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Chapter 1

Executive summary

Deliverable D26: Representations and Ontology for learning and Abstraction of Grasping, presents the fourth
year developments within WP2. According to the Technical Annex, deliverable D26 presents the activities in
the context of Tasks 2.1-2.3:

• [Task 2.1] - Definition of the ontology: definition of sensory-motor control for action and object-action
learning

• [Task 2.2] - Vocabulary of human and robot actions/interactions

• [Task 2.3] - Evaluation of representation: Evolving ontology through modeling of the perception-action
cycle

The work in this deliverable relates to the following third year Milestones:

• [Milestone 10] - Linking structure, affordances, actions and tasks; evaluation of representations defined
by the ontology.

• [Milestone 11] - Integration and evaluation of scenarios on multiple experimental platforms, demonstra-
tion of cognitive capabilities of robots.

The progress in WP2 is presented in the below summarized scientific publications, attached to this deliverable.

• In Attachment A, we continued to study embodiment-specific robot grasping tasks, represented in a
probabilistic framework. The framework consists of a Bayesian network (BN) integrated with a novel
multi-variate discretization model. The BN models the probabilistic relationships among tasks, objects,
grasping actions and constraints. The discretization model provides compact data representation that
allows efficient learning of the conditional structures in the BN. To evaluate the framework, we use
a database generated in a simulated environment including examples of a human and a robot hand
interacting with objects. The results show that the different kinematic structures of the hands affect
both the BN structure and the conditional distributions over the modeled variables. Both models achieve
accurate task classification, and successfully encode the semantic task requirements in the continuous
observation spaces. In an imitation experiment, we demonstrate that the representation framework can
transfer task knowledge between different embodiments, therefore is a suitable model for grasp planning
and imitation in a goal-directed manner.

• In Attachment B, we study the representation problems in the context of high-dimensional data in par-
ticular. Many tasks in robotics and computer vision are concerned with inferring continuous or discrete
state variables from observations and measurements of the environment. Due to the high-dimensional
nature of the input data, inference is often approached in a two stage process: first a low-dimensional
feature representation is extracted onto which secondly a learning algorithm is applied. Due to the signif-
icant progress that have been made within the field of machine learning over the last decade focus have
placed at the second stage of the inference process, improving the process by exploiting more advanced
learning techniques applied to the same (or more of the same) data. In Attachment B, we argue that in
many scenarios significant strides in performance could be achieved by focusing on representation rather
than aiming to alleviate inconclusive and/or redundant information by exploiting more advanced inference

5



GRASP 215821 PU

methods. This stems from the notion that; given the correct representation the inference problem becomes
easier to solve. We further argue that an important mode of information in many application scenarios is
not the actual variation in the data but rather higher order statistics as the structure of variations. We
exemplify this through a set of applications and show different ways of representing the structure of data.

• In Attachment C, motivated by the recent work on contextual recognition and estimation, we present a
method for estimating the pose of human hands, employing information about the shape of the object
in the hand. Despite the fact that most applications of human hand tracking involve grasping and
manipulation of objects, the majority of methods in the literature assume a free hand, isolated from the
surrounding environment. Occlusion of the hand from grasped objects does in fact often pose a severe
challenge to estimation of hand pose. In the presented method, object occlusion is not only compensated
for, it contributes to the pose estimation in a contextual fashion; this without an explicit model of object
shape. Our hand tracking method is non-parametric, performing a nearest neighbor search in a large
database (100 000 entries) of hand poses with and without grasped objects. The system operates in
real time, is robust to self occlusions, object occlusions and segmentation errors, and provides full hand
pose reconstruction from monocular video. Temporal consistency in hand pose is taken into account,
without explicitly tracking the hand in the high-dim pose space. Experiments show the non-parametric
method to outperform other state of the art regression methods, while operating at a significantly lower
computational cost than comparable model-based hand tracking methods.

• Attachment D, we develop methods for evaluation of robotic and prosthetic hands capabilities where the
human hand serves as a benchmark. In the design of hand prostheses, an open question is which degrees
of freedom to actuate in order to achieve the best functionality of the hand. In robotics, apart from
the actuation, the goal is also to develop highly dexterous hands. A natural question is how to define a
similarity measure through which the capabilities of different hands can be analyzed. Many parameters
can be taken into account - ranging from kinematic and dynamic properties to the choice of material
(rigid vs. soft) and interaction with objects. Currently, there are no analytic methods for performing
such analysis and the mainstream approaches perform exhaustive experimental evaluation. In this paper,
we address the problem of comparing the capabilities of different hands through the use of non-linear
dimensionality reduction techniques. We concentrate on the kinematic analysis - that is, we address the
problem of how many different grasp types or how large space of poses different kinematic structures
can achieve. In our study, we first generate data with human subjects, thus using the capabilities of the
human hand as the benchmark. The generated human data is based on an extensive grasp taxonomy,
including most common grasp types. We develop a methodology for comparing different anthropomorphic
robotic and prosthetic hands for the specific task of object grasping. We show how different robotic hands
perform with respect to the human hand, resulting also in a comparison between different robotic hand
designs. Although the method is applied to hand data, it can be used to compare other types of kinematic
structures as well.

• Attachment E, deals with the problem of observation and analysis of human motion that is often used for
planning and control of human inspired movements in robots. Human data is usually high-dimensional
and in many cases it is used to control a robot which much fewer degrees of freedom. To that end,
different representations based on dimensionality reduction techniques have been used to enable viable
control solutions. In control and planning of grasping movements in particular, postural synergies have
been used as a low-dimensional representation to enable establishing correspondence between human and
robot hand activities. In their original formulation, postural synergies are based on linear dimensionality
reduction methods that, as we will show in this paper, do not represent human hand activity with sufficient
accuracy due to inherit non-linearities in the data. Thus, the work presented in this paper addresses
non-linear dimensionality reduction methods and their application to human hand data. In addition
to adressing encoding of postural synergies, our work relates closely to recent work in robotic control
of combined reaching and grasping movements. However, this work is based on an assumption that
correlations in the data is evidence of causal relation, an assumption that may not hold. Non-linear
dimensionality reduction methods may be used to tackle the correlations problem not by considering
causal relations between dimensions, but by considering them being generated from an external manifold
which has to be inferred. Showing how this can be done is the first contribution of our work. Another
strong contribution of this paper is the analysis of the internal parameters used in dimensionality reduction
techniques, which sheds light into algorithms which have been traditionally used as a black-box in robotics.
Finally, we provide a thorough experimental evaluation that shows how the proposed methods outperform
the standard techniques in the field both in terms of recognition and generation of motion patterns.
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Embodiment-Specific Representation of Robot Grasping using
Graphical Models and Latent-Space Discretization

Dan Song, Carl Henrik Ek, Kai Huebner and Danica Kragic

Abstract— We study embodiment-specific robot grasping
tasks, represented in a probabilistic framework. The framework
consists of a Bayesian network (BN) integrated with a novel
multi-variate discretization model. The BN models the proba-
bilistic relationships among tasks, objects, grasping actions and
constraints. The discretization model provides compact data
representation that allows efficient learning of the conditional
structures in the BN. To evaluate the framework, we use
a database generated in a simulated environment including
examples of a human and a robot hand interacting with
objects. The results show that the different kinematic structures
of the hands affect both the BN structure and the condi-
tional distributions over the modeled variables. Both models
achieve accurate task classification, and successfully encode
the semantic task requirements in the continuous observation
spaces. In an imitation experiment, we demonstrate that the
representation framework can transfer task knowledge between
different embodiments, therefore is a suitable model for grasp
planning and imitation in a goal-directed manner.

I. INTRODUCTION AND CONTRIBUTIONS

An important challenge in imitation learning [1] is the
correspondence problem [2] due to the differences in embod-
iments between the teacher and the learner. Namely, direct
copy of the demonstrated action may fail to achieve the goal
of the demonstrated task, or even may not be feasible because
the robot has different mechanical constraints. Several works
have addressed the correspondence problem by constraining
the imitation at a task space that is shared by the teacher and
the learner. This common space can be either pre-specified
by the user [3], or automatically identified using machine
learning techniques [4]. In relation to robot arm movements,
such a common space is usually the trajectory of the hand
position and orientation in the Cartesian space, which is then
reproduced by the robot solving the inverse kinematics [3].

However, identifying a common task space is difficult in
the domain where the robot has to interact with the world:
to grasp and manipulate objects. We may ask: What is the
common task space for pouring water into a cup? Here,
the robot has to consider not only the hand pose, finger
configuration, but also the pose of the object, and its physical
properties that determine if the object affords this task. Also,
to firmly grasp an object for further manipulation, important
control parameters such as the grasping force have to be
considered. For the specific example of pouring, a good grasp
would be the one that results in a stable manipulation of the

D. Song, C.H Ek, K. Huebner and D. Kragic are with KTH – Royal
Institute of Technology, Stockholm, Sweden, as members of the Com-
puter Vision & Active Perception Lab., Centre for Autonomous Sys-
tems, www: http://www.csc.kth.se/cvap, e-mail addresses:
{dsong,chek,khubner,danik}@csc.kth.se.

objects during pouring, taking into account that the grasp
should not be at a position so that the opening part is blocked.

To parameterize such semantic task constraints in a de-
terministic manner is hard. First, the task requirements can
vary a lot with the task itself. For example, the constraint of
a hand-over task is to leave enough free-space on the object
so that it allows re-grasp. It is clearly described by a set of
object and action variables that are different from those that
define the pouring task. In addition, this task description may
also be hand-specific. For example, human can apply power
grasps to hand-over an apple, but a robot may fail with the
same grasp type simply because it has a larger hand.

Our previous work [5] addressed already some of these
challenges. We used a probabilistic graphical model –
Bayesian Network (BN) – to encode such semantic task
requirements for robot grasping. The network modeled the
conditional distributions among a set of object and grasp
related features that are hand-specific, together with the task
requirements that have been introduced by human labeling.
The initial results were very promising: the model allowed
the robot not only to reason about high-level task repre-
sentations, but also to make detailed decisions about which
object to use and which grasp to apply in order to fulfill the
requirements of the assigned task. However, the BN used
in [5] models both discrete and continuous variables, which
presents some limitations particularly in structure learning
of the network. We therefore developed a novel multivariate
discretization model presented in [6]. The model uses a
non-linear dimensionality reduction technique to learn a
low-dimensional latent representation of the observations. A
mixture model is then learned to discretize the data allowing
for a compact, generative representation of the data. The
model is fully probabilistic and capable to facilitate structure
learning from discretized data, while retaining the continuous
representation.

The contribution of this paper is to create a fully prob-
abilistic framework for embodiment-specific representation
of robot grasping tasks. We do this by integrating the
BN approach from [5] with the multi-variate discreitization
model from [6]. The proposed approach is evaluated using
human and robot object grasping examples in a simulated
framework. We show that the two hands result in rather
different network structures indicating potentially different
conditional dependencies among the same set of task vari-
ables. Also, the conditional distributions in the individual
variables turn to be hand specific. However, both models
achieve good task classification, and represent the semantic
task requirements in the continuous observation spaces.



In an imitation experiment, we demonstrate that the
proposed framework successfully transfers task knowledge
between different hands and provides the means for grasp
planning and imitation in a goal-directed manner. Compared
with [5], [6], the current work extends the learning domain to
a slightly more challenging dataset with more tasks, objects
and embodiments.

II. MODELS

A Bayesian Network is a directed graphical model which
exploits conditional dependencies in the data in order to learn
an efficient factorization of the joint distribution in the data,

p(X1, . . . , XN ) =
N∏

i=1

p(Xi|πi), (1)

where Xi represents variables and πi its parents in the
network. The model is defined by a set of parameters
defining each conditional model and by the structure of the
vertices representing the conditional dependencies. Learning
both structure and parameters from both continuous and
discrete data poses a significant challenge. Most algorithms
for structure learning only work with discrete variables
therefore a pre-discretization step is necessary [7].

In [6] we developed a method capable of learning an
intermediate discrete representation of a high-dimensional,
continous observation space. In specific we apply techniques
from generative dimensionality reduction – the Gaussian
Process Latent Variable Model (GP-LVM) [8]. Its sparse
variational formulation [9] provides both efficient learning
of the latent space and the initial clusters for the subsequent
discretization. Due to space limit, we refer the readers to [8],
[9], [6] for detailed formulations of sparse GP-LVMs.

In this paper we improve the discretization model by
incorporating an additional prior that encourages the location
of the states to be sparse. In other words, we want a
representation where each of the cluster centers are well
separated in the latent space. To do so, we propose a prior
over the discretization centers U = {u1, u2, . . . , uM}, which
are the inducing points of the sparse GP-LVM. This prior
penalizes the L1 norm of the off-diagonal elements in the
inner-product matrix computed between the inducing points,

p(U|θU , βU ) = N (
√
D(U, θU )|0, β−1

U ), (2)

D(U, θU ) =
M∑

ij

λijku(ui, uj , θU ), λij =

{
0 i = j
1 i 6= j

.

If ku(ui, uj) is a smooth monotonically decreasing function
with respect to ||ui − uj || the distribution will encourage a
representation with well separated clusters. The parameters
βU and θU control the strength of the prior and the smooth-
ness of ku respectively. Here we use a radial basis function
where θU controls the width of the function that also relates
to the strength of the prior. Including the above prior into
the method presented in [6] we are able to further improve
previous results.

Once we have acquired a discrete version of the observa-
tions, we use a greedy search algorithm to find the structure,

Fig. 1. Randomly sampled Eigengrasp preshapes of the human hand, and
the preshape of Armar hand.

or the directed acyclic graph (DAG), in a neigborhood of
graphs that maximizes the network score (Bayesian infor-
mation criterion [10]). The search is local and in the space
of DAGs, so the effectiveness of the algorithm relies on the
initial DAG. As suggested by [11], we use another simpler
algorithm, the maximum weight spanning tree [12], to find
an oriented tree structure as the initial DAG. We assume the
task class variable is the ‘cause’ of the systems thus the root
node of the network.

Inference

A trained BN defines an efficient factorization of the
joint distribution of the observations. By converting the
acyclic graph into a tree, the junction tree algorithm [13]
allows efficient inference on the marginal distribution of any
variable(s) conditioned on observations of others. The output
of the inference is a multinomial distribution for variable Xi

over each of its discrete states uik while the observation of
the rest of the network Vi is at the state vj ,

µijk = p(Xi = uik|Vi = vj). (3)

We will now describe how we can recover a continuous
estimate of variable Xi in its original observation space Y
from this distribution.

Each point of xi on the latent space X defines a dis-
tribution over the observed data space Y through the GP
that models the generative mapping. Therefore in order to
acquire a continuous estimate in Y we need to determine
a distribution over the latent space X associated with the
multi-nominal distribution µijk. In order to achieve this we
first learn a parametric mixture model with the location of
the inducing points as the mixture centers. In specific we use
full-covariance Gaussian basis functions to define a mixture
model with M components (discrete states),

p(xi) ∝
M∏

k=1

λkN (xi|uik,Σik), (4)

and learn its parameters of the mixture model using the stan-
dard EM approach. The multinomial distribution output µijk

from the network defines a distribution over the inducing
points uik. We use this distribution to specify the coefficient
for the learned mixture components to create the following
conditional mixture model,

p(xi|vj) ∝
M∏

k=1

µijkN (xi|uik,Σik). (5)

We can then sample from the above distribution in order to
find locations over the latent space which corresponds to our
continuous estimate.



III. DATA GENERATION

Tab. I shows the features used in this work. The features
describing each grasp are divided into three sub-sets: object
features (O) from the object representation, action features
(A) from the planned grasps, and constraint features (C)
resulting from the complementation of both, i.e. the hand-
object configuration. Each grasp was visualized in GraspIt!
to a human tutor who associated it with a task label (T ).

Two hand models are used in the experiments: the human
20 degrees-of-freedom (DoF) hand, and the Armar 11 DoF
hand [14]. The database includes in total 48 objects covering
6 object classes (8 models per class). Each object class
includes 4 different object shapes each of which is scaled to 2
sizes – small and average. Four tasks are labeled: hand-over,
pouring, tool-use and dish-washing. Compared to previous
work we include the new task, dish-washing. In summary,
the current approach extends [5], [6] with a more challenging
dataset and a new robot hand showing the scalability of the
framework.

Note that the human hand has an Eigengrasp pre-
configuration egpc as one of the action variables, whereas the
Armar hand does not. Human hand is high-dimensional, but
not all of the DoFs are indepently controlled. Therefore we
use the idea of [15] to define random preshape configurations
of the hand in the 2D eigen grasp space (i.e. egpc). The
two dimensions of egpc roughly represent the levels of
finger spreading and finger flexion respectively. A detailed
implementation on egpc can be found in [5]. For the Armar
hand the spreading component is missing, and the four
fingers opposing the thumb can only flex and extend. We
therefore do not implement random samples in preshape
configuration for Armar hand, and the hand always starts
at a preshape while all the DoFs are at zero, i.e. the fingers
are fully extended (see Fig. 1).

Fig. 2 shows the schematic of the data generation process.
To extract those features for each hand, we first generate
grasp hypotheses using the grasp-planner BADGr [16], and
evaluate them as scenes of object-grasp configurations in a
grasp simulator, GraspIt! [17]. BADGr includes extraction
and labeling modules to provide the set of variables presented
in Tab. I. The interested reader is referred to [5], [16] for
more details on the feature extraction. We emphasize that
the grasp representation does not have to be non-redundant,
e.g. cvex and ecce are allowed variables to both represent
object shapes. Such an “over-representation” of the featured
variables allows us to use BNs to identify the importance of,
and dependencies between these variables in the scenarios
of robot grasping tasks.

IV. RESULTS

A. Experiment I: Structure Learning
The first experiment is to evaluate the network structure.

Fig. 3 shows the results of learned DAGs for Armar (left)
and human (right) hands. We note that learning the structure
from data reveals complicated relationships among these
variables, which will otherwise be very difficult to encode by
human experts. An initial inspection of the DAGs associated

TABLE I
USED FEATURES WITH THEIR DIMENSIONALITY D (FOR CONTINUOUS)

AND NUMBER OF STATES N AFTER DISCRETIZATION.

Name D N Description
T task - 4 Task Identifier
O1 obcl - 6 Object Class
O2 size 3 8 Object Dimensions
O3 cvex 1 4 Convexity Value [0, 1]
O4 ecce 1 4 Eccentricity [0, 1]
A1 dir 4 15 Approach Direction (Quaternion)
A2 pos 3 12 Grasp Position
A3 upos 3 8 Unified Spherical Grasp Position
A4 fcon 11/20 6 Final Hand Configuration (Armar/Human)
A5 egpc 2 8 Eigengrasp Pre-Configuration (only Human)
C1 coc 3 4 Center of Contacts
C2 fvol 1 4 Free Volume

{Object}
{Hand} Plan

(BADGr) {Grasp} Generate
(GraspIt2) {Scene}

Label
(BADGr) Tutor

{Task}Extract
(BADGr){T,O,A,C}

Task-related
Grasp Database

Fig. 2. Schematic diagram for generating task-related grasp database.

with the different hands confirm our intuitive notion of the
dependency relations between the variables. For example, the
three action features – dir, upos and pos – are connected
with each other because the unified spherical grasp position
upos is directly derived from the grasp position pos and
the hand orientation dir with respect to the object. And the
object class obcl determines the three object features ecce,
size and cvex.

We also noticed significant differences in the conditional
structures between the two hand models. For instance, Armar
hand has pos directly conditioned on ecce, whereas human
hand does not. The reason might be that the Armar hand
has limited kinematics configuration, therefore, when the
object is quite eccentric, most stable grasps will have to be
generated in the position around the side of an eccentric
object, for example, on the handle of a hammer.

Also for human hand, center of contact coc has two parents
task and obcl, these links are both missing in the Armar
hand. This is again explainable when consider the embod-
iment difference of the hands. The human hand has much
more DoFs, and more flexible control in its pre-configuration
(the random samples in the 2D Eigengrasp space egpc). This
allows much more variation in its finger contacts with the
object compared with those from Armar hand. As a result,
coc which quantified this richer variation allows the learning
algorithm to discover its potential relations with the object
categories and the task requirements. Similar arguments also
apply to the differences in connections around fvol, and
fcon.

B. Experiment II: Task Classification
In this section we evaluate the learned network by their

task classification performance. The performace is evaluated
based on the testing data that also covers all the object
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highlighted by thick arrows. Square nodes represent discrete variables and circled nodes continuous.
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Fig. 4. Experiment II: Confusion matrices for task classification given different observations spaces: permutations of O,A,C features. For each 4 × 4
matrix, from left to right (top to down), the 3 tasks are: hand-over, pouring, tool-use, dish-washing.

classes. The data size is one quarter of the training cases.
As shown in Fig. 4, this task classification is based on

the inference of task variable given observation of different
set of other variables that form a complete permutation of
the 3 feature sub-sets: O, A and C. For object features O,
we assume that the object is unknown, therefore object class
information obcl is not observed. This is to simulate the real-
world scenarios where recognizing object categories from its
raw features is still a hard problem for robot sensor systems.

Comparing the task classification given different obser-
vation spaces (different columns), we see that for both
hands, the object and action features (O,A) result in quite
good task classification on the last 3 tasks: pouring, tool-
use and dish-washing; particularly for the Armar hand, the
accuracy are 78%, 93% and 83% respectively. When the two
constraint features fvol and coc are also observed (O,A,C),
we observe overall improvements for human hand, but not so
much for Armar. This can be explained by the differences in
DAGs where Armar hand has less conditional dependencies
discovered with the two constraint variables.

When only object features are observed, both hands have
good classification on dish-washing task with slight con-
fusion with tool-use. This is because in the labeled grasp
data, the objects that are good for dish-washing are all the
mugs and glasses, and one particular knife model (the kitchen
knife). But the pouring task is never confused with tool-use
because no tool objects affords pouring, and the observed
object features could clearly differenciate the tools from the

container objects. However, the grasps that are good for
pouring is often confused with dish-washing becasue many
pourable objects are also applicable to be dish-washed.

The hand-over task is often confused with others even
when most features are observed (column O,A,C). This
is expected as grasps that are good for hand-over are in
many cases also likely to work well for the other three.
This indicates that our classification of task might need a
hierarchical structure rather than the flat class association
we use here.

When comparing the confusion matrices between two
hand models, we see that in any observation conditions,
the performance over task classification has very different
profiles in different hands. This means a variable that is
strong in task description for one hand might be weak for
another, again supporting the idea of embodiment-specific
representation for grasping tasks.

C. Experiment III: Inference on Unified Grasp Position
In Experiment II we showed that the two hand BNs have

different but good performances in task classification. The
goal of Experiment III is to examine i) if both models
could successfully encode task constraint in the continuous
space of object observation, and ii) if this constraint is hand-
dependent. Notice that the constraint of a given task is
often encoded by a combination of multiple features, e.g.
one should not grasp this object from this position pos,
in this orientation dir, and with this joint configuration
fcon. However due to space limit and for the purpose of
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Fig. 5. Experiment III: Likelihood maps of the unified grasp position
given tasks and object features P (upos|T,O). The top panel is for Armar
hand and bottom panel for human hand.

easier evaluation by the readers, we choose the unified grasp
position upos which combines the absolution grasp position
pos and approach vector of the hand as an intuitive variable
to visualize the task constraint.

For each hand, we sample 625 points on the unified sphere
(where upos is located) around the object. As shown in Fig.
5, for each sampled point, the likelihood is obtained given
the 4 tasks, and the object features for 2 unknown objects: a
mug and a hammer, i.e. P (upos|T,O). The top panel shows
the results for the Armar hand, and the bottom for the human
hand.

We see that, for both hands, the model sucessfully rules out
the mug for tool-use, and the hammer for pouring and dish-
washing tasks. For pouring, the mug can not be grasped from
the top as it will block the opening; similarly, when using
the hammer as a tool, the grasp should avoid the head of the
hammer as it is the functional part. To wash the mug, the
preferred grasps indicated by the network are clearly from
side or bottom. This is because the mugs usually need to be
placed upside-down in the dishwasher, so grasping from top
is not so convenient for this task.

When comparing the likelihood maps between the two
hands, we have very interesting observations. In general
maps are different for the two different embodiments even
though they all model the task constraints in a similar way.
In a specific case of hand-over the hammer, Armar hand
has quite low likelihood on the side of the hammer that
is facing the head of the hammer. Thinking closely, we
understand that grasping from this position is particularly
difficult for the Armar hand because the fingers might contact
the sharp edges on the hammer head, resulting in unstable
configuration. Similar situation is also for grasping from
the top approaching the hammer head. On the contrary,

human hand has much more uniformed distribution around
the hammer.

This experiment again demonstrated the strength of the
proposed framework: by modeling the embodyment-specific
task space using a probabilistic network, we have learned
not only the affordances of the objects based on its basic 3D
features, but also the robot’s own motor capability.

D. Experiment IV: Goal-directed Imitation

Finally we would like to demonstrate the application of
the proposed framework in the scenarios of goal-directed
imitation. The experiment is implemented using the human
hand model as the demonstrator, and the Armar hand as the
imitator. The goal is to imitate the demonstrator performing
the pouring (demo 1) and dish-washing (demo 2) tasks
using a mug (see Tab. II), and the hand-over (demo 3)
and tool-use (demo 4) tasks using a hammer (see Tab. III).
The object images in step 1 and step 2.1 shown in both
tables are presented with same scale, so the size of the
objects can be compared. We use oH ,aH , cH to indicate the
human demonstrated object, action and constraint features
respectively, o,a, c to represent the instances of the features
of the Armar hand.

The process of the imitation consists of two major steps:
step 1 for task recognition, and step 2 for object or action
selection, the same way as we outlined in [5]. Briefly, in
step 1, the robot uses the human hand-specific network to
recognize the demonstrated task t̂H based on maximum-
log-likelihood estimation LH( t | oH ,aH , cH), where LH

denote log-likelihood using human network. In step 2, given
this recognized task t̂H as the goal, the robot choose the
object among the ones in the scene, and then select the
most compatible grasp on the chosen object to achieve the
task. Object and action selection has been formulated as the
Bayesian decision problems, where a reward function is a
weighted combination of their task affordance represented
by the likelihood function LR and the similarity to the
demonstration S. The weight λ is a high-level control input
to define the imitation requirements. Due to space limit,
we refer the reader to [5] for the detailed formulation of
the Bayesian decision problem and the confidence-based
similarity metric.

Tab. II and III present the results of the imitation experi-
ment. The bar plots on the right side of the tables show the
log-likelihood values for step 1, and the reword functions in
step 2.1 and 2.2. We see that in all four demonstrations, the
robot could correctly recognize the tasks, even though there
might be potential confusion with hand-over task (in demo 1
2 and 3). In demo 3, we find an interesting result where the
grasping on the hammer has returned the zero probability
for tool-use, and low but non-zero probability for pouring
and dish-washing. Aparently unintuitive, but the result is
consistent with what we have observed previously [5]: since
we assumed unknown object, the inference was only based
on observation of object size, cvex and ecce features, the
network has confused a hammer with other container objects
like bottles and glasses.



TABLE II
EXPERIMENT IV: GOAL-DIRECTED IMITATION ON ‘pouring, dish-washing’ TASKS.

Demo 1 Demo 2

o1 o2 o3 o4 o5 o6 o7

a1 a2 a3 a4 a5 a6

T1 T2 T3 T4 T1 T2 T3 T4

o: 1 2 3 4 5 6 7 o: 1 2 3 4 5 6 7

a: 1 2 3 4 5 6 a: 1 2 3 4 5 6

LH( t | oH ,aH , cH)

Demo 1 Demo 2

LR( o | t) · 0.5 + S(o, oH | t) · 0.5

t = T2 t = T4

LR( a | t,o6) · 0.5 + S(a, aH | t) · 0.5

t = T2 t = T4

Step 1 Human demonstration: recognize task t̂H

T1 = hand-over
T2 = pouring
T3 = tool-use
T4 = dish-washing

Step 2.1 Select object o∗: matching t̂H , and also similar to oH

Step 2.2 Select action a∗: matching t̂H , and also similar to aH

Scenes Objective Functions

TABLE III
EXPERIMENT IV: GOAL-DIRECTED IMITATION ON ‘hand-over, tool-use’ TASKS.

Demo 3 Demo 4

o1 o2 o3 o4 o5 o6 o7

a1 a2 a3 a4 a5 a6

T1 T2 T3 T4 T1 T2 T3 T4

o: 1 2 3 4 5 6 7 o: 1 2 3 4 5 6 7

a: 1 2 3 4 5 6 a: 1 2 3 4 5 6

LH( t | oH ,aH , cH)

Demo 1 Demo 2

LR( o | t) · 0.5 + S(o, oH | t) · 0.5

t = T1 t = T3

LR( a | t,o3) · 0.5 + S(a, aH | t) · 0.5

t = T1 t = T3

Step 1 Human demonstration: recognize task t̂H

T1 = hand-over
T2 = pouring
T3 = tool-use
T4 = dish-washing

Step 2.1 Select object o∗: matching t̂H , and also similar to oH

Step 2.2 Select action a∗: matching t̂H , and also similar to aH

Scenes Objective Functions



In step 2.1, the robot is able, in all four demonstrations, to
choose among seven objects the one that matches the goal
of the task t̂H and at the same time is also similar to the
object used by the human hand. In Tab. II we see the network
preferred the smaller mug o6 that is similar size to the mug
in the demonstration in both pouring and dish-washing tasks.
In dish-washing task, the knife o1 has almost as high reward
value as the glass o5. This is because one kitchen knife in
the knife category affords dish-washing.

Finally in step 2.2, the robot successfully selected the
grasp hypotheses that satisfy the requirements on task af-
fordance and grasp similarity. In pouring task, grasp a6 has
lowest ranking, which is obvious as three fingers block the
cup opening. Grasp a5 is a very natural configuration for the
pouring. But it is ranked as the second best grasp because
compared to a3, a5 is less similar to the demonstrated
grasp. Similar behaviors have been observed in other 3
demonstrations.

V. CONCLUSION

We have proposed a unified probabilistic framework
to represent the embodiment-specific grasping tasks. The
framework consists of a discrete Bayesian network and the
sparse GP-LVM-based multi-variate discretization method.
The Bayesian network models the task constraint through
conditional distributions among a set of task, object, action
and constraint variables. The discretization model provides
compact, efficient data representations that allow fast learn-
ing and inference for the Bayesian network. With the simu-
lated data from a human and a robot hand, we have shown
that the grasping tasks are hand-specific, and the differ-
ences are reflected both in the conditional (in)dependencies
between the representation variables (network structure),
and in the probabilistic distributions of individual variables.
However, both models perform well in task classification and
representation of the underlying constraints.

We also showed that the hand-specific task representation
can provide a unified framework for many aspects in sce-
narios of goal-directed grasp imitation. Not only can the
robot recognize the intention of the human demonstration,
but it can also reason in the low-level feature space of the
object and grasp actions conditioned on the high-level task
requirements. As a result, the robot can make automatic
decisions that satisfy multiple user requests, for example,
task affordance and grasp similarity.

Though in this paper, the proposed framework was only
experimented with one grasp planner [16], we want to
emphasize that it is not limited to any specific grasp plan-
ning systems. Several grasp planners can provide different
representations of grasps and objects, and together with a
human-provided task information, we could obtain similar
task constraint models for each hand. In the cases the two
grasp planners can provide similar grasp-related variables,
we expect that the model trained on one planner could be
used to infer task information on the other. This is to be
tested in one of the next steps in the future research.

In addition, there are also some limitations in discretiza-
tion model that need further research. Currently, the number
of discrete states are manually chosen to satisfy a trade-off
between refined data representation and complexity of BNs.
In the future, we would also like to learn this hyper parameter
automatically from data.

Finally, we plan to test this framework in grasp planning
and execution in real robot platforms where sensorimotor
uncertainty is more prominant. We believe this will further
exemplify the benifits of using a probabilistic model capable
of dealing with uncertainty in real-world applications.
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The importance of structure

Carl Henrik Ek and Danica Kragic

Abstract Many tasks in robotics and computer vision are concerned with inferring
continuous or discrete state variables from observations and measurements of the
environment. Due to the high-dimensional nature of the input data inference is often
approached in a two stage process: first a low-dimensional feature representation is
extracted onto which secondly a learning algorithm is applied. Due to the significant
progress that have been made within the field of machine learning over the last
decade focus have placed at the second stage of the inference process, improving
the process by exploiting more advanced learning techniques applied to the same
(or more of the same) data. In this paper we argue that in many scenarios significant
strides in performance could be achieved by focusing on representation rather than
aiming to alleviate inconclusive and/or redundant information by exploiting more
advanced inference methods. This stems from the notion that; given the “correct”
representation the inference problem becomes easier to solve. In this paper we argue
that an important mode of information in many application scenarios is not the actual
variation in the data but rather higher order statistics as the structure of variations.
We will exemplify this through a set of applications and show different ways of
representing the structure of data.

1 Introduction
A central question to solve when designing an artificial system is how to make it
aware and capable of interaction with the environment. The level of usefulness of a
robot is considered through its capability of reacting to and adjusting its behavior to
changes in the environment. Todays robots, equipped with different sensors such as
cameras, microphones and depth sensors acquire information from the environment
at very high precision and rate. Through this rapid development it is now possible
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Fig. 1 The above figure tries to highlight the notion of the importance of structure that we try to
convey in this paper. The example above shows a large data-base of objects to the far left. Of these
we want find a representation in order to classify objects at a certain resolution. If the representa-
tion naturally generalizes, i.e. it does not reflect within class variance but only between this task is
easy to solve. In this paper we argue that for a coarse scale task such as separating “sitable” from
“drinkable” objects the discriminating variance is represented by the global structure. While for
a high resolution task such as separating the “red felt comfy chair” or the “blue plastic mug” the
discriminating information is contained in the appearance cues. We believe that in robotics we are
generally interested in the first type of these two task why therefore find representations of global
structures is important.

to design artificial systems whose sensory systems are more capable than those of
the human. However, despite getting more and more detailed observations of the
environment, the progress in what we are able to infer through reasoning from this
data have not followed the same development. The central argument in this paper is,
given the “right” information about a domain inferring the correct answer becomes
an easier problem. The development of sensory systems have rather than focusing
on providing the “right” information been aimed at simply acquiring more informa-
tion. The justification for this has been the development of more and more advanced
machine learning algorithms capable of dealing with larger amounts of data sam-
pled from more complicated distributions. However, the fact still remains that the
progress in terms inference have not followed that of the sensory systems.

One of the strength of human inference is our capability of being selective with
the information we use to reason [1]. During our development we construct strong
(conditional) priors which helps us filter the enormous amount of information that
our sensory systems acquires to only use a small subset of the data which is rele-
vant for the task, as indicated by the concept of intentional blindness shown in [2].
Rather the opposite approach seems to be dominant when building artificial systems
where we try to extract and model more and more of the variations in the sensory
data and exploit more advanced learning algorithms for inference from a very com-
plicated input domain. A describing example is object categorisation in computer
vision where the dominant approach is to use local image descriptor such as SIFT
[3] to model the sensory data. Clearly the information extracted by such features
contains significant amounts of variance which is not relevant for the task which
means that in order to be able to generalize within categories the inference algo-
rithm needs to learn to ignore data and focus on the discriminating information. In
many representations the discriminating information stands for only a small portion
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of the variance. Such representations often implies a significant challenge in terms
of modeling and inference.

In this paper we argue that rather than focusing on building models capable of
representing larger portions of the variance in the sensory, we should aim to care-
fully consider what information that is actually relevant for the problem at hand.
We argue for representations that focus on the structure of variations rather than
accurate descriptions of the local variations in the data. Our motivation stems from
the notion that the biggest challenge when it comes to inference is not discrimina-
tion per say but rather its complementary notion that of generalization. I.e. the key
problem is not to extract variance that separates certain classes but rather avoid ex-
tracting variance that corresponds to within class variations. As an example, having
observed a specific instance of a mug we can reasonably reliably detect that mug
again, the big challenge is to create a system which is capable of generalizing over
different mugs separating them from other objects.

We argue that the important questions are concerned with generalization on a
level where the global structure is the dominant discriminating factor and not the
local variations see Fig. 1. To that end we will describe a set of different scenarios
where structural representations and models are of key importance. Through these
examples we will show different approaches for exploiting global structure. How-
ever, we would like to point out that the purpose of this paper is not to provide a
solution for a specific problem but rather to exemplify a argument through a range
of applications in order to stimulate further discussion on the topic.

2 Structure and Generalization
There are three central concepts in this paper; those of generalization, discrimina-
tion and that of structure. To explain what we mean by these we use the task of
object modeling. This provides an intuitive example of the concepts that we address
in this paper. Object modeling is a prerequisite for equipping a robot with the abil-
ity of detection, identification and manipulation. Dependent on the task, we wish to
acquire a representation that generalize over specific objects and is able to discrim-
inate between others. Formally this means that we wish to model the between class
variance but not the within. Thus, the two concepts generalization and discrimina-
tion are complementary. From a traditional representation point of view the biggest
challenge is not to retain (the discriminative part) but rather to remove (the general-
izing part) information. An example of this is representing object from visual data
for the task of categorization. The main challenge is not to find a representation that
separates, for example, mugs from glasses, as they look different the information is
contained in the observations, but rather to remove the information that separates
different mugs and different glasses from each other.

Atatistical methoda rely on the presumption that we can acquire enough sam-
ples of a space that can describe it well. Images are high-dimensional meaning that
it is not possible to acquire such a data-set easily. To that end the traditional ap-
proach have been to extract a low-dimensional feature representation assuming that
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we can acquire samples that describe the feature space. The most obvious approach
is to extract this information from a local patch in the image as clearly this will per
definition contain less variations. The central question is then: What level contains
the desirable generalization and discrimination characteristics for a specific task?
Clearly, on the most local level, being the colour of a pixel, we can model the in-
formation robustly and the assumption of sampling the feature space well is going
to be fore-filled by observing a single image. However, we also know that statistics
of such local features will not contain discriminating information for other than the
most simple task while it will generalize over a large range of different images. This
is an important notion: the more local a feature, the less discriminative it becomes.
Thus, there is a trade-off here that needs to be considered, local enough to be robust
and well sampled and global enough to be descriptive, see Fig 2.

Fig. 2 The above figure shows two different objects with two different scales of local representa-
tion, dotted (fine) and dashed (coarse). First order statistics from the fine resolution will not be able
to discriminate the two objects while at the coarser scale they will be different. However, using a
coarser scale implies that each cell has a higher dimensionality requiring more samples in order
to represent the space well.

The traditional approach have been to a larger amount of local features by acquir-
ing large (and growing!) training data sets. The hope have been that by exploiting
supervised machine learning techniques, such as kernel machines or metric learn-
ing, we can acquire a representation with the desired balance between generalization
and discrimination.

We argue that there is a different paradigm where we could use less informative
local descriptors while still being able to discriminate. That is to aim to create strong
models of the structure between the local features and not stop at first order statistics
such as the so popular Bag-or-words techniques. However, how to encode structure
is a non-trivial problem that we believe needs to be addressed with much more
focus. We do not think that there is one single approach for representing structure
but rather a large range of different tools and approaches. In the reminder of this
paper we will show different applications and different intuitions and tools that we
believe are going to be useful providing insights into how to deal with different
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tasks by including a structural element. Our goal with this paper is rather to raise
questions than provide specific solutions.

3 Temporal Structure
Robots often have to work with dynamical scenes where the relevant information
is contained in the order of events. A goal of robotics is learning by demonstration
[4] where the task is for a robot to extract the relevant notion of a task by observ-
ing a demonstrator. Various subproblems have been studied related to task planning
and sequencing, detection of motion primitives, developing models for structured
collections of actions [5]. The underlying question has been how to acquire a repre-
sentation that in a sufficient manner generalizes the objective(s) of the task. Take for
example the task of clearing a table. Here the appearance of both the objects and the
table are irrelevant. Rather the important information that generalizes the task lies
in the structure of the events not the actual events themselves. I.e. the task remains
the same if the cutlery are cleared before the plates or vice-versa. In this section
we describe different applications where we, through a model of temporal structure,
manage to simplify an otherwise complicated inference task.

3.1 Interaction

Fig. 3 The left example shows an instance of the Opening Book action while the right shows
the Moving Object. In each of the images the result of the segmentation and its corresponding
graph have been overlaid . Only the spatial relations between the segments are extracted and no
identification of the objects is performed.

Recently, [6] suggested a method for action classification by constructing an im-
age feature representing the temporal structure of the interactions that takes place in
the scene. Using visual measurements from a camera the approach first segments the
objects in the scene for each frame in a sequence. The temporal structure is encoded
by a graph representing each frame, every object being a node and connected com-



6 Carl Henrik Ek and Danica Kragic

ponent sharing an edge, see Fig 3. This process removes all information associated
with appearance and identity leaving only the interaction between the objects. The
final processing step is to remove the duration of the interactions and only retain the
sequence of topologically different graphs. The intuition behind the representation
is that for discriminating between actions the temporal structure of the interactions
of objects independent of their identity contains sufficient information. This is sig-
nificantly different from the more traditional approach for modeling actions such as
[7, 8, 9] which extracts a representation that retains a significant amount of the vari-
ance related to appearance. This means that we have to learn the invariance related
to appearance from data. This requires significantly larger amounts of training data
and puts additional challenges on the learning machinery that needs to explain away
this non-relevant variance to extract the important variance from the feature. In or-
der to represent each frame the authors in [6] defines a specific semantic extracted
from the the node connectivity in the graphs and the alterations under this seman-
tic over time is represented as a matrix. A simple distance measure is then defined
to compare two different matrices which given a training data-set allows for action
classification.

One of the major drawbacks of the approach suggested in [6] is that it is very
sensitive to noise as it assumes that each node in the graph represents a single ob-
ject. In order to circumvent this problem, we have developed a general framework
for encoding the structure of variation in a semantic chain using a robust machinery
derived from work in text representation [10]. We are motivated by the approach
presented in [11] where a feature space representation of a string is presented. By
deriving a vector space representation of a string independent of its length strings
can be compared by standardized tools from statistical learning. The parameteriza-
tion is sensitive to both the order and the existence of letters in the string and does
therefore encode both the structure and the appearance of the string. Being infea-
sible to compute for most typically sized data-sets the feature space is represented
implicitly through the use of a kernel function [12]. More formally the feature space
we use is spanned by all possible permutations of all lengths of the letters in the
semantic alphabet. The inner product is defined as a function of the matching part
of the overlap between two strings, see Fig 4. Clearly the space is infinite dimen-
sional but as any string of a shorter length compared to the basis are orthogonal the
maximum dimensionality is bounded. Similarly to the original string kernel [11] an
efficient recursive computation of the inner product can be formulated representing
the feature space implicitly using by a kernel.

The above example completely removes all variance associated with appearance
from the observations and only retains information about structure. For the task of
discriminating between the different actions defined in [6] this contains sufficient
information. However, it is easy to think of scenarios where this information is not
sufficient for performing the task. However, the kernel based framework can easily
be adapted to encode structure where the appearance is also retained as this is simply
about defining a semantic that also encodes the appearance. As an example of such
we will describe an approach for representing object categories that retain both the
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ANNT TOOT TN NA OTTN AOOTTOOA

ANNT

TOOTNA

OTTN

Fig. 4 For a the specific semantic alphabet, here defining the four different interaction relation-
ships between objects: {A,N,T,O}, we above show a subspace of the feature space representing
the sequence. The sequence ANNT (red) and OTTN (green) exists in order in the string and will
therefore project parallel to the corresponding basis while the TOOTNA does not which will in-
duce a non-zero angle between the string and the basis. This means that the representation will be
sensitive to gaps in the string making it robust to noise.
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Fig. 5 Left The bar plot above shows the classification rate associated with increasing noise to the
right. The green bars identifies our kernel approach while the red indicates the performance of the
original method. Right Confusion matrices for increasing noise. The classes are ordered as Mov-
ing Object, Making Sandwich, Opening Book and Filling Liquid. The red matrices show the
results for the original approach while the results of our method is shown in green. With increas-
ing amount of noise the original measure is unable to disambiguate between the different actions
classifying every action as belonging to opening book. For the same data the kernel approach is
able to differentiate between the classes and the performance is reduced much more gracefully.

appearance and the structure of the object. An idea for the future is the integration
of this approach with the probabilistic models for action encoding presented in [13].

3.2 Object Detection

A robot should be able to interact with it surroundings by applying actions to ob-
jects. Thus, a very important task is to identify and extract objects from sensory
data. The visual domain contains a rich description of the environment and by seg-
menting objects from the background detailed models of individual objects can be
built. Image segmentation is concerned with clustering “similar” pixels into seg-
ments and has attracted considerable interest in computer vision. There are many
different approaches and assumptions used to define similarity between pixels. Be-
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cause of computational limitations, but also due to the challenge of formulating
general appearance models, the focus has been on local statistics such as colour dis-
tributions and gradients [14, 15]. This has meant that for all but the simplest objects
it is quite unlikely that the clusters retained by an image segmentation approach will
corresponds to actual objects in the scene.

The work in image segmentation shows the non-trivial nature of formulating
consistent appearance cues based on local statistics that corresponds to objects in
the image. This has meant that most successful approaches are interactive, requiring
a human to refine and rectify the result produced in an iterative manner [15]. In an
autonomous system we cannot rely on interaction to leverage human object priors
for segmentation but rather need to create a self-contained system.

In [16] we presented an active system for object segmentation which exploits
both traditional appearance based assumptions in collaboration with temporal cues
in an active iterative manner. Image segmentation techniques are good at grouping
pixels into consistent regions. This often mean that for all but the simplest objects
this will result in an over segmentation where each object is divided into several
different segments. Acknowledging the fact that it is a non-trivial task to create ap-
pearance models that encapsulates the long range pixel interactions that generalizes
over objects we turn our attention to a different domain. In many applications we
can assume that the objects of interest in the scene are rigid. Further, each local el-
ement or point on such an object moves according to simple rules of rigid motion.
This means these rules generalizes over all points belonging to the same object. To
that end we use the initial segmentation from the appearance cues as an hypothesis
of the objects in the scene. In correspondence with this the robot introduces motion
by interacting with the scene. Modeling the motion we can easily verify if the ap-
pearance segmentation is consistent with the rigid motion assumption. In [16] we
describe an approach combining local appearance cues with a method for modeling
rigid motion using them in a complementary fashion. We show results for a common
tabel-top scenario where and appearance based method used on its own would fail,
Fig 6.

Fig. 6 The left most column shows two scenarios where two objects have been placed on a ta-
ble top. Using a traditional appearance based image segmentation approach it is not possible to
separate the objects. By introducing motion in to the scene by letting the robot interact with the
environment the motion can be modeled and the objects separated in the right most image.
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This approach shows how by exploiting a simple assumption we can actively
introduce a variance corresponding to the level of generalization we are interested
in such a manner that it can easily be extracted from the environment.

4 Spatial Structure
In previous section, we described applications and tasks exemplifying the impor-
tance of temporal structure. In this section we discuss structure on a different level
namely the structure on a spatial level.

Similarly to the temporal case we argue that the interesting generalization for
many tasks are represented by structural information. On example is our use of lan-
guage, where we would use an structural adjective such as striped to discriminate on
a coarse level while for identifying specific objects we would add local appearance
descriptions such as red and white. The currently dominating approach is to use a
local representation of each instance and hope that the inference procedure is capa-
ble of extracting the information that generalizes between the classes by observing
enough examples. As we have previously stated this is a very challenging task from
a learning perspective, as quite likely only a small portion, if any, of the variance in
the local descriptor will contain generalizing information.

In this section we describe two different task where the generalizing informa-
tion is contained in the spatial structure of the local appearance and not the local
appearance itself.

4.1 Object Representation

Being able to discriminate between objects both on category and instance level is of
key importance for a wide range of task in robotics. This requires an object repre-
sentation that is capable of generalizing over the desired task dependent domain. In
computer vision object categorisation has attracted a significant interest. Especially
in recent years with the collection of public datasets and high profile competitions
such as the Pascal VOC challenge [17]. A large range of different techniques have
been applied to the problem where the dominating approach is to aim to extract dis-
criminating information from local image descriptors by relying on the capabilities
of different machine learning approaches.

Compared to computer vision researchers roboticists enjoy the luxury of being
able to apply several different types of sensory streams in addition to cameras for
extracting information of the environment. Recently with the introduction of af-
fordable depth sensors has allowed us to consider dense depth information not as a
specialised domain but rather something that can be assumed as readily available.
In [18, 19] a robust 3D feature is presented which represents each local patch of an
object as belonging to a specific geometric class. In Figure 7 the feature is shown
extracted from a set of typical household items. Clearly, only describing the geomet-
rical local structure on the object is not likely to provide discriminative information
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Fig. 7 Object features representing the local geometrical class encoded by colour shown for three
different objects, from the left box, citrus fruit and mug.

between a large range of different object why the global structure needs to be en-
coded. To that end in [20] the author presents an approach to encode the global
structure by encoding the distribution of local patches along rays between patches.

The results presented are impressive but modeling the distribution of geometrical
classes between local patches is not going to retain the full structure of the object
and in order to be able to scale in terms of the level of generalization we believe that
a stronger representation is needed. In specific we do not think that rays are a good
way of encoding the structure of a surface. The objective is to find a representative
global statistics that encodes the structure of the object. What we mean in formal
terms is that: an object is a two dimensional surface embedded in a three dimen-
sional space which encapsulate a non-empty volume. This implies that given a point
on the object one can travel to any other point belonging to the object by traversing
this enclosing surface. It is the shape of this surface is what we wish to represent.
In this notion of a surface lies our objection towards the use of rays. The surface
is a two dimensional object meaning that relating two points to each other requires
two degrees of freedom. The position along a ray does not respect the shape of the
surface but is rather a construction to create a simple measure of sampling the three
dimensional volume along a single parameter. By defining a path respecting the sur-
face of the object, such as the use of an approximate geodesic [21], this defines a
distance between each point that reflects the shape of the surface of the object. This
distance induces an ordering of each local patch and by representing this ordering
rather than the non-surface respecting ordering induces by a ray we believe a more
descriptive representation can be found.

Given that we can sample statistics of the object along paths that reflect the true
global structure of the object the question remains what type of statistics should be
encoded. The obvious approach would be to encode only first order statistics such
as in [20] as it can be done in a robust manner and is less sensitive to difference is
sampling resolution. However, we believe that the important information is in the
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ordering of the local patches not simply the distribution. To that end we wish to take
a similar approach as in [10] and exploit robust and principled kernel approaches
representation and inference. In specific, where the semantic in [6] does not reflects
the local appearance we wish to exchange the semantical alphabet to use the local
representation presented in [18]. Rather than modeling the interaction between seg-
ments in time we aim to model the interaction spatial, where the time domain is
replaces with a distance measure along the object. We believe that this approach has
the potential of improving object categorisation and classification in a similar man-
ner as it improved action classification as shown in [10]. Our intuition why this will
lead to improvement is two fold; only modeling the local structure we are likely to
need a very detailed descriptor which is likely to be susceptible to noise. By using
a less descriptive local feature as [18] we believe this can be avoided. Secondly, the
generalization and discrimination will be encoded by using the robust string kernel
approach developed in [10] allowing us to exploit principled and robust inference
algorithms for classification.

5 Data Conditional Dependence and Factorization
The previous examples we have discussed have addressed representation of data for
a specific problem where we argue that the global structure of the variations in the
observations is the key component to model and represent not the actual variations
themselves. In this section we will describe a more general case where we do not
have a specific task in mind but rather want to acquire a complete model of the data
and model its underlying distribution.

In many scenarios of robotics we are given observations of the environment in
a factorised form. This can either be that the observations naturally factorises de-
scribing separate modalities or through the use of different sensors and or feature
representations. Assuming that the observations of the environment Y factorises
into k separate terms [Y1, . . . ,Yk] this means that from a probabilistic view point
the complete model of the environment is represented by the joint distribution,
P(Y) = P(Y1, . . . ,Yk). However, for many scenarios in robotics the dimensional-
ity of this distribution makes it intractable to learn. In order to proceed one can
exploit conditional independence in the observations imposing a structure on the
joint distribution such as,

P(Y) =
k

∏
i=1

P(Yk|πk), (1)

where πk corresponds to the subspace of Y that induces a dependency on Yk thereby
imposing a structure on the observation.

Extracting dependency structures in data is a very hard problem with the num-
ber of possible structures growing super-exponentially with the number of variables
or nodes. Recently significant strides have been made towards treating structure
learning in a principled manner through the development of structural priors such
as the Chinese Restaurant Process [22, 23, 24] and Indian Buffet Process [25, 26].
However, the use of such priors introduces significant limitations on the individual
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factors in the model meaning that they are not applicable in the general scenario
yet. This means that for many problems researchers have to resort to using heuristic
or greedy approaches. Of specific success have been the application of such meth-
ods when the data is discrete. However, for most robotic applications we deal with
continuous data which means that such approaches have in general been beyond us.
As a result, for the general case we often have to assume the structure and or the
factorization of the data to be known a priori [27].

In recent [28, 29, 30] work we have created a model which encodes the trade-
off between loss of precision as introduced by discretization process and the benefit
of learning the structure by exploiting the heuristic approaches developed for such
data. The proposed method learns a continuous latent variable model of each ob-
servation space represented by a set of discrete key states. It does so by exploiting
recent advances in probabilistic dimensionality reduction [31] and by introducing
a specific prior who balances the trade-off between discretization and representa-
tion in a principled manner. In Figure 8 a schematic figure of the graphical model
proposed in [28] and the learned intermediate representation used for clustering
is shown. Application of proposed method has allowed us to learn the conditional
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Fig. 8 The left image shows a schematic graphical model of the structure learning approach. For
each continuous observation space Yi we learn a low dimensional representation Xi with a func-
tional relationship to the observed data parametrised by θi. Further, the low-dimensional space is
represented using a set of discrete locations Ui. Given that we have a completely discrete repre-
sentation in terms of the Ui we can apply traditional heuristic methods for learning the structure
π . The right image shows and example of the low-dimensional continuous representation and the
discretization colour coded. The separation between the clusters is controlled by a prior modeling
the trade-off between discretization and representation.

structure from large collections of both discrete and continuous variables within the
same model. In Figure 9 the resulting learned structure for modeling a range of dif-
ferent sensor data for a grasping task is shown. This is an example of by enforcing
a specific structure on a lower level allows us to learn the more global structure of
the data which is often much less trivial to have a notion of. Even though it might
not be directly obvious this approach is not particularly different from the previous
described methods as: on a lower level we enforce a structure, either in the case
for discretization or in the object category example by on the local feature level ex-



The importance of structure 13

Name D N Description
task - 3 Task Identifier
obcl - 6 Object Class
size 3 8 Object Dimensions
cvex 1 4 Convexity Value [0,1]
shcv 3 7 Shape Class Vector (Zernike Similarity)
f con 20 20 Final Hand Configuration
dir 4 20 Approach Direction (Quaternion)
pos 3 14 Grasp Position
egpc 2 6 Eigengrasp Pre-Configuration
upos 3 11 Unified Spherical Grasp Position
f vol 1 6 Free Volume
gbvl 1 4 Volume of Grasped Boxes
pshcv 3 7 Part Shape Class Vector (Zernike Similarity)
pecce 1 3 Part Eccentricity [0,1]
g1bx 1 2 Grasped-1-Box Value [0,1]
qeps 1 5 Grasp Stability Measure (eps)
qvol 1 3 Grasp Stability Measure (vol)

task

obcl

size

shcv

cvex

pshcv

gbvl

g1bx

f vol pecce qvol
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pos

dir

upos
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egpc

Fig. 9 Example of a learned factorised representation of 17 different observation spaces for a
grasping scenario. To the left the different features are shown and to the right the resulting graph-
ical model with the learned structure. The structure is very complicated and it is highly unlikely
that we would be able to specify it a priori.

tracting specific structures such as edges or face normals, then on a global level we
model the structure either as previously in terms of a task or as here in terms of a
density model of the data.

6 Topology
Topology is the study of the structure of geometrical spaces and objects. As a branch
of mathematics it provides a toolbox for extracting qualitative measurements of ge-
ometrical objects. We believe that tools from topology can provide a machinery to
encode the global type of structure that we have argued throughout this paper be-
ing essential for acquiring a generalizable representation of the environment. How-
ever, topology as branch of pure mathematics was not aimed at analyzing uncertain
scenarios where we measure the environment through sparse and potentially noisy
samples as is often the case in robotics. In [32] the authors argue that by careful
consideration of the problem setting, topological tools are applicable to the type of
problems where statistical learning have usually been the dominating paradigm. The
authors also argue that topological reasoning has the potential to alleviate some of
the shortcomings fundamental to statistical learning. In specific, we like to high-
light the following observations of statistical learning made in the paper; Coordi-
nates are rarely natural, Metrics are necessarily not justified and The need for large
scale qualitative information. The two first observations relate to the fact that as the
dominant portion of statistical learning approaches work on vector spaces where the
inner product is assumed to be naturally interpretable. However, observations are
often “shoehorned” into vector spaces which are not natural in the sense that the
inner product does not relate to the intrinsic structure of the data. In order to reason
about the space we require some form of similarity measure between points pro-
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viding a distance or an ordering of the space. If the data is represented in vectorial
space the natural similarity measure is the use of a norm. However, if the vecto-
rial representation per say is not a natural representation of the data neither will the
distance be. Especially relationships at large scale are likely to be less informative
compared to local. This is indicated by the success of approaches which relaxes the
assumption about the parameterization to only assume it to be locally metric such
as simple nearest neighbor methods [33, 34, 35] and the success of kernel induced
feature spaces based on radial basis functions which emphasizes the local structure
in the data. This is also the foundation for the last intuition that we wish to highlight
from [32] that of the need for a qualitative measure of the data.

We have throughout this paper argued the importance of understanding the global
structure of data. Given that it is only at best on a local scale we can associate sig-
nificance to the similarity measure, we need tools that can in a principled manner
provide qualitative measure on the global structure of a set of data induced by a local
measure. A set of data and its structure can be studied by creating a graph where a
node represents each samples with paths connecting nodes according to some sim-
ilarity measure. Assuming that, we can at least on a local scale derive a somewhat
natural notion of similarity, this graph represents the structure of the whole data-
set that is induced by this local measure. The field of algebraic topology defines a
formalism for providing qualitative measures on such graphs. However, one central
question remains: on what scale the local similarity measure is relevant? In order
to reduce the effects of noise in the samples we wish to use as large range of inter-
action as possible, however if too large we run the risk of connecting non-related
components. This problem is well known in machine learning for constructing local
affinity matrices [21, 36, 37]. In order to circumvent this problem the idea of Per-
sistent Homology has been introduced which studies how the qualitative measure
changes by varying the range of the local interactions. Persistent homology provides
tools which can potentially make algebraic topology applicable as a formalism for
studying uncertain data.

We believe that a symbiosis between statistical learning tools with its principles
for modeling in scenarios with uncertainty and missing data together with the tools
for qualitative measurements of structure provided by topology has the potential of
achieving a synergic effect for merging local observations and global structure in a
unified framework.

7 What next?
Robots acting and interacting in realistic environments rely on perception, planning
and control for motion generation. Although state of the art algorithms are capable
of finding solutions that results in successful goal generation in some applications,
they are still not able to flexibly make use of the gathered experience and use it for
solving a similar/related problem on a future occasion. Extracting the semantics of
the task is one of the major bottlenecks that still remain to be solved. We have argued
in this paper that this is in general dependent on using the right representation for the
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problem at hand. A good representation of data is one that except for being robust
is capable of generalizing at the desired level.

In regard to motion generation, the classical approach operates in a complete con-
figuration or state space represented at the level of generalized coordinates consid-
ering all joint angles and their 3D pose. This requires a computationally expensive
state space optimization and randomized exploration in very large search spaces. In
a EU funded project TOMSY (www.tomsy.eu) we study representations of actions
and morphologies using topology-based abstractions in a layered manner and to im-
plement dexterous manipulation on articulated and flexible objects using mappings
between the topology-based abstract space, task space and joint space of metamor-
phic manipulators.

In this paper, have argued that one important mode of information for many ap-
plication scenarios is not the actual variation in the data but the rather the higher
order statistics as the structure of variations. We have exemplified this through a
set of applications and show different ways of representing the structure of data,
considering applications such as scene understanding, object recognition and data
representation for grasping.
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Abstract

In the spirit of recent work on contextual recognition and estimation, we present
a method for estimating the pose of human hands, employing information about
the shape of the object in the hand. Despite the fact that most applications of
human hand tracking involve grasping and manipulation of objects, the major-
ity of methods in the literature assume a free hand, isolated from the surround-
ing environment. Occlusion of the hand from grasped objects does in fact often
pose a severe challenge to estimation of hand pose. In the presented method,
object occlusion is not only compensated for, it contributes to the pose estima-
tion in a contextual fashion; this without an explicit model of object shape. Our
hand tracking method is non-parametric, performing a nearest neighbor search in
a large database (100 000 entries) of hand poses with and without grasped ob-
jects. The system operates in real time, is robust to self occlusions, object occlu-
sions and segmentation errors, and provides full hand pose reconstruction from
monocular video. Temporal consistency in hand pose is taken into account, with-
out explicitly tracking the hand in the high-dim pose space. Experiments show
the non-parametric method to outperform other state of the art regression meth-
ods, while operating at a significantly lower computational cost than comparable
model-based hand tracking methods.
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1. Introduction

Human pose estimation is an important task for applications such as teleoper-
ation and gaming, biometrics and prosthesis design, and human-robot interaction.
However, accurate 3D reconstruction of human motion from images and video
is a highly non-trivial problem, characterized by high-dimensional state spaces,
fast and non-linear motion, and highly flexible model structures [2]. All this is
applicable to hand reconstruction as well as full body reconstruction [3, 4, 5, 6].
However, while a full body pose estimator encounters additional challenges from
e.g. clothing, a hand pose estimator has to deal with other but equally demanding
issues: similarity in appearance between different parts of the hand (e.g. different
fingers), and large self occlusion.

An important aspect of hand pose estimation is that humans are frequently
holding objects. This is the case in the majority of the application areas mentioned
above. The grasped object is often occluding a large part of the hand – for a
plausible example, see Figure 1, left.

Despite this, researchers have up to now almost exclusively focused on esti-
mating the pose of hands in isolation from the surrounding scene, e.g. [7, 8, 9,
10, 11]. As illustrated in Figure 1, top and middle, this will be inadequate if the
observed hand interacts closely with objects during estimation.

Object-contextual hand pose estimation has been addressed in a generative
manner in two recent works. In [12] the authors show that the hand pose can be
reconstructed robustly despite the object occlusion. In [13], this is taken one step
further, with explicit reconstruction of the object in 3D. By enforcing physical
constraints on the hand pose from the object 3D surface and vice versa, the two
pose estimation processes guide each other.

In contrast to [12, 13], we take a discriminative approach to object-contextual
hand pose estimation. The main contribution of this paper is a method for estimat-
ing human hand pose, employing contextual information about the shape of the
object in the hand. Neither the hand nor the object are explicitly reconstructed; the
hand and the object are instead modeled together, encoding the correlations be-
tween hand pose and object shape in a non-parametric fashion. In spirit of recent
methods for contextual recognition and estimation, e.g. [3, 14, 13, 6], the object
occlusion thereby helps in the hand pose reconstruction.

There are two reasons for exploring discriminative hand pose estimation with
object context. Firstly, while generative estimation approaches commonly are
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Figure 1: Hand pose estimation is traditionally approached in two different manners,
either with a generative model (top) or using a discriminative approach (middle). With
a generative model, a model of the hand is maintained, and the image of the model is
evaluated against the observed image. In a discriminative approach, the image generation
process is not explicitly modeled; instead, a (parametric or non-parametric) mapping from
image to pose is learned from training examples. If objects are not taken into regard in
the modeling process, both these approaches have significant problems predicting in sce-
narios where large portions of the hand are occluded. In the generative case (top), there
is too little image evidence to compute an informative likelihood. In the discriminative
case (middle), the learned mapping can not take the object occlusion into regard, and will
return an erroneous estimate. Our method (bottom) addresses this problem, by exploit-
ing contextual information in the scene such as object-hand interaction. Due to this we
can reliably predict pose in scenarios with significant occlusion. We would like to point
out that our model is not limited to scenarios where an object is being manipulated but
equally valid to estimate a free hand. Objects can also be taken into regard in a generative
framework; see Section 2.
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more accurate, discriminative approaches are commonly more robust and compu-
tationally efficient; this is discussed further in Section 2. In, e.g., robotic appli-
cations, computational speed is critical, making discriminative approaches attrac-
tive. It is therefore valuable to investigate the possibility of estimating hand pose
discriminatively in the context of objects.

Secondly, apart from the purely physical object constraints on the hand pose
[13], there is also a functional correlation between object shapes and the manner
in which they are grasped by a hand [15]. Thus, all physically possible ways of
grasping an object are not equally likely to occur during natural object manipula-
tion activities. Probability densities over hand pose conditioned on object shape
can be encoded (in a non-parametric manner) in our discriminative method, while
it is difficult to encode this information in a generative model based method.

Figure 1, bottom row illustrates our approach. In our non-parametric method,
pose estimation essentially corresponds to matching an observed hand to a very
large database (100 000 entries) of hand views. Each instance in the database de-
scribes the articulation and the orientation of the hand. The configuration of a new
(real) image can then be found using an approximate nearest neighbor approach,
taking previous configurations into account.

In our system, the database contains hands both with and without grasped ob-
jects. The database depicts grasping hands including occlusion from objects with
a shape typical for this kind of grasp; this encodes functional correlations be-
tween object shape and the articulation of the grasping hand. The occlusion shape
is strongly correlated to grasping type which further has a strong dependency with
the hand articulation. Since the underlying assumption is that appearance similar-
ity can be related to similarity in hand pose the object shape contributes to the
hand pose estimation.

In many scenarios it is hard to differentiate between the palm and the dorsal
(“back-hand”) side of the hand. However, the object is much more likely to oc-
clude the palm rather than the dorsal side of the hand. This is an example of how
object knowledge can be exploited in order to resolve the ambiguities typically
associated with hand pose estimation.

The rest of the paper is organized as follows: In Section 2 the relations to
related work are discussed. The probabilistic estimation framework is then out-
lined in Section 3. The non-parametric hand model is described in Section 4,
while Section 5 describes how inference is done over this model. Experiments
in Section 6 show the non-parametric method to outperform other state of the art
regression methods. We also show qualitative reconstruction results for a number
of synthetic and real test sequences.
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2. Related Work

In this section we review related work on object-contextual non-parametric
hand pose estimation. For a general review on human motion estimation we refer
the reader to [2] and for hand pose estimation in specific to [16]. Further, we will
discuss the main difference, both with respect to accuracy and performance, of
generative and discriminative methods in the context of hand pose estimation.

2.1. Object-Contextual Hand Pose Estimation
As discussed in the introduction, hand pose estimation can be addressed in

a generative or a discriminative manner. Object-contextual hand pose estimation
has been addressed in a generative manner in two recent works. In [12] the authors
show how the hand pose can be reconstructed robustly despite the object occlu-
sion. The hand is observed using RGB-D imagery (with both range and color). To
achieve robustness to partial occlusion of the hand from objects, the hand is mod-
eled as a Markov random field connecting segments corresponding to the different
bones of the hand skeleton. In this way, the non-occluded segments can guide the
pose estimation of the occluded ones.

In [13], this is taken one step further, with explicit reconstruction of the object
in 3D. By enforcing physical constraints on the hand pose from the object 3D
surface and vice versa, the two pose estimation processes guide each other. A
multi-camera system is used to estimate both the pose of the hand and the object
with framerates between 0.5 and 2 Hz.

2.2. Generative and Discriminative pose estimation
As outlined in the introduction inference of hand pose from images have either

been done using generative or discriminative methods. In contrast to [12, 13], we
take a discriminative approach to object-contextual hand pose estimation. Over
the next paragraphs we outline and discuss the main difference between gener-
ative model-based estimation methods and discriminative regression estimation
methods to motivate our line of approach.

Accuracy. An important advantage of generative approaches is their (potential)
accuracy, which is only limited by the precision of the hand model and the com-
putational time available. In contrast, the accuracy of our discriminative non-
parametric approach is fundamentally limited by the design of the database; it is
not computationally tractable, using any approximation, to add enough new sam-
ples to the database in order to reach the accuracy of a generative tracker.
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Initialization and error recovery. However, one disadvantage of generative mod-
els is their inherent local character. In most cases, the posterior distribution over
the state space is highly multi-modal. The estimation procedure must therefore
have a good prior state estimate. This can represent a problem in the initialization
of the method. The tracking procedures in [12] and [13] were manually estimated.

Another inherent problem of locality with generative models is the recovery
from errors; when the pose of a frame is wrongly estimated, subsequent frames
will try to adapt such erroneous estimation to new frames. Since the temporal
propagation model by nature is local, the method will then lose track.

Discriminative, detection-based methods are inherently global, because a new
search independent of the previous ones is executed in every frame. In our system
we encourage locality by using a temporal consistency model, see Section 5.2.
However, since the likelihood in our model is sampled globally, hypotheses from
new parts of the pose space are continuously picked up, ensuring that the tracker
can recover from errors easily.

The locality of model-based solutions can be specially problematic for hand
pose estimation because hand movements in real sequences can be very fast (5m/s
translational and 300 deg /s rotational speed of the wrist [16]), breaking the local-
ity assumption.

Computational efficiency. The joint estimation of hand and object pose in [13]
presents another problem: computational load. The results shown with real se-
quences use eight cameras and the estimation time is 2 seconds per frame. De-
creasing the number of cameras (and therefore the quality) can speed-up the sys-
tem up to 3 Hz. The method of [12] requires 6 seconds per frame.

In contrast, our discriminative method runs in real-time, implemented in C++
on standard hardware.

2.3. Non-Parametric Hand Pose Estimation
Other hand pose estimation systems have used databases of hand views in a

non-parametric manner [7, 8, 11, 17]. As discussed in the introduction, none of
the three previously mentioned systems mentioned how to handle or take advan-
tage from occlusions, and the experiments showed hands moving freely without
any object occlusion. The main difference between our system and previous ap-
proaches is that we exploit contextual information, such as objects to estimate the
pose of the hand.

In [11], the application of a specially designed glove circumvents several prob-
lems associated with hand-pose estimation, making the problem as well as the ap-
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proaches significantly different. An evolution of that system can be found in [17],
where the authors track the hands without the need of gloves. However, they can
only track a very limited range of hand poses and movements.

The system described in [7] performs classification of human hand poses
against a database of 26 basic shapes. This is adequate for their intended ap-
plication, automatic sign language recognition. In contrast, our method aims to
perform continuous hand pose estimation rather than isolated single-frame pose
classification, which means that we can exploit temporal smoothness constraints
to disambiguate the estimation.

The work from [8] can be regarded as the most similar to our work. However,
like the two other approaches, they only take freely moving hands into regard.

3. Probabilistic Framework

We begin by explaining the notation used throughout the paper. At a specific
time instant t, let xt be the articulated hand pose and yt the corresponding image
observation.

Given a specific image observation yt, we wish to recover the associated pose
parameters xt generating the visual evidence. Formally we will refer to the rela-
tionship between the pose and the image space as the generative mapping f ,

yt = f (xt). (1)

A discriminative approach to infer the pose from an image is to model the inverse
mapping f −1 as a function, using a regression model as in [18]. In a probabilistic
formulation, this function estimates the likelihood density p(xt | yt).

In the case of hand pose estimation, this is known to be a highly ill-conditioned
problem, since the image features are ambiguous; the same image observation y
might origin from a wide range of different poses x, making the likelihood density
multimodal [19]. In order to proceed, several different approaches have been sug-
gested: generative models [20, 12, 13] which directly model f , approaches which
rely on multiple views [9], or methods that exploit the temporal continuity in pose
over time [20, 21].

In this paper, our objective is a highly efficient method for situations where
model-based generative approaches are inapplicable due to their computational
complexity. Further, multiple views are not available in most applications.2 We

2It should be noted that it is straight-forward in the present approach to employ image evidence
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see Figure 2. To perform inference, we use a truncated approach where we ap-
proximate the distributions in Equation (2) using local models.

As shown in Figure 2, one time-step of inference is carried out as follows:

• Given an image observation yt, a set of weighted pose hypotheses Xt =

{xi
t,wi

t} are drawn from the model as the nearest neighbors to the image
observation in feature space. These constitute a sampled approximation of
the observation likelihood p(xt | yt). This is described in further detail in
Section 5.1.

• From the weighted nearest neighbors of the previous time step, a function
g(xt) approximating the temporal model p(xt | xt−1) is computed. This is
described in further detail in Section 5.2.

• Weights w∗it are now computed as w∗it = g(xi
t) ∗wi

t. The weights are normal-
ized to sum to 1 for all samples in Xt.

• The pose estimate is the most probable sample from the database given the
observation and the previous estimates. With our weighted nearest neighbor
approach, this is approximated by x̂t = xk

t , where k = arg maxi w∗it .

In the next section we describe how the proposed implicit database model is
created and represented.

4. Non-parametric Model Representation

In order to obtain the non-parametric model, we need to acquire a training
data set of poses and associated image appearances (x, y) that can be assumed to
“well” represent the problem, i.e., that includes poses that are expected to occur
in a specific application domain. As our approach is non-parametric, there is
no explicit parametrization of the image-to-pose mapping, as the relationship is
implicitly parametrized by the database itself.

Generating such a database of natural images poses a formidable challenge, as
it would need to capture the variations in pose and image appearance at a sufficient
resolution in order to make accurate pose estimation possible. However, with
recent advances in Computer Graphics we can use a rendering software such as
Poser, which is capable of generating high-quality images of hands efficiently.
The idea of acquiring large sets of training data using this approach is not new
and has proved to be very successful for pose estimation [18, 4].
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Figure 3: The left image shows an example from the database. The right image shows the
associated image feature descriptor y. Prior to extracting the feature descriptor the object
is segmented from the image, resulting in a “hole” at the corresponding position in the
descriptor. This encodes the correlation between pose and object in a more robust manner
compared to if the internal edges of the object would also contribute to the descriptor.

The composition of the database used in this paper is motivated by our research
aim: understanding human interaction with objects, [22, 23, 14]. We select 33
different grasping actions according to the taxonomy presented in [15]. Further,
each action is applied to a set of basic object shapes on which the grasp would
naturally be applied. Each action is then discretized into 5 different time-steps.
In order to make our approach view-independent we generate samples of each
instance from 648 different view-points uniformly located on the view-sphere.
This results in a database of over 100 000 instances (see, e.g., Figure 3, left),
which we assume samples the problem domain well.

4.1. Data Collection
Images are extremely high-dimensional objects, making it infeasible both in

terms of storage and modeling to use the original pixel representation. In this
paper we therefore apply a two stage feature extraction approach with the aim to
remove variance not related to pose from the image. In the first stage the hand is
segmented from the image using skin color thresholding [24]; this also removes
the object being grasped and the parts of the hand occluded by the object. Hav-
ing extracted the hand from the image, the dimensionality is further reduced by
representing the image as the response to a image feature.
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A large amount of work within Computer Vision has been focused on devel-
oping different image features [25, 26, 27]. An ideal image feature should be
robust to segmentation errors, sensitive to non-textured regions and fast to com-
pute. We compare the performance of Histogram of Oriented Gradients (HOG)
[28] features and features based on distance transform [29] for different parame-
ter settings. For a number of different feature options, the following experiment
is performed: The feature is computed for every database entry. The entries are
removed from the database one at a time, and the 50 nearest neighbors (NN) ex-
tracted from the database. The mean is taken of the Euclidean distance in pose
space between all query entries and their found nearest neighbor number 1, 2, ...,
50. This distance is the same as the error of a non-parametric pose estimation
– a dense database and a good feature would give small distances, while a sparse
database and a non-informative feature would give large distances. Figure 4 shows
the cumulative mean pose error of nearest neighbor number 1–50, for 9 different
feature alternatives.

Based on the result shown in Figure 4, an 8 × 8 × 8 HOG feature is selected,
resulting in a 512 dimensional image representation, see Figure 3, right.

Our motivation is to exploit contextual information of the grasped object when
estimating the hand pose; the object contains a significant amount of information
about the pose (and vice versa). In a learning based framework, which assumes
having a training data set which describes the problem domain well, the natural
inclination is that the model would be limited to handle objects which are included
in the database. Such a model would have to be of a size that would render it
infeasible to use. However, in our model the object is removed. This means the
occluding shape of the object affects the representation while the internal edges of
the object do not, see Figure 3. This representation can robustly be extracted from
the image and is capable of generalizing over different objects. As we will show
in the experimental section, this sufficiently models the correlation between hand
and object allowing estimation in scenarios of severe occlusion.

Having acquired a low-dimensional efficient representation y of the image as
described above, the database is completed by associating each image yi with its
corresponding pose parameters xi. The pose vector x is composed of the rotation
matrix of the wrist w.r.t. the camera and the sines of the joint angles of the hand.

5. Inference

As shown in Equation (2), the conditional probability density over hand pose
xt is factorized into two different terms, an observation likelihood p(xt | yt) and a
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Figure 4: Cumulative mean pose error of non-parametric pose estimation using different
image features. The curves show the cumulative Euclidean distance between the query
pose and its nearest neighbor number 1-50 in the database. joints is the ground truth
error in pose space, acquired by taking the nearest neighbors in the pose space directly.
This is a lower bound on the error and shows the density of our database. The curves
hogAxAxB show the error when using HOGs with A × A non-overlapping cells and a
histogram of B bins (see Figure 3 for an example of an 8 × 8 × 8 HOG). The suffix pyr
indicates that the HOG feature includes lower resolution cells (1 × 1, 2 × 2, . . . , A × A).
The suffix nh means normalized holes: the histogram is normalized to sum to one (i.e.,
removing information on how large part of the cell is covered by skin colored areas).
The curve dist32x32 shows the error when images are represented by their distance
transform subsampled to 32 × 32 pixels. The edge curve shows the error when using the
chamfer distance between edge maps extracted from the images. The result indicates that
an 8 × 8 × 8 HOG gives the lowest error.

temporal consistency model p(xt | xt−1). Below we discuss these two models in
more detail, and show how the pose xt is estimated from the observation yt using
the implicit database model.

5.1. Observation
The pdf p(xt | yt) is approximated by indexing into the database of hand poses

using the image representation yt, and retrieving the nearest neighbors in the space
spanned by the set of database features Y. Due to the size of the database, an exact
NN approach would be too computationally intensive. We therefore consider ap-
proximate methods. We compare Locality Sensitive Hashing (LSH) [30] and Fast
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Figure 5: The plot shows the prediction error (left) and average query time (right) as a
function of database size (as percentage of the full database size) for finding the nearest
neighbor in the database. 10% of the original database is set aside for testing, resulting in
a full database of around 90 000 instances. Two approximate methods, LSH and FLANN,
are compared with an exhaustive search as baseline. The left plot shows that LSH per-
forms slightly better than FLANN in terms of accuracy. The right plot shows the query
time increasing linearly for the exhaustive search while the approximate methods being
sublinear, and FLANN being faster than LSH in absolute terms.

Library for Approximate Nearest Neighbors (FLANN) [31], see Figure 5, and de-
cide to use LSH in our experiments as it shows an attractive trade-off between
computational complexity and prediction accuracy.

LSH is an ǫNN technique. This means that a query yt results in an approxi-
mation to the exact nearest neighbor within a distance not more than (1+ ǫ) times
larger than the exact nearest neighbor distance. Each retrieved ǫNN yi

t is associ-
ated a weight wi

t from a spherical Gaussian density,

wi
t = N(yi

t | yt, σyI) , (3)

with standard deviation σy is set by experimental evaluation. This encodes our
belief that the image feature representation is locally smooth and reduces the effect
of erroneous neighbors from the LSH algorithm.

Each image feature in the database, y j is associated with a pose x j. The
poses {xi

t} corresponding to the ǫNN {yi
t} can thus be retrieved. Together with

the weights, they form the set {xi
t,w

i
t} which is a sampled non-parametric approx-

imation of p(xt | yt).
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5.2. Temporal Consistency
As described in Section 3, the temporal consistency constraint p(xt | xt−1) is

modeled as a parametric function g. It is used as a conditional prior to reweight
the sampled distribution {xi

t,w
i
t} approximating p(xt | yt).

We assume that our model is getting observations densely enough in time such
that the trajectory with respect to both the pose and view spaces vary smoothly.
The naïve modeling approach would thus be to penalize estimates by their devi-
ation in pose space to the previous estimate x̂t−1. This model implicitly assumes
that the temporal likelihood distribution p(xt | xt−1) is uni-modal. The uni-modality
assumption can introduce unnecessary errors in the prediction since x̂t−1 might not
be the best candidate due to ambiguities (several poses can share a similar appear-
ance) or estimation errors. A more sensible approach is to make use of all the
hypotheses Xt−1 = {xi

t−1,w
∗i
t−1} in the previous time instance and propagate them

through time. We can do so by modeling the conditional distribution p(xt | xt−1)
using a kernel density estimation (KDE) approach [32], where the density is mod-
eled as a mixture of Gaussian kernels centered in xi

t−1 and weighted by w∗it−1. This
enables propagation of a potentially multi-modal distribution in time, making the
temporal model significantly more flexible and expressive, allowing us to repre-
sent temporary ambiguities, resolving them further ahead in time.

As we will show in Section 6, having a strong temporal model allows us to
perform prediction in noisy scenarios where the image observations are uncertain.

6. Experiments

We perform three sets of experiments using the proposed method. First we
compare our non-parametric approach to a baseline of other state-of-the-art re-
gression algorithms. In order to make an evaluation in terms of a quantitative
error this experiment is performed using synthetic data where the joint configu-
ration is known. Synthetic data also allows us to control the amount of noise in
the images. Both our method and the baseline methods are evaluated in terms of
robustness towards noise in the image observations.

In the second set of experiments we evaluate our method in a qualitative man-
ner on synthetic sequences with added image noise.

The third set of experiments is performed on challenging real-world sequences.
We would like to encourage the reviewer to look at the videos submitted as

additional material; they clearly show the robustness and generality of our ap-
proach.
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Figure 6: Pose estimation using the non-parametric method (PNP) in comparison to three
different regression techniques (LSQ, RVM, GP). As a baseline, the true nearest neighbor
pose error (NN Pose) is shown, as well as the pose error of the nearest neighbor in feature
space, not taking temporal information into regard (NN Feature). The plots show the
average error with increasing segmentation noise. The error measure in the left plot is the
Euclidean distance in the pose space spanned by x. The error measure in the right plot is
the Euclidean distance in the space spanned by the 3D positions of all finger joints.

(a) α = 0.5% (b) α = 3.3% (c) α = 5%

Figure 7: Artificial corruption of the segmentation of the synthetic test data. The corrup-
tion is performed as follows: A partial segmentation is created by randomly removing α
percentage of the pixels from the segmentation. The morphological operators of erosion
and dilation are then applied this partial segmentation in order to propagate the noise over
the image. Examples of increasing segmentation noise are shown.
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mapping f −1 is under-constrained and does not take functional form. However,
the non-parametric approaches are capable to model in such scenarios. From the
results we can see that an exact nearest neighbor estimate in the feature space
(without temporal information) results in a worse result compared to the mean
pose distance in the data set, while our approach performs significantly better –
also indicating that the mapping is non-unique. The dashed red line shows the
results of an exact nearest neighbor in the pose space and is therefore a lower
bound on the error of our method as it shows the resolution of the database.

The norm in joint space is not easily interpretable in terms of quality of the
prediction as it does not respect the hierarchical structure of the hand, see Figure
8. Therefore, the right plot of Figure 6 shows the same mapping results, but with
an error norm in terms of finger joint 3D positions. This shows even clearer how
well our suggested method performs. With very little noise we are close to the
exact NN lower bound, with increasing segmentation error asymptotically moving
towards the mean.

Note that 5% error corresponds to a very weak segmentation, see Figure 7.
Further, our approach significantly outperforms the exact nearest neighbor in fea-
ture space (without temporal information). This clearly indicates how important
temporal information is in order to disambiguate the pose.

To summarize, the results clearly show that the mapping from image features
to pose is both highly non-linear and non-unique (multi-modal). This implies that
it cannot be modeled using a functional approach.

6.2. Synthetic
In order to evaluate the qualitative performance of our method in a controlled

scenario, we applied the model to image sequences with a controlled noise level.
The results are visualised in Figure 9.

The estimated pose over the two sequences is accurate while the associated
object varies. This validates our assumption that objects generalize over pose and
provide important contextual information is correct.

6.3. Real Sequences
In order to show the performance of our method in a real world manipulation

scenario, we let three different subjects, two men and one woman, manipulate
three different objects. The objects are not contained within the model. The results
are shown in Figure 10.

As can be seen from the results, our model is capable of accurately predicting
the pose of the hand. In each of the sequences the test hand shape and appearance
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Figure 9: Qualitative results of our approach applied to synthetic data. The top and the
forth row show the ground truth pose, the second and the fifth row show the segmentation
from which the image features are computed. The segmentation has been corrupted by
artificial noise with α = 0.5% as explained in Figure 7. The third and last row show
the corresponding predictions from our system. The two grasping sequences are applied
to two different objects, in the first sequence a book and in the second a ball. We show
the predicted hand-pose but also the object that is associated with the specific pose in the
database.

is different from the database hand model, while there is no observable degrada-
tion in performance, showing that our model is robust to different hands. Further,
as neither of the manipulated objects are represented in the model this further sup-
ports the notion that grasps generalize over objects and that the objects’ influence
on the grasp provide important cues. This clearly shows that our system is capable
of exploiting such information.

A large portion of the dynamical models that have been proposed to the prob-
lem of pose estimation are based on auto-regressive models [36], which assumes
that the trajectory in time takes functional form. Even though our dynamical
model is parametric, it is based on hypotheses from the non-parametric ǫNN
model. This means that it is considerably more flexible and can recover from
bad estimates in situations where an auto-regressive model will fail. To highlight
this strength we tested our model to a set of highly challenging sequences with
fast non-linear motion and significant occlusion. This results in significant errors
in the visual features. In Figure 11 the results clearly show the strength of our
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Figure 10: Predictions of real world sequences. The three rows show three different
sequences where different objects are manipulated by different humans. In the first and
second sequences the subject is male while in the last one female. None of the objects
exist in the database. The first, third and fifth row show the input images with the skin
detection window highlighted. The remaining rows show the associated predictions. As
can be seen, the model correctly predicts the hand pose in each of the three different
sequences.

approach, as it is able to track in such scenarios, and recover from errors which
are difficult to avoid.

Further, we would like highlight the efficiency of our algorithm. It runs in real-
time which makes it applicable in many different scenarios where pose estimation
is an important source of information.

7. Conclusions

We present an efficient non-parametric framework for full 3D hand pose esti-
mation. We show through extensive experimentation that the proposed model is
capable of predicting the pose in highly challenging scenarios corrupted by sig-
nificant noise or with rapid motions. Further, our model is efficient and runs in
real-time on standard hardware.

The fundamental contribution is a system capable of exploiting contextual in-
formation in the scene from the interaction between the hand and a potential ob-
ject. We show how this information can be exploited in a robust manner, making
our system capable of generalizing the pose over different objects. This enables
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Figure 11: The above sequences shows two challenging examples. In the left sequence a
significant portion of the hand is occluded by the object. However, our proposed method
still manages to correctly estimate the pose of the hand. This clearly shows the strength
of jointly estimating the object and the pose rather than seeing them as independent. The
right sequence is an example where the subject manipulates the objects in a rapid fashion
in a highly non-linear manner. In such scenarios most dynamical models commonly ap-
plied in pose estimation will over smooth the solution or be unable to predict at all due to
being fundamentally auto-regressive approaches. Our model correctly predicts the pose in
the two first frame while the last estimate is erroneous. This error is an implication of the
Markov one assumption in our temporal model which thereby is not capable of modeling
inertia and therefor is unable to resolve the ambiguity in the image sequence.

the usage of a fast discriminative method to scenarios where only expensive gener-
ative methods previously would have been applicable. We employ a multi-modal
temporal model, allowing us to resolve ambiguities through temporal consistency.
Our model could easily be extended to simultaneously estimate both the hand pose
and the object shape by appending the inference scheme with a smoothness term
with respect to object.

In future work we would like to evaluate the possibility of exploiting a better
pose representation. This would make it possible to even further strengthen the
temporal model. In this paper we also assume that the observation model can be
modeled using a spherical Gaussian; this encodes an assumption of equal impor-
tance of the joint angles. This is unlikely to be true why we would like to explore
a likelihood model that better respects the correlation between quality of estimate
in joint space. This could potentially allow us to use additional hypotheses for
each estimate.

Another avenue of future work to investigate is exploitation of RGB-D data,
which would improve both the hand-background segmentation (currently based
on skin color) and the feature representation of hand shape (currently HOG).

Finally, as noted in Section 2, generative and discriminative approaches have
different merits. For applications requiring high accuracy, we therefore plan to run
our discriminative hand pose estimator in parallel with a more accurate but less ro-
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bust generative tracking method, using the discriminative estimates to (re)initialize
the generative process.
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Visualization of Anthropomorphic Hand
Performance

Thomas Feix, Javier Romero, Carl Henrik Ek, Heinz-Bodo Schmiedmayer, Danica Kragic

Abstract—The human hand serves as an inspiration for robotic
and prosthetic hands. In the design of hand prostheses, an open
question is which degrees of freedom to actuate in order to
achieve the best functionality of the hand. In robotics, apart from
the actuation, the goal is also to develop highly dexterous hands.
A natural question is how to define a similarity measure through
which the capabilities of different hands can be analyzed. Many
parameters can be taken into account - ranging from kinematic
and dynamic properties to the choice of material (rigid vs. soft)
and interaction with objects. Currently, there are no analytic
methods for performing such analysis and the mainstream
approaches perform exhaustive experimental evaluation.

In this paper, we address the problem of comparing the
capabilities of different hands through the use of non-linear
dimensionality reduction techniques. We concentrate on the
kinematic analysis - that is, we address the problem of how
many different grasp types or how large space of poses different
kinematic structures can achieve. In our study, we first generate
data with human subjects, thus using the capabilities of the
human hand as the benchmark. The generated human data is
based on an extensive grasp taxonomy, including most common
grasp types. We develop a methodology for comparing different
anthropomorphic robotic and prosthetic hands for the specific
task of object grasping. We show how different robotic hands
perform with respect to the human hand, resulting also in a
comparison between different robotic hand designs. Although
the method is applied to hand data, it can be used to compare
other types of kinematic structures as well.

Index Terms—Grasping, Multifingered Hands, Kinematics,
Rehabilitation Robotics, Biologically-Inspired Robots

I. INTRODUCTION

We use our hands for daily interaction with the environment:
the objects we interact with have been made to suit our
dexterity. From robots we expect no less - they should be able
to interact with and manipulate objects in the same/similar way
we do. The same is desired for prosthetic hands. Historically,
the road of building artificial hands has stretched between
building simple industrial grippers and designing more com-
plex hands that mimic human hand anthropomorphism and
dexterity, [1].

In order to achieve the latter, one can add more actuators to a
hand, resulting in a higher number of independently controlled
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joints. However, the effective dexterity of such a hand may
not be increased due to the control complexity, [2]. Some
of the mainstream approaches in robotics have the goal of
creating hands that are relatively simple but still versatile in
terms of the actions they can accomplish. The natural question
arises: How sophisticated hands should we build, and how
should we design them in order to be able to fully exploit
their capabilities?

Several important works in robotic hand design have been
inspired by the human hand, [3], [4], [5]. Relation between
the human and prosthetic hands is clear given the similarity
in the kinematic structure, but the problem of which degrees
of freedom are best to actuate remains open. Thus, a natural
question is how to define the metrics and perform analysis
of the capabilities of different hands. Here, many parameters
can be taken into account - ranging from kinematic and
dynamic properties to the choice of material (rigid vs. soft)
and interaction with objects. Currently, there are no analytic
methods for performing such analysis. The mainstream ap-
proaches perform exhaustive experimental analysis and there
is no unified benchmark for the problem.

In this paper, we address the problem of comparing the
capabilities of different hands through the use of non-linear
dimensionality reduction techniques. We concentrate on the
kinematic analysis thus addressing the problem of how many
different grasp types or how large space of poses different
kinematic structures can achieve. In our study, we first generate
data with human subjects, thus using the capabilities of the
human hand as the benchmark. The generated human data is
based on an extensive grasp taxonomy, including most com-
mon grasp types, thus with the focus on prehensile movements.

The main contribution of the paper is a methodology for
comparing different anthropomorphic robotic and prosthetic
hands. The methodology is based on the definition of an
anthropomorphism index (AI) which measures the similarity
between kinematic structures. The specific structures evaluated
in our work are human and different artificial hands, both
robotic and prosthetic. The approach allows for reasoning
about the level of anthropomorphism of the artificial hand but
can in general be used to assess the similarity between any
types of kinematic structures. In our approach, the computation
of the AI is based solely on a kinematic model of the hand
and it is therefore straightforward to change parameters of the
hand model and determine their impact on the AI. Parameters
that can be changed are, for example, the number of joints,
their orientation, etc. This provides a fast way of generating
and assessing a changed hand design, providing the basis for
its incremental improvement. An additional contribution of
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the work is the demonstration of how state of the art non-
linear dimensionality reduction techniques can be used for
this purpose, encoding the sparse high-dimensional data in a
compact manner.

Finally, the benchmark procedure that is made publicly
available through an open-source toolbox 1.

The paper is organized as follows. In Section II we overview
the related work followed by the general idea proposed in our
work in Section III. In Section IV we present the dimensional-
ity reduction technique used and continue with the description
of the metrics used for the comparison in Section V. In
Section VI, we evaluate the latent space representation and
in Section VII we present and evaluate two prosthetic and one
robotic hand. Section VIII discusses the experimental results
and concludes the paper.

II. RELATED WORK

A human hand model typically consists of 20 independent
joints, [6], [7], [8]. Studies have shown that this is an over-
representation in terms of degrees of freedom (DoF) as there
are strong correlations between the joints [9], [10], [11]. The
correlations are not obvious and cannot be modeled explicitly,
so data-driven approaches are commonly used to determine
the coupling between them. The basic result is that only a
few parameters are sufficient to unambiguously define a hand
posture [9] or hand movement [12], [10], [11]. The minimum
number of parameters required to specify the posture of the
hand is called the intrinsic dimension of the hand or the
number of DoF of a hand.

In robotics, a significant effort has been made at creating
highly sophisticated hands with the goal of mimicking the
versatility of the human hand. A few well known examples
are the UB Hand 3 [13] with 16 DoF, the Robonaut Hand
[4] with 12 DoF and the DLR-HIT Hand II with 15 DoF [5].
These hands have a large potential dexterity by design, but the
real dexterity is much lower due to the control complexity, [2].
Apart from building simple industrial grippers, the recent focus
has shifted from complex to simpler hands that can accomplish
the assigned tasks [14].

The mechanical complexity of a hand and the complex
hand-object interactions make it difficult to assess the quality
of a hand design without its realization. Furthermore, there
is no common benchmark for grasp performance measures.
The classical way of determining the quality of a grasp is
to assess the stability of a grasp and to determine whether
a grasp is form or force closure [15]. The methodology is
based on assessing how positional perturbations are resisted
by the grasp, whereas in form and force closure the ability to
resist external forces is determined. Such a measure can be
used as a guideline for the hand design, as a hand should
be built so that it has a good “stability score” on many
different objects. A more elaborate comparison of different
grasp similarity measures can be found in [16]. However, only
a few hand prototypes are based on a structured analysis of
their capabilities [16].

1http://grasp.xief.net

There are other relevant approaches to hand design op-
timization. One approach [17], [18] has been specialized
towards underactuated kinematic hand setups. The actuation
parameters of a hand are optimized to maximize the number
of stable grasps achieved within a manually defined pool of
grasping postures. The creation of the evaluation grasp set
constitutes a time-consuming process. In [18], a prototype was
built for a simple symmetric 2-finger gripper. For this special
case it was possible to calculate a global optimal solution. For
more complex embodiments, the objective function becomes
more difficult to handle, having multiple local minima.

An approach using postural synergies is presented in [19].
A number of in-hand rigid-body object motions and internal
forces can be applied to the object depending on the number
of synergies (defined as basis vectors of a linear subspace)
used to drive the hand. It was shown that with increasing
number of synergies, more movements and forces become
controllable. For example, having three contact points on the
object and controlling the hand with one synergy, one internal
force is controllable. Increasing the number of synergies up
to three will render up to three internal forces controllable. A
further increase in the number of synergies allows for intrinsic
movements and finally, if the number is increased even more,
redundant movements are possible. This analysis is a good tool
to judge how complex a hand has to be in order to achieve
a desired degree of dexterity. Nevertheless this tool is limited
to linear subspace analysis and therefore to joint couplings
in a linear combination sense. Nonlinear couplings or other
complex joint coordination patterns cannot be modeled using
this approach. Further, this does not produce hints or ideas on
the kinematic design of a hand.

A framework to test underactuated hands is presented in
[20], [16], where the ability of different kinematic setups to
grasp a cylindrical object either by pinch or power grasp
is assessed. The system determines the hand’s ability to
stably grasp moving cylindrical objects, as well as the grasp
resistance to external forces. However, the system is used to
evaluate a symmetrical gripper, where all axes are parallel. It
is not clear how the system could be applied to more anthro-
pomorphic hands, where the joint axes are not parallel. This
is particularly important for the thumb, since the kinematic
structure of the human thumb is very different to the rest of
the fingers.

Using the tendon driven ACT hand, [21] investigates how
tendon coordination patterns influence the positional precision
of the hand. The decrease in precision is measured after tying
various tendons to the same actuator. A small reduction in
actuators is possible without large penalties on the fingertip
precision. Controlling 20 tendons with only 16 motors results
in an error of about 30%, which is still acceptable in most
applications. However, when each finger is driven by only two
actuators, the error is twice that of the fully actuated hand.
Finally, the authors in [1] assess how different types of robotic
hand components affect the trade-off between robustness to
clutter and grasp stability.

For prosthetic hands, the problem is similar but the lack
of a proper interface between the human and the prosthesis
is the major bottleneck [22]. It is very difficult for the
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technical system (i.e. the controller of the prosthetic hand)
to determine the intended hand movement of the human.
Although many methods for advanced prosthetic hand control
have been proposed, none have proved to be sufficiently
reliable for commercial applications [23]. Also, hand weight
and reliability are key factors of user acceptance [24].

The work in teleoperation is also related to our work since
it requires mapping of human controller movements to the
robotic system with different hand/arm kinematics. Most of
the examples rely on measuring the fingertip locations/joint
angles and then estimating the joint angles of the robotic hand
using inverse kinematics [25], [26], [27].

In summary, determining the quality of a hand design and
assessing the effect of different parameters on the resulting
functionality is difficult and remains an open problem. The
work presented in this paper provides a methodology for
comparison as well as a publicly available benchmark data. In
the following section, we provide the details of the developed
methodology.

III. SYSTEM DESCRIPTION AND METHODOLOGY

The goal of our work is to, as it will be discussed in
more detail later, assess the level of anthropomorphism of
different five-fingered hands. When it comes to generating
and representing hand actions or hand configurations, we can
specify them by using a joint angle representation, or using
fingertip poses. In this work, we will generate a number of
different hand configurations, both for the human and artificial
hands, and represent them by fingertip poses.

Each fingertip has six DoF (three rotations, three trans-
lations) and we use rotation matrices to represent rotations.
Therefore the vector representing one hand configuration has
5 × 12 = 60 elements. Further motivation for the choice of
rotation parametrization is given in Section IV-B. Although
the dimensionality of the representation space is rather high,
the actual dimensionality of the fingertip data occupies only
a small part of the representation space.

We define the term action manifold A, that represents all the
postures or a chosen subset of postures a hand can reach. For
example, we may generate an action manifold that represents
all three-fingered grasps for a hand. The goal in this paper
is to use the action manifold, represented in fingertip space,
for evaluation of similarity between different hands. More
specifically, we compare human hands to different robotic and
prosthetic hands, focusing thus on five-fingered hands.

The dimensionality of the action manifold will depend on
the type/capabilities of the hand: for example, the dimensional-
ity for a simple gripper, which only allows for an opening and
closing, is one. In our approach, hands with different action
manifolds are represented and compared in the same fingertip
space. In short, the dimensionality of the representation space
is A ∈ R60 and the dimensionality of the data and thus action
manifold is dim(A) ≤ 60.

A. Assessment using Action Manifolds

We present the basic idea of the approach in Figure 1. The
figure shows a hypothetical visualization of the fingertip space

and the idea of its use for assessing the similarity between
three hands. In that space, the data that can be generated
by a specific hand spans a certain volume. Let us assume

Han
d 

2

Hand 1

Han
d 3

xi

xj

Fig. 1. Hypothetical visualization of the fingertip space T and of embedded
action manifolds. Depending on the kinematics of the hand, the shape of the
action manifold differs.

that “Hand 2” represents the volume populated by typical
human motions while “Hand 1” and “Hand 3” represent the
movements generated by two artificial hand setups. The aim
of our approach is to estimate the intersection between the
volumes spanned by two hands, i.e. to estimate which postures
both hands are capable of generating. In the case of comparing
a human and an artificial hand, the degree of overlap can
reveal the level of anthropomorphism of the artificial hand.
This overlap is denoted as its anthropomorphism index (AI)
and it will be explained in more detail in Section V-D. We
state again that the comparison is purely kinematic but if the
artificial hand has soft fingers, for example, nothing in the
methodology itself would need to be changed.

Comparing the volume of occupancy associated with the
different hands is difficult as we do not know the actual density
of the data but only have access to point estimates. In order
to proceed we need to model the associated density of the
data corresponding to each hand. This is a very ill-constrained
problem, meaning that we need to make assumptions in order
to proceed. Further, comparing such high dimensional data
will be very expensive in computation terms due to the “curse
of dimensionality”. However, as we expect the dimensionality
of the action manifold to be significantly lower compared
to the fingertip space, we can exploit this when modeling
the density. To that end we use a probabilistic dimension-
ality reduction approach which finds a parametrization of the
density approximation using a single low-dimensional latent
variable. The coordination of this variable will be the intrinsic
parametrization of the action manifold.

B. System Overview

The first step is to generate an action manifold for a human
reference hand which provides a basis for comparison with
the prosthetic/robotic hand. To make the comparison and
visualization feasible, the manifold spanned by the human
hand motion is projected onto a lower dimensional space.
This projection is performed using a dimensionality reduction
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algorithm, described in Section IV-A. All possible fingertip
configurations of an artificial hand are then projected onto
that low-dimensional space. One example of this mapping is
shown in Figure 2 as step 4. The white background represents
all human hand movements projected to two dimensions and
the colored trajectories are the projected movements of a
prosthetic hand. We then compare how large is the overlap
between these: a large overlap indicates that the hand is more
similar to the human hand and thus more anthropomorphic.

1
Human 

Data

2
Dimensionality 

Reduction

5
Overlap

Calculation

3
Artificial

Hands

4

White Background:

Human

Colored Trajectories:

Anthropomorphic Hand

Fig. 2. System Overview: The recorded human hand movements (1) are
projected onto a two dimensional space using a nonlinear dimensionality
reduction algorithm (2). The white area represents all demonstrated human
hand movements. The movements of an artificial hand (3) are then projected
to that space (4) and the overlap is used as the basis for comparison (5).

The system consists of the following steps showed in
Figure 2:
1) Human data generation: The first step is to generate a

dataset of human grasping movements. These movements
define the benchmark action manifold with which the
manifold of artificial hand movements will be compared.
Details on how this data was obtained are presented in
Section V-A.

2) Dimensionality reduction: A nonlinear dimensionality
reduction method is used to project the high-dimensional
manifold to a lower dimensional space suitable for visu-
alization and comparison. More details on the algorithm
are given in Section IV-A.

3) Artificial hand dataset: Similar to the human dataset,
a dataset of the movements of the artificial hand is
generated based on its forward kinematics.

4) Projection: The artificial hand dataset is projected onto
the low dimensional space spanned by the human data.
The projection of artificial hands is done in Section VII.

5) Overlap calculation: The overlap between the manifolds
is measured in the lower-dimensional space. In order
to quantify the overlap, we created an overlap measure,
the anthropomorphism index, which is explained in Sec-
tion V-D.

We proceed by explaining the basis for the dimensionality
reduction followed by the presentation of the data generation
process.

IV. DIMENSIONALITY REDUCTION

As previously mentioned, the comparison of the Action
Manifolds will be performed in a lower dimensional space.
Consequently, we make use of state of the art non-linear
dimensionality reduction techniques. The first reason for the
choice of these techniques stems from the fact that the
hand data is highly nonlinear. The second reason is that
the techniques, as it will be discussed in the next section,
provide the possibility of not only encoding the data in a fewer
dimension but also of providing a likelihood measure. Finally,
the employed technique gives us the possibility of encoding the
high-dimensional data in a compact low-dimensional manner
suitable for the comparison. In the next Section, we present
the necessary details relevant for our work.

A. Gaussian Process Latent Variable Models (GP-LVM)

The Gaussian Process Latent Variable Model (GP-LVM) is
a generative dimensionality reduction model. Let D denote the
dimension of the data space and q the dimension of the low-
dimensional latent space. Given N observations in the fingertip
space T, the matrix containing the data points is denoted Y ∈
RN×D and the matrix of the corresponding points in the latent
space is X ∈ RN×q . By assuming that the observed data has
been generated through a functional mapping with additive
Gaussian noise,

yi = f(xi) + ε (1)

where ε ∼ N (0, σ−2I), the likelihood P (Y|f) of the data can
be formulated. The underlying idea of the model is to place
a Gaussian Process (GP)-prior over the generative mapping
f . Combining this with the likelihood and integrating out the
mapping leads to the marginal likelihood of the data,

P (Y|X, θ) =
D∏

j=1

1

(2π)
N
2 |K| 12

e−
1
2y
T
j K−1yj , (2)

where yj is the j-th column of the data matrix Y. The
probability is calculated as the product of D independent
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Gaussian Processes, each responsible for one dimension of
the data space. The covariance matrix K defines the notion
of similarity between points xi, xj and is constructed using
a kernel function with the hyper-parameters θ. In this paper
K takes the form of an RBF kernel combined with bias and
white noise terms.

k(xi, xj) = e−
γ
2 (xi−xj)T (xi−xj) + σb + σnδij (3)

Finally the solution to the latent locations and the hyper-
parameters of K can be found by iteratively maximizing
Eq. (2).

Back Constraints: In its basic form the GP-LVM does not
guarantee the existence of a smooth inverse to the generative
mapping [28]. However, this can be incorporated into the
model by representing the latent locations xi in terms of a
smooth parametric mapping gj from the observed data yi;

xij = gj(yi, a) =
N∑

n=1

ajnkbc(yi, yn) (4)

where kbc is the back constraint kernel. This implies that
the maximum likelihood solution of the parameters a rather
than the latent locations are sought. This is referred to as a
back-constrained GP-LVM [28]. In addition to constraining the
latent location to preserve the local smoothness of the observed
data, previously unseen data can be projected onto the latent
space in an efficient manner by pushing them through this
back-mapping.

We use a RBF (Radial Basis Functions) kernel of the
following form:

k(yi, yj) = e−
γ
2 (yi−yj)T (yi−yj) (5)

where the inverse kernel width γ controls the smoothness of
the function. When projecting previously unseen points to the
latent space, a sum over all contributions of the points from
the training data is calculated.

B. Rotation Representation

The dimension of the original data space is dependent on the
representation of the orientations. The data in our case involves
three-dimensional position and orientation of the fingertips.
This data will be interpreted as high dimensional vectors and
compared in an Euclidean way both by PCA and GP-LVM.
While the representation of positional data is straightforward,
a representation of orientation which is “Euclidean-friendly”
is less obvious. We explore different ways of representing
orientation in the remaining of this subsection.

Euler angles are the most compact description of rotation in
3D space employing only three parameters. The big drawback
of this method is the fact that the description with those 3
angles is not necessarily smooth even when the object moves
smoothly in space. There are jumps in the data and additionally
the method encounters the problem of singularities at certain
rotations angles (gimbal lock) [29]. In other words, the result
of a small change in orientation might be a big change in
those three angles. Therefore, comparing the euler angles as
three-dimensional vectors do not reflect properly changes in
orientation.

Quaternions use four parameters to define the orientation.
Three parameters can be interpreted as a vector and the last
parameter is the rotation about this vector. Besides some
computational advantages, this method is still very compact,
and it offers smooth transitions from one orientation to the
other without singularities [29]. The main drawback of quater-
nions is that the Euclidean distance between them does not
reflect their similarity. Due to their properties the signs of
the components of the quaternion can be inverted without
affecting the transformation matrix [30, p. 162]. Therefore, the
quaternion q = (e0, e1, e2, e3) represents the same rotation as
q′ = −q = (−e0,−e1,−e2,−e3). The Euclidean distance
between such a pair of quaternions is ‖q− q′‖ = ‖2q‖ = 2,
as quaternions are normalized ‖q‖ = 1.

Rotation matrices use a 3×3 matrix which uniquely defines
the orientation of an object at the cost of introducing additional
dimensions. The rows of the rotation matrix can be seen as
points whose position vectors correspond to an axis of the
rotated system (Figure 3). This means that the Euclidean
distance of their displacement varies smoothly with that of
the orientation implying that the representation encodes the
similarity we seek. By concatenating the matrix as a 9 × 1
point the Euclidean norm of the corresponding position vector
will encode the joint displacement between the orientations as
can be seen in Eq. 6,

R =



x0 y0 z0
x1 y1 z1
x2 y2 z2


 , R′ =



x′0 y′0 z′0
x′1 y′1 z′1
x′2 y′2 z′2




‖R−R′‖ =

√√√√
2∑

i=0

(xi − x′i)2 +
2∑

i=0

(yi − y′i)2 +
2∑

i=0

(zi − z′i)2

=
√
d2x + d2y + d2z. (6)

C. Pose Representation

Using an Euclidean norm applied in the space of rotation
matrices encodes similarity with respect to changes in orien-
tation in a smooth manner. Clearly, as the fingertip location
directly encodes a position, Euclidean distance will encode
a sensible similarity between different locations. However, in
order to apply the GP-LVM approach we need to compare
different poses with each other and not independently rotations
and positions.

To compare poses parametrized both as rotations and po-
sitions using a Euclidean norm we need to make sure that
the relative scale of each dimension corresponds to similar
“distortions” in terms of pose. To that end we independently
transform the dimensions of the parameter space such that
each possible configuration is contained within a hyper-cube.

This has the implication that we consider a translation of
the length of a hand to correspond to rotation of π. Smaller
rotations and translations are scaled accordingly. We believe
that this encodes a sensible relationship between rotations and
positions.

By bounding the parameter space to a hyper-cube we
effectively encode an invariance to different hand-sizes. The
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Fig. 3. Euclidean distance between rotation matrices R and R′ interpreted
as nine-dimensional vectors. An orientation R is rotated 30◦ around z axis to
obtain R′. The distance ‖R−R′‖ between those orientations is the Euclidean
norm of a vector composed by the distances dx, dy , dz between each of the
axis normal vectors.

consequence of this is that our method does not take into
consideration the absolute position of the finger-tips but only
places relevance on the relative position between the different
fingers. The motivation is that we are interested not in the
kinematic capabilities of an artificial hand but only its simi-
larity to the specific reference hand, normally a human hand.

V. DATA GENERATION AND ENCODING

In the following two sections we explain how the data was
generated, both of the human subjects and for the artificial
hands. This is followed by the section that explains how
the data was encoded using the non-linear dimensionality
reduction techniques in Section V-C. Finally, the estimation
of the anthropomorphism index is described in Section V-D.

A. Human Action Manifold

In order to obtain a representative human action manifold,
grasping data was recorded. The focus is one-handed static
grasps. It is based on a measurement on five subjects (three
male, two female); all subjects were right handed and did
not report any hand disabilities. The average hand length and
width were 185.2 mm and 81.1 mm respectively, with standard
deviations 13.3 mm and 7.4 mm. A Polhemus Liberty system
with six magnetic sensors was used for recording the data.
The spatial and angular resolution of each sensor is 0.8 mm
and 0.15 degrees respectively. A sensor was applied to the
nail of each fingertip. An additional sensor was placed on the
dorsum of the hand as a reference. See Figure 4(a) for how
the markers were applied to the hand.

The subjects were asked to perform 31 different grasp types,
as described in [31], on an object typical of each action.
Initially, the hand was placed flat on the table next to the
object to be grasped. Upon starting signal, the subject grasped
the object with the desired grasp type, lifted the object (this
moment is shown in Figure 4(b)), replaced it and retreated the
hand to the starting position.

Fingertip Sensors Reference
Sensor

Wires
to PC

(a) Placement of the sensors. Five sen-
sors are placed on the fingertips and one
is positioned on the dorsum of the hand.

(b) Example grasp posture for
grasp number 2.

The data recording started when the hand began to move
and ended when the hand was returned to the initial position.
Each grasp type was performed twice. The second trial is
used for training and the first for testing (see Section VI-B).
The fingertip sensors were transformed into the coordinate
system of the reference sensor in order to remove global hand
movement.

The resulting dataset consists of 4650 datapoints (30 sam-
ples × 31 grasp types × 5 subjects). Each fingertip described
by a 12 dimensional vector (three encoding position, nine
rotation).

By selecting a different reference dataset we can prioritize
certain capabilities of the robot hand by deciding which
actions/grasps are important. For example, if only very small
objects are to be manipulated, there may be no need to include
big object since it would promote hands with power grasp
capabilities. As the focus in this paper is on general-purpose
hands, the dataset is not restricted to a certain class of grasp
types.

B. Robotic Action Manifolds

In this paper, the action manifolds of the robotic hands were
obtained via kinematic hand models implemented in Matlab.
The joint space of the hands is sampled and the corresponding
fingertip configurations are determined. Furthermore the scal-
ing of the dataset is in analogy to the human hand dataset - the
positions are divided by the hand length and the orientations
are transformed to rotation matrices.

There is no strict rule on how dense the sampling of the
joint space has to be, but there is a guideline. The inter-point
distance of the latent space projection should be smaller than
the discretization of the latent space (the box length). Further
increasing the density of the sampling will not increase the AI
as the boxes are already populated by at least one point.

C. The Low Dimensional Space

The hand posture data is high dimensional and we expect
it to be presented in a highly redundant parametrization. For
this reason we use GP-LVM to embed the datapoints into a
lower dimensional space which keeps the essential information
about the hand posture. To create the low dimensional space
we use the Matlab FGPLVM toolbox [32]. We chose a
two dimensional space, as it is straightforward to visualize
the comparison. In previous work, we have shown that the
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relevant grasp information can be preserved in this lower
dimensional space, [12]. The appearance of the latent space
can be quite diverse, depending on the scaling of the data and
parameters of the GP-LVM. By systematic variation of the GP-
LVM parameters, 50 models were created and then evaluated
according to the measures presented in Section VI. As will be
presented in detail in that section, the models are compared
in terms of their ability to distinguish between random hand
models and the test set.

Regarding the human data set, the subjects generate a
similar trajectory when performing the same grasp type which
allows for a calculation of the mean grasp trajectory. To gain
intuition on the structure of the space, Figure 4 presents
five such trajectories. Depending on the grasp type, the final
posture corresponds to a different location in the latent space.
From the starting position on the right side, the subjects
proceed to the final grasping point (indicated by circles) and
then retreat back to the start position. There is a trend in the
space that the further left a grasp type is located, the more
the fingers will be flexed. This is natural since the starting
posture is a flat hand and, as the fingers flex, the difference to
that posture increases.

Fig. 4. Latent space representation of the grasping data. The trajectories
correspond to the average trajectory of 5 subjects performing the shown
grasps. Each grasp type is located at a distinct area in latent space. Only
a few major grasp types are presented in the figure.

D. The Anthropomorphism Index (AI)

Once the movements of an artificial hand are projected onto
the human spanned latent space, the overlap between that
space and the human spanned manifold has to be measured.
Our approach is to discretize the latent space into a regular
grid and count how many cells are populated by a given hand
design. For example, for a one DoF gripper the projection is
a single line, whereas for a more complex hand with multiple
actuators this can be a concentration of points with an arbitrary
shape.

An important parameter for the calculation is the width of
the cells as we regard all points within one cell as being
equal. With equal we mean that if we vary the position within

that margin, the resulting hand posture will only change by
a small degree. As presented in Section V-A, each subject
performed the grasp types twice. The difference in the final
grasp posture of the hand of trial one and trial two can be
regarded as being irrelevant as both configurations resulted in
a stable grasp. Points belonging to the actual grasping poses
of trial one and two are projected onto the latent space and the
distance between two corresponding points is averaged over
all trials and subjects. This gives a maximum distance dx and
dy in x and y direction respectively which can be regarded as
being the same grasp. Those lengths will define the resolution
of the grid in latent space.

The GP-LVM models the mapping from the latent to high
dimensional space using a Gaussian Process. This mapping
provides us with a mean (prediction of the high dimensional
location of the point) and a variance. The inverse of the
variance, or confidence, is related to how certain the model is
when reconstructing that point. The confidence C is scaled into
the interval [0, 1], where the white area in the latent space plots
corresponds to maximal confidence. In regions where there are
many data points, the variance of the projection will be very
low. Consequently, the confidence will be close to 1. In sparse
regions, the confidence will fall off as the projection gets more
uncertain. A measure of the area of the human spanned latent
space Ah can be calculated by summing the area of each cell
Ab = dx · dy weighted by their corresponding confidence Ci.

Ah =
∑

i

Ci ·Ab (7)

The projection of the artificial hand movements discretized
into M steps will result in a set of points P ∈ RM×2 whose
overlap Ar will be calculated. This is done by summing over
all cells which are populated by at least one point Pk.

Ar =
∑

i

Ab ·
{
Ci ∃Pk ∈ bi
0 otherwise

(8)

Finally Ar can be set into a relation to the area of human
spanned space Ah and the relative latent overlap can be
calculated. The ratio Ar /Ah is multiplied by 100 to obtain
a percentage value. We refer to this value as the anthropo-
morphism index (AI). It shows what percent of the human
demonstration is covered by the robotic hand.

AI =
Ar
Ah
· 100 (9)

In the figures where the movements of artificial hands are
projected to the latent space, we also plot the cells that were
populated by the hand. That gives an idea on how the system
works and additionally helps visualizing the overlap.

VI. EVALUATION OF THE LATENT SPACE

Our system looks for a latent space where the overlap
between a human and a non anthropomorphic hand is minimal.

In GP-LVM, we can use different parameters to influence
the structure of the latent space. One of these parameters is the
inverse width of the back constraints kernel, γ. As described
in Section IV-A, the projection from high to low dimensional



8

space is governed by back constraints. In Equation 5 we can
observe that the ratio between the distance between points
yi − yn and the inverse width 1

γ determines the influence of
different high-dimensional points yn on the low dimensional
point xi.

Figure 5(a) represents a situation in which the kernel width
is small compared to the inter-point distances. In this case,
the support of any external point becomes negligible. New
anthropomorphic data (white circles) will not be supported by
our latent representation in this case, thus

1

γ
� yi − yn ⇒ ajne

− γ2 (yi−yn)T (yi−yn) ≈ 0, n 6= i (10)

On the other side, a large kernel width makes all points in
the original space to equally support any point in the latent
space (Figure 5(c)), no matter if they are anthropomorphic
(white circles) or not (crosses), thus:

1

γ
� yi − yn ⇒ ajne

− γ2 (yi−yn)T (yi−yn) ≈ 1,∀n (11)

Our goal is to use a value of γ such that only those points
that correspond to anthropomorphic postures are taken into
account, Figure 5(b).

As we cannot directly determine how well the kernel width
represents the manifold, we ensure that the chosen width
results in random models obtaining a very low AI, while
human grasping data obtain a very high AI.

A. Random Models

We want the resulting space to have the ability to discrim-
inate between human-like and non-human-like hands. Thus,
when the movements of a non-anthropomorphic hand are
projected onto the latent space spanned by the human hand
movements, the AI should be minimal. This should occur even
in the case of high dimensional non-anthropomorphic hands,
which might have a large action manifold.

To test the behavior when projecting non-anthropomorphic
hands, we create multiple random hand models. The random
models are created using random Denavit-Hartenberg param-
eters with 3 DoF for each finger. Additionally, the positions
and orientations of the bases of the fingers are random and
the relative orientation of the fingertip coordinate frame to the
kinematic chain is random. Joint angles are selected randomly
from a 15-dimensional uniform distribution between 0 to 2π.
Overall we take 20000 random samples from the joint space
and calculate the corresponding fingertip poses. To model the
hands we use a Matlab robotic toolbox [33] which allows us
to calculate the fingertip poses through forward kinematics.

Figure 6(a) shows a typical representative of the set of
random hand models. By simple inspection it becomes clear
that this hand setup is not anthropomorphic. If we project the
movements of four such random hands to the latent space
(see Figure 6(b)) we see that all the movements collapse
into a very limited region in the middle of the latent space.
That demonstrates, that the AI of hands which are non-
anthropomorphic is close to zero.

The model has the first desired property – hands that are
different to the human cannot have a large AI score.
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(a) The manifold is not represented properly as the kernel width is so small that
there are places on the manifold where it is not supported by the training data.
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(b) The manifold is represented correctly as the points of the test set can be
supported by data whereas the more distant points of the random hand are not
within the region supported by data.
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(c) The kernel width is so large that it will generalize over a too large part of
the space.

Fig. 5. Different kernel width and their influence on the discrimination
between the test set (empty dots) and the random hand set (crosses). The
manifold (as indicated by the line) is sampled by datapoints from the training
set (filled circles) and their corresponding kernel width (circles) is presented
as well.

B. Test Set

The result of Section VI-A is that a non-anthropomorphic
hand does not significantly overlap with the human spanned
manifold even if it might have a large action manifold. In this
section we will show that, given points which are similar to
the training set, the whole latent space can be filled.

In order to verify this, we project the test set to the latent
space. The test set is similar to the training set as in both
cases the subjects succeeded in grasping the object with the
demanded grasp type. The only differences between the sets
is the variation introduced by the executions of the users. In
Figure 7 the projection of the test set is shown. We observe
that the test points are scattered accordingly to the training set.
Yet, due to the width of the kernel there is a “halo” around the
points which increases the area Ah and thus the AI score of
the training set is reduced to 67%. This sets an upper bound
for the maximal AI score artificial hands can achieve.
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(a) Random Hand model

(b) Projection of four random hand models to the latent space. The left top
picture is a magnification of the latent projection points. In that subfigure
different colors indicate different hands.

Fig. 6. If random hands, like the one shown in (a) are projected onto the
latent space, they cover only a very small area on the human manifold, as
shown in (b). This means that the model is sensible enough so that a random
model is not regarded as being anthropomorphic.

The previous two sections showed that the model is capable
of distinguishing between hands that are human-like and those
that are not. We can therefore proceed and use the system to
benchmark existing prosthetic and robotic hands.

VII. EXPERIMENTAL EVALUATION

The anthropomorphism of two prosthetic and one robotic
hand will be measured using the proposed methodology. A
short discussion is provided for each hand, both regarding the
data generation and comparison with the human hand.

A. SensorHand

The Otto Bock SensorHand [34] is a prosthetic hand (see
Figure 8) with three actuated fingers which are all driven by

Fig. 7. Projection of the test set data to the latent space, the points cover
most of the human spanned manifold (i.e. white area).

the same motor. The mechanical structure is covered by a
glove, which is responsible for protecting the mechanics of the
hand and creating a more human-like appearance. The glove
also emulates the ring and the little finger, resulting in a 5-digit
design. There is a metal bar within the glove which couples
fingers four and five to the movements of the middle finger.
As they are solely connected via the glove, the movement
amplitude decreases from middle to little finger. The forward
kinematics of the hand take that into account by reducing the
maximal finger flexion of the ring and little finger. The finger
angles αi, where i = 1 is the thumb and i = 5 is the little
finger, are depending on the driving variable a, where a =
43◦ is hand closed and a = 0◦ is hand opened. Overall 100
equally spaced samples of a were taken from that range. The
corresponding finger flexion angles αi are as follows.

α1,2,3 = a
α4 = 0.9 · a
α5 = 0.8 · a

(12)

Fingertip poses are computed based on these flexion angles.
Their projection during one opening-closing cycle, which is all
the hand is capable of, is shown in Figure 9. The hands’ AI is
0.25%. The trajectory is different to the projection of a random
hand, see Figure 6(b).

Overall the hand has some major differences with the human
hand. The position of the thumb is not anatomically correct;
it is basically rotated 180 degrees, so that it perfectly opposes
the index and middle finger. Even though the positions of
the thumb fingertip are potentially correct, the orientations
are not. The human cannot orient the fingertip in such a way
as the SensorHand does. Additionally, all finger MCP2 joints
share the same rotation axis. A more natural way would be
to orient the axes in such a way that the fingers are slightly
abducted when the MCP joint is extended. All those non-
anthropomorphic features combined are the reason why the
latent space trajectory of the hand is relatively short.

2The Metacarpophalangeal joint is connecting the metacarpus to the first
phalanges (fingers) in the human hand.
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Fig. 8. The Otto Bock SensorHand: left) the hand without the covering
glove; and right) the glove that is put over the hand for protection of the hand
and for cosmetic reasons.

Fig. 9. Projection of the fingertip movements of the Otto Bock SensorHand
to the latent space. The red points represent the trajectory of one open-close
cycle. The hand has an anthropomorphism index of 0.25%.

As we use hand models, the properties of a hand setup
can be changed and the effect on the latent space overlap
can be analyzed. In our case we actuate independently the
5 joints which are coupled in the SensorHand (the CMC 3

of the thumb and the MCP joints of the fingers), conferring
five DoF to the hand. The range of motion is the same as
previously and we take 9 equally spaced flexion values for
each joint. Overall this creates 95 = 59049 different hand
postures which are projected to the latent space. The projection
(Figure 10) shows us that increasing the dimensionality of
the hand does not change the latent space overlap much.
The much more complex hand has an AI of only 0.4%,

3The Carpometacarpal joint is the most proximal joint of the human thumb.

Fig. 10. Projection of the fingertip movements of the 5 DoF “Otto Bock
SensorHand” onto the latent space. The hand has an AI of 0.4%.

which is a slight increase to the original SensorHand. Adding
independent actuators proved to be a bad choice for increasing
the hand anthropomorphism.

B. Michelangelo Hand

The next generation of prosthetic hands by Otto Bock is
the so called Michelangelo hand [35], Figure 11. It follows a
more human-like kinematic setup and it has 2 DoF. The axes
of the finger MCP joints are oriented in a more natural way,
where the flexion of the finger also invoke a small adduction.
The fingers are slightly abducted when the MCP joints of the
fingers are extended, whereas when flexed the fingertips touch
each other. The first DoF is the main drive which is responsible
for a coordinated flexion and extension of the five digits. The
second DoF changes the thumb position – it can be abducted
or adducted. As the hand is still in development, the exact
control scheme of the hand is not yet finalized. Therefore, we
used a current hand implementation that had the following
hand postures:
• Hand open for tripod pinch (OT)
• Hand open for lateral pinch (OL)
• Neutral position (NP)
• Tripod pinch (TP)
• Lateral pinch (LP)

The following movement trajectories between positions are
incorporated into the hand model.
• OT → TP
• OL → LP
• NP → OT
• NP → OL
• NP → TP
Each trajectory is sampled with 100 points and the corre-

sponding fingertip poses are projected onto the latent space.
Figure 12 shows the projection of those movements, where
the colors indicate different trajectories. Compared to the
SensorHand, it can be observed that the trajectories are much
longer. Therefore they are able to achieve an AI of 2.8%. Even
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Fig. 11. Otto Bock Michelangelo hand [35].

though the hand still has very few DoF, its score is significantly
larger as the general setup is closer to the human hand.

The tripod pinch (TP) and lateral pinch (LP) are located on
the left side whereas the hand is opened on the right side of
the latent space. In between lies the neutral position (NP) with
trajectories connecting it to OT, OL and TP. If the movements
of the Michelangelo hand are compared to the human grasp
trajectories of Figure 4, it can be observed that they also show
a left-right dominance and the starting position is on the right
side whereas the grasp positions are on the left. That can
be regarded as a sign that not only is the hand capable of
covering larger areas in the human manifold, but also that the
movements itself are human-like.

The positions of the tripod pinch and the lateral pinch are
relatively close in latent space. That is due to the system
roughly weighting every finger the same. As the poses of four
of the five digits are nearly identical (in the lateral pinch the
fingers flex a little bit more) it is plausible that the projections
in the latent space are similar.

As already done with the SensorHand, we increased the
complexity of the hand by assigning the hand 5 DoF – the
flexion of each digit is actuated independently. As the thumb
has an additional DoF (abduction/adduction) this value had
to be specified as well. It was set into the intermediate rest
position. Changing the value of this joint does not affect
significantly the results.

The range of motion from each digit is sampled with 9
angles, resulting in the same number of points as in the
SensorHand case. The resulting AI is 7.9%, which is consid-
erably more than the 2.8% the original hand has. In that case,
introducing additional DoFs is a suitable way to equip the
hand with more anthropomorphic capabilities. If we observe
the projection of the 5 DoF Michelangelo in Figure 12, we see
that the extreme position in the right-left direction corresponds
to the open and the grasp position respectively. All movements
of the original Michelangelo lie beneath the line connecting
those two positions and have very roughly a triangle shape.
The movements of the 5 DoF hand overlap an additional
space above that triangle. The top point in the projection in
Figure 13 corresponds to a hand position where the index
finger is extended but the other fingers are flexed and the
thumb is in moderate flexion. The ability to individually flex
fingers is important to reach new areas in the latent space. That

Fig. 12. Projection of the fingertip movements of the Otto Bock Michelangelo
Hand to the latent space. The AI of the hand is 2.8%.

Fig. 13. Projection of the virtual 5 DoF Michelangelo hand to the latent
space. The red points represent the area the hand can reach and it results in
an AI of 7.9%.

is a difference with the SensorHand where the introduction of
finger individuation does not influence substantially the latent
space overlap.

C. FRH-4 Hand

As an example of a hand with many independent degrees
of freedom, we use the FRH-4 hand [36] built for a mobile
assisting robot ARMAR. With 8 independent fluidic actuators,
it has a much more complex actuation system than the two
prosthetic hands described in the previous sections. Its general
appearance (Figure 14) is quite human-like; it has a size that
is comparable to the human hand and the kinematic setup
has some similarities. One design goal of the hand was to
be anthropomorphic, but another goal was to develop a hand
which is suitable for robotic grasping. To meet the second
design objective, trade-off on the anthropomorphism had to be
accepted. One major difference is the palm setup – the FRH-4
hand has one DoF in the metacarpus, which allows the palm
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Fig. 14. FRH-4 hand [36].

Fig. 15. Projection of the FRH-4 hand. It has an AI of 5.2%.

to flex in the middle. The human hand does not share this as
the palm is rigid in the longitudinal direction. Figure 14 shows
the palm joint in a flexed position, whereas in the extended
position the fingers would point leftwards. The index and the
middle finger both have 2 DoF, one joint represents the MCP
joint of the human and the other one is in-between the PIP
(Proximal interphalangeal) and DIP (Distal interphalangeal)
joints. The ring and little fingers have one combined DoF,
that is a common flexion in the MCP joint. All joint axes
of the fingers are parallel and the finger segment lengths are
40 mm. The thumb has two actuators, which actuate the CMC
joint and the joint between the MCP and IP (Interphalangeal)
joint of the thumb. The base of the thumb is exactly opposing
the index and the middle fingers. This setup is very similar to
the SensorHand and substantially different to the human hand
where the axes of the thumb are not aligned with the axes of
the fingers.

Each of the eight DoF has a range of 90 degrees and to
calculate all hand configurations we took four samples from
each of the joint workspaces. Each joint can be flexed by
{0, 30, 60, 90} degrees and due to the high dimensionality
of the hand this leads to a total number of 48 = 65536

hand configurations. Further increasing the number of samples
would require prohibitively large computational times.

As the kinematic structure makes it difficult to define where
the hand length could be measured (which is used for scaling
the positions prior to projecting to the latent space), we
performed a parameter sweep through all possible hand lengths
and then determined the hand length with the maximal overlap.
This length was assumed to be the correct hand length and
the results corresponding to that length are given. For the two
prosthetic hands we do not have to calculate the hand length,
as there is information on the size available. The resulting
hand length of the FRH-4 hand is 25 cm, which is slightly
larger than the maximal human hand length of about 21.15 cm.
[37]. The width of the FRH-4 hand is 9.3 cm [36] which is
comparable to the hand width of a large human hand [37].
The calculated hand length is slightly too large given the hand
width but due to the different kinematic setup to the human
hand, that difference is acceptable.

The projection of the hand with the determined hand length
of 25 cm is shown in Figure 15. The anthropomorphism index
is 5.2%. Compared to the large number of actuators this is a
relatively low value, given that the Michelangelo hand with
only 2 DoF has already an AI of 2.8%. As described above,
the hand has some features which are not anthropomorphic,
which explains the reduced score.

In Figure 15 we observe that the outermost points are
slightly isolated from the rest. That violates the guideline on
the joint space sampling, as the inter-point distances in the
latent space should be smaller than the box size. Consequently
only a few points are located at the intersection with the
human action manifold. If we increase the number of hand
configurations, we would have been able to further increase
the overlap as those points would not be isolated anymore.
To test how much larger the overlap could be, we exchanged
the way to obtain the joint values. Instead of a systematic
variation of the joint angles, we sampled the joint space with
60000 random points and calculated the corresponding overlap
for five such sets. The result was an AI of 9.2± 0.25%. The
different sampling method increased the overlap, but is still
small when compared to the human hand. For the SensorHand
and the Michelangelo Hand this resampling was not necessary
as their joint space could be sampled densely enough.

VIII. DISCUSSION AND CONCLUSIONS

We have presented a methodology for measuring the dif-
ferences between human and artificial hand capabilities. The
similarity of an artificial hand with respect to the human hand
is determined by the definition of an anthropomorphism index
(AI). We concentrate specifically on evaluating the capability
of the hands to execute different grasping actions. Human hand
data is generated from five test subjects and artificial hands
data is generated by sampling their joint space and calculating
the corresponding fingertip poses via forward kinematics. The
contribution of the work is the first attempt to develop a
metric for a comparison based on state of the art methods
for nonlinear dimensionality reduction.

The big advantage of the system is that it offers great
flexibility with respect to the hands that can be tested. The
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hands can have an arbitrary kinematic structure and the joint
couplings can be very complex. The method can easily be used
for other similar purposes: it only requires to generate a new
underlying dataset. For example, if one wants to emphasize
precision grasps, we could record humans grasping a variety
of small objects.

The AI evaluates an important proportion of the hand
capabilities, which are its kinematics. There are also other
parameters that are of relevance for a functional end-effector,
those are for example speed, precision and force of the hand.
Most of those parameters are connected to the mechanical
implementation, whereas the AI evaluates the underlying kine-
matic setup.

There are lessons learned in terms of the employed method-
ology. As the inter-point distances on the human manifold have
some certain average value, the kernel width has to compensate
for this. If this is not taken into account, the manifold cannot
be represented properly as there may be holes where the
projection is not supported by data. This defines a minimal
kernel length which can represent the manifold properly and
also introduces a minimal selectivity perpendicular to the
manifold. The sampling rate of the human dataset can be
increased in order to improve the selectivity, but at the cost
of higher computational requirements in terms of memory and
processing capabilities.

As there are no objects involved in assessing the anthro-
pomorphic hand structures, passive compliance and under-
actuated hands cannot be implemented directly. Interaction
with the object is needed to determine how the fingers wrap
around it. In order to analyze hands with passive compliance,
a workaround can be used by sampling the passive joints as
well. This might not deliver the most accurate results, but it
will provide hints on the capabilities of such a hand.

The experimental evaluation shows that hands with as little
as two actuators (like the Michelangelo hand) are able to
populate large proportions of the latent space of the low-
dimensional human hand movements. Various studies ([9],
[38]) have shown that human hand movements can be de-
scribed with high accuracy in a linear subspace of eight
dimensions. According to those studies, having a hand with
eight DoFs or less should be sufficient to cover most of the
human hand movement.

In general, the tested hands covered a relatively low area
with an overlap of less than 10%: thus, the hands had
significant limitations compared to the human hand. Some of
the hands are not able to fully extend and flex the fingers
due to rigid fingers (SensorHand and Michelangelo), having
joint axes that are not well aligned with the movement axis
of the human hand (SensorHand and FRH-4 Hand) or having
a range of motion in the joints that is lower than the humans
(SensorHand and Michelangelo). Those are the reasons for
the reduced overlap and the goal for the future is to overcome
these limitations with as little effort (actuators, joints, etc.) as
possible.

As the next step, we plan to perform parameter studies using
the system to determine the influence of design parameters on
the AI. That should provide insights about the relationship
between kinematic elements and their influence on grasping

capabilities. The final goal is not only to change parameters,
but to find the optimal kinematic structure with respect to the
proposed anthropomorphism index.
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Extracting Postural Synergies for Grasping
Javier Romero, Thomas Feix, Carl Henrik Ek, Hedvig Kjellström and Danica Kragic

Abstract—Observation and analysis of human motion is often
used for planning and control of human inspired movements
in robots. This includes examples of arm/hand movements and
gait control. Human data is usually high-dimensional and in
many cases it is used to control a robot which much fewer
degrees of freedom. To that end, different representations based
on dimensionality reduction techniques have been used to enable
viable control solutions. In control and planning of grasping
movements in particular, postural synergies have been used as
a low-dimensional representation to enable establishing corre-
spondence between human and robot hand activities. In their
original formulation, postural synergies are based on linear
dimensionality reduction methods that, as we will show in this
paper, do not represent human hand activity with sufficient
accuracy due to inherit non-linearities in the data. Thus, the
work presented in this paper addresses non-linear dimensionality
reduction methods and their application to human hand data.

In addition to adressing encoding of postural synergies, our
work relates closely to recent work in robotic control of combined
reaching and grasping movements. However, this work is based
on an assumption that correlations in the data is evidence of
causal relation, an assumption that may not hold. Non-linear
dimensionality reduction methods may be used to tackle the
correlations problem not by considering causal relations between
dimensions, but by considering them being generated from an
external manifold which has to be inferred. Showing how this
can be done is the first contribution of our work. Another
strong contribution of this paper is the analysis of the internal
parameters used in dimensionality reduction techniques, which
sheds light into algorithms which have been traditionally used
as a “black-box” in robotics. Finally, we provide a thorough
experimental evaluation that shows how the proposed methods
outperform the standard techniques in the field both in terms of
recognition and generation of motion patterns.

I. INTRODUCTION

Control of reaching and grasping movements in robots relies
often on the analysis of human data, [1], [2], [3], [4], [5],
and considers problems from data representation to planning
and mapping, see Fig. 1. The analysis of human grasping
has been widely studied in neurophysiology and psychology,
where the goal is to understand the processes behind the
control of movement, [6], [7], [8], [9]. A central result of
such studies is the evidence of very strong correlations in
the finger positions and their movements, implying a large
redundancy. The existence of those correlations allows us to
extract compact representations, often referred as synergies
(e.g. trajectories in a lower dimensional space X in Fig. 1),
which can concisely describe complex, but redundant, human
motion e.g. trajectories in high-dimensional space Yh in
Fig. 1. Grinyagin et al. [9] classifies synergies into three types.
First, static postural synergies, that refer to the correlation
between single kinematic poses, e.g. [7]. Second, kinematic
synergies that consider time dependent correlation of postures
during an action, e.g. [8]. Finally, muscle synergies address
the covariation of lower level representations of movement

such as electromyographic activity, [10], [6]. While muscle
synergies are specifically bound to human because of their
internal nature, postural synergies and kinematic synergies
have inspired a large body of work in robotics, [7], [11].

In regard to modeling of the synergies, most of the work in
neurophysiology uses linear models for encoding postures and
movement: the three commonly cited studies [7], [8], [9] use
linear techniques. Even comparative studies of techniques used
for synergy extraction like [12] employ linear methods only.
In this paper we show that, apart of being high-dimensional,
finger movements are non-linear. Therefore, a more natural
approach is to encode them using techniques that take not
only high-dimensionality into account, but also non-linearity.

Recent work of [3] states that the reasons why reaching
and grasping movements have not been addressed in a proper
manner in robot control is exactly their complexity (related to
their non-linear nature) and high dimensionality.

In neurophysiology, it is argued that low dimensional rep-
resentations (i.e. synergies) drive the modulation of muscle
forces for control of human posture, [6]. Therefore, synergies
can be used as a modeling paradigm in robot control, where
control laws in low dimensional space X can drive the forces
applied on the higher dimensional robot space Yr, Fig. 1.
For example, they have been used to design reference robot
hand movements that adapt to external forces (originating
from objects) on demand, [11]. The use of synergies makes
the reference movements lower dimensional, with the obvious
advantages that the lower dimensionality conveys.

Another closely related area that suffers from the curse
of dimensionality is planning. The computational cost of
searching for adequate kinematic configurations increases ex-
ponentially with the dimensionality of such configurations. In
[13], the authors reduced such complexity by searching for
good grasping postures in a postural synergy space (X in
Fig. 1) of lower dimensionality: grasps are planned for various
robotic hands based on the grasping synergies extracted from
human data.

Grasping synergies have also been used as a common,
semantic representation that transcends differences in embod-
iments and attacks the so called “correspondence problem”,
[14]. This problem, also known as Mapping, refers to trans-
ferring postures or movements from one agent to another (e.g.
mapping human postural space Yh to robot space Yr, Fig. 1).
While the correspondence is designed manually in synergy
space in [13] (correspondences eigengrasp-robot X → Yr

are assigned manually), Kang et. al. apply similar concepts
(a simpler, semantic representation of grasping poses known
as Virtual Fingers) to compute such a mapping automatically,
[15].

In summary, the efficient representation provided by postu-
ral synergies have been used to address the inherent problems
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Demonstration GP-LVM PCA Linear
Fig. 3: Simple grasp execution. The columns represent, from left to right, one of the original examples, GP-LVM, PCA and
Linear models. The GP-LVM models mimics almost perfectly the training example. PCA fails to make contact for the thin
object, and grasps the thick object slightly prematurely. The Linear model grasps properly the thin object, but collides with
the thick object. Graphs generated with OpenRave, [24]

where yr
t represent the two dimensional configuration of the

robot at every time, yrt,1 represents the gripper aperture at time
t, yrt,0 the arm extension at time t, and ǫi represent different
noise terms. Ten grasping sequences {yr} were generated, and
three models were extracted from them. The first one, tagged
as “Linear” in top Fig. 4, is a linear interpolation between
the maximum and minimum aperture with linear decrease of
arm length. The other two are the trajectories generated by
sampling a one-dimensional space extracted from the data
using PCA and GP-LVM.

As it could be expected, the non-linear method, GP-LVM,
resembles best the original trajectories which were highly non-
linear. Let us consider the consequences of the linearization.
In Fig. 4, when the linear trajectories are below the example
trajectories (all the Linear model, and part of the PCA one)
the gripper is more closed than in the original examples. That
means that the gripper can potentially collide with the object
(see Linear column, thick object row in Fig. 3). When the line
is above the examples (last stage of PCA model) the gripper
is more open than in the examples, and therefore the gripper
might fail to enter contact with the object (PCA column, thin
object row in Fig. 3).

The relation between the two joints in this action set was
bijective, and the PCA reconstruction is relatively good, even
though it fails in some cases. If the actions also includes
the retreat movement (retract the arm with the gripper set
to a constant aperture) the relation becomes more non-linear
(more difficult to be modeled by PCA) and non-bijective (not
possible to be modeled as a causal relation between master
and slave, [3]), bottom Fig. 4. The linear manifold computed
by PCA averages the approach and retreat actions, setting a
gripper aperture which is too small for approaching the object.
But most importantly, it cannot retreat with a constant aperture.

The relation between the transport and grasp components
in a grasping action is inherently non-linear. Trying to model
it as a linear manifold can result in early collisions or fail to
contact the object. This can happen even when a large part of
the variance is kept in the linear manifold. PCA managed to

represent 98.6% of the variance of the grasp-approach action
with its linear representation, and still fails to grasp properly
the object. The amount of variance represented by PCA for
the grasp-approach-retreat action was also high, 78.6%.
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Fig. 4: Grasp trajectories generated from different models
computed from the ten executions shown as Training. Lin-
ear is a linear interpolation between the beginning and end
gripper aperture. PCA and GP-LVM extract a one-dimensional
representation of data, and generate the trajectory by linearly
sampling that one-dimensional manifold. Top figure shows
only approach and grasp, bottom figure includes retreat.

The following sections of this paper will further explain
the principles that drive PCA and GP-LVM, focusing on their
assumptions about the data and the parameters that can tune
their performance.
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III. METHODS FOR EXTRACTING POSTURAL SYNERGIES

In this section we will motivate and formulate the problem
of dimensionality-reduction. We will then proceed to introduce
the two diametrically different approaches we will evaluate in
this paper.

For many scenarios, data is observed in a representation
that is significantly different from the intrinsic representation
of the data. In specific, this often implies that the observed
representation is an “over” representation of the data in
terms of degrees-of-freedom because the data actually lies
on or close to a lower dimensional manifold in the observed
representation. The task of dimensionality reduction is to,
given data in a specific representation, recover the intrinsic
representation. The problem is formalised as follows. Given a
set of data Y = [y1, . . . ,yN ] where yi ∈ ℜD we assume
this to have been generated from a intrinsic representation
X = [x1, . . . ,xN ], xi ∈ ℜq through the generative mapping
f ,

yi = f(xi). (2)

Further, we will assume the observed representation to be an
over parametrization implying that q < D. The objective of
dimensionality reduction is to recover X from Y.

The problem is severely ill-constrained since an infinite
combination of input representations X and mappings f
could have generated Y. Different algorithms make different
assumptions in order to proceed. There are two main branches
of work in dimensionality-reduction, spectral and generative.
Spectral approaches assume the generative mapping f to have
a smooth inverse according to some metric. This is different
compared to the generative class of models which directly tries
to model the generative mapping. The spectral assumption
is stronger and does therefore constrain the solution space
further compared to the generative. This implies that while
the generative models are applicable to a larger range of data,
recovering the solution might be a significant challenge. There
are both linear and non-linear formulations of the methods.

In this paper, we mainly focus at two different algorithms,
Principal Component Analysis (PCA) and Gaussian Process
Latent Variable Models (GP-LVM). PCA is a spectral linear
model while GP-LVM is generative and capable of modelling
a non-linear generative mapping. Our motivation of evaluating
the performance of these two methods stems from the fact that
PCA has been the dominant algorithm for extracting postural
synergies while the GP-LVM is one of the most recently pro-
posed and flexible algorithms in the area of machine learning.
We also consider the usage of two spectral non-linear methods
such as Isomap and Locally Linear Embeddings (LLE). We do
not evaluate these methods in depth because, as we will show,
initial results showed they are not suitable for our task. The
reminder of this section will describe the different methods
and further motivate our choice.

A. Principle Component Analysis

Principle Component Analysis (PCA) is a method for di-
mensionality reduction frequently applied to a large range of

applications. The objective of the algorithm is to find a low-
dimensional hyper-plane which maximizes the variance of the
data projected onto it (i.e., which minimizes the reconstruction
error of the data). Mathematically, this implies finding a low-
rank approximation of the covariance matrix of the data which
minimizes the Frobenius norm,

E(C) = ||YTY −C||, (3)

where Y is the centered observed representation of the data
and C the approximation to the covariance matrix. The optimal
solution to Eq. 3 can be found in close form through the
eigendecomposition of the covariance matrix in the observed
space,

C =

D∑

i=1

λiviv
T
i , (4)

where λi and vi are the i : th eigen value and vector
of the eigendecomposition of the covariance matrix in the
observed space. vi specifies an orthonormal basis. Therefore,
the “mass” provided by each component is proportional to
the corresponding eigenvalue. The best rank k approximation
of the covariance matrix is then computed based on the
eigenvectors correspondent to the largest k eigenvalues,

Ĉk = argminC E(C) =
k∑

i=1

λivivi
T (5)

λi ≥ λj , i < j.

Consequently, the reconstruction of the data takes the form
of the linear projection f(X) = VT

1→kX, where VT
1→k

represents the transpose of a matrix composed by the k
eigenvectors with highest eigenvalues. The major benefit of
the algorithm is that it is robust compared to methods such as
Isomap or LLE, as it relies on global statistics of the data. If
it can be assumed that the noise in the data is of low variance
and that the intrinsic signal occupies a linear subspace in the
observed representation, then it will recover the correct space.
However, these are strong assumptions that do not apply to
many types of data as a significant portion of the observations
corresponds to noise and/or the correlations in the data are
non-linear.

Another way of interpreting PCA optimization is that it
minimizes the variance of the data projected to directions
perpendicular to the extracted hyperplane V1→k. However,
variance of different data dimensions obviously depends on
the general scale of this dimensions; for example, in a grasping
action, the position of the wrist relative to the chest varies more
than the position of a finger relative to the wrist. This means
that the error of high varying dimensions will shadow the one
from low varying dimensions. We can control the contribution
of each dimension to the error function by pre-scaling the
data. If prior knowledge is available, this can be exploited by
transforming the data such that the L2 distance better reflects
our notion of similarity. Since we do not want to commit to
any special purpose scaling for the grasping data we have
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collected, we scale each dimension to make it have the same
variance; this process is called “whitening”.

B. GP-LVM

Spectral approaches such as PCA aims to find a transfor-
mation that maps from the observed to the intrinsic repre-
sentation. Underlying such an approach is an assumption that
the generative mapping is invertible (e.g. linear mappings in
PCA). Generative models do not rely on this assumption and
directly models the generative mapping. However, this also
means that the solution space is much less constrained. In
order to proceed we need to somehow be able to rank or
rate different possible solutions. The probabilistic approach
is to formulate the likelihood, of the underlying model to
have generated the observed data. Assuming the observed data
has been generated from the intrinsic through a mapping f(·)
corrupted by Gaussian noise yi = f(xi)+ ǫ, ǫ ∼ N (0, σ−2I)
the likelihood of the data can be formulated as follows,

p(Y|f , σ−2) =
∏

i

N (yi|fi, σ−2), (6)

where σ is the noise variance and fi the instanciations of
the mapping. In the generative framework, the intrinsic repre-
sentation X will be referred to as the latent representation
of the data. The likelihood function allows us to evaluate
how likely it is that a specific model f(·) has generated the
observed data. However, the solution space is still enormous
(and subject to local minima) and in order to find a reliable
solution regularization is needed.

The Bayesian approach to proceed is to formulate a prior
that encodes a preference toward certain solutions and com-
bines this with the likelihood to regularize the problem. In
probabilistic PCA [25] the author places a prior over the latent
locations X while the maximum likelihood solution to the
parameters of the mapping f are found. A different approach
is to place the prior over the mapping (i.e. considering all the
possible mappings and integrating over them). This can be
done in a flexible non-parametric manner by using a Gaussian
Process (GP) prior [26]. This is referred to as a Gaussian
Process Latent Variable Model (GP-LVM) [27]. Gaussian Pro-
cesses can model any smooth mapping, and therefore represent
a clear improvement over the linear mappings enforced by
PCA.

A GP is a set of random variables, any subset of which
follows a joint Gaussian distribution. The process is defined
by a mean function µ(·) and a co-variance function k(·, ·). In
general we can, without loss of generality, center the data and
set the mean function to be the constant µ(x) = 0, ∀x. Regard-
ing the covariance function (also referred as kernel function in
the literature), it needs to generate a valid covariance matrix
(positive semi-definite) when evaluated on any set of points
in the input domain. In this paper we are going to take the
standard approach and use an additive combination of a set of
functions to parametrize the covariance of the GP . In specific
we are going to use a combination of a radial basis, bias and
a white noise function,

k(xi,xj) = σr e−
γ
2 (xi−xj)

T (xi−xj) + σb + σnδij (7)

The radial basis σr e−
γ
2 (xi−xj)

T (xi−xj) governs how much
different points in the dataset affect each other, based on
their inter-distance. This term implicitly encodes a preference
towards smooth function, since points close to other are
more correlated than points far from each other, therefore
generating similar observations. The bias term σb sets a
minimum correlation between any pair of points. Finally the
noise term σnδij is used to “explain away” points that are
not supported by the model (so that the covariance between
some points is treated as noise).We will refer to the parameters
of the covariance function θ = {σr, γ, σb, σn} as the hyper-
parameters of the GP . As we sill see in the next paragraph,
these hyperparameters are optimized automatically so that they
maximize the marginal likelihood of the data given the model.

Introducing a GP-prior and combining it with the likelihood
we can integrate out the generative mapping (i.e. considering
all the possible mappings and integrating over them) leading
to the marginal likelihood,

p(y|X, σ) =

∫
p(y|f , σ)p(f |X)df. (8)

To remove the marginal likelihood’s invariance to the scale of
the latent space it is combined with an uninformative prior
p(X). The GP-LVM proceeds by finding the latent locations
X and the hyper-parameters θ that maximize the marginal
likelihood with respect to the observed data. Modeling each
observed dimension with an independent GP leads to the
following marginal likelihood,

P (Y|X, θ) =
D∏

j=1

1

(2π)
N
2 |K| 12

e−
1
2y

T
j K−1yj (9)

as a product of D independent Gaussian processes.
Finding the latent location and hyperparameters that mini-

mize the negative logarithm of the marginal likelihood Eq. 9
is done by gradient based methods. For general covariance
functions, the landscape of the objective function is likely to
have several local minima which means we cannot guarantee
that the global optima will be returned.

By using a smooth covariance function we encode a pref-
erence towards smooth generative mappings in the GP prior.
This implies that points close in the latent space will remain
close in the observed space. The opposite is not guaranteed
though, i.e. points close in the observed space remain close
in the latent space. However, this can be incorporated into
the model by representing the latent locations xi in terms of
a smooth parametric mapping gj from the observed data yi.
In specific we are going to use a mapping that is capable of
modelling non-linear correlations by employing a regression
model over a kernel induced feature space,

xij = gj(yi, a) =

N∑

n=1

ajnkbc(yi,yn), (10)

where kbc will be referred to as the back constraint kernel.
This means that the maximum likelihood solution of the
parameters a rather than the latent locations are sought.This
is referred to as a back-constrained GP-LVM [28]. Practically,
back-constraints force the existence of a functional mapping
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between observed space Y and low dimensional space X. This
represents an efficient manner of projecting new observed data
into an existing manifold X.

The use of back-constraints represents a strong assumption
which might significantly alter the solution. The kernel matrix
of Eq. (10) is controlling the mapping in a similar way as
in Equation 7. One difference is that the inverse width of
the kernel is not optimized and has to be set, which gives
some control over the latent trajectory smoothness. Having
a very wide kernel means that the latent trajectories will be
very smooth and this imposes a considerable constraint on
the model which might reduce its ability to adapt to the data.
On the other hand, if the kernel width is very narrow, the
latent trajectories might become jagged. Additionally if one
tries to project points that are far away (in terms of the kernel
width) from the original dataset, the model might not have
any evidence supporting this point to make a valid prediction.
In that case the point will be projected to some point in the
latent space where all unsupported points collapse to.

C. Spectral Non-linear Models

In addition to PCA there exists several non-linear spectral
dimensionality-reduction models such as Isomap [29], MVU
[30] and LLE [31]. Therefore it might seem unfair to compare
the non-linear GP-LVM with the much more limited linear
PCA. However, our reasons for focusing on the comparison
with PCA are two-fold. First, PCA is the most commonly
applied method in the field of synergy extraction, specially for
grasping data, as we have discussed in Section II. Therefore, it
is natural that we compare our proposed method with the state-
of-the-art in the field. Second, our experiments confirm that the
performance of LLE and Isomap on our data are worse than
PCA, see Fig. 9 and Fig.18. It should be taken into account
that these methods aim to find the intrinsic representation
from local statistics in the data. Such statistics are much more
uncertain and more severely affected by noise, reducing the
applicability of such approaches.

IV. DATA DESCRIPTION

The extraction of postural synergies by exploiting dimen-
sionality reduction techniques is based on the fundamental
assumption that we can acquire a data-set which “well”
describes the problems state domain i.e. being sufficiently
densely sampled. In this section we will describe the data-set
we created for the work in this paper. It is publicly available
in http://grasp.xief.net/.

The data-set was generated from 5 subjects (3 male, 2
female). All subjects are right handed and have not reported
any hand disabilities. The average hand length is 185.2 ±
13.3mm and hand width is 81.1 ± 7.4mm. A Polhemus Liberty
system with six magnetic sensors was used for recording the
data. Each sensor provided its orientation and position with
respect to a base point as a 4d quaternion and a 3d vector (7
dimensions in total).

The spatial and angular resolution of each sensor is 0.8 mm
and 0.15 degrees respectively. One sensor was applied to each
fingertip, positioned on the fingernail and one was placed

on the dorsum of the hand. See Fig. 5a for an image of
the markers applied to the hand. The subjects were asked to
perform 31 different grasp types [32] with their right hand on
an object typical for the specific grasp. They were shown a
picture of each grasp and a demonstration of the grasp was
performed if the subject had problems mimicking the grasp
on the picture. To start they placed the hand in front of them
on the table in a flat hand posture. Upon a starting signal they
grasped an object with the desired grasp type, lifted the object
(this moment is shown in Fig. 5b), put it down again and
retreated the hand to the starting position. The data recording
started when the hand began to move and ended when the
hand was put back to the initial position. As we are interested
in studying the intrinsic posture of the hand we removed the
global transformation of each grasp thereby representing each
grasp in a common frame of reference.

Each grasp was discretized into 30 uniformly distributed
time instances for which we recorded the fingertip poses.
In summary, this means that we have acquired a database
consisting of five subjects performing 31 different grasps
resulting in 4650 datapoints in total. Furthermore, each subject
was asked to perform each grasp twice. The first instance was
used for testing and the second for training.

(a) Five sensors are placed on the fin-
gertips and one on the wrist.

(b) Grasp posture for grasp 11.

Fig. 5: Magnetic sensors setup

V. SYNERGETIC REPRESENTATIONS

In Fig. 6, a schematic figure of the evaluation framework
is shown. We are particularly interested in evaluating the ap-
plication of two different dimensionality-reduction approaches
for extracting postural synergies. This is shown by the bottom-
middle and bottom-right modules tagged as “PCA” and “GP-
LVM” in Fig. 6. For representing temporal information as
well as multiple subject variance in low dimensional space
we use Gaussian Mixture Regression (GMR) [33] (bottom left
module in Fig. 6). In this section, we will first briefly explain
our usage of GMR (more information available in [33] and
our previous work [34]) and then examine qualitatively the
distribution of the low-dimensional representation extracted
with different dimensionality reduction techniques.

A. Gaussian Mixture Regression of Grasps

Our modeling of low-dimensional action data has two main
parts. First, a mixture of Gaussians is fitted to the data
after extending it with a time dimension (if data was two-
dimensional it becomes three-dimensional with a dimension
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the variance that is left unexplained decreases. The first
component accounts for 59% of the variance, the second
for 14% and the third for 5%. It is difficult to choose the
dimensionality of the manifolds based on this data, since we
have shown that even manifolds with high accuracy can result
in grasp failure, Section II. Nonetheless, we decided to use
two and three dimensional manifolds for three reasons: first,
because their accuracy is similar to the accuracy reported
in [7]; second, because the accuracy increases very slowly by
adding further dimensions; and third, because the visualization
of the manifolds is difficult for dimensionalities bigger than
three.
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Fig. 8: Variance of the data (see Section IV) explained
with increasing number of Principal Components. Only the
first 20 components are shown, as the additional information
transferred by the last ones is very small.

PCA 2D (Fig. 9a): To visualize the shape of the space, the
datapoints were plotted as white dots over a dark background.
The space is a rather narrow ark, on which all movements
are situated. The initial starting posture is on the right side
of the space. During the approach movement the trajectory
progresses leftwards. The final position of the grasp is usually
the point farthest away from the starting region. The overall
flexure of the fingers determine how far the trajectory moves
away from the start point. The reason for this is that the
starting posture is a flat hand and therefore increasing the
finger flexion increases the difference to the starting posture.

PCA 3D (Fig. 9b): The 3D plots add the third PC to the
data. As expected, the variance is smaller than in the other two
dimensions. The arc structure is still very dominant. The addi-
tional variance of the third PC is relatively small, nevertheless
this additional information can be used to better distinguish
between grasp types, as will be shown in Section VI-B.

C. Spectral non-linear methods

For the sake of conciseness we have not explained in depth
the spectral non-linear methods. The reason is that their results
are clearly worse than PCA and GP-LVM for our problem.
Fig. 9c and 9f show that executions of the same grasp by
different subjects are located in very different positions in
the manifold and have very diverse directions (some trials in
Fig. 9f are almost perpendicular to the rest). Moreover, since

different trials of the same grasps are scattered around the
manifold, different grasps will be hardly separable.

D. GP-LVM

Each point in latent space is connected via a Gaussian Pro-
cess mapping to a point in high dimensional space. It predicts
the mean and the variance of a point in high dimensional space
given the latent location. The mean can be directly used as the
reconstruction of a latent point in high dimensional space. The
variance, which is connected to the prediction, can be used to
quantify the confidence the model has while generating the
point in high dimensional space. A large variance means that
the model has a low confidence as it is poorly supported by
data points. How fast the variance increases while moving
away from data points gives a hint on the ability of the model
to generalize to previously unseen points. For simplicity and
coherence with the rest of the methods, Fig. 9 only shows
the predicted mean. However, Fig. 7 shows the variance of
the GP-LVM with the brightness of the background (white
corresponding to low variance and dark corresponding to high
variance).

The GP-LVM 2D space (Fig. 9d) covers a larger area than
the PCA 2D space (Fig. 9a). The non-linear character of GP-
LVM allow it to spread the grasp types better and therefore
having a finer differentiation between them, as we will further
explore in Section VI-B. This comparison is valid as well for
GP-LVM 3D and PCA 3D (Fig. 9e and Fig. 9b).

As we have seen in Section III-B, the kernel (or covariance)
matrix is a core part of the GP-LVM methodology. In the
following section we inspect the computed GP-LVM repre-
sentation in terms of its kernel matrix.

1) Interpreting the Kernel Matrix: The information de-
scribed in the previous section can be also visualized through
the kernel matrix Ki,i. In Fig. 10, we can see the kernel matrix
corresponding to a 3D GP-LVM model, together with two
magnifications of it. Dark tones correspond to low values (low
correlation) while bright ones to high ones. Overall, the figure
has 4650x4650 pixels, where the (i, j)-th pixel represents the
correlation between the points i and j in latent space.

The data is composed of 31 blocks corresponding to differ-
ent grasp types, each of them divided into 30 timestep blocks,
and finally each timestep block is divided into 5 subjects. We
can see that the highest correlation occurs around the diagonal,
where 31 blocks are present. This means that points are highly
correlated with points of the same grasp (even from different
users or time instances).

If we observe the upper right magnification, we can see
that the central square (grasping pose) that relates grasp 2
and grasp 3 has higher values than the one for grasp 1 and
grasp 3. This means that the correlation between grasps 2 and
3 is higher than between grasps 1 and 3. If we observe the
pictures corresponding to the grasps from Fig. 11, we can see
that indeed the similarity between grasps 2 and 3 is higher than
between grasps 1 and 3. These correlations can be observed
in a better way if we crop the central part for each grasp,
disregarding in this way the initial and final pose. Fig. 12a
shows the kernel matrix with points corresponding to frames
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(a) PCA 2D space (b) PCA 3D space. (c) Isomap 2D space.

(d) GP-LVM 2D space. (e) GP-LVM 3D space. (f) LLE 2D space.

Fig. 9: Comparison of the synergetic representations of grasping data. In all figures the trajectories of the five subjects performing
grasp number 4 are plotted in different colors. The white dots represent the projection of all the grasping points. Each axis
represent one dimension in the low dimensional space.

10 to 20 (among 30 frames in total of one trial). Fig. 12b
shows the sum of covariance values for the 10 time frames and
5 users inside of each grasp type. The values in this matrix
can be interpreted as the covariance of the classes in the data,
and can be used as a simple way of determining which grasp
is similar to which one. This matrix is of size 31x31, as we
have 31 different grasp types.

(a) Kernel matrix of grasping points
(frames 10 to 20 in each grasp, ap-
proach and retreat removed).

(b) Mean covariance. Axes represent
grasp types, and pixels represent the
mean covariance of grasping data-
points (see left figure) in two grasps.

Fig. 12: Covariance matrix without approach and retreat dat-
apoints.

In the lower right part of Fig. 10 we see the magnification of
the covariance values corresponding to points of a single grasp.

Along the diagonal we can identify three areas; the first and
last are replicated along every row and column in the general
kernel matrix, while the central one is only replicated for the
grasps which are indeed similar to each other. That means that
the first and last sections correspond to poses largely similar
among users and grasps, i.e. the approaching and retreat phase
of the grasp.

Another detail of the kernel matrix worth an explanation
are the datapoints corresponding to grasp 21, as presented in
Fig. 12b. Grasp 21 has the lowest mean correlation with itself
among all the grasps. This is due to a large variance among
subjects, as can be seen in Fig. 13a. It should be noted that the
ordering in the left picture is that the first 5 pixels correspond
to frame 1 of subjects 1-5, then frame 2 subjects 1-5 and
so on. This creates this 5 pixel pattern. Once the matrix is
rearranged to place the elements originating from the same
user together (Fig. 13b), it becomes visible that subject 1 and
5 are completely uncorrelated from the rest, and correlation
between subjects 2, 3 and 4 is low. We can interpret this as a
sign of extreme variance in the execution of grasp 21. Indeed,
our experience recording the grasp sequences was that this
grasp was executed among the subjects in very different ways.
Grasp 21 is the “Cigarette” grasp, where an object is placed
between the index and the ring finger. We only demanded that
the object is grasped properly, but we did not specify how the
remaining fingers have to be positioned. Some subjects kept
the remaining fingers extended, while others flexed them.

It should be mentioned that this analysis is not only applica-
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starting pose

grasping pose

ending pose

grasp 3

grasp 2

grasp 1

Fig. 10: Kernel matrix. Each axis represents the datapoints, and each (i, j)-th pixel the correlation between the datapoints i
and j. Dark tones represent low correlations, whereas bright ones denote highly correlated points. The left picture is the full
kernel matrix, whereas on the right two magnifications of the matrix can be seen. Relationships between datapoints such as
similarities or motion structure can be directly assessed in the kernel matrix.

(a) Covariance grasp 21 (b) Covariance grasp 21 rearranged

Fig. 13: Correlation of poses tagged as grasp 21. In the right
the elements are rearranged to group elements from the same
user. This shows that different subjects performed grasp 21 in
a very different way.

ble to grasping data, but to any data with dynamical behavior
through time and multiple classes.

E. Summary

PCA and GP-LVM managed to extract a meaningful struc-
ture from the high dimensional data. In these models the
trajectories of different subjects performing the same grasp

type showed a similar pattern. Nevertheless, for a given
dimension, GP-LVM is superior to PCA since it manages to
spread the points over a larger area. This allows for a finer
differentiation between grasp types while keeping different
user instances of the same grasp close to each other, and
therefore for a richer description. Both methods are able
to generalize between subjects. That means that given one
grasp type, the trajectories of the subjects all show a similar
pattern and move along similar paths. That is the basis for the
analysis in Section VI-B, where a model for each grasp type
is generated using those five trajectories, defining in this way
that particular grasp synergy.

VI. EVALUATION

In this Section we will evaluate the grasp synergies proposed
by GP-LVM, and compare them with the ones extracted using
PCA. We evaluate in Section VI-A how well we can recon-
struct poses that have been mapped to the low-dimensional
space. Then, Section VI-B evaluates the semantics of the
synergies, i.e. how compact are the models of each grasp and
how well can we discriminate between them.

A. Evaluation of the Reconstruction Error

One important requirement on the extracted synergies is
that they accurately represent the observed space of the data.
Therefore, we evaluate the quality of the learned mapping
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Fig. 11: GMR regression on the 31 grasp movements of all subjects. The dark line indicates the mean trajectory and the light
area correspond to the uncertainty. The grasps are sorted, so the first row contains grasps 1 to 7 and so on.

in terms of the reconstruction error. The reconstruction error
shows how much the mapping connecting the observed and
the latent representation distorts the data. It is computed by
pushing a point from the high-dimensional space through the
latent-space and back to the original space. The reconstruction
error is then the difference between the original and back-
projected point. This is performed for the both the training
points, which tests how well the model adapts to those points,
and the test set, where it allows us to access the performance
for points which are new, but similar to the training data. Since
no information about the classes of the grasp types is included,
it does not test the generalization ability of the model. The
reconstruction error only tests how much information is lost in
the mapping from high dimensional space to low dimensional
space and back; it does not provide information about the
semantics of the space, e.g. how similar the executions of a
particular grasp by different subjects are.

For all four data sets the positional (Fig. 14) and rotational
(Fig. 15) errors were calculated.

Any model created with GP-LVM outperforms all models
created by PCA in terms of reconstruction error. It is worth
consideration the difference in performance between training
and test data. In both GP-LVM models the training data has
lower errors (both positional and rotational) compared to the
test data. Interestingly such a trend is not visible for PCA
where the error on training and test data are very similar. This
is due to the fact that the synergies from PCA tend to be
over-smoothed, average trajectories (see Fig. 16). Such average
trajectories are “equally wrong” for training and testing. GP-

LVM adapts better to the trajectories at the cost of a slight
overfit. Nevertheless, the reconstruction error of GP-LVM is
around 20% better than the error from PCA of the same
dimensionality.

Increasing the dimensionality of the latent space allows
to better fit the training data onto the manifold, decreasing
the reconstruction error for the training set. Similar effects
are observed for the test set. suggesting that the higher
dimensional models are not overfitting the data. Importantly
though, the decrease is significantly larger for the non-linear
GP-LVM indicating that the correlations in the observed space
are non-linear and cannot be modeled using PCA.

Both algorithms seem to treat positions and rotations with
equal importance and in a similar fashion. If one compares the
figures of positional (Fig. 14) and rotational errors (Fig. 15)
the relative differences between models and test/training set
are very similar.

The overall performance of the extracted synergies by GP-
LVM are better compared to the PCA synergies of the same di-
mensionality, as it has better results for the training set as well
as for the test set. Human hand motion in general is non-linear
and therefore an algorithm that can cope with non-linearities
(such as GP-LVM) in the data will be superior. Additionally
PCA looks for the largest variance in the data, which might be
dominated by noise and the valuable information is blurred.
GP-LVM, being a probabilistic approach, also has the ability
to explicitly model the noise which increases the performance
of the algorithm.
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5 subjects are shown in a lighter color.

The grasp on the left side is a special variation of the
power grasp, where the thumb is aligned with the axis of
the cylinder. In this grasp type the thumb is relatively static,
as it only abducts for the grasp. Since abduction/adduction
is a movement largely perpendicular to the plane, most of the
movement is lost by the projection. This makes the appearance
of the thumb relatively random, but the 3D trajectory shows
a distinct pattern.

The grasp on the right side is a precision grasp, where
the index and the thumb are used to pick up a small object.
Therefore, it is important that those two digits are close in the
actual grasping phase. The background trajectories in Fig. 16
clearly show this.

GP-LVM produces relatively rugged trajectories, but they
follow the subjects trajectories quite well. They have roughly
the same range of motion as the subjects. In the precision
grasp (right column) they reach a position where thumb and
index finger are very close, which is a functional requirement
of the grasp type. The three dimensional GP-LVM is smoother
and it’s trajectories fit the original ones even better.

PCA produces very smooth curves, but it cannot create the
curved path of the subjects trajectories. There is an offset and
the trajectory cannot follow the full motion amplitude of the
subjects. When the dimension is increased to three, the shape
of the trajectory improves – the curvature gets a little bit larger
and the length of the trajectory better fits the subject’s one.

Overall GP-LVM outperforms PCA, since it is able to follow
the path of the human fingertips much better for a given
dimension. That comes at the cost of having more ragged
trajectories. In most applications this is more desirable than
having smooth trajectories, which follow the wrong path.

The rotational component of the fingertip cannot be easily
visualized, so a comparable analysis on the rotations was
not performed. Nevertheless it can be assumed that they will
behave in a very similar fashion, as the reconstruction error is
very similar in positions and orientation (Section VI-A).

2) Grasp similarity: In this section we classify grasping
actions according to the GMM/GMR models, see Section V-A.
In Fig. 11 the evaluation of the trajectories from the dynamical
model applied to the GP-LVM 2D representation is shown.
Following the process depicted by Fig. 7, each grasp model is
based on five trajectories, as performed by the subjects. The
dark line corresponds to the mean trajectory and the light area
shows the variance the model has on certain points of the
trajectory. One can clearly observe that different trajectories
have a different signature in the latent space.

Computing the similarity between grasps (pose sequences)
is not straightforward. We will use the probabilistic description
of grasps in terms of Gaussian Mixture Models for this
purpose. Based on these probabilistic models, we can compute
how likely it is that each point x in the space is generated by
a grasp gi.

p(x|gi) =
K∑

k=1

πgi
k N (x|µgi

k σgi
k ) (11)

p(gj |gi) =
∏

∀x∈gi

p(x|gi) (12)

s(gj , gi) = (p(gj |gi) + p(gi|gj))/2 (13)

Equation 11 states that the probability of a point x belonging
to a grasp gi is modeled as a weighted mixture of gaussians,
as explained in Section V-A, once we make the simplifying
assumption of independence between the poses, Eq. 12. Other
methods like HMM matching of sequences could be applied
here instead, [36].

Note that this probability is not symmetric: p(gj |gi) 6=
p(gi|gj). We define the similarity between two grasps s(gj , gi)
as the average of those two quantities, Eq. 13.

Following these equations we can compute the probability
of a new grasp sequence having been generated by a partic-
ular GMR model. By comparing those probabilities we can
estimate which is the most likely grasp class that generated
that sequence, and compare it with the real grasp that was
actually executed. We performed this classification task for
the grasp actions in the test set (not used for training) In
Fig. 17 we can see that GPLVM 3D manages to generalize the
model over new sequences equally well or better than the full-
dimensional representation, while using only three dimensions
instead of 35. GP-LVM is consistently better than PCA for a
given manifold dimensionality. The amount of Gaussians used
in the GMM/GMR model does not make large differences in
performance.
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Fig. 17: Classification rate for GMM/GMR models. GP-LVM
outperforms PCA for a given dimensionality, and performs
similarly to the full dimensional model, which uses more than
10 times more dimensions

It is not possible to perform this classification task with
Isomap and LLE manifolds, since the standard version of
these methods do not provide a way of projecting new data
not existing in the training set onto the lower dimensional
manifold. Therefore, for LLE and Isomap we can only show
how well they separate the training data in lower dimensional
space, by classifying the training set based on the models
extracted from the same set. Fig. 18 shows the classification
performance for the methods in Fig. 17 plus Isomap 2D
(Fig. 9c) and LLE 2D (Fig. 9f). The first observation we can
make is that the models computed in full-dimensional space
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perfectly separate the data. However, we should remember
that those models generalize over new data similarly or worse
than the GPLVM 3D models. Second, we can observe that
PCA performs well in this classification task; this tells us
that it clearly overfits the training data, since its performance
is much worse in Fig. 17. The fact that the classification
capabilities of mixtures of 6 Gaussians is only better for
training data indicates that mixtures of more than 3 Gaussians
produce overfitting. LLE and Isomap perform clearly worse
than the two-dimensional versions of PCA and GP-LVM, as
we expected from the shape of their manifolds in Fig. 9.
We should remember however that this classification is much
more sensitive to the particularities of the training set than the
classification used in Fig. 17.
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Fig. 18: Classification rate for GMM/GMR models tested with
the training data itself. Although the grasp training set is
more separable in PCA 3D and full dimensionality than in
GPLVM 3D for 6 Gaussians, the latter generalizes better over
new data and therefore outperforms the rest when classifying
previously unseen data (Fig. 17b). Isomap and LLE clearly
perform worse than the rest of the methods.

VII. CONCLUSIONS

The work presented in this paper relates to two important
areas of robotics: i) human observation and motion analysis,
and ii) representations that enable successful action planning
and control. In applications that consider hand activities, a
common way of controlling grasping actions for robotic hands
is to use high-dimensional human grasping data. Different
representations based on dimensionality reduction techniques
have been used to enable viable planning and control solutions.
Commonly, postural synergies have been used as a low-
dimensional representation to enable correspondence between
human and robot hand activities. The technique was devel-
oped to increase the understanding of complex relationships
between the joints and muscles in human hands. As such,
the original work on postural synergies was based on linear
dimensionality reduction methods which, as we have shown
in this paper, do not represent the human hand activity in
an appropriate manner due to the inherent non-linearities in
the data. We have argued that this significantly limits the
usefulness of postural synergies as a modelling paradigm and
that non-linear dimensionality techniques should be exploited
to represent the data in a more appropriate manner.

The work presented in this paper addressed the non-linear
dimensionality-reduction methods and their application to en-

coding highly non-linear human grasping data. Apart from en-
coding of postural synergies, our work relates closely to recent
work in control of combined reaching and grasping movements
in robots. However this work is built on assumptions of a
causal relationship between reaching and grasping, something
that may not hold. An illustrative example in the beginning
of the paper and detailed discussion of related work serve
as a motivating example of the applicability of the proposed
approach.

As the first contribution, we have shown that non-linear
dimensionality reduction methods can be used to tackle the
correlations problem without considering causal relations be-
tween dimensions, but by assuming them to have been gen-
erated from an external manifold which we infer from data.
Our second contribution is a thorough analysis of the inter-
nal parameters used in dimensionality-reduction techniques,
sheding light into algorithms which have been traditionally
used as a “black-box”. Finally, we have provided an exten-
sive experimental evaluation that showed how the proposed
methods outperform the standard techniques in the field both
in terms of recognition and generation of motion patterns. To
this end, we have presented both qualitative and quantitative
results of applying two different approaches for learning low-
dimensional representations of hand pose data.

REFERENCES

[1] Y. Demiris and G. Hayes, Imitation as a dual-route process featuring
predictive and learning components: a biologically-plausible computa-
tional model. Cambridge, MA, USA: MIT Press, 2002, pp. 327–362.

[2] M. Ciocarlie and P. Allen, “Data-driven optimization for underactuated
robotic hands,” in 2010 IEEE International Conference on Robotics and
Automation (ICRA 2010). IEEE, May 2010, pp. 1292–1299.

[3] A. Shukla and A. Billard, “Coupled dynamical system based armhand
grasping model for learning fast adaptation strategies,” Robotics and
Autonomous Systems, no. 0, pp. –, 2011.

[4] C. Granville, D. Southerland, J. Platt, and A. H. Fagg, “Grasping
affordances: Learning to connect vision to hand action,” pp. 59–80, 2009.

[5] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682–697, 2008.

[6] L. H. Ting, “Dimensional reduction in sensorimotor systems: a frame-
work for understanding muscle coordination of posture.” Progress in
Brain Research, vol. 165, pp. 299–321, 2007.

[7] M. Santello, M. Flanders, and J. Soechting, “Postural hand synergies for
tool use,” in The Journal of Neuroscience, 1998.

[8] C. R. Mason, J. E. Gomez, and T. J. Ebner, “Hand synergies during
reach-to-grasp,” J Neurophysiol, vol. 86, no. 6, pp. 2896–2910, Decem-
ber 2001.

[9] I. V. Grinyagin, E. V. Biryukova, and M. A. Maier, “Kinematic and
dynamic synergies of human precision-grip movements,” Journal of
Neurophysiology, vol. 94, no. 4, pp. 2284–2294, 2005.

[10] F. J. Valero-Cuevas, F. E. Zajac, and C. G. Burgar, “Large index-
fingertip forces are produced by subject-independent patterns of muscle
excitation,” vol. 31, pp. 693–703+, 1998.

[11] M. Gabiccini, A. Bicchi, D. Prattichizzo, and M. Malvezzi, “On the
role of hand synergies in the optimal choice of grasping forces,” Auton.
Robots, vol. 31, no. 2-3, pp. 235–252, 2011.

[12] M. C. Tresch, V. C. K. Cheung, and A. d’Avella, “Matrix factorization
algorithms for the identification of muscle synergies: Evaluation on
simulated and experimental data sets,” Journal of Neurophysiology,
vol. 95, no. 4, pp. 2199–2212, 2006.

[13] M. T. Ciocarlie and P. K. Allen, “Hand posture subspaces for dexterous
robotic grasping,” I. J. Robotic Res, vol. 28, no. 7, pp. 851–867, 2009.

[14] C. L. Nehaniv and K. Dautenhahn, The correspondence problem. Cam-
bridge, MA, USA: MIT Press, 2002, pp. 41–61.

[15] S. B. Kang and K. Ikeuchi, “Toward automatic robot instruction from
perception: Mapping human grasps to manipulator grasps,” IEEE Trans-
actions on Robotics and Automation, vol. 13, no. 1, pp. 81–95, 1997.



16

[16] E. W. Weisstein. (2011, Dec.) Function. from mathworld–a wolfram web
resource. [Online]. Available: http://mathworld.wolfram.com/Function.
html

[17] I. T. Jolliffe, Principal Components Analysis. Springer-Verlag, 1986.
[18] A. Tsoli and O. C. Jenkins, “Neighborhood denoising for learning high-

dimensional grasping manifolds,” in IROS, 2008, pp. 3680–3685.
[19] K. Nguyen and V. Perdereau, “Arm-hand movement: Imitation of human

natural gestures with tenodesis effect,” in Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, sept. 2011, pp.
1459 –1464.

[20] J. Steffen, M. Pardowitz, and H. Ritter, “A Manifold Representation
as Common Basis for Action Production and Recognition,” KI 2009:
Advances in Artificial . . . , 2009.

[21] S. Bitzer and S. Vijayakumar, “Latent Spaces for Dynamic Movement
Primitives,” International Conference on Humanoid Robots, 2009.

[22] D. Pratichizzo, M. Malvezzi, and A. Bicchi, “On motion and force con-
trollability of grasping hands with postural synergies,” in Proceedings
of Robotics: Science and Systems, Zaragoza, Spain, June 2010.

[23] M. Malhotra and Y. Nakamura, “The relationship between actuator
reduction and controllability for a robotic hand,” in IEEE International
conference on Biomedical Robotics and Biomechatronics, 2010.

[24] R. Diankov, “Automated construction of robotic manipulation
programs,” Ph.D. dissertation, Carnegie Mellon University,
Robotics Institute, August 2010. [Online]. Available: http:
//www.programmingvision.com/rosen diankov thesis.pdf

[25] M. Tipping and C. Bishop, “Probabilistic principal component analysis,”
Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), vol. 61, no. 3, pp. 611–622, 1999.

[26] C. Rasmussen and C. Williams, “Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning),” 2005.

[27] N. Lawrence, “Probabilistic non-linear principal component analysis
with Gaussian process latent variable models,” The Journal of Machine
Learning Research, 2005.

[28] N. D. Lawrence and J. Quinonero-Candela, “Local distance preservation
in the gp-lvm through back constraints,” in ICML06, pp. 513–520.

[29] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global Geometric
Framework for Nonlinear Dimensionality Reduction,” Science, 2000.

[30] K. Q. Weinberger, F. Sha, and L. K. Saul, “Learning a kernel matrix
for nonlinear dimensionality reduction,” in International Conference on
Machine Learning, 2004.

[31] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, 2000.

[32] T. Feix, R. Pawlik, H. Schmiedmayer, J. Romero, and D. Kragic, “A
comprehensive grasp taxonomy,” in Robotics, Science and Systems:
Workshop on Understanding the Human Hand for Advancing Robotic
Manipulation, June 2009.

[33] S. Calinon, Robot Programming by Demonstration: A Probabilistic
Approach. EPFL/CRC Press, 2009.

[34] J. Romero, T. Feix, H. Kjellström, and D. Kragic, “Spatio-temporal
modeling of grasping actions,” in IROS. IEEE, 2010.

[35] S. Calinon, F. Guenter, and A. Billard, “On learning, representing and
generalizing a task in a humanoid robot,” IEEE Transactions on Systems,
Man and Cybernetics, Part B, vol. 37, pp. 286–298, 2007.

[36] S. Calinon and A. Billard, “Recognition and reproduction of gestures
using a probabilistic framework combining pca, ica and hmm,” in
Proceedings of the 22nd international conference on Machine learning,
ser. ICML ’05. New York, NY, USA: ACM, 2005, pp. 105–112.


