 Results on synthesized image sequences
A first series of experiments were carried out to assess the capability of the proposed method
to come up with physically plausible explanations of various simulated ball throws, per-
formed in different world contexts and initial conditions. We distinguished the parameters
representing scene properties (m, I,β ,α,dl ,da,K) and those representing initial conditions
(~s0,~u0, ~ω0). We generated 3 random scene property parameter vectors and 3 random ini-
tial condition vectors. We then considered all possible combinations resulting in a total
of 9 experiments. The experiment parameterizations generated 9 ball 3D trajectories for a
time duration of T = 4s, each. Each 3D trajectory was considered in conjunction with 6
levels of Gaussian noise at each of the 3 spatial dimensions, separately and with variances
0m, 0.03m,0.05m,0.1m, 0.2m and 0.5m, respectively. For each set of parameters, 20 rep-
etitions were executed. This protocol led to a total of 3× 3× 6× 20 = 1080 experiments
accounting for various world properties, initial conditions and amounts of noise. For each
experiment, the physics-based simulator produced a ground truth 3D trajectory of the ball
and the proposed method was employed to provide a physical explanation of it. We evaluated
the optimization accuracy by measuring, for each experiment, the average of the Euclidean
distances between corresponding points of the simulated and the recovered 3D ball trajec-
tories. The results presented in Fig. 3(a) show that the proposed method is able to perform

1http://www.hvass-labs.org/projects/swarmops/c/
2http://www.newtongamedynamics.com
3http://www.mathworks.com/products/matlab/
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Figure 3: The mean values and standard deviations for the errors on the experiments
with (a) synthetic and (b) real observations.
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Figure 4: Examples of actual and estimated 3D trajectories. The illustrated trajectories have
high left, low left and high right curvature, respectively. The respective average trajectory
point estimation errors were 1.38cm, 0.75cm and 0.83cm.

well even under severe Gaussian noise. This is because by conception, the method allows
for physically plausible solutions, only. Thus, observations that are heavily contaminated by
this type of noise cannot distract the estimation towards physically implausible solutions.

4.2 Multiview estimation of 3D trajectories

Experiments analogous to those of Sec. 4.1 were also performed in the real world, i.e., using
multicamera observations of an actual bouncing ball. For these experiments, we employed
the setup that is illustrated in Fig. 1(a). It consists of a 2×1m2 hard table, a red table tennis
ball of radius 2cm, and 8 synchronized and calibrated Flea2 PointGrey cameras. All cameras
provided images at a resolution of 1280×960 and at an acquisition rate of 30 f ps. Processing
was performed on a workstation that has an Intel Core i7 950 CPU @ 3.07Ghz and 6GB of
RAM. All computations were performed on a single thread of a single core of the CPU.

As a first step, the ball was detected in every frame for all sequences (all cameras inclu-
sive). We applied color thresholding to isolate red areas in every frame. We then filtered
each extracted connected blob based on its shape, to ensure high confidence detection and
excluded partially occluded and/or significantly blurred detections. 3D ball positions were
then estimated through multiview 3D reconstruction of the ball centroids.

We conducted several ball throwing experiments in our physical setup. We selected 8
of them according to our empirical criterion of diversity. Each one was input to our method
20 times. The optimization process of Sec. 4.1 was employed, where synthetic data were
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Figure 5: Estimation of the 3D trajectory of a ball from single camera 2D observations
(camera 3) and the assumption of a given physical world.

replaced by real data. The obtained results are presented in Fig. 3(b). Some examples of
actual trajectories and the respective estimates are shown in Fig. 4. As it can be verified, the
proposed method faithfully reproduces the actual 3D observations.

4.3 Single view estimation of 3D trajectories
We are interested in estimating the ball 3D trajectory by a single camera. Without any
physics-based prior information and for the case of a ball of known size, single view ball
3D localization depends on the ability to accurately estimate the ball’s projected shape and
size. In practice, this is problematic due to acquisition and processing artifacts, which lead
to errors in depth estimation that are difficult to treat in a bottom-up fashion. However, by
modeling the physics of the process, we are able to infer depth from a more reliable source,
the 2D trajectory of the ball on the image plane of a single camera. To demonstrate this, we
optimized S for 2D observations of a single camera and the non trivial cases of non-planar
(due to spin) trajectories. During optimization, the simulator generated 3D data from which
2D reference trajectories were produced by means of projection. The back-projection error,
i.e., the average Euclidean distance between back-projected and observed 2D positions of
the ball was guiding the optimization process. An exemplar 3D estimation is illustrated in
Fig. 5. It can be verified that the estimation from a single camera is almost indistinguishable
from the ground truth.

Interestingly, no post-processing is required to enforce the plausibility of the solution be-
cause implausible hypotheses are not considered at all. Even more importantly, even though
3D estimation from 2D trajectories relies on the knowledge of the respective ball heights,
we do not account for this knowledge explicitly. 3D reconstruction comes effortlessly, as a
byproduct of physics-based simulation. Another interesting observation is that the points at
which bounces are observable suffer from aliasing. However, since we also sub-sample the
simulator’s behavior at real acquisition rate, we also account for this type of aliasing.

4.4 Seeing through walls with a single camera
We also tested our method’s effectiveness under considerable lack of constraints, i.e., in the
case of partial observations due to occlusions. We recorded ball throws that were largely
invisible to camera 6 due to a purposefully placed large obstacle (see Fig. 6(a)). Based on
this partial evidence, the proposed method estimated the 3D trajectory of the ball from the
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Figure 6: Single view estimation of the 3D trajectory of a ball from partial 2D observations
(camera 6) and the assumption of a given physical world.

(single) view of camera 6. The ball was still visible to some of the rest of the cameras. This
information was only used to estimate a kind of ground truth for the 3D trajectory of the ball.
Figure 6 shows the actual observations, the ball trajectory as this was estimated by camera
6 and the ground truth as this was measured by the rest of the cameras. The estimation of
the 3D trajectory (see Fig. 6(b)) is not that accurate due to the lack of enough constraints.
Still, it is quite satisfactory given the fact that it has been obtained through single camera
observation and in the presence of occlusions.

4.5 Inferring angular velocity

The ball’s angular velocity cannot be estimated by any direct vision method in any of the
considered experiments. However, evidence regarding this parameter is encapsulated in the
overall dynamic behavior of the ball. By seeking for a physically plausible explanation of
the observed scene, the proposed approach reveals, as a byproduct, information regarding
the hidden variable of angular velocity.

We performed a series of ball throws with high back-spin, so that the ball resists its origi-
nal tendency to move forward (Fig.1). We then optimized S for the resulting 2D observations
of camera 7. An exemplar bounce is shown in Fig. 1(b). The proposed method inferred the
3D state of the ball accurately (once more, ground truth and estimated ball positions are
indistinguishable). Moreover, as demonstrated in Fig. 1(b), we were able to compute a qual-
itative measure of the ball’s angular velocity.

5 Summary

We presented a method that interprets a dynamic scene by binding vision to physics based
simulation. We combined a powerful optimization method and a detailed physics model
of a bouncing ball in order to track the latter in challenging scenarios. We experimentally
demonstrated that accounting for physics does not simply constitute yet another comple-
mentary source of information but rather, a strong prior that permits the treatment of under-
constrained vision problems. In fact, we demonstrated that by incorporating physics, we
may require less cameras/observations to obtain the same type of information or even gain
access to information that is otherwise “invisible” to a vision system. Given the continuous
advancement in optimization techniques [16], simulation tools and computational power,
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we believe that the proposed method holds great potential towards addressing problems of
greater dimensionality and complexity.

Acknowledgments
This work was partially supported by the IST-FP7-IP-215821 project GRASP. The contribu-
tions of E. Tzamali, member of CML/FORTH, and P. Padeleris, member of CVRL/FORTH,
are gratefully acknowledged.

References
[1] A. Armenti. The Physics of Sports. Copernicus Books, 1992.

[2] P.J. Aston and R. Shail. The Dynamics of a Bouncing Superball with Spin. Dynamical
Systems, 22(3):291–322, 2007.
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Abstract

We present a generic computational framework that exploits GPU processing to cope
with the significant computational requirements of a class of model-based vision prob-
lems. We study the structure of this class of problems and map the involved processes to
contemporary GPU architectures. The proposed framework has been validated through
its application to various instances of the problem of model-based 3D hand tracking.
We show that through the exploitation of this framework near real-time performance is
achieved in problems that are prohibitively expensive to solve on CPU-only architec-
tures. Additional experiments performed in various GPU architectures demonstrate the
scalability of the approach and the distribution of the execution time among the involved
processes.

1 Introduction

In computer vision, several problems are solved by employing search and optimization meth-
ods. For example, in top-down model-based approaches, model instantiations are searched
for or fitted in observations, in specific contexts. In this work we are interested in the class
of top-down methods that estimate the pose and/or track the articulation of piecewise rigid
objects, based on multiple visual cues, such as color images, depth maps etc. Depending on
the employed model, the problem can be as simple as the recovery of the 3D position and
pose of a rigid object or as complex as the tracking of articulated objects such as the human
body or hand.

This broad class of problems is amenable to a generic formulation. For a given object
model, candidate hypotheses can be generated. Given a process that quantifies the com-
patibility of a hypothesis to the observations and a systematic approach for generating the
hypotheses, the problem can be solved by searching for the best scoring hypothesis. The
scoring process ultimately reduces to comparing model hypotheses and observations at the
pixel level, on a pre-defined feature space. The major drawback of this generic formulation
is its computational requirements stemming from the significant processing associated to the
scoring criterion as well as to the evaluation of mutliple hypotheses. Thus, the definition of an
efficient computational framework that addresses the computational requirements of related
methods is very important to their deployment in real-world applications. In this work, we
propose such a computational framework that is based on the careful mapping of the involved
processes to GPU architectures.

2 Relevant Work

Many computer vision tasks are susceptible to GPU acceleration. This is well understood
and has lately been availed by a number of researchers, who have proposed efficient solutions
for a variety of vision problems. For example, Choudhary et al. [1] were able to accelerate
bundle adjustment and perform faster large-scale 3D reconstruction through a CPU/GPU ar-
chitecture. Fulkerson and Soatto [5] provided a CUDA-based GPU implementation of the
exact quick shift algorithm that enables 10 − 50 times faster image segmentation compared

TR-420— FORTH-ICS, Jul.2011 1 Introduction



GPU-powered 3D model-based vision 2

to a CPU implementation. Gwosdek et al. [7] performed fast variational optic flow computa-
tions by accelerating the employed Fast Explicit Diffusion Solver on the GPU using CUDA.
Stühmer et al. [17] accelerated a Generalized Thresholding Scheme using CUDA, in order to
also perform variational optic flow, in real-time. Tzevanidis et al. [18] constructed textured
3D meshes from multicamera observations in real time, by means of an efficient CUDA-based
3D visual hull computation. Zhu et al. [20] studied GPU accelerated dense stereo computa-
tions and demonstrated that both accuracy preservation and speed increase can be achieved in
a transition from CPU-based to GPU-based algorithms.

GPU-based solutions have also been proposed for instances of the problems of pose esti-
mation and articulated object tracking, that is the class of problems relevant to this work. De
La Gorce et al. [2] employed a realistic textured 3D model of a human hand in order to track it
in image sequences. GPU acceleration came in the form of a straightforward rendering mech-
anism that was invoked in a per hypothesis basis. Hammer et al. [8] took GPU acceleration
further by considering multiple hypotheses simultaneously in tiled renderings, again with re-
spect to 3D hand tracking. Ganapathi et al. [6] followed a similar approach for the problem of
3D human body pose estimation. Although brief, the described GPU acceleration raises some
important issues that are also addressed in this work. Friborg et al. [4] reported a detailed
CUDA-based implementation of an inherently parallel likelihood computational scheme, in
the context of articulated object tracking.

Despite the significant amount of existing work, there has not been a generic CPU/GPU
framework that considers a class of problems rather than a single problem instance. Thus, in
this work, we systematically study the structure of a class of 3D model based vision problems
and we propose a generic CPU/GPU framework for addressing their significant computa-
tional requirements. In spite of the common trend, we select a GPU-independent software
architecture, Direct3D, that makes the application of our framework GPU invariant and, si-
multaneously, demonstrates that former GPU software pipelines are not obsolete. Still, we
do consider the potential benefits from graphics-free GPU architectures, such as CUDA and
OpenCL and we provide a brief discussion on their applicability and merits to our problem.
The usefulness of the adopted approach is documented through experimental results obtained
from the application of the proposed framework to various instances of the problem of 3D
hand tracking [12–14] which show that the proposed framework achieves almost real-time
performance in this type of problems. Additional experiments performed in various GPU ar-
chitectures demonstrate the scalability of the approach and the distribution of the execution
time among the involved processes.

3 Methodology

The high-level outline of the proposed framework is illustrated in Fig. 1. We assume that
an observation process that is executed on the CPU, feeds the framework with raw input
data. These data (acquired from a single or a multiple camera system and/or other sensing
modalities) are then transformed into visual cues, that are relevant to the task at hand, through
preprocessing (e.g., background subtraction, edge detection). Given the resulting visual cues,
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Figure 1: The proposed computational framework. Every iteration of the defined loop
amounts to an efficient differentiation of observations and hypotheses, in a top-down, model-
based approach.
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a search process iteratively estimates the parameters of a preselected model by testing the
compatibility of various hypothesized model instances to the visual cues. The hypothesized
model instances are rendered and then feature-mapped, so as to be comparable to the obser-
vations at the pixel level. During each iteration of the search process, hypotheses rendering
is performed on a big tiled map by a tiled rendering process. Since the observed visual cues
and the rendered model hypotheses are comparable at the pixel level, their differentiation and
reduction results in a total observation-hypothesis distance. All computed distances are then
exploited by the search process so that better hypotheses can be further explored. The whole
process terminates as soon as a termination criterion (usually related to the achieved accuracy
and/or a predefined number of iterations) has been met.

3.1 Accelerated vs non accelerated processes

From the briefly described processes, observation is performed on the CPU and preprocess-
ing can be executed either on the CPU or on the GPU. It has been observed [12–14] that
these processes only consume a small fraction of the total execution time and therefore their
acceleration does not have a significant impact on the overall computational performance.

We consider the Black Box Optimization paradigm [9], according to which a search pro-
cess/heuristic investigates the hypothesis space of a model in order to identify the hypothesis
that optimally fits a set of observations. There is only marginal gain in accelerating the core of
such processes, as they are usually very fast. However, it is crucial to accelerate the hypothe-
sis evaluation phase, whose execution time is dominant. Search heuristics can be categorized
into serial and parallel, according to their evaluation scheme [16]. Serial heuristics are re-
stricted to evaluate a single hypothesis at a time, while parallel heuristics do not pose such
restrictions. Parallel heuristics allow for great acceleration gains in their objective function
evaluation phase.

After sets of hypotheses have been proposed, they are decoded into renderable entities, i.e.
arbitrarily complex 3D geometric instances. Decoders are responsible for mapping a multi-
dimensional search space into a decomposition over geometries and their transformations
(e.g., kinematics). In the proposed architecture decoders are dynamic libraries, that are loaded
and selected at run-time. Decoding is worth accelerating since it involves series of matrix
multiplications (geometry transformations).

The described iterative process follows the map-reduce scheme [3]. During the mapping
phase, hypotheses are generated and paired to the corresponding observations (cross product
notation in Fig. 1). At the reduction phase, the differences of the defined pairs are reduced
into hypotheses scores that guide the search process. Both phases are GPU accelerated. Since
the architecture we propose is generic, in the following sections we only describe the design
requirements for each of the involved processes, emphasizing issues related to the GPU ac-
celeration and data communication. Still, in Sec.4, we also provide some details on how the
proposed framework is instantiated to efficiently solve various instances of the problem of 3D
hand tracking.
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Figure 2: The tiled rendering process. Unique data are uploaded to the GPU, exploded into
a tiled plan, processed in the vertex level and output in primary maps for later processing.
Although there might be overlap of projected geometry across tiles during vertex processing
this is remedied at the pixel-processing stage.

3.2 Tiled rendering

This process receives renderable entities and produces a set of primary outputs for further
processing. Renderable entities amount to 3D geometries and geometry transformations and
the primary outputs represent view-space 3D information, i.e. per pixel color, 3D position,
3D normal and depth. The input is provided by the decoder process. The outputs are post-
processed by feature mapping and are thus made directly comparable to the respective obser-
vations.

Contemporary GPU drivers, GPU architectures and rendering pipelines allow for surpris-
ingly fast parallel processing of massive data. Given proper design, linear increase of data
may induce sub-linearly increased execution times, thanks to efficient interleaving of pro-
cessing/reading/writing instructions [11]. We take parallelization to the limit by processing
multiple hypotheses simultaneously. Instead of rendering a single hypothesis at a time we
render multiple hypotheses in big tiled renderings. We separate the rendering and feature
mapping phases in favor of modularity, by employing deferred shading. We perform efficient
data communication and rendering by employing geometry instancing. Proper containment
of instantiated geometry in tiles is achieved through multi-viewport clipping.

3.2.1 Deferred shading

Deferred shading is a technique commonly used in computer graphics [15]. According to this
technique, 3D models are rasterized into a series of primary outputs such as color, position,
depth and surface normal maps. Essentially, each primary output is an image with each pixel
holding 3D information for the rendered models. It is characterized as “deferred” because
actual rendering is postponed and at this phase only primary output is produced. An example
of deferred shading is illustrated in Fig. 3. We employ deferred shading for two reasons:
(a) we need to isolate the feature mapping process from the rest of the processes for the sake
of modularity, (b) primary data may require multiple passes of processing but should not be
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(a) (b) (c) (d) (e)

Figure 3: Deferred Shading. (a) the input of 3D model to be rendered and the primary outputs:
(b) color, (c) position, (d) depth and (e) normal maps.

multiply computed.
Deferred shading, as a conventional rendering process, involves two successive stages,

namely vertex shading and pixel shading. Given 3D models and view parameters, vertex
shading is responsible for transforming every vertex of the input geometry from world co-
ordinates to view coordinates. Then, triangles that are defined by the transformed vertices
are rasterized during pixel-processing. Additionally, z-buffering is used in order to produce
correct rasterizations of occluded geometry. Each stage is configurable through the integra-
tion of appropriate vertex and pixel shaders, i.e. callback routines, that perform the required
processing on the GPU. We implement such shaders in the proposed framework.

3.2.2 Geometry instancing

It is beneficial to reduce communication between the CPU and the GPU in order to eliminate
the respective overhead in execution time. For several computational schemes it is common
that transferring data across memory spaces is more costly than processing itself. Best perfor-
mance is achieved when only a few data are transferred to GPU, which are then “exploded”
and processed and then “imploded” and transferred back to CPU.

In this work, each tile in a tiled rendering is associated with an actual camera view and a
hypothesis. Therefore, for each tile, the following information is required: (a) geometry to be
rendered, (b) world transform of this geometry, (c) projection matrix for the actual view and
(d) the coordinates of the tile’s viewport in the big rendering. However, in a tiled rendering,
multiple tiles might refer to the same geometry and/or the same camera view. Therefore,
there can be a lot of data reuse in the computations. This is amplified in the quite common
case where the geometry itself is so modular that its sub-parts are heavily reused as well
(e.g. as in [12], where the hand model consists of appropriate transforms of two geometric
primitives). In that case it is highly inefficient to replicate data wherever they are required.
Fortunately, in newer shader models (3 and above), hardware instancing enables an efficient
and implicit replication of heavily reused data. Thus, we only upload unique data to the GPU
once and explode them during processing by means of indexed referencing. The indexing
itself is also implicit as we only define a replication pattern rather than the indices themselves
(e.g., repeat datum every n tiles). The corresponding implosion occurs during the reduction
phase (Sec. 3.5).

TR-420— FORTH-ICS, Jul.2011 3.2 Tiled rendering
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3.2.3 Multi-viewport clipping

If multiple tiles are to be rendered simultaneously it must be guaranteed that the rendered
geometry is properly contained therein. That is, we want to avoid rendering the geometry of a
given tile over neighboring tiles. However, conventional rendering pipelines do not consider
this special case. While geometry clipping is traditionally performed at the vertex processing
stage it is complicating to do so in our case. This is because of irregularities in the amount of
data that survives clipping which would require an intricate remedy with respect to our target
platform.

We chose to perform multi-viewport clipping at the pixel-processing stage where it is
both convenient and efficient. After all geometry has been rasterized, a custom pixel shader
is invoked to produce the primary map outputs. During geometry instancing, viewport in-
formation is attached to every vertex (see Sec. 3.2.2). During rasterization, this information
is transferred to the pixels that result from the triangles formed from the processed vertices.
Therefore, at pixel-processing each pixel is associated with the viewport in which it should
be contained. A custom pixel shader clips pixels that are outside their pre-defined viewports
(see Fig. 2).

3.3 Feature mapping

The main task of this process is to make rendered hypotheses comparable to the observations.
This is performed by post-processing the 3D information that is contained in the primary
outputs of the rendering process. Exemplar feature mapping processes can be: (a) the com-
putation of occupancy from the position map, (b) the computation of edges from the normal
map, (c) the computation of discrete layers from the depth map, etc. Feature mapping, as a
straightforward rendering step, is a highly parallel pixel-wise mapping of the primary maps.

3.4 Differentiation

Differentiation is used to quantify the discrepancy between all feature-mapped observations
and the corresponding feature-mapped hypotheses. With geometry instancing (Sec. 3.2.2) al-
ready one part of the observation-hypothesis pairing has been computed: every hypothesis has
been associated to a part of a big tiled rendering which constitutes one operand of the differen-
tiation. The remaining operand needs to be computed in accordance with the aforementioned
pairing.

All observations are uploaded to the GPU in the form of multi-channel real-valued 2D
textures at appropriate predefined slots. Each texture is assigned to a zero-based slot index
that also constitutes its reference. During instancing this information is passed to each tile, so
that the contained hypothesis corresponds to an observation. Thus, two big GPU textures are
defined: (a) an explicit texture that holds the tiled rendering (first operand) and (b) an implicit
tiled texture that is defined by the observation textures (second operand). Those two textures
are now susceptible to any pixel-wise differentiation process that quantifies the discrepancy
between observations and hypotheses. The result of this differentiation is stored in a multi-
channel real-valued 2D texture.
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Figure 4: The differentiation process. Primary maps are mapped to the observations’ feature
space. Observations are implicitly tiled so as to match the tiled rendering of all hypotheses.
A pixel wise differentiation is applied and the result is finally summed over the logical tiles
by means of subsampling (data implosion).

3.5 Reduction

Once the mapping phase has been completed, the pixel-wise differences (Sec. 3.4) must be re-
duced to a single value for each tile, that ultimately represents the corresponding hypothesis’
distance from the respective observation. We perform this reduction by means of pyramidal
computations. Reduction is performed iteratively by subsampling the difference texture with
a reduction operator (most commonly the sum operator). This scheme corresponds to the
computation of a given MIP (Multo In Parvo, i.e., “much in a small space”) level of the dif-
ferences texture [19]. Reduction stops at the level at which the dimensionality of the resulting
texture matches the dimensionality of the hypotheses’ grid. For the sake of efficiency we se-
lect square render and tile sizes that are powers of two. For this process two textures are used
that are exchanged in the positions of the input and the output in every subsampling iteration.

4 Applications

The proposed framework has been employed in [12–14], where different instances of the 3D
hand tracking problem are treated. In order to exemplify the use of the proposed CPU/GPU
architecture, we select the works in [14] and [13] because they differ in the observation model,
the employed visual cues and, consequently, in the differentiation and reduction phases. Thus,
they are the most diverse from a computational point of view. In both works different vari-
ations of the PSO algorithm [10] have been employed as the search process. PSO follows a
parallel evaluation scheme which is favorable to the employment of the presented framework.
The rendering process is the same in both cases, thanks to the decoder process.

In [14], the model accounts for a 3D articulated human hand and a parametric 3D object
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(ellipsoid, cylinder, cuboid) that amount to a total of 34− 35 DoFs. The observation process
produces multi-frames of up to 8 RGB images per invocation. During preprocessing, input
multi-frames are transformed into multi-frames of skin detection results ms and multi-frames
of edge detection results mDT that have undergone a Distance Transform. The decoding
phase maps the 34 − 35 DoFs (depending on the number of DoFs of the object model) to
appropriately transformed instances of ellipsoids, cylinders and cuboids. The results of the
rendering process are feature-mapped to (a) occupancy images mc that are produced from
the primary color map and correspond to skin detection results and (b) edge detection results
me, that are produced from the primary normal map and correspond to the edge detection
results. The differentiation process generates 4 outputs: (a) ms ∨mc, (b) ms ∧mc, (c) me

and (d) mDT · me, where all operations are pixel-wise. Each such output is then reduced,
in a per-tile basis, in order to provide tuples of 4 values for each hypothesis, using the sum
operator. Each tuple is transformed (more details in [14]) into a single value that represents the
distance between a given observation and a hypothesis. The employment of our framework
in this application induces a performance of 2fps on an Intel Core i7 950 @ 3.07GHz with
a NVIDIA GeForce GTX 580 GPU. Sample video results are available at http://youtu.
be/N3ffgj1bBGw.

In [13], the model accounts for a 3D articulated hand of 26 DoFs (6 for the hand global
position and pose and 20 for hand articulation). The observation process generates a frame
set that is composed of a RGB image mRGB and a depth map mD. During preprocessing,
skin detection is applied to mRGB and its result is used to filter out depths, that do not regard
the observed hand from mD, in a new depth map m′

D. The decoding phase maps the 26

DoFs to appropriately transformed instances of ellipsoids and cylinders. The depth primary
map that results from the rendering process is subtracted from m′

D, and these differences are
summed over each tile to provide the observation-hypothesis distances. The employment of
our framework in this application induces a performance of 15fps on an Intel Core i7 950
@ 3.07GHz with a NVIDIA GeForce GTX 580 GPU. Sample video results are available at
http://youtu.be/Fxa43qcm1C4.

5 Experiments

The accuracy and computational performance of the proposed framework has been evaluated
already in the context of the computer vision problems in which it was employed [12–14]. In
this paper, further experiments were designed to highlight the strengths and weaknesses of this
framework. More specifically, we show that our framework is able to perform in the order
of tens of thousands evaluations of complex 3D hypotheses per second, even on mediocre
hardware. Moreover, we identify a bottleneck in the pixel-processing stages, which leaves
room for further improvement in performance.

We performed a set of experiments on 3 distinct systems of varied computational power:
(a) an Intel Core 2 6600 @ 2.4GHz with a NVIDIA GeForce 9600 GT GPU, (b) an Intel
Core i7 950 @ 3.07GHz with a NVIDIA GeForce GTX 580 GPU and (c) an Intel Core i7
930 @ 2.8GHz with a NVIDIA GeForce GTX 295 GPU. The third system has a dual GPU
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Figure 5: Performance profiling of the GPU evaluation. Batches of 64 3D hand hypotheses are
evaluated over output textures of increasing dimensions. Figures (a), (b) and (c) correspond
to systems (a), (b) and (c). Interestingly, in (a) and (c) and for a resolution of 4096 × 4096,
87.46% and 92.69% of the time is spent on reduction. This suggests that, for these cases,
smaller batches are preferable.

but for the experiments only one of them was used. The three systems vary in GPU core count
(96 for system (a), 512 for (b) and 240 for (c)) and represent different GPU generations.

During all experiments we used a geometry that represents an articulated hand. The hand
consists of 22 homogenous transformations of a spherical mesh and 15 homogenous transfor-
mations of a cylindrical mesh. Each sphere consists of 2 · st · sl triangles and each cylinder
consists of 2 · st · sl + 2 · sl triangles, where sl represents slice count and st represents stack
count in a geometry sampling grid. Unless otherwise stated, the values of sl = 10 and st = 10

were used, so, the total triangle count per hypothesis was 7700. For more details the reader
is referred to [12]. To consider a challenging scenario regarding rendering computational re-
quirements, wherever a renderable hypothesis was required, one supplied with a hand fully
occupying the viewport (open hand facing a virtual camera). For observations we used syn-
thesized renderings of the same hypothesis (the content of the observations does not influence
the computational performance). For the mapping and reduction processes, routines similar
to those in [12] were used. Each reported measurement is the mean value of 20 successive
iterations of the associated process. The timing operations themselves affect performance
negatively as they define multiple synchronization points that break pipelining.

In a first line of experimentation we tested the method’s computational efficiency under
increasing resolution requirements for the tiled rendering, and thus put more weight on the
pixel-processing phase. Batches of 64 hypotheses were rendered on a 8×8 grid and on square
textures whose dimension was 128, 256, 512, 1024, 2048 and 4096. Respectively, the dimen-
sion of the square tile was 16, 32, 64, 128, 256 and 512. We considered the execution times of
rendering, mapping and reduction separately. A total of 64× 7700 = 492800 triangles were
rendered in each batch. The obtained results are illustrated in Fig. 5. It can be verified that as
the resolution increases, the processing time of the pixel-processing stages (rasterization dur-
ing rendering, mapping, reduction) increases, too. For higher resolutions, reduction becomes
the bottleneck, followed by mapping. The graceful degradation of performance for system
(b) and for a resolution of 4096, as opposed to systems (a) and (c), is most probably due to
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Figure 6: Rendering throughput against geometry complexity. 256 3D hand hypotheses are
rendered on a 4096 × 4096 texture. Although 3D model detail increases with respect to
triangle count, performance degradation is graceful due to hardware instancing.

improved memory architecture.
We also tested the rendering performance for increasing complexities of the 3D geometry

and thus put more weight in the vertex processing phase. We repeated the previous line
of experimentation, excluding mapping and reduction and fixing the tile dimension to 256

and the total dimension to 4096 (hypothesis count is thus 256). We varied the sl and st

counts simultaneously in the range [3, 20]. This resulted in batches of triangle counts in the
range [193536, 7731200]. Plots that demonstrate the graceful degradation of the performance
are shown in Fig. 6. As the detail of the model increases, more vertices are required to be
processed. Also, the tight spacing between small triangles in high levels of detail stresses
the rasterization process, which has to also resolve more depth conflicts. Because of the
simultaneous issuing of all geometry and due to efficient interleaving, the GPU performs
well.

Finally, we tested the scalability of the proposed framework in order to highlight the ben-
efit from considering batches of hypotheses simultaneously. We fixed the dimension of the
tile to 128 and considered batches of 1, 4, 16, 64, 256 and 1024 hypotheses. This generated
a requirement for output textures of dimensions 64, 128, 256, 512, 1024, 2048 and 4096,
respectively. For each batch size we measured the hypothesis evaluation throughput by di-
viding its size with the required processing time. The results are shown in Fig. 7. Given
the requirement for the evaluation of many hypotheses, it is evidently beneficial to consider
larger batches for simultaneous evaluation. However, as the batch sizes grow, the required
resolution is increased and the whole process becomes pixel-processing bound. Systems (a)
and (c) were affected negatively, but system (b) remained unaffected.

In order to cope with batch sizes that are not power-of-two we processed them by se-
quential decomposition in power-of-two batches. The results of the previous experiment but
for non-power-of-two batch sizes are shown in Fig. 8. Performance presents a pattern across
sizes, due to the decomposition, and remained good for batch sizes that required few decom-
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Figure 7: Evaluation throughput against batch sizes. Each hypothesis is evaluated on a 64×64
tile. As the batch size increases the evaluation throughput increases as well. The deterioration
of performance for 1024 hypotheses for systems (a) and (c) is due to the requirement for an
output texture of 4096× 4096, which, as shown in Fig. 5, is problematic.
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Figure 8: The same experiment as in Fig. 7, but for batch sizes that are not powers of two.
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positions. State changes, like the requirement for different sizes of output textures in the same
batch, affected performance negatively.

In every case, we were able to evaluate tens of thousands of complex 3D hypotheses
per second. This has been most beneficial for the works in [12–14], where near real-time
performance was achieved for different challenging instances of the problem of 3D hand
tracking.

6 Conclusions

In this paper we provided a detailed description of a CPU/GPU framework that targets a class
of computer vision problems. We demonstrated the computational benefits of this framework
in a series of experiments performed on various GPU systems. The proposed framework
is not restricted to a single application and has already been employed in three similar, yet
essentially different problems. It has been shown that an effective GPU-invariant solution
is realizable. More specifically, it has been demonstrated that the proposed framework can
evaluate tens of thousands of elaborate 3D hypotheses per second. The efficiency of the
proposed architecture makes it a likely candidate for several other real-time 3D computer
vision applications.

Still, there is room for further improvements. We selected Direct3D as the rendering
platform because the class of problems we are interested in optimally maps to the features
provided by this platform. However, by also being graphics-oriented, the selected platform in-
duces restrictions and limitations: (a) Direct3D, although GPU-invariant, is not OS-invariant,
(b) data-parallel, non-graphics-oriented tasks have to be forced through a graphics-oriented
pipeline, which induces unnecessary overheads, (c) numbers need to be powers-of-two in or-
der to achieve optimal performance in a platform that does not favor elaborate gather/scatter
operations. Preliminary tests have shown that further speedup can be achieved by comple-
menting or replacing Direct3D with other platforms, such as CUDA, OpenCL etc. For ex-
ample, a 20× speed-up on the pixel-processing stages (Fig. 5), which was achieved through
CUDA, might offer an overall 2− 10× speed-up for large resolutions (see Fig. 5).
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PROBLEM
Provide efficient implementations for hypothesize-and-test vision methods
that incorporate intense rendering as means of simulation.

MOTIVATION
In computer vision, several problems are solved by employing
hypothesize-and-test methods. Hypotheses can be made comparable to
acquired images by means of 3D rendering.

METHOD
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Preprocessing

Search

Reduction
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Data
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The tiled rendering process. Unique data are uploaded to the
GPU, exploded into a tiled plan, processed in the vertex level and
output in primary maps for later processing. Although there might be
overlap of projected geometry across tiles during vertex processing
this is remedied at the pixel-processing stage.

Input
Observations/Hypotheses

Operand textures
Implicit/Explicit Differentiation Reduction

Feature mapping

Implicit tiling
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The differentiation process. Primary maps are mapped to the
observations’ feature space. Observations are implicitly tiled so as
to match the tiled rendering of all hypotheses. A pixel wise differ-
entiation is applied and the result is finally summed over the logical
tiles by means of subsampling (data implosion).

MAIN IDEA
• 3D rendering is an inherently parallel process that

is delegated to parallel hardware (GPUs)
• Parallel test/comparison criteria constitute the

dominant case
• Exploitation of GPUs beyond traditional 3D ren-

dering to satisfy the challenging computational
demands of 3d model-based vision methods

EXPERIMENTS
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APPLICATIONS
Tracking of “kinematic forests”

3D hand tracking from multiple
cameras [1,2]

(2 fps for 4 cameras)

3D hand tracking from Kinect [1,3]
(15 fps for 1 sensor)

3D hand-object tracking from
multiple cameras [1,4]
(2 fps for 4 cameras)
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Web: http://www.ics.forth.gr/ kyriazis/?e=2 E-mail: {kyriazis,oikonom,argyros}@ics.forth.gr This work was partially supported by the

IST-FP7-IP-215821 project GRASP

CONTRIBUTIONS
• Studied a challenging problem whose solution yields significant impact
• Identified a architecture with carefully designed modularity
• Presented an implementation that is based on GPU independent, com-

moditty pipeline, namely Direct3D 9
• Provided 3 distinct applications on the 3D articulated tracking problem
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