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Chapter 1

Executive summary

Deliverable D27 presents fourth year developments within workpackage WP3 “Self-experience of Grasping
and Multimodal Grounding”. According to the Technical Annex of the project, D27 presents activities
connected to Tasks 3.1, 3.2, and 3.3. The objectives of these tasks are defined as

• [Task 3.1] - Control Architecture. Initially, a hierarchical control architecture will be defined
and developed such that it allows relating the concepts of the grasping ontology defined in WP2
to the immediate control. After the architecture has been defined, this task will continue with
the definition and development of the general control architecture components, mainly a Cartesian
controller and high-level supervisory and visual controllers.

• [Task 3.2] - Multimodal Grounding. The task aims for the definition and development of a
grounding mechanism connecting action primitives and attributes with uncertain sensor informa-
tion, including modelling of the uncertainties involved. Initially, the modelling of uncertainties of
the three sensor types (visual, tactile, proprioceptive) is studied considering the context of the at-
tributes of the grasping ontology. Later, the task will continue by studying the temporal grounding
problem as a state estimation problem with uncertain information, as the concepts and therefore
the symbol set are defined by the grasping ontology.

• [Task 3.3] - Robust action primitives. The task aims for the definition and evaluation of
adaptive and robust control approaches for individual action primitives. The main focus will be on
studying the possible grasp primitives for different hand kinematics (parallel jaw, three-fingered, five
fingered) and to identify robust parameterisable primitives through evaluation. Parameterisation
of the primitives allows self-experience to be used for improving the performance during future
attempts.

The work in this deliverable relates to the following fourth year milestone:

• [Milestone 11] - Integration and evaluation of scenarios on multiple experimental platforms,
demonstration of cognitive capabilities of robots.

The progress in WP3 is presented briefly below, and in more detail in the appendix containing attached
scientific publications and reports.

• Attachment A presents work describing the primitive based manipulation paradigm developed in
the project, related to Task 3.1. Moreover, the work proposes a complete set of reactive sensor-based
manipulation primitives for object transport, related to Task 3.3. The work extends and combines
results shown in Year 2 and Year 3 deliverables D13 and D20. We demonstrate the completion of
an object transportation task on two different platforms using the same abstract description. We
also demonstrate that a complex task of emptying a box filled with many objects can be solved
using the paradigm.

• Attachment B presents work in reconstructing object 3-D shape by fusing information from visual
and tactile sensors, related to Task 3.2. To reconstruct an object, a low-quality point cloud model
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is first created based on stereo from a single view point. This initial model is used to plan a grasp
on the object, which is then executed with a gripper equipped with tactile sensors. The object
model is then refined based on the contacts detected by the tactile sensors, and further actions can
be decided based on the refined model.

• Attachment C presents a study of how much object information can be extracted from tactile
exploration, related to Task 3.2. Using a simulator as an internal model (memory) of the robot,
the evaluation is based on assessing how much information error minimization between predicted
and actual sensor readings can provide about the environment. The focus in the study is an object
transportation task and experiments indicate that a single exploration action is not guaranteed to
provide much information for all uncertain factors if the attempt is not originally planned with
information gain in mind.

• Attachment D presents work extending the results of grasp stability recognition presented in Year 3
deliverable D20 to sensor-based grasp planning under uncertainty, related to Tasks 3.2 and 3.3. The
work presents a novel probabilistic framework for grasping, in which grasp and object attributes, on-
line sensor information and the stability of a grasp are all considered through probabilistic models.
The framework is demonstrated by building the necessary probabilistic models using Gaussian
Process regression, and using the models with an MCMC approach to estimate a target object’s
pose and grasp stability during grasp attempts. The framework is also demonstrated on a real
robotic platform.

• Attachment E presents work describing an approach for estimating contact between robot fingers
and an object using only visual input, related to Task 3.2. The approach is based on the assumption
that object motions are caused by the contacts. The approach is validated through experiments
which show that the visual contact estimation is able to detect contacts in a scenario where the
contacts could not be perceived using tactile sensors. In addition, the ability to detect contacts
when the hand is visually occluded is demonstrated.

• Attachment F presents an extension of the grasp stability recognition, which estimates the stabil-
ity continuously during a grasp attempt, related to Task 3.2. The approach is based on temporal
filtering of a support vector machine classifier output. Experimental evaluation is performed on
an anthropomorphic ARMAR-IIIb. The results demonstrate that the continuous estimation pro-
vides equal performance to the earlier approaches while reducing the time to reach a stable grasp
significantly. Moreover, the results demonstrate for the first time that the learning based stability
estimation can be used with a flexible, pneumatically actuated hand, in contrast to the rigid hands
used in earlier works.
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Manipulation Primitives: A Paradigm for
Abstraction and Execution of Grasping and Manipulation Tasks

Javier Felip, Janne Laaksonen, Ville Kyrki, Antonio Morales

Abstract—Robot grasping and manipulation in unstructured
service scenarios is a challenging scientific and engineering
problem to a large extent caused by incomplete and uncertain
knowledge about the environment. Sensor-based reactive and
hybrid approaches have proven a promising line of study to
address these issues. However the use of sensor-based approaches
is difficult in situations where knowledge transfer between em-
bodiments is desired, because the approaches are usually tightly
coupled to a particular embodiment.

This paper proposes a paradigm for modelling and execution of
manipulation actions, which makes knowledge transfer between
embodiments possible, while retaining the capabilities of the
individual embodiments. The paradigm is built upon the concept
of manipulation primitives, which constitute a vocabulary of
atomic actions. More complex actions, such as object transport,
can then be described as sequences of abstract primitives, the set
of which is shared over different embodiments. These abstract
models can then be translated to embodiment specific models,
constituting of reactive sensor-based controllers, such that the
full capabilities of each platform can be utilised.

The paradigm is demonstrated by presenting a practical imple-
mentation, including a description of the translation mechanism
and a complete set of primitives for object transport. Moreover,
we demonstrate the completion of an object transportation task
on two different platforms using the same abstract description.
Finally, we also demonstrate that a complex task of emptying a
box filled with many objects can be solved using the paradigm.

I. INTRODUCTION

Robots operating in unstructured service scenarios, for
example mobile manipulators, need to operate robustly despite
incomplete and uncertain information about their environment.
Seminal works on reactive control [1], [2] demonstrated that
the use of several low-level perception/actuation loops enabled
robots to adapt to unknown scenarios. These approaches were
soon extended by incorporating high-level planners prioritiz-
ing the available reactive behaviours, giving birth to hybrid
deliberative/reactive control [3], [4].

In complete contrast to reactive approaches, manipulation
and grasping has been traditionally addressed through planning
of contact states. Methods, such as grasp quality metrics
based on form and force closure, are very powerful when the
uncertainty in robot and environment models is minimal. How-
ever, in service robotics manipulation scenarios, uncertainties
appear in many quantities, for example, inaccurate knowledge
about the poses of objects and obstactles, incomplete models
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of object shape and physical properties, or inaccurate kinemat-
ics in flexible robots. To address these issues, there are a few
works using the reactive paradigm. One of the earliest works
in reactive grasping proposed the use of a light beam sensor to
align the gripper with an unknown object [5]. More recently,
solutions such as IR proximity sensors [6], tactile sensors [7],
[8], and force and tactile feedback [9] have been proposed. In
contrast to traditional grasp planning, these approaches aim
to adapt the robot hand to the shape of the target object
reactively instead of placing contacts in planned locations. As
a consequence, exact models of objects are not required, which
is a great strength of the approaches.

Reactive manipulation approaches are usually, however,
specific to a particular embodiment, which makes it difficult
to transfer plans between different embodiments and even
from humans to robots. This paper presents a paradigm of
manipulation primitives, which combines the idea of reactive
control with action abstraction. The paradigm describes ma-
nipulation tasks in terms of atomic primitives, which offers
several advantages. Firstly, complex actions can be described
in terms of simple abstract primitives. Secondly, plans can
be shared over different embodiments because the vocabulary
of primitives is shared. Finally, these abstract models can
be translated to embodiment specific models, constituting of
reactive sensor-based controllers, such that the full capabilities
of each platform can be utilised.

Next, we continue by presenting related work in Sec. II and
the terminology used in Sec. III. The paradigm is demonstrated
by presenting an implementation, including a description of
abstraction and translation in Sec. IV and a complete set
of primitives for object transport in Sec. V. Moreover, we
demonstrate the completion of an object transportation task
on two different platforms using the same abstract description
in Sec. VI-A. Finally, we also demonstrate solving a complex
task of emptying a box filled with many objects using the
paradigm in Sec. VI-B.

II. RELATED WORK

Few studies have addressed the issue of abstracting hard-
ware from action. Petersson and Christensen presented a
somewhat similar framework in [10] but to our knowledge
that framework has never been demonstrated in practice with
multiple embodiments. Earlier version of the work presented
here appeared in [11]. Finally, Ellenberg et al. studied how
algorithms for humanoid robot walking can be transferred
between embodiments [12]. To our knowledge, the work pre-
sented here is the most advanced in the context of abstracting
action across multiple embodiments.



The idea of control primitives is not new in robotics, and
particularly in robot grasping. Earlier works propose individual
control primitives for different problems such as to control a
hand [13], to define object movements [14] and its relations
[15] and to control a manipulator [16]. Despite different
definitions of primitives, all of them present a common trend,
discretizing and reducing the complexity of controlling a
robotic setup by reducing the search space for planning. Other
similar approaches include Object Action Complexes [17]
and the physical interaction framework of [18]. However, in
contrast to this work, all of the above consider primitives
which are specific to a particular embodiment.

An alternative approach to address the problem of unknown
environment is to use sensors, for example vision, to build the
necessary models. Vision has been used to obtain the shape
of unknown target objects [19], [20] and to determine the
location and pose of objects [21]. In both cases, visual input
was used to plan feasible grasps. Visual feedback can also be
used during reaching for an object. Murphy et al. [22] uses
visual techniques to correct the orientation of a four-finger
hand while approaching an object to improve contact locations.
Once contact between object and robot has been reached,
tactile and force sensors can be applied. Tactile measurements
can be used to estimate the quality of grasps [23], [24],
[25], [26] or the shape of an object [27] with the purpose
of reaching better contact locations through a sequence of
grasping/regrasping actions. Contact information can also be
used to program complex dexterous manipulation operations
like finger repositioning while holding the object [23], [28].
Several works have combined the use of several sensors to
complete the process of grasp planning and execution [29],
[30].

III. MANIPULATION PRIMITIVES

We define a manipulation primitive as a single reactive
controller designed to perform a specific primitive action on
a particular embodiment. Each primitive is parameterized to
allow it to be used in different situations. A focused control
policy which uses the available sensor feedback is then used
to achieve predefined success or failure conditions.

Primitives are the elementary symbols of a vocabulary that
is used to describe actions and tasks. A task is a semantically
meaningful goal, such as emptying a grocery bag, consist-
ing of one or more actions. Each action describes a single
manipulation action, for example, moving an object from one
location to another, as a Finite State Machine (FSM) where the
states correspond to manipulation primitives. The transitions
between states are triggered by events, predefined perceptual
or internal conditions.

IV. ABSTRACT TASKS AND PRIMITIVES

Primitives are by definition embodiment specific. However,
embodiments with similar capabilities allows the definition
of primitives with similar behaviour and purpose, which can
be thought as abstract manipulation primitives. The focused
purpose of primitives simplifies the development of equivalent

primitives on several embodiments. This equivalence also en-
ables the transmission and execution of plans between different
embodiments. The abstract manipulation primitives can then
be used to describe abstract actions. We call this abstract
representation of an action the Abstract State Machine (ASM).

A. Abstract State Machine

The abstract state machine is a hardware independent
description of a manipulation action. The ASM uses XML
(eXtensible Markup Language) to describe the relevant in-
formation, such as the states and transitions of the state
machine. Also information about the target object, e.g. its pose
and mass, and obstacles in the manipulation environment are
described. All properties and definitions in XML are hardware
independent.

The abstract state machine is described through definition
of states and transitions between the states. Both states and
transitions have properties that can be used to further inform
of the intended action. For example, the hand preshape for
grasping or the path for the end-effector can be set through
state properties. The transition properties describe the condi-
tions when the transition is triggered. For example, the loss of
a grasp can trigger a transition to another state.

In addition to the properties, the state also has type at-
tributes, which describe the manipulator motion that is desired
from each defined state. These attributes are:

• move: Moving the manipulator without an object.
• transport: Moving the manipulator with an object.
• grasp: Grasping an object.
• place: Placing an object.
• release: Releasing an object.
• slide: Sliding an object.
• success: Indicating end state with success.
• failure: Indicating end state with failure.
These attributes are the key factor in selecting the primitive

controllers during the translation process depicted in IV-B.
An example abstract state machine and its XML definition,
describing a simple grasp and lift manipulation, is shown in
Fig. 1. Some of the elements have been left out for brevity, e.g.
properties of the object and some of the common transitions,
e.g. timeout to the failure state.

B. Translation from ASM to FSM

The translation process is what combines the abstract state
machine and the embodiment specific state machine (FSM).
The translation takes the abstract state machine as an input,
and translates the abstract state machine into an embodiment
specific state machine. The translation process is depicted in
Fig. 2.

As can be seen from Fig. 2, the translation component needs
input defining the configuration of the translation process, i.e.,
the target platform and the platform specific transitions and
primitive controllers used directly in the embodiment specific
state machine. The benefit of this arrangement is that the
only hardware dependent blocks shown in the figure are the
primitive controllers and transitions that are platform specific.



<s t a t e m a c h i n e>
<s t a t e name=” a p p r o a c h ” t y p e =”move”>

<movement>free</ movement>
<hand shape>open</ hand shape>

</ s t a t e>
<s t a t e name=” p r e s h a p e h a n d ” t y p e =”move”>

<movement>guarded</ movement>
<hand shape>pinch_grasp_preshape</ hand shape>

</ s t a t e>
<s t a t e name=” g r a s p o b j e c t ” t y p e =” g r a s p ”>

<movement>guarded</ movement>
<hand shape>pinch_grasp</ hand shape>

</ s t a t e>
<s t a t e name=” l i f t o b j e c t ” t y p e =” t r a n s p o r t ”>

<movement>guarded</ movement>
<hand shape>pinch_grasp</ hand shape>
<p a t h>

<p o s i t i o n>0 . 2 0 . 6 0 . 2 5</ p o s i t i o n>
</ p a t h>

</ s t a t e>
<s t a t e name=” s u c c e s s e n d ” t y p e =” s u c c e s s ”>
</ s t a t e>
<s t a t e name=” f a i l e n d ” t y p e =” f a i l u r e ”>
</ s t a t e>

<t r a n s i t i o n o r i g i n =” a p p r o a c h ”
d e s t i n a t i o n =” p r e s h a p e h a n d ”>
<s u c c e s s />

</ t r a n s i t i o n>
<t r a n s i t i o n o r i g i n =” p r e s h a p e h a n d ”

d e s t i n a t i o n =” g r a s p o b j e c t ”>
<s u c c e s s />

</ t r a n s i t i o n>
<t r a n s i t i o n o r i g i n =” g r a s p o b j e c t ”

d e s t i n a t i o n =” l i f t o b j e c t ”>
<s u c c e s s />
<g r a s p s t a b l e />

</ t r a n s i t i o n>
<t r a n s i t i o n o r i g i n =” l i f t o b j e c t ”

d e s t i n a t i o n =” f a i l e n d ”>
<g r a s p l o s t />
</ t r a n s i t i o n>
<t r a n s i t i o n o r i g i n =” l i f t o b j e c t ”

d e s t i n a t i o n =” s u c c e s s e n d ”>
<s u c c e s s />
<g r a s p s t a b l e />

</ t r a n s i t i o n>
</ s t a t e m a c h i n e>

Fig. 1. An abstract state machine.
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Fig. 2. Translation process.

Also the critical requirement of real-time operation for sensor-
based control is fulfilled as the embodiment specific state
machine can be run as is, without any additional overhead
from maintaining hardware independence.

The translation process also requires a mapping compo-
nent which produces the embodiment specific state machine
from the abstract automaton. The mapping itself is developed
manually, but once the mapping component is complete, the
translation process from any ASM is performed automatically.
This mapping is fairly simple to implement as there are only a
limited amount of input properties and the mapping is aware of
only of each individual primitive and transition of an abstract
action.

Furthermore, a common Cartesian velocity control interface
is defined for the arm, thus, we can use primitive controllers
that use the arm velocity control for all hardware platforms
without modifications. The same applies to some transition
conditions, e.g. timeout can be used in all platforms. Thus,
building the basic primitive controllers and transitions gives
the added benefit of not having to implement all controllers
and transitions for each new platform introduced to the system.

V. MANIPULATION PRIMITIVES FOR OBJECT TRANSPORT

In this section we describe a set of sensor-based manip-
ulation primitives for object transport, corresponding to the
abstract types described in the previous section. The primitives
are described independent of a particular hardware platform
but a set of control and sensor requirements shown in Ta-
ble I are needed to implement them. All the primitives are
parametrizable, requiring one common parameter: an approach
vector to the object. All other parameters are optional and
shown in the table.

A. Grasp primitive

A grasp primitive can be implemented just by closing the
hand. It has, however, been demonstrated that using sensor
based methods the success rate of this primitive can be
increased significantly [9]. We propose to implement the
primitive using a sensor based controller that performs several
corrective movements in order to get a stable grasp. These
movements are divided into three phases: alignment, sliding
grasp and force adaptation.

The optional parameters for the implemented grasp prim-
itive are the pregrasp type (cylindrical, spherical, hook) and
size. The corrective movements to be performed can also be
configured using a binary parameter that tells the controller
whether to use a correction phase or not. By default all the
correction phases are applied.

1) Alignment: In some situations, the initial approach vec-
tor is not pointing to the center of the object, and thus there is
a premature collision during the approach phase. This contact
can be detected using a force-torque sensor mounted on the
wrist. Using the torque, the contact point is estimated and a
correction is performed to center the object. An example of this
is depicted in Fig. 3. The contact can also detected using tactile
sensors triggering the centring behavior. Alignment correction
improves grasping of objects with location uncertainty by
allowing the hand to align its center with the object.

2) Sliding grasp: When approaching, the hand usually
makes contact with the supporting surface instead of the object
(See Fig. 4(a)). In this case, closing the hand can result in
unsuccessful grasps especially for small objects. To counter
this problem, sliding grasp correction is used. The corrective
movement consists of moving the hand forwards or backwards
depending on the force sensed along its Z axis while the fingers
are closing (see Fig. 4) to maintain stable, light contact with
the supporting plane. When the fingers are no longer able
to close, because the object is grasped or the fingers reach
their joint limits, the sliding grasp control ends. The correction



Primitive name Other parameters Control requeriments Sensor requeriments
Grasp Pregrasp size, grasp preshape Arm cartesian velocity controller Wrist force-torque sensor, tactile sensors
Lift Lift height Arm cartesian position control None

Transport Obstacles, trajectory, constraints Arm cartesian velocity control None
Place Contact treshold Arm cartesian velocity control Wrist force-torque sensor

Release Hand position None None

TABLE I
VOCABULARY OF PRIMITIVES, PARAMETERS AND REQUERIMENTS.

(a) Arm moving towards the object. (b) Contact generates torque in the wrist. (c) Correction movement is performed.

Fig. 3. Grasp primitive: Alignment phase.

improves grasping small objects by sliding the fingers on the
supporting plane until the object is securely grasped.

The behavior of this correction phase is shown in Fig. 4.
The hand starts closing and when the fingers make contact
with the surface, the force they are applying is detected in
the wrist, thus the arm moves back (Fig. 4(a)). The fingers
continue closing and because no contact force is detected, the
arm moves forward (Fig. 4(b)). In Fig. 4(c) the fingers are not
able to close anymore and the primitive ends successfully.

3) Force adaptation: The force of the fingers is increased
to improve grasp stability. The primitive ends with a success
if at the end the object is still in the hand, detected with joint
angles or contact information.

B. Transport primitive

The purpose of the transport primitive is to move the arm
to a specified target position while the hand holds an object.
The primitive can also be used to move the arm without an
object.

The trajectory to move the arm from the starting point to the
target can be constrained by specifying optional parameters.
A trajectory can be specified as a list of joint positions that
define the state of each joint during all the transport primitive
execution. A less restrictive constraint is to specify the end-
effector Cartesian trajectory. Instead of defining the exact
trajectory that the robot must follow, it is also possible to
specify position, velocity or acceleration limits. A force-torque
is used to stop the movement if a collision is detected.

Optional parameters can also be used to describe environ-
ment obstacles as an obstacle point cloud, in which case
a force-field [31] based collision avoidance strategy is used
to generate a collision free trajectory from current to target
position maintaining the hand orientation.

For instance, if the task is to transport a mug full of water
without pouring the liquid, acceleration should be constrained

Fig. 5. Example of execution of the constrained transport primitive from the
starting point (a) to the target point (b). Red line: Standard trajectory. Blue
line: Position constrained trajectory.

to a low value on all axes and the rotation velocity of the
table plane axes should be set to 0 to prevent tilting the
mug. If the target position cannot be reached without breaking
the specified constraints, the primitive ends with a failure. In
Fig. V-B an example of a position constrained trajectory is
shown. The convex hull of the box is defined as forbidden
space to define position constraints.

C. Place primitive

The place primitive is used to place an object on a sup-
porting plane while detecting the support on-line using sensor
feedback. The arm moves down until a contact is detected with
a force sensor. When a force opposing the movement direction
is felt it assumes that the object is placed.

This primitive can be configured with an optional parameter
defining the force threshold needed to detect a contact. An
example execution of this primitive is shown in Fig. 6.

D. Release primitive

Releasing an object can be difficult because the fingers can,
while opening, collide with the supporting plane or other parts



(a) The fingers contact the table while
closing. Thus the controller sets the
velocity to move the hand back.

(b) The fingers are closing and the con-
tact with the table is lost. Vz is set
forwards.

(c) The hand contacts the table again but
the object is already grasped.

Fig. 4. Grasp primitive: Sliding grasp phase.

(a) Arm moving the object towards the
surface.

(b) Contact is detected by force/torque
sensor.

Fig. 6. Place primitive.

of the object (see Fig. 7(a)). To handle this problem, the release
primitive opens the hand slowly while the arm moves back.
The movement of the arm is force-controlled and the arm only
moves back if there is a contact detected between the opening
fingers and the surface. The sequence of movements is shown
in Fig. 7. This primitive can be configured by setting the target
hand position after release.

E. Slide primitive

The purpose of the slide primitive is to push an object from
the top and slide it on a surface, as shown in Fig. 8. Using force
control the arm applies a desired force (Fn) to the object, then
moves towards a set target, keeping the applied force constant
(Fig. 8(a)). The contact fixes the arm and object movement
allowing the robot to slide the object on the surface from
the starting to the target position (Fig. 8(b)). Only the target
position is a required parameter, but the applied force can be
configured by setting a desired force range.

VI. DEMONSTRATIONS

To demonstrate the applicability of the manipulation prim-
itives paradigm, we present two demonstrations: mapping
of actions for different embodiments and completion of a
complex task using the paradigm and the primitives described.
Our main experimental platform is Tombatossals, an anthropo-
morphic torso with 23 DOF shown in Fig. 10. The platform is
composed of two 7 DOF Mitsubishi PA10 arms. The left arm
has a 4 DOF Barrett Hand and the right arm a 7DOF Schunk
SDH2 Hand. Both hands are endowed with Weiss Robotics
tactile sensors on the fingertips. Each arm also has a JR3

(a) From the starting position with
a hook preshape, the arm moves
down until it touches the object,
then it starts moving towards the
target.

(b) The object slides over the table
from Pi to Pf. The primitive keeps
the applied force stable.

Fig. 8. Slide primitive.

force-torque sensor mounted on the wrist. Visual system of
the platform is composed of a TO40 4 DOF pan-tilt-verge
head with two Imaging Source DFK 31BF03-Z2 cameras and
a Microsoft Kinect.

A. Action mapping to different embodiments

We demonstrate the mapping of the abstract state ma-
chine by developing a simple pick and place abstract state
machine. To enable mapping of the ASM, we implemented
the translation component described in Section IV-B for two
different platforms, Tombatossals and a Melfa RV-3SB 6-DOF
arm with a PG70 parallel jaw gripper equipped with Weiss
tactile sensors. The implementation included the required
platform specific controllers for the different states in the ASM
and the platform specific transitions, as well as the required
configuration information.

As a result, shown in Fig. 9, we were able to grasp objects
based only on the sensor data from the hand and the arm,
when given estimate of the pose of the object. Using the
same abstract state machine for both platforms shows clearly
that we are able to use abstraction and then turn this abstract
information to platform specific primitives and transitions used
in the sensor-based control.

In the context of the demonstration we used the same
Cartesian controllers for both arms. On the other hand, the
hands are too different in terms of kinematics and sensors
so that each hand had its own implementation of control.



(a) Hand before opening the fingers. (b) The hand cannot release the object, the
fingers are blocked by the surface. The
normal force in each finger propagates
to the wrist.

(c) The hand moves back and continues
opening the fingers. The object is re-
leased successfully.

Fig. 7. Release primitive.

Fig. 10. The experimental robotic platform: Tombatossals, the UJI humanoid
torso.

Also the transitions for grasp stability or instability were
customized for each of the platforms in order to effectively use
the different sensor capabilities available on the platforms. It
should be noted that the task was nevertheless described using
only the abstract description, without any embodiment specific
information.

B. Emptying a box: Execution of a complex task

To demonstrate that the paradigm is valid for executing
complex sensor-based tasks, we chose the task of emptying a
box with no previous information about the number, location
and pose of the objects inside. More precisely, the assumptions
are that the object positions inside the box are not restricted,
objects can be in any position and orientation inside the box,
except that the is some clearance between the objects and
the sides of the box. The object size is defined by the SDH2
hand dimensions so that the objects fit inside the hand and
are thus graspable. The box is set on an even plane inside
the arm workspace. Tombatossals is used as the experimental
platform.

The task is solved using a pick and place loop executed for
each object. This loop consists of a sequence of primitives
structured and executed as a Finite State Machine (FSM)
as described earlier. The FSM included several manipulation
primitives which are instantiated to direct the robot to pick up

an object from a starting position and place it to a destination
position. The FSM is shown in Fig. 11. The required parame-
ters are the starting approach vector to a target object and the
target position to place it. This procedure is repeated until the
box is empty.

Transport
Obstacles, 
trajectory, 
constraints

Grasp
Pregrasp size

Grasp preshape

Lift
Height

Place
Contact 

threshold

Release
Hand position

Is box empty?

Approach vector generator
(blind or vision based)

Object in hand?

yes

yes

no

no

Transport
Obstacles, 
trajectory, 
constraints

Fig. 11. State machine for a pick and place task. Primitives are represented by
circles. External processes are depicted using boxes. Diamond boxes represent
conditions that are checked inside the parent primitive to determine the next
transition. Inside each primitive, some examples of parameters are written in
italics.

A key part of this loop is the generation of initial approach
vectors. Three strategies were implemented: random blind,
blind exploration and a vision-based method. In the first one,
top-grasp approach vectors are generated uniformly at random
inside the known location of the box. In this case, ending the
whole process is decided by a human observer.

In the blind exploration strategy, the arm moves down until
a contact is detected. If the contact is an object the approach
vector is generated over that contact location. If the contact
is the box bottom the hand starts moving along the bottom



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Action execution on different platforms, (a)-(d) Melfa RV-3SB with PG70, (e)-(h) Tombatossals: (a,e) Approach; (b,f) Grasp; (c,g) Transport; (d,h)
Release.

until it detects a contact using the tactile and the force-torque
sensor. As the position of the box is known, propioception is
used to determine whether the contact is with an object or
with the box bottom. The exploration trajectory followed by
the hand is shown in Fig. 13(a). The task ends after exploring
the whole box without finding an object.

In the vision-based strategy, the Kinect sensor is used. This
sensor outputs a depth image and an RGB image. Objects
are segmented from the environment using a pass-trough filter
using the box boundaries and clustered as shown in Fig. 12.
The approach vector is determined to approach the centroid
of a randomly chosen cluster. The task ends when no clusters
are left.

In order to validate the approach we carried out a total of
30 experiments of emptying a box filled with five unknown
objects (see Fig. 13(b)). 10 experiments were performed for
each approach vector generation method. All the methods
were able to empty the box successfully 10 times out of 10.
However, several attempts were sometimes needed to grasp
an object. The number of attempts needed to lift an object
was recorded. Fig. 14 shows the average number of required
attempts depending on the number of objects remaining in the
box as well as the standard deviation.

It is evident from the figure that the vision-based approach
vector generation improves the results over the blind methods,
which is hardly surprising. However, the interesting result is
that the blind methods were also able to complete the task
successfully every time.

VII. DISCUSSION AND CONCLUSION

Over the years, robot grasping has split to two different
approaches. On one hand, object-based robot grasping which
focus on considering a grasp as a set of locations on the
object shape, through which manipulation forces are exerted
on the object. On the other, hand-based approaches rely on the
capabilities and constraints of the robot embodiment, focusing
on control aspects. The manipulation primitives paradigm

(a) Original 3D image. (b) Original 3D point cloud read
from Kinect sensor.

(c) Virtual box background filtering.
Background points are colored in
gray and objects are in green.

(d) Object clustering and selection.
Background points are marked in
gray, objects in green, and the
selected cluster is labeled in red

Fig. 12. 3D point cloud segmentation phases.

(a) Hand preshape for exploration and ex-
ploration trajectory.

(b) A possible object layout

Fig. 13. Exploration trajectory and object layout.
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belongs to the latter approach, considering grasps as starting
conditions for the action and letting the control loop and
the real world itself guide the execution. The demonstrations
shown indicate that manipulation problems can be solved
in complex, unstructured scenarios while retaining hardware
independence on a higher level.
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Abstract—Manipulation and grasping of unknown objects is
one of the great challenges for general purpose service robotics.
There are vision based methods for grasping unknown objects,
but further planning of manipulation using these approaches is
difficult, because the methods do not generally create a 3-D model
of the object. On the other hand, 3-D reconstruction of an object
from a single view is only possible with additional assumptions.

In this work, we propose to reconstruct a 3-D model of an
object by fusion of visual and tactile information. Assuming
the object is symmetric, a low-quality point cloud model is first
created based on stereo. This initial model is used to plan a grasp
on the object, which is then executed with a gripper equipped
with tactile sensors. The object model, including the symmetry
parameters, can then be refined based on the contacts detected
by the tactile sensors, and further actions can be decided based
on the refined model. The main contribution of this work is an
optimal estimation approach for the fusion of the visual and
tactile data applying the constraint of object symmetry. The
fusion is formulated as a state estimation problem and solved
with iterative extended Kalman filter. The approach is validated
experimentally using both artificial and real data.

I. INTRODUCTION

Manipulation and grasping of unknown objects is one of
the great challenges for general purpose service robotics.
Vision based methods for grasping unknown objects exist
(e.g. [16, 14, 10, 12]), but generally such methods do not
create a 3-D model of the object, which nakes their use
in further planning of manipulation difficult. In most real-
world scenarios, grasping is only a prerequisite action for
further object manipulation and a 3-D object model is needed
for manipulation planning especially when the manipulation
happens in a constrained space and obstacle avoidance is
important.

3-D reconstruction using a single view or a narrow baseline
system is only possible with additional assumptions. In this
paper, we consider the case of objects with symmetry, which
is not a severe limitation in service robotic scenarios, as many
of the everyday objects are in fact symmetric. In this respect,
the work is based on the idea presented in [5] where the
symmetry assumption was used to create a grasp plan for
unknown objects.

Besides vision, tactile exploration and probing can be used
to generate 3-D models of objects. However, this approach is
limited to exploring only a small local area at a time, and
thus the generation of a full 3-D model is often too slow for
practical applications.

In this paper, we present a method for reconstructing a sym-
metric 3-D object by fusion of visual and tactile information.
Because of the complementary nature of the two senses a more

complete model can be created by fusing the senses compared
to what is possible using visual or tactile information alone.
Moreover, the model is created while the unknown object
is grasped and no additional exploratory probing actions are
necessary.

The main contribution of this work is an optimal estimation
approach for the fusion of the visual and tactile data applying
the constraint of object symmetry. The fusion is formulated as
a state estimation problem and solved with iterative extended
Kalman filter. The model is first initialized from vision and
a symmetry constraint is applied to create a model for the
complete object. From this initial model a grasp plan is devised
and the object is grasped with a robotic hand with tactile
sensors. The object model is then refined based on the contacts
detected by the tactile sensors. By considering the estimation
in a statistical framework we are able to optimally combine
the information from the two sensors. The approach is demon-
strated and validated experimentally using both generated and
real data.

II. RELATED WORK

Visual reconstruction has been studied widely, but limiting
the reconstruction to a narrow baseline stereo view, a common
limitation in service robotics, has the problem that only the
visible frontside of the object can be reconstructed, which does
not generally enable object grasping or other manipulation.
Some constraints must be applied to extrapolate from a single
frontal view the non-visible 3-D structure. Some examples
are reconstruction of building indoor models by applying
the constraint of orthogonal planes [11], reconstruction of
surface of revolution objects [6], of symmetric piecewise
planar objects [18], or of objects with a symmetry plane [5].
The approach proposed in this paper extends the idea of [5] by
using tactile measurements to refine both 3-D points as well
as the symmetry parameters.

On the other hand, tactile exploration can reveal the whole
structure of an object, but only for a small local patch of the
object at a time and many measurements have to be combined
to generate a full model of an object [4, 7]. Two problems
are caused by the need to have many measurements: Firstly,
it is time consuming and secondly combining several local
measurements in a realistic scenario where the object may
move when touched is difficult.

Already in 1984, Allen presented the powerful idea of inte-
grating vision and touch to generate surface descriptions [1].
This was later extended in [2] and [19]. An object model was
initialized as surface patches from stereo vision and tactile



exploration was then used to further improve the model.
The problems of the approach are similar to pure tactile
exploration, that is, many probings are needed and the object
must not move. The approach presented in this paper differs
from these in two important respects: A single grasp action
is used to collect tactile information and the object motion
during exploration is explicitly included in the model so that
it does not present a problem for the estimation. To our
knowledge, there have been no articles during the last decade
presenting methods for 3-D object model reconstruction based
on combining visual and tactile data.

III. 3-D OBJECT RECONSTRUCTION
This section presents the proposed method for object re-

construction, which fuses visual and tactile information in an
optimal estimation framework. First, the reconstruction prob-
lem and the object symmetry model are described, followed by
the state estimation approach using Iterated Extended Kalman
Filter (IEKF). Next, the estimation process using vision is
given, followed by the tactile estimation model.

A. Problem description

The proposed reconstruction approach is based on a system
which includes a camera capable of producing 3-D data (a
stereo camera or for example Kinect) and a robotic arm
equipped with a gripper including tactile sensors. A 3-D model
of a symmetric object is created first using the point cloud of
the object and a symmetry assumption. This model is used
to plan an initial grasp which is executed. When the grasp is
closed, the tactile information is used to update the 3-D model.
The main challenge is how to optimally combine visual and
tactile information, which is solved using IEKF which allows
to minimize the joint uncertainty of the estimation taking into
account uncertainties of both visual and tactile measurements.

The object is modeled using a point cloud representing the
visible front part of the object. Additionally, the symmetry of
the object is modeled using a symmetry plane for which the
location and orientation are estimated. Finally, the location of
the object (point cloud) in the robot coordinate frame, which
we call bias, is also estimated, because of uncertainty in the
robot-camera calibration and possible motion of the object
while grasping it. All the parameters are initially estimated
using vision and then refined using tactile measurements in
an optimal estimation framework. The object is assumed to
lie on a supporting plane parallel to XY-plane of the robot
coordinate system. The symmetry is assumed to be along a
plane oriented along the Z-axis. An example 2-D top view
can be seen in Fig. 1.

The unknown state, x, consist of bias and symmetry param-
eters and location of every point in the point cloud model of
the object,

x = (b,m,p1, ...,pN )T , (1)

where there are N points p = (x, y, z)T in the point cloud
model. The bias b is represented using four parameters,
rotation bθ around Z-axis and translation bT = (bx, by, bz)

T

in XYZ coordinates. The mirror symmetry m = (mθ,mr)
T

points from stereo camera

symmetry line

mirrored points

tactile contacts (red circles)

(a)

(b) (c)

Fig. 1. 2-D visualization of estimated parameters when grasping a rectangular
object (gray box); (a) the original state; (b) bias between camera and robot
frames has been corrected; (c) the symmetry line has been positioned correctly.

is represented using two parameters, rotation mθ and distance
from the origin mr.

Applying the bias to a point p is defined as

pb = fb(p, bθ,bT) = Rz(bθ)p + bT, (2)

where Rz(·) is rotation around Z-axis.
The assumption that the object lies on a supporting plane

and that it is symmetric along a plane parallel to the Z-
axis means that the symmetry plane can be thought of as a
symmetry line in XY-plane. The symmetry line can then be
defined using two parameters, rotation mθ and distance from
the origin mr, and the line equation becomes xcos(mθ) +
ysin(mθ) = mr.

Applying the symmetry line requires mirroring the original
point across the line. For point p the mirrored point is

pm =fm(p,mr,mθ)

=



xcos(2mθ) + ysin(2mθ)− 2rsin(mθ)
xsin(2mθ) + ycos(2mθ) + 2rcos(mθ)

z


 . (3)

For the front part of the point cloud, facing the camera, only
bias parameters are used but for the symmetric mirrored back
part also biasing is needed after mirroring by applying (3) to
(2),

pm+b = fm+b(p,b,m) = fb(fm(p,m),b) (4)

where b and m denote the bias and mirroring parameters.



B. Estimation with IEKF

The measurement model relating the tactile input to the
state is non-linear. Therefore, the standard Kalman filter is
not suitable and Iterated Extended Kalman filter (IEKF) is
used [15]. IEKF is favored over the more common EKF
because of the strong nonlinearity of the measurement model,
where the iterative nature of IEKF gives superior convergence.
The initial state xinit and its associated uncertainty Pinit is
based on the visual measurements, as described in Sec. III-C.

IEKF is initialized as

x+
0 = xinit

P+
0 = Pinit. (5)

At the beginning of every round of iterations, k = 1, 2, . . .,
of the filter a new grasp is performed and new tactile
measurement acquired. The uncertainty of the bias term is
increased because the object may move. If the motion can
be measured, this measurement can be accomodated through
prediction uk−1. However, in this paper we do not make such
measurement, and therefore the dynamic model assumes that
the prediction step is zero-mean,

x+
k,0 = x+

k−1 + uk−1

P+
k,0 = P+

k−1 + Qk−1. (6)

where Qk−1 is the covariance of the prediction. Because of
the above dynamic model, uk−1 = 0 for us, and only the
covariance is updated.

IEKF then performs the estimation by iterating the follow-
ing equations for i = 0, 1, . . . until convergence:

Hk,i =
∂T̃

∂x


xk,i+

Kk,i = Pk,0H
T
k,i

(
Hk,iPk,0H

T
k,i +R

)−1

P+
k,i+1 = (I−Kk,iHk,i)Pk,0

x+
k,i+1 = xk,0 +Kk,i

(
y − T̃(x+

k,i)−Hk,i(xk,0 − x+
k,i)
)

(7)

where T̃(x) is the measurement model for the tactile sensors,
described in Sec. III-D. In the experiments of this paper only
a single grasp is performed, k = 1, but several iterations of
the IEKF are performed to reach corvergence, i = 1, 2, . . ..

C. Initial estimation with vision

The state x includes bias and mirroring parameters and
locations of (point cloud) points described in the robot frame.
To initialize these, a point cloud of the target object is
generated either with a stereo camera and a standard stereo
reconstruction method or with for example Kinect. The point
cloud is then segmented using method presented in [13] so
that only points belonging to the object are left, which is
relatively trivial when the object resides on a supporting
plane without touching other objects. All further processing
is performed in the robot frame and therefore the point cloud,
XYZ coordinates of the points belonging to the object, is
transformed to the robot frame before the following steps.

Initialization of the point locations in the state is straightfor-
ward as the point cloud points transformed from the camera to
the robot frame can be directly used. To make a grasp plan an
initial guess must be made for the mirroring plane and those
parameters can also be used in the initial state. Determining
the initial mirroring state parameters is shortly explained in
the experiments, Sec. IV-B. Bias includes the error caused
by the transform from camera to robot frame, which can be
assumed to be zero-mean, and the movement of the object
during grasping, which if noticed can be included, for example
by discrepancy between where the grasp plan predicts the
contacts and where the contacts actually happen.

For the state covariance P initialization is more tricky as
the proportions of the variances affect the performance of the
state estimation greatly. For example, having a large initial
variance (high uncertainty) for individual points compared to
bias and mirroring parameters means that the individual points
will be moved instead of correcting the bias and mirroring
parameters. The used camera robot calibration method [9]
gives a backpropagated covariance for the robot-camera pose
based on the variance of detected marker positions, which can
be included in the bias covariance. However, bias parameters
also include the object movement during grasping, which
is likely to be larger than the uncertainty of camera-robot
pose. The covariances for these parameters were determined
experimentally.

D. Tactile measurements

The tactile measurement

T = (T1, ...,TM )T (8)

consists of XYZ locations Ti = (Tix, Tiy, Tiz)
T of the M

tactile sensor elements with non-zero tactile measurements,
i.e., every tactile element which is in contact with the object.
The location is obtained in the robot base frame using forward
kinematics. The measurement model T̃(x) then predicts the
measurements based on the state. In addition to the locations
of the tactile sensor elements, also their normal vectors are
known, but these are only indirectly used as shown below. In
the following only one tactile element T without index is used
to simplify notation.

The measurement model is based on the idea that each
tactile measurement results from a single corresponding point
in the point cloud. Thus, the correspondence needs to be estab-
lished. A simple approach would be to determine maximally
likely correspondences, resulting in an iterative closest point
(ICP) type approach. This could be done in a probabilistic
framework, taking into account the uncertainty of the current
parameters in the measurement model, thus giving a prediction
with both location T and its covariance C, as described in
Sec. III-E. Now, the probability that point pj ∼ N (T,C)
belongs to the distribution defined by T and C is given
by probability p(pj |T,C). Thus, we could find the point j
for which the probability would be maximal. However, this
would result in each tactile measurement only affecting the
location of a single point in the point cloud, which would be



problematic because there are typically many points for which
the likelihood is approximately equal due to the uncertainty
of mirror and bias parameters.

Thus, instead of ICP, we consider an Expectation Maxi-
mization (EM) inspired approach, where the correspondence
is taken to be an unknown random variable and the estimation
is based on maximization of the expected value rather than
the maximum likelihood correspondence. As already men-
tioned, the conditional probability that a point corresponds
to a particular tactile measurement is p(pj |T,C), which
can be understood as a weight. Moreover, to avoid infinite
support, small weights will be zeroed. To have a statistically
motivated cutoff threshold, the squared Mahalanobis distance,
D2(pj) = (pj −T)TC−1(pj −T), is calculated. When the
data is normally distributed, the squared Mahalanobis distance
follows χ2 distribution with n degrees of freedom, χ2

n, in our
case with three dimensional coordinates n = 3. Therefore, a
limit for the squared Mahalanobis distance can be established
which includes certain part of the whole distribution. In this
case limit which includes 95% was selected which gives the
limit D2 < 7.815. The weights are then defined as

wj(pj) =

{
p(pj |T,C) if D2(pj ,T,C) < 7.815

0 elsewhere
(9)

Following the EM idea, these weights (conditional proba-
bilities), normalized such that their sum is one represent the
probabilities of points corresponding to a particular measure-
ment and thus, the expected measurement for frontal (biased)
points is equal to

E[T̃b] =
1

∑N
j=1 wb,j

n∑

j=1

wb,jpb,j , (10)

where point pj after applying the bias is called pb,j , and
its weight wb,j . The predicted location of the tactile element
is thus formed as a weighted sum of biased point locations.
Similarly for non-visible (back) points the measurement model
is

E[T̃m+b] =
1

∑N
j=1 wm+b,j

n∑

j=1

wm+b,jpm+b,j . (11)

where pm+b,j is the point p after mirroring and biasing, and
wm+b,j its weight.

The uncertainty of prediction of a tactile measurements
varies depending on the density of the point cloud close to
the measurement. This should be somehow taken into account
in the measurement model. One way would be to change
the measurement uncertainty R inversely proportionally to the
sum of weights, so that less weight means more uncertainty.
Here, the same effect has been achieved by scaling the
residuals according to

ab =

∑N
j=1 wb,j

aMAX
and am+b =

∑N
j=1 wm+b,j

aMAX
, (12)

where aMAX is the maximum ab or am+b over all tactile
elements. The goal during the state estimation is then to

minimize the residual of ab(T− T̃b) and am+b(T− T̃m+b).
This gives the tactile elements close to many points more
importance than those near solitary points.

For Kalman filter update, the Jacobians of the measurement
models ∂T̃b

∂x and ∂T̃m+b

∂x , are needed, that is, the partial
derivatives with respect to all variables in the state. For a first
order approximation, the effect of derivative of the weight is
assumed to be negligible compared to the derivative of (2)
and (4) and therefore the weight is not assumed to change.
Therefore the partial derivative for ∂T̃b

∂x is calculated as

∂T̃b

∂x
=

1
∑N
j=1 wb,j

n∑

j=1

wb,j
∂pb,j
∂x

(13)

and similarly for ∂T̃m+b

∂x . Note that the Jacobians also depend
on the individual point locations and therefore the point
locations will be adjusted during state estimation.

The measurement error covariance R is initialized as a
flattened ellipsoid in the direction of normal vector of each
tactile element. The objective is that the state estimation should
be more inclined to fix errors in the direction of the normal
than along the plane of the tactile sensor.

E. Propagation of measurement covariance

The measurement covariance C, used to determine cor-
respondence, depends on two independent components, one
representing the uncertainty of contact location within the
tactile sensor and another representing the uncertainty in the
sensor location due to the uncertainty in the current state P.
The fact that covariance matrices can be combined by simple
addition is utilized.

The constant component Ctact is formed as an elongated
ellipsoid which points to the direction of the normal of the
tactile element. A tactile element “sees” further in the direction
its normal points to, but not far in the plane of the tactile
element array to avoid overlap between neighboring tactile
elements.

The second component of the uncertainty depends on the
current state uncertainty, P. The state includes four bias
parameters, b = (bx, by, bz, bθ), and two mirroring parameters,
m = (mr,mθ). Their covariance must be propagated to
the world coordinates. In general given a non-linear func-
tion f : RM → RN and a random vector v in RM ,
the approximation of mean and covariance of f(v) can be
computed in the vicinity of the mean v of the distribution.
The approximation of f is f(v) ≈ f(v) + Jf (v − v),
where Jf is the Jacobian ∂f

∂v evaluated at v. The first-order
approximation of random variable f(v) has mean f(v) and
covariance Σf = JfΣJTf [8].

The covariance of the bias parameters in the state co-
variance, CP,b, propagated to the world coordinates using
Jacobian of (2) evaluated at the position of the current state
is

Cb =

(
∂fb
∂b


x

)
CP,b

(
∂fb
∂b


x

)T
(14)



and similarly for biased+mirrored points with state covariance
CP,m+b with Jacobian of (4)

Cm+b =

(
∂fm+b

∂b,m


x

)
CP,m+b

(
∂fm+b

∂b,m


x

)T
. (15)

The covariance Ctact+Cb and the tactile element location
T are then applied in (9) to calculate wb,j for biased points and
similarly with covariance Ctact + Cm+b for mirrored+biased
points to calculate wm+b,j .

IV. EXPERIMENTS

The following experiments demonstrate the performance of
the method. We begin with experiments using generated 2-D
and 3-D data and follow with experiments using point clouds
captured with Kinect and objects grasped with a real robot.
There are no comparisons to other similar methods, because
the authors are not aware of existence of other similar methods
combining visual and tactile data.

Note that while the method can and will adjust both
bias/mirroring parameters and individual point locations at the
same time, it is important that the bias and mirror param-
eters are approximately corrected first or the errors may be
reduced by moving the points unrealistically. This is because
large initial errors in bias and mirror parameters will cause
gross correspondence errors. Therefore, the state estimation
proceeds by initially adjusting only bias/mirror parameters.
After a number of IEKF iterations, also point locations are
included in the state.

A. Generated data

We begin with a simple 2-D example which illustrates the
operation of the system. Then, we present a 3-D experiment
demonstrating a more complex scenario with multiple contact
surfaces.

1) 2-D example: The first example is similar to Fig. 1
where the bias and mirror parameters are initially incorrect.
Gaussian noise has been used to corrupt the point cloud point
locations. The results can be seen in Fig. 2 for initial estimate,
and after 4 and 10 IEKF iterations. Even though the initial
parameters are significantly wrong, only ten iterations of the
IEKF loop were able to correct them. The method is able to
correct also the individual point locations, however, in this
case the effect is not easily visible because there were only 5
tactile points on each side.

(a) initial (b) i = 4 (c) i = 10

Fig. 2. A 2-D example of adjusting bias and mirroring plane, where blue
(upper) points represent the visible part of the object, green points the non-
visible back and red circles the tactile points.

2) 3-D example: In this experiment, the front of a cylinder
is visible and tactile elements in three distinct locations
(“fingers”) are used. The experiment demonstrates the ability
of the proposed method to use any number of tactile elements
and that the tactile elements can be in any configuration. Initial
bias and mirroring parameters were set off, as can be seen in
Fig. 3(a). After 30 iterations the bias and mirroring parameters
were approximately corrected, Fig. 3(b), after which also the
point locations were included in the state updates and the state
converged at iteration 415 as shown in Fig. 3(c–d). A detail
of point movement near the rightmost tactile element can be
seen in Fig. 3(e), where the point motion is shown as lines.
The point trajectories do not point strictly towards the tactile
points, because the state was updated jointly and bias and
mirroring parameters were updated at the same time as the
point locations.

B. Real data

1) Set up: Experiments with real data were performed using
Mitsubishi Melfa RV3-SB industrial robot arm, Schunk PG-
70 parallel jaw gripper equipped with tactile sensors made by
Weiss robotics and Kinect. The gripper and type of the tactile
sensor can be seen in Fig. 4.

Fig. 4. Gripper equipped with tactile sensors. The green grid highlights the
tactile element with 6× 14 tactile ”pixels” and measuring 22× 50mm.

Robot-camera calibration was performed using the method
presented in [9]. The method uses a LED marker attached to
the gripper and automatically finds the pose between camera
and robot frames in axis-angle and translation form. The
method also provides uncertainty of the transformation based
on the backpropagated variance of the marker locations. How
much do we say about Kinect calibration? Nothing is the easy
way...

After the calibration was performed, an object was placed
on a table, a point cloud was captured using Kinect and the
point cloud was segmented. Point cloud segmentation is an
important and in cluttered scenes difficult task, but as the
main interest here lies elsewhere the process was simplified
by having the single object of interest alone in an otherwise
empty table. The pointcloud was segmented using the method
presented in [13] and the the largest segment in the robot’s
working area was selected as the object of interest.



(a) initial (b) i = 30 (c) i = 415 (d) i = 415 in 3-D (e) i = 415 detail

Fig. 3. A 3-D example; (a) Initial setting; (b) 30 iterations of IEKF corrected bias and mirroring; (c–d) at iteration 415 also the point locations were
straightened near tactile elements; (e) a detail near the rightmost tactile element.

2) Grasp plan and parameter initialization: A grasp plan
must be generated to grasp the selected object and the grasp
plan should also provide initial parameters for the location of
the mirroring plane. The method presented in [5] could be used
for both of these tasks, but a simpler approach was chosen
as the main interest here was combining visual and tactile
data, not grasping itself. The applied method first finds the
principal components using PCA in the point cloud segment.
The first component and Z-axis (direction of gravity) define
the direction of the mirroring plane. The center point for the
grasp and estimate for object width is determined based on
the distribution of the data along vector orthogonal to the
mirroring plane.

The gripper was then moved to grasp the object orthog-
onally to the mirroring plane directly from above using the
widest possible jaw opening and the gripper was closed until
sufficient tactile contact was measured. The mirroring plane
was initialized based on the first principal component and the
center point of grasp, and the bias parameters based on the
estimated width of the object and the realized gripper width,
i.e., how far the front part of the point cloud was compared
to where it was assumed to be. Later in the results this initial
stage is called as Stage 0. If the direction of the mirroring
plane was determined correctly by the grasp planner and there
was no bias (no calibration error and no object movement) the
result is already perfect because the object width is implicitly
included by setting the mirroring plane to the middle point of
the grasp. During the next stage, Stage 1, the mirroring and
bias parameters were adjusted and the final Stage 2 adjusted
also the individual point locations.

Due to limitations of the used hardware (parallel jaw gripper
with maximum aperture of 65mm), the set of used objects
was limited to relatively simple and thin objects. Also some
of the strengths of the fusion method cannot be displayed
with parallel jaw configuration, because of limited tactile
information. Nevertheless, four objects were chosen, Fig. 5:
a CD-drive, a salt container (cylinder), a plastic case (housing
a jigsaw puzzle) and a spray bottle. For the first two objects
quantitative results were measured and qualitative observations
were made for the last two.

Fig. 5. The test objects.

3) Numerical results: First results are for the CD-drive.
Quantitative measurements were performed after the sensor
fusion and the measurements in this case were the thickness
of the drive, measured as 42mm, and the angle between
the two sides, which obviously should be 0◦. Both of the
measurements were based on robustly fitting lines (using
robustfit() function in Matlab) to a top-down (projected
to XY-plane) view of the front and back parts of the point
cloud. The width was measured as the shortest distance from
the center of grasp. A visual example of the results can be seen
in Fig. 6. The actual results are in Table I. The results improved
with further stages of the fusion process except in few cases.
For example angle in measurent 1, where the initial angle
was measured almost perfectly at 0◦, was worsened slightly
because of the small width of the sensor (22mm) and local
imperfections in the generated point cloud. Majority of the
average error for the angle came from a single measurement,
where the large initial error in mirroring parameters was not
corrected completely.

Next results are with the salt container, which is a cylinder
with diameter 53mm. In this case the error was measured as
the diameter of the point cloud projected to the XY-plane. The
circle fit was performed using an implementation of Taubin’s
circle fit algorithm [17]. Visual example of the results is in
Fig. 7 and the results in Table II. The results improved in all
cases. The constant slight overestimation of the diameter was
caused by fitting a planar representation of a tactile sensor to a



(a) Stage 0 (b) Stage 2 (c) Reconstruction

Fig. 6. Results with the CD-drive (measurement 2); (a&b) Top-view; blue
is the front and green is the mirrored back part with fitted black lines.
Cross marks the center of the grasp, red plus-marks the tactile points; (c)
Reconstructed object with the same color coding.

TABLE I
RESULTS WITH A CD-DRIVE, THE MEASURED THICKESS WAS 42mm AND

THE ANGLE BETWEEN OPPOSING SIDES 0◦ .

Thickness (mm) Angle (deg.)
Stage 0 1 2 0 1 2

1 39.35 40.08 39.55 0.79 6.88 4.96
2 38.85 41.71 41.65 4.47 4.89 1.90
3 36.10 44.00 43.35 7.53 0.99 3.62
4 31.37 39.43 39.83 13.90 9.10 9.19
5 40.40 41.82 41.84 0.33 0.70 0.64

mean 37.22 41.41 41.24 5.40 4.51 4.06
std.dev. 3.63 1.78 1.57 5.58 3.67 3.30

cylindrical pointcloud, i.e., the middle part of the tactile sensor
”sinks” into the cylinder while in reality the tactile sensor gets
deformed and in fact is not a plane when grasping a cylinder.

(a) Stage 0 (b) Stage 2 (c) Reconstruction

Fig. 7. Results with the salt container (measurement 1).

TABLE II
RESULTS WITH A SALT CYLINDER, DIAMETER 53mm.

Diameter (mm)
Stage 0 1 2

1 45.85 53.96 54.08
2 43.14 57.13 56.35
3 45.53 53.99 53.94
4 45.48 54.28 54.31
5 47.68 55.58 55.57

mean 45.54 54.99 54.85
std.dev. 1.62 1.37 1.06

4) Qualitative results: Some qualitative observations with
the remaining two objects follow. The plastic case is a nearly
rectangular object, but with rounded corners and a handle

at the top. In general the reconstruction succeeded well, but
the problems noticed with the CD-drive were slightly more
common. Only the tip of the tactile sensor hits the sides of
the case because the handle prevents a close grasp. Therefore,
local disturbances in the pointcloud caused more problems
because there was tactile information available only from a
small area. A successful reconstruction example can be see in
Fig. 8.

(a) (b)

Fig. 8. The plastic case; (a) the original; (b) reconstruction after grasp.

The last object, a spray bottle, is more complex than the
other objects and determining the symmetry plane succeeded
well only when the side of the bottle was facing almost directly
to the camera. Because of this the grasp was often done from
a wrong angle and the object was rotated even tens of degrees
when grasped. This caused the initial symmetry parameters
to be off by a large margin. An example of this can be seen
in Fig. 9. In the initial reconstruction there was a wide gap
in the back of the bottle, but this was corrected in the final
reconstruction.

(a) (b) (c)

Fig. 9. Results with the spray bottle; (a) the original; (b) initial reconstruction;
(c) final reconstruction.

V. CONCLUSION

In this work a sensor fusion method combining visual and
tactile information was presented. The visual model is captured
as a 3-D point cloud and after grasping the tactile information
is combined with visual data applying a state estimation
method, iterated extended Kalman filter (IEKF). The method
was validated in experiments with artificially generated data
and in real experiments where visual data was captured with
Kinect and tactile data with a robotic arm.



There is still potential for further work. The most immediate
addition is to perform experiments using a more complex
robotic hand and to compare the grasp planner and visual
symmetry estimation method in [5] to the ones proposed
here. Also more comprehensive quantitative results comparing
the created object models to ground truth, created by laser
scanning the objects, are planned. In the longer term a more
comprehensive system for grasping can be created, where the
model is updated before trying to manipulate the object and
the stability of the grasp is evaluated based on the tactile
information before lifting the object [3]. Then, if a grasp
appears to be unstable, another grasp plan can be created using
the improved model.
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What do contacts tell about an object?

Ekaterina Nikandrova and Ville Kyrki

Abstract— Among all senses the sense of touch is the only
one without which humans are not more able to control and
manipulate objects. Similarly, tactile sense is invaluable for
robotic manipulation in uncertain environments. It is however
not thoroughly understood to what extent properties of the
robot environment can be inferred from the tactile sense.
This paper presents a novel approach that allows to study
how much information a robot can optimally learn from a
single tactile exploration attempt. Our method makes use of a
simulator as an internal memory for the robot. The evaluation
is based on assessing how much information error minimization
between predicted and actual sensor readings can provide about
the environment. This paper focuses on evaluating geometric
parameters in a transportation task. Experiments performed
with a set of objects with various shapes indicate that a
single exploration action is not guaranteed to provide much
information for all uncertain factors if the attempt is not
originally planned for information gain in mind. Moreover,
the information gain for different attributes varies significantly
depending on the object geometry.

I. INTRODUCTION

Touch is one of the five senses through which animals
and people interpret the world around them. It is practi-
cally impossible to hold or safely manipulate various object
without touching them. As in humans, touch sensing in
robotics could help in understanding the interaction with real
world objects. The sense of touch is particularly important
in manipulation as it allows to estimate properties, such as
geometry, stiffness, and surface condition. The importance
of touch in manipulation is also underlined by the fact that
humans rely mostly on the sense of touch when performing
manipulation tasks [1].

The sense of touch has a wide variety of uses in robotics.
Initially, studies in tactile sensing area focused on the devel-
opment of sensor devices and object recognition algorithms
[2]. Over the past years, tactile sensors have been applied
in numerous tasks, including object classification and recog-
nition [3], [4], pose estimation [5], as well as grasping [6].
However, despite the great number of recent works in the
effective use of tactile and contact information in solving
robotics problems, it is not thoroughly understood to what
extent properties of the robot environment can be inferred
from the tactile sense.

Our goal in this paper is to study to what degree a robot
can use the tactile sense to learn about its environment. We
propose a novel simulation-based approach that provides a
possibility to evaluate the amount of information about the
object that can be obtained from a single tactile exploration
attempt. The term “information” in our case implies an
evaluation of different object parameters.The distinguishing
feature of our approach is to use simulation as an internal

model of the environment for the robot. Thus, the simulator
plays the role of the memory for the robot and allows the
robot to try out actions before executing them for real. More
than that, simulation provides precise results, without mea-
surement uncertainty, which allows us to study the question
“how much can be done with a certain type of sensors” rather
than just “how good sensors are used”.

The approach is based on minimizing the difference be-
tween predicted and measured sensor readings. This differ-
ence indicates the error in the robot’s expectation of the
environment compared to the true state of the environment.
By minimizing this error by modifying the initial conditions
of the simulation, the system can update its internal view of
the environment. To study our research question about the
limits of tactile sensing, we can then compare the updated
internal view to a known true state of the environment, as
the true state is known in simulation.

In a concrete evaluation scenario, we consider an object
transportation task having errors in geometric attributes
including the object pose and size. Grasping and object
transportation are most common tasks in which tactile in-
formation is a key factor for successful implementation of a
plan. Contact sensors which detect the presence or absence
of contacts between the robot hand and a target object
together with information about joint angles of the fingers
after closing the hand are used as information sources. These
measurements were chosen because, firstly, such data can be
reliably obtained both in simulation and with a real robot.
Secondly, in the exploration scenario it is not desirable to
change the world by moving the object, so only small contact
forces should be used.

The aim of this study is to inspect the capabilities of
contact sensors in general. Thus, to reduce bias in the results
due to the choice of particular models, the experiments have
been performed with several object models, including bodies
with simple geometry (tea or marmalade boxes) and more
complex asymmetrical examples (cup, spray flask, pitcher,
toy car). To perform the optimization, we studied several
optimization algorithms to avoid bias in the results be-
cause of a particular algorithm performance. The algorithms
used include both directional methods (Steepest descent)
and metaheuristics (Simulated Annealing, Particle Swarm
optimization and Firefly algorithm).

An important finding that should be underlined is that the
inference is surprisingly difficult from a single explorative
action. The level of difficulty of assessing different object
attributes varies a lot. For example, it is much more difficult
to determine a real object’s orientation than its position
or size. One reason for such complexity is the presence
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of multiple local minima in the fitness function. Another
explanation is the ambiguity problem, that is, the global
minimum is not unique but instead there is a manifold in
which the obtained tactile information is the same. The
importance of this fact is that no method will ever be able
to disambiguate the optimum without further information.

II. RELATED WORK

Early works using tactile sensors were limited to industrial
robotics [2]. After the creation of multifingered robot hands
in 1980’s, the use of the sensors extended to control of
manipulation [7]. Most recent studies in tactile perception are
focused on object classification, recognition and localization
problems. Previously, tactile sensors were used to explore
3D object shapes by collecting a point cloud to constraint
an object geometry [9] or by creating volumetric models
[10]. Alternatively, recent works try to build an object model
directly from haptic sensor data without building a 3D
model [11]. Last years there are appeared several works
based on novel “bag-of-features” methods successfully ap-
plied in vision-based object-recognition systems and adapted
to haptics [12],[13]. Moreover, current applications include
control of manipulation [8], pose estimation [14], as well as
estimating as well as estimating the state of the object [15]
or the interaction, such as grasp stability [16].

Our work relates mostly to the pose estimation, although
we consider the scale of the object in addition. An influ-
ence of tactile measurements on localization error has been
studied, primarily, for the industrial workpiece localization
problem [29], [30]. Object localization using tactile sensors
is based on one of two basic ideas: either, the estimation is
performed by minimizing a cost function to find a solution
which best fits the measurements [17], [18], [19]. Alter-
natively, Bayesian state estimation can be used to capture
different types of uncertainties in the estimation process
[21]. In the most recent research by Petrovskaya proposed
an efficient Bayesian approach termed Scaling Series for
global object localization via touch. This is a Monte-Carlo
approach, that performs a series if successful refinements in
combination with annealing [20].

The approach presented in this paper is based on opti-
mization, because our main goal is to study the problem in
an ideal environment without measurement uncertainty. This
is made possible by using simulation to provide noise-free
measurements, allowing us to focus on studying how much
can be inferred using the tactile sensors in the ideal case.

Nowadays, simulation plays an important role in robotics
and especially in robotic manipulation, for example to per-
form grasp planning [22],[16]. Simulation of tactile sensors
is applied in many studies but in contrast to implemented
techniques our approach uses only contact information.

III. LEARNING THROUGH SIMULATION

A. General approach

The initial motivation for the present work was to try to
determine how much information about an object can be
obtained from a single grasp attempt by using the simulator

as a “memory” for a robot, which allows the robot to try
out actions in simulation before the real execution. To ensure
that the robot will succeed with its plan the simulation model
should be updated based on error minimization results.

Our approach is based on a scenario, where a robot will
first plan an action based on its current world knowledge.
Then, the robot performs the action collecting sensor data
during the attempt. After the action, the robot world model
is updated so that the collected sensor data is best explained
by the world model. Finally, the action can be replanned
with the updated world knowledge, if necessary. A general
process structure for the scenario is schematically presented
in Fig.1.

Fig. 1: General process structure

The diagram consists of four basic blocks. At theIni-
tialization part the robot makes use of its internal mental
view and obtains an initial guess for the object attributes
(e.g. location). With use of this predicted value the robot
plans a trajectory to complete the task. After that, this
trajectory istried out and actual sensor readings are obtained.
In order to minimize the difference between planned and
real values theUpdate block is executed. Update includes
optimization procedures, which allow to find a new state
for the simulation model. If one optimization step is not
sufficient, for example, the action was not successful, the
procedure is repeated starting with planning a new trajectory
for the updated world state.

It is important to point that simulation is used in three of
four blocks:Planning, Trial andUpdate. Use of a simulation
for planning or trying some actions is what can be met quite
often in robotics. However, application of simulation for the
world model update and change of the action plan before
its execution for real is a new idea, which transforms the
simulation process into the internal mental view of the robot.

B. Fitness function

The choice of a fitness function can affect dramatically
the method performance. The geometry of a function is a
characteristic, which has direct influence on the algorithm
convergence to a global minimum. A fitness functionE
in this study is the difference between real and predicted
measurements which is determined by the sum of two com-
ponents: contactsEcont and finger joint anglesEang. Thus,
it is represented by a weighted sum of squared differences of
planned and really measured collision matricescoll andcollr
as well as by the sum of squared differences in plannedang

and measuredangr finger angles at the moment of complete
close around the graspable object. The two components
are weighted to compensate for their different ranges by
multiplying the joint angles part by a constant factorcang
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(1).

E = Econt + Eang,where

Econt =
∑

t e
−(tcur−tfirst)

a

∑
i(coll

(t,i)
− coll(t,i)r )2, and

Eang = cang
∑

j(ang
j
− angjr)

2.
(1)

The form of the fitness function was obtained after several
trials. Initially, the function included only contact informa-
tion, multiplied by the exponential weight function, in which
tcur is a time instant when the first difference between
planning and real contacts occurred,tfirst is a current
time instant anda is a damping coefficient that affects the
rate of exponential decrease. It is monotonically decreasing
function, which gives bigger weights to errors arisen at an
earlier time. However, the analysis of the fitness function
shape revealed several problems like multimodality, large
number of neutral (flat) areas, deceptiveness and premature
convergence to local minima. The modified fitness function,
which includes additional information about finger angles,
shows several improvements. It typically has only one global
minimum and less flat areas. Nevertheless, the function
remains deceptive in some parts of its shape.

IV. OPTIMIZATION

To update the world state, the fitness function presented
in the previous section is minimized. Due to the use of
simulation and complex non-linear relationships between
the world state and the sensors, the minimization is not a
trivial task. To begin with, the fitness function is multimodal
and non-linear. Furthermore, the choice of the optimization
method needs to consider factors such as accuracy and
computational complexity. In order to avoid bias in our
results due to the choice of a particular algorithm, we studied
several algorithms including both directional methods and
metaheuristics.

A. Directional methods

Directional methods are very widely used in optimization.
For this reason, we chose to implement one directional
method, Steepest Descent, which is a gradient-based algo-
rithm.

In order to perform steepest descent search, gradient of
the optimized function needs to be evaluated. In our case the
fitness function is a result of a simulation run which makes
it impossible to evaluate the gradient analytically. Instead,
we chose to use a two-sided finite difference approximation,
that is, for each variablex,

∂f

∂x
=

f(x+ dx)− f(x− dx)

2dx
(2)

wheredx was chosen experimentally. The partial derivative
needs to be evaluated for each unknown variable, thus
requiring two simulation runs for each variable. Finally,
the step sizeλ needs to be determined. A constant step
size is unlikely to provide good results, especially because
the evaluation of the gradient is rather costly. Therefore,
we considered the step size selection a one-dimensional

optimization problem, which was solved using golden section
search, as described in [23, pp. 398–400].

B. Metaheuristics

Due to several local optima of the fitness function, di-
rectional methods are not able to explore the search space
outside a region around the initial local optimum. More than
that, in some regions the function shows deceptivity in its
behavior. This means that the gradient leads the optimizer
away from the global optimum.

To cope with these problems, we also study metaheuristics
approaches. They are useful for many ill-structured global
optimization problems which contain several local optima or
stationary points. The approaches use randomness in order to
avoid getting stuck to local optima as well as avoid evaluating
the gradient. Metaheuristics have been found to be able to
locate a nearly optimal solutions within a reasonable compu-
tational time and use of memory without any requirements
of derivatives or careful choice of initial values. We consider
three different metaheuristics: Particle Swarm Optimization,
Simulated Annealing, and Firefly algorithm.

1) Particle Swarm Optimization:Particle Swarm Opti-
mization method (PSO) was developed by Kennedy and
Eberhart in 1995 [24] based on observations of behavior in
a bird flock and fish school. Most important advantages of
this approach are simplicity of implementation, low number
of parameters and absence of derivative calculations. It
is a very efficient global search algorithm, but its weak
point is slow convergence in refined search stage (weak
local search ability). PSO has successfully been applied to
purposes such as training of neural networks, optimizationof
electric power distribution networks, structural optimization
or system identification in biomechanics.

2) Simulated Annealing:Simulated annealing (SA) is a
numerical optimization algorithm based on the metal an-
nealing processing. First it was described by S. Kirpatrick
in [25], but the idea of SA came from a paper published by
Metropolis et al. [26] in 1953.

Simulated annealing is a robust and general technique
which can deal with highly nonlinear models, chaotic and
noisy data and many constraints. At the same time, since
SA is a metaheuristic, a lot of choices are required to
turn it into an actual algorithm. SA is extensively applied
for combinatorial optimization problems in computer-aided
design and also for image processing purposes.

3) Firefly algorithm: The Firefly Algorithm (FA) is a
novel metaheuristic which was developed by Xin-She Yang
[27] and is based on the flashing patterns and behavior of
fireflies. The algorithm is similar to PSO in a sense that there
are a lot of particles (fireflies) moving in a search space
according to specific dependences. All particles are charac-
terized by the “attractiveness” factor, which is proportional
to their fitness (brightness) and they both decrease as their
distance increase. If there is no particle with best fitness then
a particular firefly will move randomly.

The advantage of FA compared with PSO is its ability
to deal more naturally and efficiently with multimodal func-
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(a) Box (b) Fruit tea box (c) Marmalade box (d) Mug

(e) Flower cup (f) Pitcher (g) Spray flask (h) Toy car

Fig. 2: Various objects used for experiments

tions. Digital image compressing, feature selection and fault
detection or eigenvalue optimization are examples of FA’s
recent applications.

V. EXPERIMENTS

A. Design of experiments

Several detailed and more general questions were posed
within this study. First and the most important general
question to answer is how much can be learned about the
object from a single tactile exploration action? What are the
limitations of the proposed approach and how far it can be
extended? Another point is to determine the set of object
parameters that can be estimated and to specify the level of
how well these attributes can be determined. All experiments
were designed in order to solve these questions.

Four parameters divided in three categories were chosen
as the set of unknown parameters. These are location group
(x,y coordinates in meters), orientation (angle of rotation
around z-axis in degrees) and the scale factor of object
size. We performed two experiments: In Experiment 1, we
consider only location and orientation as unknowns, totaling
3 unknown DOF. In Experiment 2, also the scale factor is
unknown, so that there are four unknown DOF.

In order to verify that the approach is suitable in solving
the given problem and to increase the generality of the
results, we studied also the sensitivity of the method to
object geometry variations. For testing our approach, we
chose 8 objects shown in Fig. 2. The set was chosen so
that it includes objects with simple geometrical shape (box,
tea box) as well as mostly symmetrical entities (marmalade
box, mug, flower cup, pitcher) and more complex examples
(spray flask, toy car). This allows to generalize and evaluate
the amount of information that can be obtained from a single
tactile exploration for different objects.

After some experimentation with different fitness functions
the form shown in (1) was found best. However, even
this function suffers from local minima and after initial
experiments, the Steepest Descent method was found to be
unable to converge and thus unsuitable and was dropped from
the full experimentation. For experiments with the full setof

objects, it was decided to use the three metaheuristics: SA,
PSO and FF algorithms. This allows us to ensure that results
are not dependent on the performance of a particular method.

B. Simulator

Transportation of an object is chosen as a practical task
for the robot in this study. The scenario is that a robot should
grasp an object and move it to another location on a table.
OpenRAVE simulator [28] was chosen as the simulation
environment. This simulator provides a wide range of grasp
and manipulation capabilities, including different graspqual-
ity metrics and path planning algorithms. The optimization
algorithms were implemented in MATLAB, which integrates
to OpenRAVE through scripting.

Barrett WAM arm with the Barrett hand depicted in Fig.3
was used in all experiments. It is one of the most popular 3-
fingered robots used in grasping and manipulation research.
WAM arm has 7 DOF and Barrett hand has 4 DOF (spread

Fig. 3: Barrett WAM robot

angle of the fingers and 3 angles of proximal links). The
contact information was detected at the colored parts of the
hand shown in Fig.4.

Fig. 4: Barrett hand with contact areas

C. Results

We carried out Experiment 1 performing an optimization
after a single grasping attempt for 3DOF case having uncer-
tainty in location and orientation parameters using the three
metaheuristics described in Section IV. The search region
was limited by[0.1 0.3] meters in x direction,[−0.2 0.0]
meters in y direction. The range of variations in angle of
rotation around z-axis was set to 90 degrees. From each
simulation run a binary collision matrix was obtained. Each
value of this matrix corresponds to existence or absence of a
contact between one of the robot hand links and a graspable
object at a defined time instant. Results for the experiment
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TABLE I: Results for Experiment 1

Object
Error

coordinate angle fitness
standard box 0.00411 5.22 9.00E-005

tea box 0.01936 4.38 7.80E-004
marmalade box 0.00117 26.70 6.00E-005
standard mug 0.00040 1.80 3.50E-005

flower cup 0.00122 1.13 3.00E-005
pitcher 0.00051 14.25 3.00E-005

spray flask 0.00827 11.91 3.00E-005
toy car 0.00313 4.59 3.00E-005

using PSO approach are presented in Table I. The table shows
errors for parameters and fitness function values for eight
test objects. The errors indicate differences between actual
object’s attributes and the results of optimization.

The table contains only results for PSO approach, because
this method showed consistently good results for all objects.
For most of the objects, the final fitness function value
was the smallest among the three optimization approaches.
SA algorithm also provided reasonably precise results and
its run-time was smaller than for PSO. FF method, in
general, produced less accurate results. As already noted,the
gradient-based approach did not manage to converge in most
cases. This can be explained by the fitness function shape,
shown for a 2-D case in Fig.5. As can be seen from the plot
there are several local minima and a large flat area, which
the Steepest Descent approach is not able to overcome.

Fig. 5: Fitness function shape

For the positional parameters, the errors inx and y

coordinates were within a couple of millimeters for all tested
objects for all metaheuristics approaches. In contrast, the
experiments reveal that the angular error is highly dependent
on the object geometry. For mostly symmetrical objects such
as the marmalade box it is impossible to determine an exact
angle. Even for complex-shaped bodies such as the spray
flask and toy car an orientation error is relatively large. Such
results can be explained by the fact that there is a complex
interplay between the Cartesian and angular position vari-
ables affecting the fitness function value. If the Cartesian
position is known, we can often obtain quite precise angular
information. However, in most of cases such information
is not available. To obtain better orientation results, the
action would need to be planned in order to maximize the
information gain. This stage would be especially important
for objects which have asymmetrical features only on small
surface patches (cup, mug, pitcher). The exploration should
be planned such that these asymmetries (tip of pitcher,
handles of pitcher and cup) of the graspable objects would

TABLE II: Experiment 2 results

Object Error types Results

standard box

coordinate 0.00161
angle 0.04
scale 0.0009

fitness 3.00E-005

flower cup

coordinate 0.00298
angle 1.11
scale 0.0437

fitness 5.90E-003

be detected by tactile sensors. However, those exploration
attempts would seldom result in stable grasps, and would
then require actions dedicated to exploration, in contrastto
our approach, where the exploration is a by-product of a
grasp attempt. Moreover, planning of exploration in uncertain
conditions is a non-trivial task, which would likely require a
construction of probabilistic models. It was thus left out of
the scope of this study.

It is important to note that imprecise angle determination
may not be a serious problem in some applications. For
example, grasp stability and transportation task execution for
symmetrical objects are not affected by the angle of rotation.
For simple manipulation and transportation tasks it is usually
sufficient to grasp the body from above without taking into
account its orientation. On the other hand, if the task, for
example, is to pour water from the pitcher, the determination
of the handle location is a crucial objective.

Regardless, while the angular error values for majority of
objects are somewhat significant, the fitness function values
are small. Thus, it can be noted that values of fitness function
are mostly dependent on location rather than orientation.
The possibility to learn about the object orientation from
a single grasp, thereby, is highly object and hand dependent.
There are examples when problems can occur not only
with angle determination, but also in estimation of other
parameters. For instance, in the case of grasping an elongated
object in the middle, there is a manifold of equally good
solutions along the object. All grasping attempts along this
direction will result in equal contact information. Thus, it
can be concluded, that the tactile readings received during
a single manipulation action carry quite limited amount of
information about an object.

In Experiment 2, the approach was tested in 4DOF case
(uncertainty in x,y, angle of rotation and scale factor) on
2 objects (standard box and flower cup). Results for the
experiment with SA algorithm are given in Table II. SA
method was chosen as in 3DOF case it was found to provide
good results with smaller computational effort compared to
PSO. The results show that the optimization approach works
well, the size information can be estimated very precisely
and the fitness function error in this case is small. Not only
coordinate and scale, but also angle of rotation values are
quite close to real.
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VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have presented a novel approach using simulation
to answer the question: how much information about the
envicontrol of manipulationronment can be obtained from
tactile sensors during a single manipulation attempt? The
developed technique is based on minimizing the difference
between predicted and real sensor measurements. A series
of experiments was conducted in simulation using the 3-
fingered Barrett WAM robot model. A transportation task
was considered for several objects of various shapes for
three types of unknown attributes: location, orientation and
size. To increase the generality of the results, three different
optimization metaheuristics were used.

Our main conclusion is that learning about the environ-
ment using the tactile sense during manipulation is sur-
prisingly difficult, even in optimal conditions without any
sensor noise. Moreover, the difficulty of estimating different
attributes varies significantly: experimental results showed
that object location and scale factor can often be estimated
relatively well, but that the accuracy of orientation estima-
tion is very object dependent. More generally, the entire
estimation problem can be ambiguous, for example, due to
symmetries in object shape.

B. Future Work

To achieve accurate estimates for all parameters, it would
be possible to plan initially for object exploration instead
than for the manipulation action. However, planning for
the exploration under uncertainty requires further work.
A related approach would be to integrate multiple tactile
exploration actions. A different direction of research would
be to modify the hardware and sensors. For example, use
of dexterous hands with a large number of fingers could
improve results due to the possibility to collect more contact
information from a single manipulation attempt. Finally, it
would be interesting to explore the viability of the optimiza-
tion approach in a setting with a real robot, even if this is out
of the scope for the current paper, where we are interested in
finding the limitations of the sensing in optimal conditions.
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[9] P.A. Schmidt, E. Mäel and R. P. Ẅurtz, “A sensor for dynamic tactile
information with applications in human-robot interaction and object
exploration”,Robotics and Autonomous Systems, vol. 54, no. 12, 2006,
pp. 1005–1014.

[10] S. Caselli, C. Magnanini and F. Zanichelli, Haptic Object Recognition
with a Dextrous Hand Based on Volumetric Shape Representations .In
Proc. of the IEEE Int. Conf. on Multisensor Fusion and Integration,
Las Vegas, Nev., 1994, pp. 2-5.

[11] N. Gorges, S. E. Navarro and D. Göger and H. Ẅorn, “Haptic
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Probabilistic Sensor-based Grasping

Janne Laaksonen and Ville Kyrki

Abstract— In this paper, we present a novel probabilistic
framework for grasping. In the framework, grasp and object
attributes, on-line sensor information and the stability of a
grasp are all considered through probabilistic models. We
describe how sensor-based grasp planning can be formulated
in a probabilistic framework and how information about
object attributes can be updated simultaneously using on-line
sensor information gained during grasping. The framework is
demonstrated by building the necessary probabilistic models
using Gaussian Process regression, and using the models with
an MCMC approach to estimate a target object’s pose and
grasp stability during grasp attempts. The framework is also
demonstrated on a real robotic platform.

I. INTRODUCTION

Current grasp planning approaches are usually based on
an assumption of perfect knowledge of target objects. While
geometric models are good approximations of the objects in
the real world, the models are not exactly accurate, espe-
cially when speaking of household items. Thus, a difference
between the expected and the realized grasp arises from
these approximations, although in many cases the difference
is small enough to achieve a stable grasp. However, this
discrepancy is usually left unused.

On the other hand, methods utilizing sensor information
to grasp using corrective motions or reacting to the tactile
sensor information have been proposed. Contrary to grasp
planners, accurate object models are not usually available in
this type of grasping. However, it has been shown that using
for example tactile sensors it is possible to estimate stability
of the grasp [1], the pose of the object [2], [3], or even the
identity of the grasped object [4].

In this paper, we present a probabilistic framework, which
unifies the ideas behind grasp planning and the possibilities
of sensor-based grasping. The framework considers the re-
quired variables and models for grasping as probability distri-
butions and allows thus the representation of the current be-
lief probabilistically, that is, the uncertainty in the knowledge
can be represented. The framework allows interplay between
grasp planning and corrective motions, in situations where
object attributes, such as pose, are not precisely known, by
utilizing sensor information gained during grasping. Such a
situation can arise for example when visual sensing is used
to initially estimate the target objects.

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme under grant agreement
n◦ 215821.

J. Laaksonen and V. Kyrki are with Department of Information Technol-
ogy, Lappeenranta University of Technology, P.O. Box 20, 53851 Lappeen-
ranta, Finland, jalaakso@lut.fi, kyrki@lut.fi

We experimentally demonstrate and study the framework
using simulations and on an actual robot. In the demonstra-
tion, we use Metropolis algorithm, a MCMC (Monte Carlo
Markov Chain) method, to model the evolving probability
distributions. A Bayesian approach is used, that is, instead
of using the maximum likelihood or maximum a posteriori
solution, the result is obtained by marginalizing over the
current knowledge. The experiments show that the proposed
approach can perform grasp planning with uncertainties in
environment as well as measurements, for example, if the
target object’s pose is uncertain.

Section II collects the related work about grasp planning
and other related fields and Section III describes the proba-
bilistic framework. In Section IV, we present an approach
on how to model key object properties using Gaussian
processes. In Section V, a practical implementation, based on
the probabilistic framework, is presented where we simulate
a Barrett hand grasping several objects. We also demonstrate
the framework with a real platform. We conclude with
discussion and possibilities of the probabilistic framework,
in addition to our focus of future work in Section VI.

II. RELATED WORK

Our approach to find good grasps is closely related to
the field of grasp planning. In grasp planning the goal is
to find as good as possible grasp on a given object. The
goodness of the grasp is usually measured with a grasp
quality measure [5]. However, compared to our method,
most current grasp planning methods do not account for the
uncertainty present in the object’s shape or pose information.
Also most of the grasp planning methods require a known
geometric model of the object.

To simplify the grasp planning, many methods employ
some form of object decomposition. The goal of the de-
composition is to reduce the amount of feasible grasps
without trying every grasp on an object. In [6], the object
is decomposed to minimum volume bounding boxes, in an
effort to understand the underlying shape of the object. The
primitive shape is then used to reduce the search space
for stable grasps. Instead of boxes, superquadrics are used
in [7]. In addition to the construction of the superquadric
decomposition, heuristic is used to define the trial grasps
based on the superquadric form of the object, limiting the
space of grasps significantly.

The Columbia Grasp Database [8] takes a different ap-
proach to most grasp planners and computes best grasps for
a set of hundreds of objects. The grasp planning problem is
then transformed to a problem of matching a new object with



an object found in the precomputed database of grasps. The
work has also been extended to consider partial data [9].

If the object is not known, i.e. a geometric model is not
available, the grasp planning methods can still be used if
the model of the object can be constructed. The model con-
struction can either be done by vision or tactile exploration.
However, the geometric model in this case is usually a mesh
or a point cloud, and contains no information about the
inherent uncertainty related to the perception. Approaches
such as [6] can be applied here as well but the results can
be worse than in the cases where the full geometric model
is known. Moreover, the decomposition may fail in cases
where large volumes are missing from the perceived object.

Another approach for finding grasps is object affordance
modeling. While object affordance is a broader subject, the
affordances can also be thought in the sense of grasp stability.
In some of the grasp related studies, grasp affordances
consider the overall stability of the grasp [10], [11] or, for
example, the grasp affordance in specific tasks [12].

Learning to find good grasps is another view on the
problem. [10] utilizes learning on a real robot to learn the
grasp affordances of an object. The learning process reduces
a vision bootstrapped distribution of grasps to a smaller
set of grasps containing only good grasps. Reinforcement
learning [13] can also be applied, so that a sequence of grasps
can be learned which will lead to a stable grasp of an object.

Our approach to grasping is more related to the methods
found in [14], [2]. The aim of [14] is to reduce the uncer-
tainty of an object’s pose to enable grasping the object. In
[2], the shape of the object is also uncertain in addition to the
pose. In both studies, the method is presented with a parallel
jaw gripper grasping a 2D-object. However, these methods do
not utilize sensor information gained during grasping. Also
in [15], the authors propose a decision-theoretic controller
which minimizes the uncertainty of the object pose using
arm trajectories to enable task specific grasps on objects.
Tactile sensors were used to detect contacts between the hand
and the objects. A new algorithm, Guaranteed Recursive
Adaptive Bounding (GRAB), for inference was developed
in [16]. The algorithm was also tested in a manipulation
environment where the method made accurate inference of
object’s pose in both simulation and real environments. The
method was further developed in [17]. However, only the
problem of object localization was studied. Key difference
of our method with both [15] and [17] is that we estimate the
object pose without a geometric model and neither methods
use grasp stability to direct the grasping actions.

This paper presents a novel probabilistic framework for
reasoning about the grasp stability and the object attributes,
so that grasp planning can be performed even if object
attributes are uncertain. Initial work about the framework has
been published in [18], which the current paper substantially
develops by introducing probabilistic object modeling instead
of using simulation, by extending the demonstration to 3D-
objects, and by demonstrating the framework with a real
robotic platform.

III. GRASPING IN A PROBABILISTIC
FRAMEWORK

The probabilistic framework is now presented in a general
form. We model sensor-based grasping using the following
variables: S denotes the stability of a grasp as a binary value,
G the grasp attributes (e.g. the pose of the end-effector),
O the object attributes (e.g. the pose of the target object)
and T represents on-line measurements, for example, tactile
information. The variables have characteristics: G, the grasp
attributes, can be controlled, T can be measured for each
grasp attempt, while O is uncertain, that is, we assume we
only have an uncertain initial estimate of the object attributes.

Traditional grasp planning algorithms can be interpreted
in a probabilistic framework as attempting to maximize the
stability, S, by controlling the grasp attributes, G, with
perfect knowledge of the object attributes O,

max
G

P (S|G,O) . (1)

In our model, O is not assumed to be precisely known
but instead it is represented as a probability distribution.
Moreover, we do not assume that the available model (1)
is precise, that is, the stability of a grasp given information
about the object and grasp need not be exact, but instead
the model itself can exhibit uncertainty, for example, due
to simplifications made in a simulator to compute a grasp
quality metric.

It has been shown that grasp stability can be estimated
using tactile information [1]. Thus, we can build a prob-
abilistic model for the stability given the other variables,
P (S|G,O, T ). That model can be used to assess the stability
of a single grasp attempt, as shown in [1]. Moreover, for
stability detection with uncertain object knowledge, we can
marginalize over the uncertain object attributes, such that the
probability of a stable grasp given the grasp attributes and
tactile measurements is given by

P (S|G,T ) =
∫
P (S|G,O, T )P (O|G,T ) dO . (2)

If the grasp attributes are also uncertain, we can marginalize
over them in a similar fashion to find P (S|T ). This is also the
model for grasp stability for the case where no information
about the object or grasp is used for stability recognition.

In order to perform grasp planning, we again need to
marginalize over the distribution of object attributes. That is
we need to find the mode of P (S|G). The marginalization
can be written

P (S|G) =
∫
P (S|G,O)P (O) dO . (3)

This is a major difference to traditional grasp planning, where
the best single estimate of object attributes, that is, the mode
of O, is used instead of marginalization over the whole
distribution.

Because the tactile information for a grasp attempt is not
available before the attempt is performed, we can use the
tactile information from the previous grasp attempts only
to update the posterior distribution for the object attributes



P (O). That is, we can use the model P (O|G,T ) to update
the posterior of object attributes. Thus, after some tactile
information has been collected, for grasp planning we find
the maximum

argmax
G

P (S|G) ≈

argmax
G

∫
P (S|G,O)P (O|Gt0:t−1, Tt0:t−1) dO .

(4)

This shows that the stability S can be maximized by finding
the best grasp G, when Gt0:t−1 and Tt0:t−1 are known (sub-
scripts denoting that these are from the previous attempts).

The process described by (4) is depicted in Figure 1. From
the figure it can be seen that the knowledge of the object
attributes O, is iterated over the time steps, t0, . . . , t−1, t, t+
1, . . . , tn. The knowledge of O is refined using information
from the known grasp attributes G and the measurements T .

Fig. 1. Process of refining object knowledge.

To build a working system based on the Equation (4), two
models are needed:
• Model for P (O|G,T ), describing relation between tac-

tile information and grasp and object attributes.
• Model for P (S|G,O), stability as a function of grasp

and object attributes
These models are not trivial to build and depend on the
object and the manipulator used to grasp the object. Still,
there exists models for both cases, e.g. see [3] for a model
for P (O|G,T ) and [1] for a model for P (S|G,O, T ). It
should also be noted that P (O|G,T ) can be obtained from a
prediction model of sensor measurements P (T |G,O) using
the Bayes formula. One approach to generate the models
is to simulate the object and the manipulator to produce
the required tactile information and stability models. We
have used this approach to demonstrate the framework in
Section V.

Our framework does not place constraints on the actual
models, and the attributes G, O, T can be freely chosen. For
example, G and O can include the poses of the manipulator
and the object. The benefit of the presented probabilistic
framework is that throughout the grasping process the un-
certainty of the actions arising from equation (4) is known.
Also, measurement errors can be accounted for during both
grasp planning as well as on-line grasp stability detection.

IV. MODELING

As mentioned in Section III, two models are required to
successfully utilize the framework described in this paper:

one to model the object attributes given grasp attributes
and tactile information and another model for grasp stability
given object and grasp attributes.

In simulation, the modeling is relatively easy as we have
perfect knowledge of the object and the manipulator grasping
the object. However, our goal is to have models that can be
used outside of the simulator. Another practical requirement
for the models is that the models must be generative to
account for the whole state space. For these reasons, we
build the required models using Gaussian Process Regression
(GPR).

The Gaussian Process (GP) used in GPR is defined as a
set of random variables of which any finite number have
a joint Gaussian distribution. The GP is constructed of the
mean function m(x) and the covariance function k(x, x′). As
GP models the data using these functions, the GP is able to
model the underlying uncertainty present in the data, which
grows in the gaps of the data and lessens where the data has
high density.

Suitable mean and covariance functions are usually de-
pendent on the form of the data and requires some thought.
Different covariance functions enable different type of data to
be modelled. In the case of grasping, many discontinuities
appear due to discrete events such as a finger missing an
object completely during grasping. Due to this we have cho-
sen to use the neural network covariance function, which is
non-stationary, and can model discontinuous data better than
the more commonly used squared exponential covariance
function [19]. Choosing which mean function to use is not
as critical to the regression as the covariance function.

Once the model has been selected, GPR finds the most
probable function over the training data. GPR can then be
used to estimate f(x) given new x. However, to operate
properly GP requires that hyperparameters, i.e. parameters of
the mean and covariance functions, are set as well. Finding
proper values for the hyperparameters is the most challenging
task with GP techniques but methods exist that use training
data to optimize the hyperparameters. Readers interested in
GPs can get a deeper understanding from e.g. [19].

V. EXPERIMENTS

To demonstrate the viability of the framework presented
in Section III, we have estimated the models P (O|G,T )
and P (S|G,O) using data from simulations. Our goal is to
show that we can improve the estimate of uncertain object
attributes while simultaneously improving the grasp stability
given our estimate of the object’s attributes using sparse
tactile information received during grasp attempts. As the
tactile measurements, T , we use only the joint configuration
of the robot hand. We use both simulation and real robot
to validate our approach. The simulation setup is described
in Sections V-A and Section V-B and the setup for the real
robot is depicted in Section V-D.2.

A. Experimental Setup

We use GraspIt!-simulator as our simulation environ-
ment [20]. Figure 3 shows the Barrett hand and the four



objects used in the experiments. All of the objects fit inside
the grasp of the Barrett hand. The objects are assumed to
lie on a planar surface, thus having two-dimensional spatial
uncertainty represented by three variables forming a tuple
(x, z, θ), where x and z are Cartesian coordinates in mil-
limeters and θ is the orientation in degrees. We employ top
grasps and thus the hand is also moved only along the same
three dimensions. However, both the hand and the objects
have full 3-D geometric models. Furthermore, we assume
that the object we grasp remains stationary throughout the
grasps. While this may seem contrary to experiences with
real robotic hands, we argue that with good sensors, such
as [21], the grasping can be controlled so that sufficiently
massive objects do not move significantly during grasping.
The framework can accommodate non-stationary objects, by
using only the most recent measurement of T , as in [18], or
by using a motion model for P (Ot+1|O). However in this
paper we focus on stationary objects.

B. Data Collection and Modeling

GPR, introduced in Section IV, is used to model both
P (O|G,T ) and P (S|G,O). The goal of the approach is
to model the joint configuration T |G,O, and the quality of
the grasp S|G,O, when given the relative pose between the
object and the hand. For the quality measure we utilized the
existing quality measures in GraspIt! and chose the force-
closure quality measure, i.e. the ε-measure. In this paper, we
consider quality measure value of 0.1 or greater to be stable.

The data used to optimize the GPR was generated using
a grid in (x, z, θ) and then the object was grasped at each
of the points in the grid. For the cylinder and cube, x and z
were discretized from -50 mm to 50 mm at 10 mm intervals
and θ was discretized from -180 to 180 degrees at 15 degree
interval. For the two mugs, x and z were discretized from -
100 mm to 100 mm at 20 mm intervals and θ was discretized
from -180 to 180 degrees at 15 degree interval. The grid
was centered on the object. Each grasp was executed using
the auto grasp-function present in GraspIt!, thus, only one
preshape was used when grasping. After each grasp the
quality of the grasp was measured and the finger joint values
were recorded with the relative pose. We have also restricted
the search space to these boundaries in the implementation.

C. Implementation

Our general approach is based on the sequence of actions
shown in Figure 2. We assume that some type of initial
estimate (with associated uncertainty) of the object pose is
obtained in phase 1, e.g., from vision. Using the estimate,
we can plan for a grasp with the uncertainty from the initial
estimate, phase 2. Then a grasp is performed, phase 3, giving
measurement data (we assume that at least joint configuration
data is available). Using the measurement data, we can make
a decision of the grasp stability, phase 4. If the grasp is
stable, the object can be manipulated, if not, we can plan
for a new grasp, phase 5, with the new information from the
attempted grasp. This loop can then be further iterated until
grasp stability conditions are satisfied.

( 1 ) ( 2 )

Grasp 
planning

( 3 )

Grasp

( 4 )

Stabil i ty
recognit ion

( 5 )

Grasp 
planning
with tact i le
information

Grasp ok

Grasp not ok

Initial object 
pose

Fig. 2. Sequence of actions.

The theoretical framework described in Section III is im-
plemented with MCMC methods. The object attribute prob-
ability distribution, P (O|G,T ), is modelled with Metropolis
algorithm while a particle filter-based maximization is used
to search the maximum of the probability distribution of
stability, P (S|G,O). Both methods model the probability
distributions with a cloud of particles to make the com-
putation of evolving probability distributions tractable. We
have chosen the Metropolis algorithm for the object attribute
probability distribution because the method allows modeling
of the whole distribution without the degeneracy problems
occuring with particle filters. More information on particle
filtering, especially applied to robotics can be found in [22].
Particle filters have been used in manipulation, for example
in [3], to estimate object pose using tactile sensors.

Algorithms 1 and 2 describe our method of finding stable
grasps. Algorithm 1 requires the initial estimates of the
uncertainty, given in σinit, for each of the variables (x, z, θ).
The particle set O1 in Algorithm 1 represents the probability
distribution of the object, P (O|G,T ). Note that in line 10,
we weigh the particles in O1 with all the previous grasps.
Also in line 10, the likelihood p(Jk|J∗k ) is computed given
the actual joint configuration J∗k and the joint configuration
Jk given by GPR. The likelihood function is simply a
Gaussian function centered at J∗k , with a variance obtained
from GPR for each individual sample. The probability for
a stable grasp,

∑
i P (S|G,O1i), determines how well the

object must be localized, and can be used to force the system
to make more grasps until the uncertainty of the object’s pose
is small enough to attain the desired probability, thrstable, for
a stable grasp.

Particle set G1 in Algorithm 2 represents all the possible
grasps, and by applying the grasp motion induced by each
grasp particle to each of the particles in O1, we can find
the probability of a stable grasp P (S|G,O). Quality of the
grasp for each individual grasp and object pose combination
is queried from the GPR model S|G,O. In Algorithm 2

the maximum of distribution, argmax
G

∫
P (S|G,O), is

searched for and the corresponding motion is then applied.

Relating to Figure 2, Algorithm 2 takes care of the grasp
planning, that is, phases 2 and 5. Algorithm 1 handles phase
3, grasping the object and updating the belief of object pose.
In line 13 of Algorithm 1, the grasp stability probability is
computed and corresponds to phase 4 of the action sequence.



Algorithm 1 find stable grasp(µinit,σinit)
1: Generate initial particle set, O1 ∼ N (µinit, σinit

2)
2: t← 0
3: while Grasp not stable do
4: (x, z, θ) ← find best grasp(O1,σinit)
5: Move hand to (x, z, θ)
6: Grasp object, store joint configuration as J∗t
7: while O1 is not converged do
8: For each particle i in set O1, generate a pro-

posal ip using distribution N (0, σ1
2) with σ1 ←

(σx, σz, σθ)
9: For all i and ip, query GPR model T |G,O1 for joint

configurations J0,··· ,t
10: For all i and ip, compute posterior probability ∝∏t

k=0 p(Jk|J∗k )
11: Choose according to the Metropolis algorithm

whether to replace i with ip
12: end while
13: Approximate P (S|G,O) by

∑
i P (S|G,O1i)

14: if
∑
i P (S|G,O1i) > thrstable then

15: Grasp is stable
16: end if
17: t← t+ 1
18: end while

Algorithm 2 find best grasp(O1,σinit)
1: Generate particle set, G1 ∼ N (µO1

,5σO1

2),
where µO1

is the mean of O1 and σO1
is the

standard deviation of O1

2: while G1 is not converged do
3: Weigh particles G1, w2 ∝ P (S|G,O1)
4: (xmax, zmax, θmax) ← argmaxG P (S|G,O1)
5: Do importance filtering according to w2

6: Use N (0, σ2
2) as proposal distribution with σ2 ←

0.2 σinit
7: end while
8: return (xmax, zmax, θmax)

D. Experiments

In the experiments, we show a sequence of grasps, fol-
lowing the diagram in Figure 2. We demonstrate that we
can localize objects using the Metropolis algorithm despite
uncertain initial estimate during several grasp attemps. In the
experiments, 1000 particles were used to model the object
attribute distribution, and 100 particles to find the maximum
of the grasp stability.

1) Grasping an object with uncertain pose: In this ex-
periment we show for two primitive objects, the cube and
the cylinder, and two complex objects, mug 1 and mug 2,
shown in Figure 3, that we can obtain a stable grasp even
if the initial estimate of the object’s pose is uncertain. Each
grasp also improves the localization of the object.

In the experiments we assume the object mean µo =
(0, 0, 0) and object standard deviation σo = (40, 40, 40).
The chosen σo shows that we are highly uncertain of the

Fig. 3. Objects used in the experiments, from the left: mug 2, mug 1,
cylinder and cube. The simulated Barrett-hand is also shown in the figure.

initial pose of the object. µo and σo are given as input
to Algorithm 1. In the experiments we also limited the
number of grasps to 4, instead of defining a threshold for the
stable grasp probability. In Algorithm 1, the object posterior
distribution refinement was limited to 50 iterations instead
of a more sophisticated convergence criterion. However,
50 iterations were found to form the posterior distribution
adequately.

Due to the probabilistic nature of the algorithms we show
the results as examples of posterior distributions, which can
be seen in Figure 4 for two different runs of Algorithm 1.
Each run in Figure 4 shows how the posterior distribution of
the object pose evolves after grasp attempts are made, each
run consists of 4 grasps. The real object pose is marked with
a red cross in each subfigure. Title of each subfigure in the
figure shows the quality measure (QM) computed by GraspIt!
and the corresponding stable grasp probability (Stab. Prob).
Quality measure of −1 indicates a non-force-closure grasp.

First run, in Figure 4(a)-(d), shows the result for the cube
visible in Figure 3. The distributions show that multiple
modes are found near the correct pose. The probability of a
stable grasp increases after each successive grasp, due to the
convergence of the object pose posterior. The quality measure
also shows that a force-closure is achieved during the grasps.
In the second run, in Figure 4(e)-(h), mug 2 is grasped. The
posterior distribution reflects the uncertainty in orientation
of the mug, as the mug is almost completely symmetric.
As before, the grasp stability probability increases after each
grasp. The quality measure is also improved. However, the
posterior density is not as dense as in Figure 4(a)-(d).

All of the posterior distributions show outliers at the
edges of the search space. This is due to the imperfect
regression results by GPR. One of the probable reasons is
the discretization of the sampling grid which is quite coarse.

To show that the probabilistic grasp planning shown in
Algorithms 1 and 2 actually improves the grasp quality,
we ran multiple tests on all 4 objects to find out how
each successive grasp reduces unstable grasps by refining
the knowledge of the object pose. Results are described
in Table I. The table shows the probability of achieving a
stable grasp after the number of grasps shown in the ”Grasp”



(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 4. (a)-(d): Grasping the cube at pose (45,25,0);(e)-(h): Grasping the mug 2 at pose (-32,38,68).

TABLE I
PROBABILITY OF A FORCE-CLOSURE GRASP ACROSS 30 RUNS.

Grasp Cube Cyl. Mug1 Mug2
1 0.10 0.03 0.07 0.43
2 0.90 0.63 0.80 0.63
3 0.93 0.23 0.77 0.83
4 0.93 0.70 0.67 0.80

column. From the results, one can see that the framework is
able to refine the object pose distribution and as a result
find a stable grasp more often. The results also show that
typically the probability of stable grasp occurring is increased
significantly after the first grasp. This result shows that it is
not necessary to have the object stationary during grasping,
as the second grasp is probable to achieve stable grasps in
most cases.

2) Experiments with a real platform: To validate the
approach proposed in this paper, the framework was im-
plemented on a robotic platform, consisting of Melfa RV-
3SB 6-DOF arm and Weiss WRT-102 robotic gripper with
integrated tactile sensors. Using the approach presented in V-
B, we sampled the object shown in Figure 5 with the gripper.
To keep the object stationary the object was suspended on
three screws glued to the object. Due to the limitations of

our gripper we decreased the DOFs from three to two, (x, θ).
The dimensions of the object were 45 mm across Y and 120
mm across X . We collected 26 samples from the object,by
grasping from -50 mm to 90 mm in X and from -7 degrees
to 7 degrees in θ. Additionally, we utilized reactive grasping
to enable grasping of the object, as we can only control
the width of the grip, which was our measurement T . The
stability was determined manually by lifting the object after
each grasp and labeling each grasp as stable or unstable.

Fig. 5. The robot gripper and the object, a correction roller.



(a) (b)

(c) (d)

Fig. 6. (a) First grasp in sequence which is an unstable grasp; (b) Posterior
distribution after first grasp; (c) Second grasp, which is a stable grasp; (d)
Posterior distribution after second grasp.

To test the framework, we displaced the object 40 mm,
while setting µo = (0, 0) and σo = (40, 4). The results of
the two grasps executed with these parameters are presented
in Figure 6. As can be seen from the figure, the posterior
distribution converges close to the real pose in X . However,
θ remains largely uncertain, because the measurement is
not able to disambiguate this. The stability probabilities
reflect reality well as after the first grasp, the probability
of achieving a stable grasp given by the model is only 2%,
which in reality was an unstable grasp, but after the second
grasp the probability has grown to 63%, which was a stable
grasp when lifting the object.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a framework for grasping, which
operates in a probabilistic setting. The framework allows
grasp planning, measurements, and corrective motions to
interact, leading to a system where the uncertainty about the
environment can be decreased simultaneously while planning
and executing statistically optimal grasps. We also presented
a demonstration of our framework utilizing MCMC methods.
The demonstration showed that the approach is able to
plan a stable grasp and simultaneously update the pose
estimate of the object. The models used in the demonstration
can also be extended, for example, the model for stability,
P (S|G,O), can be extended to include tactile information,
P (S|G,O, T ), which has been done in previous work [1].
We believe that adding input from tactile sensors can fur-
ther benefit the pose and grasp stability estimation as, for
example, we can measure contact surface types and shapes.

To extend the framework, ongoing work is focused on
applying the framework to more complex objects and statis-
tical models. We also intend to focus on determining object
identity and category using our framework in addition to
the pose estimation shown in this paper. Our plans include
working both with simulations for the repeatability and real
hardware. Finally, it should be mentioned that the framework
is applicable in any manipulation scenario where a success

function, attempted actions, sensor models and environment
variables can be defined.
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Contact detection and location from robot and
object tracking on RGB-D images
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Abstract—In this paper, we address the problem of detecting
contacts between a robot hand and an object during the approach
and execution phases of manipulation tasks in the absence of
touch perception. In order to detect contact in such conditions, we
implemented a method which uses the visual tracking of objects
using ICP (Iterative Closest Point) to detect small movements
of the object’s RGB-D point-cloud which has been previously
segmented. Once a movement has been detected, a combination
of a 3D occupancy grid of the object and an sphere-based
model of the robot is used to probabilistically estimate the
locations of contacts. The proposed approach is implemented
and experimentally validated for several relevant cases.

I. INTRODUCTION

The robot manipulation and grasping of objects on service
scenarios is a complex task as a consequence of the uncertainty
which appears in such conditions. The limited or complete
absence of knowledge about the objects to be manipulated,
the limited accuracy of the sensors used to perceive the scene,
and the difficult calibration of the kinematics of complex
manipulators are the most relevant difficulties. Manipulation
planners and controllers must take into account for these
uncertainties in their design and implementation.

In such grasping systems, the ability to perceive and detect
the contact between the robot and the objects becomes a
critical feature to ensure the security and robustness of the
execution. The detection of contacts or, in a more broad
definition, the sense of touch have been achieved by integrating
in the robot hands and arms a variety of contact and proximity
sensors. It is not unusual that the most advanced robotic hands
include some type of contact sensors. This is the case of the
Shadow Dexterous Hand [14], the DLR-HIT-Hand [10] and
many others.

Several technological approaches have been developed to
provide the sense of touch. Three main categories can be
distinguished depending on their configuration and character-
istics. The first one is tactile sensing which aims to imitate
the sensibility of the human skin [15, 3]. It usually consists of
a single or an array of cells placed on the surface of a body,
which measure the existence of contact and the pressure or
related magnitudes in such locations. The main advantage of
these sensors is that they are able to determine the location of
the contact accurately [5].

A second category is composed by sensors that measure
strain or force/torque. They are devices which interface two
different bodies and measure the forces and torques transmitted
between them. When a contact occurs on one of the bodies, it
produces a force or torque that is transmitted to the rest of the
connected bodies and thus can be detected by the sensor[12,

Fig. 1. Shunk Dextrous Hand: real and spherical model

13]. These sensors can be considered global contact sensors
since they are potentially able of detecting any contact on
a body, but can hardly identify accurately the location and
magnitude of the contact forces involved. Finally, the third
category is composed by proximity sensors. Although they are
not properly contact sensors, they have been used to identify
imminent contacts and thus used in a similar fashion as touch
sensors [9]. Their main advantage is that they can be used
without perturbing the state of the objects.

Although these approaches have extensively been used,
they are not free of limitations. Tactile sensors are unable to
detect contacts in surfaces which are not covered by them.
Force-torque sensors cannot detect locations of contacts and
their sensitivity is low when the contact forces are small.
In addition, all these sensors require a wiring and a system
integration which causes their implementation difficult. As a
consequence, even in heavily sensorized hand-arm systems, it
is common that a contact goes unnoticed which compromises
the stability of the grasping and manipulation actions.

This paper describes a novel approach which uses vision to
detect and analyse contacts. It is based on the basic assumption
that if an object moves is because it has been touched. We
present a system that simultaneously tracks the robot actuator
and the object on the scene. When a movement on the object
is detected, it analyses the occupancy information of the object
and the robot to infer the probable location of the contact in
the surface of the robot.



(a) s-tope with two spheres, bi-
sphere

(b) s-tope with tree spheres, tri-
sphere

Fig. 2. Examples of simple s-topes: bi-spheres and tri-spheres

II. DESCRIPTION OF THE SYSTEM AND UNDERLYING
ASSUMPTIONS

Our approach assumes an scenario in which a robot system
is composed of at least a robot arm and a hand. Its purpose
is to approach the hand and manipulate a single rigid object
lying on a planar surface. No previous model of the object
is available and no assumptions about its shape or aspect are
made.

The only sensor modality that our approach is going to
use is a Kinect sensor which delivers RGB-D images and
point clouds describing the scene. Other sensor modalities like
tactile sensors are used exclusively for validation purposes in
the experimental section (see Sec. VII). Assumptions are made
that the kinematics of the arm and hand are known and the
correspondence between coordinates of the scene point-cloud
and the frame of the robot arm are calibrated accurately.

III. GEOMETRICAL MODELLING OF ROBOT SYSTEM

In our approach, we use a geometric model of the robot
system to reason about the space occupied by the robot and
estimate contacts with objects, especially when the robot is
occluded in the RGB-D image.

We have chosen a model based in bounding volume primi-
tives to describe our robot system, in particular we choose the
spherically extended polytopes, s-topes, as bounding volumes.
This representation has been widely used [17, 4, 6] because
of their efficiency in distance computation, specifically in
collision detection and path planning. An s-tope [7] is the
convex hull of a finite set of spheres s ≡ (c,r), where c is
the center and r is its radius. Given the set of n spheres
S = {s0,s1, ...,sn}, the convex hull of such a set, Ss, contains
an infinite set of swept spheres expressed by Eq. 1 .

Ss =

{
s : s = s0 +

n

∑
i=0

λi(si− s0),si ∈ S,λi ≥ 0,
n

∑
i=0

λi ≤ 1

}

(1)
Where λi is the parameter that determines a specific sphere,

radius and center, of the whole set of spheres. To illustrate the
previous equation, Figure 2 depicts several examples of s-topes
defined by two (bi-spheres) and three spheres (tri-spheres).

We have modeled our robot as a combination of s-topes.
Each link is represented as a bi-sphere and some static parts
as singles spheres. In addition, each defining sphere has been

Fig. 3. Spherical model of our robotic system.

attached to the corresponding frame of the kinematic chain.
Figure 3 depicts the complete model of our robot manipulator
system and Figure 1 illustrates a detail with the model of our
three-fingered robot gripper.

IV. OBJECT SEGMENTATION

This section describes the identification and the segmenta-
tion of the target object in the scene. As it has been described
previously, we assume that the scene contains a single object,
lying on a planar surface. The scene is obtained by a RGB-
D camera that provides a 3D point cloud. This point cloud
contains points which belongs to the object, the supporting
table and the robot manipulator. It is necessary a procedure to
segment the object and isolate the 3D points belonging to it.

The fist step is to transform all points in the point cloud
from the camera frame to the robot base frame. Then, several
filters are applied to remove points from the point cloud that
do not belong to the object. The first one removes the points
belonging to the supporting plane. It consists of a predefined
frame box which discards all the points outside the box. The
dimensions of this box has been calibrated to fit exactly the
dimensions of the table in our scenario. This filter keeps all
the points in the scene that are over the table, containing the
object and the robot manipulator.

The second filter uses the spherical model of the robot to
determine which points in the point cloud belong to the robot.
A point is considered to belong to the robot if the distance
between it and the model is less than zero. This distance is
the minimum from the point to all the s-topes which compose
the robot model. Since our geometric model is composed only
of spheres and bi-spheres, we need to apply only two rules
to compute each distance. In the cases of a single sphere,
the distance between a point pi and the sphere si ≡ (ci,ri) is
computed using Eq.2, where ci is the centre and ri the radius
of the sphere:

distance = ‖−→pi −−−→cmin‖− rmin (2)

In the case of the distance between a point pi and a bi-
sphere, we first need to determine the closest sphere to the
point among the infinite number which define the bi-sphere.
Given a bi-shpere defined by the spheres s1 ≡ (c1,r1) and
s2 ≡ (c2,r2), Eq. 3 defines the rule to find the closest sphere



smin ≡ (cmin,rmin) to pi. Then, Eq. 2 can be used to compute
the distance.

λmin =−
(−→c1 −−→pi ) · (−→c2 −−→c1 )

‖−→c2 −−→c1‖2 ; λmin ∈ [0,1]

−−→cmin =
−→pi −−→c1 +λmin(

−→c2 −−→c1 )
−→rmin =

−→pi −−→r1 +λmin(
−→r2 −−→r1 )

(3)

All the remaining points in the 3D point cloud are evaluated
and those which distance in zero or negative are labelled as
belonging to the robot and then removed from the point cloud.
After this filter, the remaining points are considered to be part
of the object.

To illustrate the process of object segmentation, Figure 4
shows results after each step of the process. Picture 4(a) shows
the initial image of the scene. Figure 4(b)) shows the points
remaining after the box filtering. Finally, the third image on the
right (Fig. 4(c)) shows the object segmented from the whole
scene. This process is repeated each time step in order to
calculate the position of the object.

V. CONTACT DETECTION

Once an object has been segmented from the scene, the next
step is to determined when the object moves. As our approach
is constrained to rigid solids and non articulated objects, we
assume that when an object moves is because a contact has
occurred. In order to detect the movement, it is necessary to
track the point cloud of the object using consecutive images.

Literature offers algorithms for object tracking based on
image descriptors such as SIFT [11], SURF [2], or Harris
corners [8]. These methods make the assumption that the
objects have a texture, a regular shape or that the descriptors
are visible all the time. As we do not have any assumption
of shape or texture and the hand of the robot may occlude
parts of the object, we have chosen the Iterative Closest Point
(ICP) algorithm [18] as our approach to object tracking. In
particular, we use the standard ICP algorithm implemented
in PCL library [1]. The ICP does not need any characteristic
of the object, only two points clouds are needed. The ICP
refines iteratively the transform between two consecutive point
clouds by repeatedly generating pairs of corresponding points
on the meshes and minimizing an error metric. Once the
object is segmented as was described in Section IV, the ICP
is applied to the object point cloud at instant tk and tk−1.
The algorithm returns a homogeneous transformation matrix
that is decomposed in a translation vector t(x,y,z) and a
quaternion q(x,y,z,w) from which an angular rotation ω is
obtained . When the module of the translation vector ‖−→t ‖ or
the angular rotation ω are grater than a threshold (‖−→t ‖ ≥ tmax
or ω ≥ ωmax), we conclude that the object has moved and
therefore has been contacted by the hand.

VI. ESTIMATION OF CONTACT LOCATION

This section describes how the location of the detected
contact is estimated. The output is a point cloud containing

Fig. 5. Real objects and its initial Occupancy Grid Map (OGM).

all the points with high likelihood of being in contact with
the object. Contact location estimation from vision is going
to find the problem of occlusion, either because the object is
occluded by the object or because the robot itself occludes
the object. In this sections we describe a procedure that deals
with point contact occlusions and gives a guess about where
the contact point is.

With the purpose of dealing with the uncertainty of the
occluded area we use an Occupancy Grid Map (OGM) that
is iteratively updated to estimate which space areas have the
greatest probability to be in contact. Initially an OGM of the
object is built assuming that the object is not occluded by the
hand (Fig. 5). While the hand is moving towards the object
to perform any task, the OGM is updated exploiting the robot
movement. If a contact is detected (see Sec.V) the intersection
between the hand model surface and the OGM is built. For
each point of the intersected region its probability of being a
contact point is calculated. Section VI-B tells the details for
the generation and updating of the OGM and section VI-B1
describes how the contact point likelihood is calculated.

A. Occupancy Grid Map Initialization

The OGM is bulit projecting each point of the initial
object point cloud along the direction of the camera until
its intersection with the table plane. To project the points, a
perfect pin-hole model of the camera is used. We also assume
the table plane position to be known in advance.

Then, the occluded area is discretized in cells of 1mm3

in each direction (x,y,z). The cells that appear already in
the point cloud (i.e. are being seen by the camera) have a
probability of being occupied P(ci = occ) = 1. Meanwhile
there is no information about the cells that are not being seen
its starting likelihood of being occupied is P(ci = occ) = 0.5.



(a) Scene Example (b) Table points removed; arm (green) and hand
(red) points labelled

(c) object points

Fig. 4. Object segmentation process

B. Occupancy Grid Map Update

In the traditional occupancy map the cell values are up-
dated with a distribution function of the measurement sensor.
However no direct sensor to measure contact is considered in
this approach. Instead, we propose to use the hand model as
a sensor.

1) Virtual Contact Sensor: In order to delimit the area
where the contact is, we have taken into account the direction
of movement of the hand −→u . Firstly, the cells of the OGM
that belong to the surface of the hand are obtained. Secondly,
for each cell, the normal vector to the hand model surface −→n
is computed and the angle α between the normal vector −→n
and the movement vector −→u is obtained. Finally, if this angle
is less than an empirically defined treshold αmax the point is
considered part of the sensible area and a candidate to be
in contact. Fig.6 shows the result of a simulated contact with
different hand movement directions and αmax, where red points
are contact candidates (i.e. have an α ≤ αmax) and blue points
are not contact candidates (i.e. points with an α ≥ αmax).

In order to put the above mentioned in a mathematical
way we have formulated it in eq. 4. This equation shows
the probability function, P(z(k)|ci), of a given cell to have
a contact. This function depends on the distance between the
cell and the robot spherical model. If the cell is inside the
model P(z(k)|ci) = 0, we have the guarantee that the cell is
free of contact. In the case that the cell is outside of the hand
model there is no way to have any new information about the
occupancy, thus P(z(k)|ci) = 0.5.

Finally if the cell is on the surface of the hand model and
α ≤αmax a probability function is defined, where d ∈ [0,5]mm,
is the variable that models the error in the direction of hand
movement. s is the standard deviation of the Gaussian used to
take into account the error in the geometrical and kinematic
model of the hand. In other words, we consider that the contact
surface estimation has a Gaussian error in the direction of the

movement.

P(z(k)|ci) =





0 p ∈ inside model
0.15 · exp( d2

2·s2 )+0.5 p ∈ surface;α ≤ αmin

0.5 otherwise
(4)

2) Update Algorithm: The OGM is updated each time step,
depending on the contact detection (Sec. V). If no contact is
detected, the cells that are inside or in the surface of the model
are updated. The new likelihood value this cells is 0, as can
be obtained from eq. 4 and eq. 5. Cells that are outside the
model and do not belong to the surface, keep the same value.
Finally, if contact has been detected then the surface cells are
updated with the eq 5:

P(ci = occ|z(k))k =
P(ci = occ|z(k))k−1 ·P(z(k)|ci = occ)

∑
ci

(P(ci|z(k))k−1 ·P(z(k)|ci))

(5)
where P(z(k)|ci = occ) is the probability of a measure given

a occupied cell (ci = occ), in other words, the sensor model.
P(ci = occ|z(k))k−1 is a priori probability to be occupied
given a measure z(k) and P(ci = occ|z(k))k is the a posteriori
probability to be occupied given a measure z(k), for more
information refer to book [16].

When the contact is detected, our algorithm returns a point
cloud with the cell that have a high probability level (e.g
more than 0.8) and are part of the sensible surface as has
been described in section VI-B1. The fig. 7 shows all the
surface points, the candidate points that belong to the sensible
surface are colored from blue to red depending on its contact
probability.

The inputs of the alg. 1 are the object point cloud, the
joint value of arm and hand, the initialized grid map, and
the direction of movement of the hand. The function in line 7
is the detection of contact that was described in section V.

VII. EXPERIMENTAL VALIDATION

In order to validate our approach, we have implemented
the algorithms for our robot platform and tested them on
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Fig. 6. Sensor surface with different values of αmax and hand direction u

Algorithm 1 Grid Map Update
1: Ob ject pointCloud← INPUT
2: qarm← INPUT {Arm Joints, Hand Joints}
3: Grip Map← INPUT
4: −→u hand ← INPUT {Hand movement direction}
5: d ∈ [0,5]
6: distance ∈ {inside, surface, outside}
7: contact←Contact Detection
8: for all celli do
9: [distance,−→n sur f ]←DistanceToModel(celli,qarm,qhand)

10: α =
acos(−→n sur f ·−→u hand)

‖−→n sur f ‖·‖−→u hand‖
11: if celli ∈ sur f ace and contact then
12: for all d do
13: U pdateCellSur f ace(celli,d,−→u hand ,Grid Map)
14: end for
15: ContactSur f ace← celli
16: else
17: if celli ∈ inside then
18: celli = 0
19: end if
20: end if
21: end for
22: if contact then
23:
24: return ContactSurface
25: end if
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Fig. 7. contact probability distribution

Algorithm 2 U pdateCellSur f ace(celli,d,uhand ,Grid Map)
1: s = 0.01
2:
−→
celli = GetCoodinateFromCell(Grid Map,celli)

3:
−→
celld =

−→
celli +d ·−→u hand

4: P(ci = occ|z(k))k−1 = GetCellValue(Grid Map,
−→
celld)

5: P(z(k)|ci = occ) = 0.15 · exp( d2

2·s2 )+0.5
6: Pci = occ|z(k))k =

7: = P(ci=occ|z(k))k−1·P(z(k)|ci=occ)
(P(ci|z(k))k−1·P(z(k)|ci))+(1−P(ci|z(k))k−1)·(1−P(z(k)|ci))

8:
9: return Pci = occ|z(k))k



several cases. Our robot platform is an upper body humanoid
composed of two 7 DOF robot arms, a Schunk Dextrous Hand
with 7 DOF, equipped with a JR3 Force-Torque sensor on the
wrist. The hand has three fingers, each with 2 DOF and two
Weiss tactile sensors: one on the fingertip and one on the inner
phalanx (see Fig. 1). The vision system is composed of a 2
DOF pan-tilt head with a Kinect sensor. For our experiments,
the force-torque sensor has not been used and the tactile
sensors have been only used to provide ground truth validation
data.

Two validation experiments have been implemented. The
first one seeks to demonstrate that our approach is more
sensitive than the real tactile sensors. The second one evaluates
our approach for estimating contacts with occluded parts of
non convex objects. The objects used for validation are shown
in Fig. 5. The object on the left is a white very light object,
with a non-trivial shape. The one on the right is an empty light
cardboard box.

A. Contact detection sensibility

The first experiments aims to demonstrate that our approach
is able to detect contacts that our real tactile sensors can
not detect. One single object is in the scene and the hand
configuration and approaching movement are set in such a way
that the first contact with the object occurs on the fingertip of
the middle finger, where there is a tactile sensor. The controller
is programmed so that as soon as a tactile contact is detected,
the hand stops. The difficulty here is that the object is too
light and, in most of the cases, the contacts go unnoticed due
to the low sensibility of the real tactile sensors.

The initial configuration is shown in the upper rows of
figures 8(a), 8(b), 8(c) and 8(d). The robot moves in a
predefined direction towards the object. When the contact is
detected, the robot stops and the contact information is stored.
The results of the experiments using the proposed approach
are shown in middle rows of figures 8(a) and 8(c) where as
soon as a small movement has been observed on the object
the hand stopped. Lower rows of figures 8(a) and 8(c)) show
a detail of the estimated contact locations on the fingertips.

Middle and lower rows of figures 8(b), 8(d) show the case
where the visual contact detection was disabled so the robot
relies exclusively on real tactile sensor information. In both
cases the contact was not detected and the hand kept pushing
the object.

B. Validation of the estimation of contact locations

In this set of experiments, we seek to test the validity of
our approach to estimate the locations of contacts. In order to
validate this, we compared the output of our estimator against
the readings given by the real tactile sensors. As the objects
are too light to be robustly detected by the tactile sensors, we
have loaded the objects with additional weights.

The experiments consist on a single object placed on the
table. A set of different hand configurations and directions are
predefined to approach the object. The robot moves until a

(a) step 1 (b) step 2

(c) step 3 (d) step 4

(e) Movement to avoid false contacts

Fig. 9. Improvement of the estimation

visual contact is detected. Then, the visually estimated contacts
locations and the real tactile sensor readings are recorded.

Figure 10 shows the results of these experiments. The
graphs in the right of each figure show the estimated contact
locations (in blue) and real contact tactile readings (in red).
The 3D positions of the tactile readings are reconstructed using
the known kinematics and configuration of the robot. As it can
be seen, the proposed estimator is able to detect accurately the
contact locations. A special case is shown in the fifth row of
fig. 10 in which not all the occluded robot fingers contact
the object, as the readings of the real tactile sensor indicate.
However, the visual contact estimator shows that the contact is
equally probable on both fingertips. The reason is that when
the contact is detected the cells of the occupancy grid map
around the finger are unknown, so their probability of being
occupied is 0.5.

These type of ambiguities can be solved by further explo-
ration movements of the fingers. An example of this is shown
in Figure 9, in which a second movement is performed to
get a second contact detection. Figure 9(e) shows the initial
estimation (left) and the estimation after the second movement
(right) which match with the real sensor readings.

VIII. CONCLUSION AND FURTHER WORK

This paper has described a contact sensor which uses
exclusively RGB-D images, without the help of any touch
sensors. The whole process is divided in several steps. On the
first step the object point cloud is segmented from the whole
scene using a spherical geometric modelling of the robot. On
the second step, the object point cloud is tracked using an



(a) Contact estimation object 1 (b) Real tactile sensor object 1 (c) Contact estamimation ob-
ject 2

(d) Real tactile sensor object 2

Fig. 8. Sensibility comparative between contact estimation vs real

ICP approach in order to detect any relevant movement. As
soon as a movement is detected a probability estimator is
used to update the occupancy grid of the object and to detect
the most likely locations where the contact has happened.
This approach is validated through several experiments on
a real scenario where the sensibility of the visual contact
sensor to detect contacts that would be unnoticed by real
sensors is demonstrated. In addition, the ability of the sensor
to detect contacts when the hand is visually occluded is also
demonstrated.

The paper presents a first implementation of a contact sensor
based exclusively on visual information. This has never been
demonstrated to the knowledge of the authors. Regarding the
utility of such a sensor, it is not minded to be used alone, but
in combination with other touch modalities, in order to obtain
a more robust contact detections and, as consequence, a more
reliable and robust manipulation of objects. The experiments
have shown that the visual sensors can provide information
that touch sensors are unable, i.e.: when the robot contacts
light objects, or when the contact happens on not-sensorized
surfaces.

Fianlly, more technically, the methodology can still be

improved. First, methods to speed-up the computations are
required. ICP is specially time-consuming and faster alterna-
tives would be necessary to make the approach work at an
acceptable frame ratio. Another important improvement is to
design schemes to integrate visual and touch modalities of
contact detections, in order to design more robust manipulation
controllers.

Finally, some secondary parts of the algorithm could also be
improved in order to make their use more general. In particular
the segmentation phase in the case that the scene contains
several objects, stacked objects or articulated bodies.
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Learning Continuous Grasp Stability for a Humanoid Robot Hand
Based on Tactile Sensing

J. Schill and J. Laaksonen and M. Przybylski and V. Kyrki and T. Asfour and R. Dillmann

Abstract— Grasp stability estimation with complex robots in
environments with uncertainty is a major research challenge.
Analytical measures such as force closure based grasp quality
metrics are often impractical because tactile sensors are unable
to measure contacts accurately enough especially in soft contact
cases. Recently, an alternative approach of learning the stability
based on examples has been proposed. Current approaches of
stability learning analyze the tactile sensor readings only at the
end of the grasp attempt, which makes them somewhat time
consuming, because the grasp can be stable already earlier.

In this paper, we propose an approach for grasp stability
learning, which estimates the stability continuously during the
grasp attempt. The approach is based on temporal filtering
of a support vector machine classifier output. Experimental
evaluation is performed on an anthropomorphic ARMAR-IIIb.
The results demonstrate that the continuous estimation provides
equal performance to the earlier approaches while reducing the
time to reach a stable grasp significantly. Moreover, the results
demonstrate for the first time that the learning based stability
estimation can be used with a flexible, pneumatically actuated
hand, in contrast to the rigid hands used in earlier works.

I. INTRODUCTION

Grasp stability in analytical sense is well defined and can
be readily computed in simulation where enough data of the
grasp is available, i.e. all contacts between the robotic hand
and the object that is grasped. Additionally, using a force
closure metric for grasp stability, one can compute a grasp
that sufficiently resists outside forces, such as gravity, thus
allowing the robot to manipulate the object, for example by
lifting the object. However, when using real hardware, the
tactile sensor data is imperfect, both in the sense of detecting
contacts and in the sense of determining the actual contact
forces. In some cases the proprioceptive information, i.e.
joint configuration, is also difficult to determine accurately,
thus, causing uncertainty in ascertaining the kinematic con-
figuration of the hand. All these described phenomena pave
a difficult road for computing the grasp stability analytically
with real hands.

In this paper, we focus on learning the grasp stability
instead of analytically solving it. Compared to the analytical
methods, learning requires training data, which needs to be
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collected beforehand. As the training data, we can use any
pertinent data that can be collected from robotic hand, in
our case we use input from all tactile sensors and the hand
finger configuration. It is also important to notice that the raw
sensor data can be used in the learning, for example, there is
no need to know the kinematic configuration of the hand to
compute the true locations of the contacts when analytically
solving the grasp stability. This feature allows grasp stability
to be learned for many different robotic hands with only
minimum changes.

There has been a number of publications on learning
the grasp stability [1], [2]. These approaches evaluate the
stability after the hand finished closing around an object.
We extend the work presented in previous papers, so that
the decision on the grasp stability can be achieved during the
grasping instead of at the end of the grasp. We also demon-
strate that the learning of the grasp stability is possible with
the ARMAR-IIIb hand [3], [4] , a flexible anthropomorphic
hand operating on pneumatics.

The rest of the paper is divided into four sections. Sec-
tion II gives an overview on learning grasp stability as well
as other learning approaches that are grasp and manipulation
related. Section III introduces a theoretical background on
machine learning methods and how they can be applied to the
grasp stability problem. Section IV contains the experiments
made on data collected using the ARMAR-IIIb hand. We
conclude with discussion of the results in Section V.

II. RELATED WORK

Grasp stability analysis by analytical means is a well es-
tablished field. However, to analytically determine the grasp
stability, the kinematic configuration of the hand and the
contacts between the hand and the object must be perfectly
known. Previous studies on this subject are numerous and [5]
gives a detailed review. However, the references are useful
only in cases when conditions described above are true.
When this is the case, it is possible to determine if the grasp
is either force or form closure grasp [6], which ensures the
stability. Compared to this body of work, we wish to learn
the stability from existing data, i.e. the tactile data.

The research on use of tactile and other sensors in a
grasping context has increased in last few years. Felip and
Morales [7] developed a robust grasp primitive, which tries to
find a suitable grasp for an unknown object after a few initial
grasp attempts. However, only finger force sensors were used
in the study.

Apart from using tactile information as a feedback for
low level control [8], tactile sensors can be used to detect or



identify object properties. Jiméneza et al. [9] use the tactile
sensor feedback to determine what kind of a surface the
object has, which is then used to determine a suitable grasp
for an object. Petrovskaya et al. [10] on the other hand use
tactile information to reduce the uncertainty of the object
pose, upon an initial contact with the object. In their work, a
particle filter is used to estimate object’s pose, but the tactile
sensor used to detect contact with the object is not embedded
in the gripper performing the grasping.

Object identification has been studied by Schneider et al.
[11] and Schöpfer et al. [12]. Schneider et al. show that it is
possible to identify an object using tactile sensors on a paral-
lel jaw gripper. The approach is similar to object recognition
from images and the object must be grasped several times
before accurate recognition is achieved. Schöpfer et al. use
a tactile sensor pad fixed to a probe instead of a gripped or
hand. They also study on different temporal features which
can be used to recognize objects. Similar object recognition
systems have been presented in [13], [14].

The approach used and extended here has been published
in [1]. Similar approach was used in [2]. However, in this
paper we show that we can use described methods with a
more complex hand, the ARMAR-IIIb humanoid hand, and
that we can extend the single time instance classifier by
means of filtering.

III. SUPERVISED LEARNING OF GRASP STABILITY

A. Learning Grasp Stability

Our notation of observations follows [1]:
• D = [oi], i = 1, . . . , N denotes a data set with N

observation sequences.
• oi = [xit], t = 1, . . . , Ti is an observation sequence with
Ti samples.

• xit = [f it jit], each sample consists of f , the features
extracted from tactile sensors and j, the joint configu-
ration.

To learn grasp stability, the training data is collected from
series of grasps, noted by the observation sequences oi. Then,
from each observation sequence the last sample, xiTi

, is used
for the training. This captures the time instant on which
the decision of stable or unstable grasp is based on. Both
unstable and stable grasp must be included in the training
data so that sufficient data is available to discern the stable
grasps from the unstable grasps.

We use Support Vector Machine (SVM) [15] to classify
the grasp as either stable or unstable. Compared to force
closure metric from the analytical methods for computing the
grasp stability, the binary classification is not as informative
as the continuous value given by the force closure metric,
however the classification result reflects the stability criteria
in the training data directly. Another benefit of SVM is that
it is computationally efficient, so that it can be used on-line
during grasping.

B. Learning Temporal Changes in Grasp Stability

In [1], the temporal information collected during a grasp
is used in conjunction with a hidden Markov model (HMM)

to decide whether the grasp is stable or not. But for the
method to be able to decide, the grasp must be completed.
The second method presented in [1] was based on the idea
depicted in III-A. We propose to extend the instantaneous
SVM-based method by applying the learned stability model
on-line to each sample x1, . . . , xT we obtain during the
grasp, contrary to the previous approach, where only the final
sample, xT , is is used to determine the stability of the grasp.
This extension allows quicker decision making on the grasp
quality in the case of a stable grasp.

As the method described in III-A does not remember any
of the previous time instances and does not consider the
whole grasp sequence from t = 1, . . . , T , the classification
result over time may oscillate. One pathological example is
shown Figure 1. Through the use of filtering and threshold-
ing, the oscillations can be effectively removed.

(a) (b)

Fig. 1: (a): Each time instance of a stable grasp classified
with a SVM classifier; (b): The classification result filtered
with an exponential filter and thresholded.

We study two different filter types: a mean filter and an
exponential filter. The results of the experiments with the
filters are shown in Section IV. The input for the filters are
the results from the classifier, either 0 or 1. The mean filter
can be defined as a sliding window, with window size w. The
mean of the data in the window is then calculated, and this
result is the output of the filter. Exponential filter is described
by

y(t) = (1− α) · y(t− 1) + α · x(t) . (1)

Equation 1 consists of y(t) and y(t−1), filter output at time
instances t and t−1, of x(t) the binary stability at time t and
of α which a weighting factor. An examples of both filters
are shown in Figure 2 which depicts the same sequence as
in Figure 1.

Introducing the filters requires setting more parameters in
addition to the parameters for SVM. These include w for the
mean filter window width, and α for the exponential filter.
In addition both require the threshold, thr, for the binary
decision of stability. After the threshold has been crossed, the
grasp is deemed stable. Close to optimal parameters can be
found experiementally and we have done that for the datasets
used in this paper.

In addition to the filters, we ran experiments without
using any filters, thus, the output from the classifier is taken



directly. This approach provides a quicker response to stable
grasps but can also misclassify unstable grasps as stable
grasps more frequently than the filter based approach.

(a) (b)

Fig. 2: (a): Filter output of mean filter; (b): Filter output of
exponential filter.

C. Feature Extraction

Each of the tactile sensors on the ARMAR-IIIb platform
produces a tactile image. An example image showing all six
tactile images is shown in Figure 3. This imaging property
of the sensors allows us to use image feature extraction
techniques. In this case we have chosen the image moments
as our feature extractor, which have been shown to perform
well in this task [16]. The hand comprises of two different
sizes of tactile sensors which contain 4x7 or 4x6 tactile
elements or taxels.

Fig. 3: Tactile images from ARMAR-IIIb.

Raw image moments are defined as

mp,q =
∑

x

∑

y

xpyqI(x, y) , (2)

where I(x, y) is the force measured by the taxel. The
moments are computed up to order two, that is (p + q) =
o, o = {0, 1, 2}. These are related to the total pressure, the
mean of the contact area, and the shape of the contact area,
indicated by the variance in x- and y-axes. Moments are
computed for all tactile sensors individually, thus f ∈ R36.

In addition to the tactile images, the joint angle sensors
provide a source of information relevant to the stability of the

grasp. However as the number of fingers and joints is usually
much less than the number taxels (tactile sensing elements)
in tactile sensors, it is reasonable to use the data from the
joints directly. In this case, 8 joint angle sensors are available,
thus j ∈ R8. All feature vectors, xit, were normalized to zero
mean and unit standard deviation.

IV. EXPERIMENTS
A. Hardware Platform

We used the humanoid robot ARMAR-IIIb as a test
platform for the experiments with our stability classifier.
ARMAR-IIIb consists of several kinematic subsystems: The
head, the torso, two arms, two hands, and the platform. The
head has seven degrees of freedom (DoF) and contains four
cameras, i.e. two cameras per eye. The torso has 1 DoF in the
hip, allowing the robot to turn its upper body. Each of the two
7 DoF arms consists of a 3 DoF shoulder, a 2 DoF elbow and
a 2 DoF wrist. At the tool center point (TCP) of each arm a
FRH-4 Hand [17] is mounted. The hands are pneumatically
actuated using fluidic actuators. For the experiments in this
paper, we used ARMAR-IIIb’s right hand, (see Fig. 4), which
is equipped with joint encoders and pressure sensors. This
allows a force position control of each DoF [18]. The hand
has 1 DoF in the palm, and 2 DoF in the thumb, the index
and the middle finger, respectively. Apart from that, there is
1 DoF for combined flexion of the pinky and ring finger.
Furthermore the hand contains 6 tactile sensors from Weiss
Robotics [19]. One tactile sensor is mounted on the distal
phalanges of the thumb, the index and the middle finger,
respectively. Three tactile sensors are mounted at the palm,
in the area between the thumb and the index and middle
fingers. The tactile sensors have a resolution of 4 × 7 taxel
(phalanges) and 4 × 6 taxel (palm). They use a resisitive
working principle to measure the pressure applied to the
sensor. Therefore an array of electrodes is covered with a
layer of conductive foam. When a pressure is applied to the
sensor the resistance between the electrodes decreases, which
is measured by an microcontroller. Further information can
be found in [20], [21], [22].

Fig. 4: ARMAR’s right hand. Tactile sensors are mounted
on the palm and the distal phalanges of the thumb, the index
and the middle finger.



B. Data Collection

In order to provide sensor input for the training and the
validation of the classifier, we needed to treat two distinct
cases:

• Collect data for successful, stable grasps.
• Collect data for unstable grasps.

The second case also includes data for the cases where the
hand cannot close completely or not at all,due to obstacles,
and cases where the hand closes emptily, i.e. it does not
experience contact to any object at all. Yet in all these
cases one gets sensor readings that have to be considered
for training and validating the classifier. We collected data
from the following two types of sensors:

• Tactile sensor data
• Joint angle data of the hand joints

Fig. 5: The basket with our test objects.

For data collection, we executed grasps on a set of household
items located in a box (see Fig. 5). The configuration of
the objects in the box was modified between the individual
test runs in order to allow the hand to reach a large variety
of different end configurations. We used the following data
collection procecure: First, we placed the box with the
objects in front of the robot. Then we moved ARMAR’s
right hand to a pre-grasp pose near the target object. Different
possible pre-grasp poses included the following:

• Grasps from the top where the hand would move
vertically down.

• Grasps from the top, but with tilted approach directions.
• Grasps from the side.
• Varying roll angles of the hand with respect to the

approach direction, for each of the three cases above.
After moving the hand to the pre-grasp pose, we started the
data recording which means we began to read and store the
tactile sensor data and joint angle data once during every
pass of ARMAR’s control loop. All data were labeled with a
time stamp. In the next step, we moved the hand towards the
object until the tactile sensors in the palm reported contact
with the object. Then we closed the hand and waited until the
pressure on the hand’s actuator stabilized and would not grow
anymore. The finger forces are set to the maximum to create
a strong tactile image on the sensors. Due to the compliant

TABLE I: Confusion matrix for classification rates of grasps
when classifying only the last sample, for datasets D1 and
D2.

D1 P. Stab. P. Unstab. D2 P. Stab. P. Unstab.
Stable 0.79 0.21 Stable 0.72 0.28

Unstable 0.28 0.72 Unstable 0.26 0.74

characteristic of the hand, the hand adapts to the shape of
the object. In this context we point out that we considered
only three-fingered grasps, i.e. we only closed the thumb,
the index and the middle finger during grasping. We did not
close the ring and small finger, as they are not equipped
with tactile sensors and thus they would not contribute to
the tactile sensor input of the classifier. After closing the
hand, we stopped the recording of the sensor data. Finally, we
tried to lift the object by moving ARMAR’s hand up. Then,
we reported the result of the experiment, i.e. whether the
grasp was successful or not. We repeated the above procedure
until enough samples had been collected. We collected two
separate sets, D1 and D2. D1 contained 71 stable grasps
and 94 unstable grasps. D2 comprised of 82 stable grasps
and 76 unstable grasps. By collecting two separate sets with
different grasps, we can get an idea of the generalization
capability of the classifier which was tested in the validation
tests. Figures 6 and 7 show some successful grasps from the
validation tests. The left column shows the situation after
closing the hand. The right column shows the grasps after
lifting the respective object.

C. Experimental Results

We have divided the experiments into two parts. The first
part consists of synthetic tests, which presents the reliability
and accuracy of the classification of the grasp stability and
comparisons between different filter types. The second part
is validation test, using a learned stability model with the
real ARMAR-IIIb platform.

1) Synthetic tests: In the synthetic tests, we used both
datasets D1 and D2. For most experiments, confusion matrix
is presented, showing how the classifier performs in terms
of true positives (stable, predicted stable), false positives
(unstable, p. stab.), true negatives (unstable, p. unstab.) and
false negatives (stable, p. unstab.).

In Table I, the SVM was trained with data from corre-
sponding dataset, only the last sample from each observation
sequence was classified, to enable comparison to earlier
works. The reported results are averages from 10-fold cross
validation. The results show that the performance across
datasets is similar. These results can be compared with
reported results in [1], [2], showing that the ARMAR-IIIb
hardware is able to reach similar performance as the Schunk
Dextrous Hand (SDH) or the Barrett hand in this task.

Contrary to results in Table I, in Tables II, III and IV
the whole observation sequence was classified using the
methodology presented in Section III-B. In Table II, the mean
filter was used with window width of 25 and with threshold



Fig. 6: Some example grasps. Left column: situation imme-
diately after closing the hand. Right column: After lifting the
object.

of 0.61, Table III shows result with an exponential filter with
α = 0.056 and threshold of 0.61. These parameter values
were searched for using grid search and produced the best
results for both datasets. Results in Table IV were obtained
without using a filter.

Overall, when using a filter with the classification, the
overall classification rate is similar to the last sample classifi-
cation, but classification rate of the unstable grasps is better.
This can be explained through the use of the filter which
filters out the effect of the last sample, thus, leading to a
better classification result. In the case where no filters are
used, in Table IV, the stable grasps are predicted well, but
this translates also to falsely predicting that unstable grasps
are stable. On average, the filter based classification is better
in predicting the stable and unstable grasps across the two
datasets.

One interesting possibility that comes with the method
described in Section III-B is that the grasp sequence can be

Fig. 7: Some example grasps. Left column: situation imme-
diately after closing the hand. Right column: After lifting the
object.

TABLE II: Confusion matrices for classification rates of
grasps using mean filter (w = 25, thr = 0.61).

D1 P. Stab. P. Unstab. D2 P. Stab. P. Unstab.
Stable 0.77 0.23 Stable 0.74 0.26

Unstable 0.24 0.76 Unstable 0.16 0.84

TABLE III: Confusion matrices for classification rates of
grasps using exponential filter (α = 0.056, thr = 0.61).

D1 P. Stab. P. Unstab. D2 P. Stab. P. Unstab.
Stable 0.79 0.21 Stable 0.73 0.27

Unstable 0.23 0.77 Unstable 0.16 0.84

TABLE IV: Confusion matrices for classification rates of
grasps without a filter.

D1 P. Stab. P. Unstab. D2 P. Stab. P. Unstab.
Stable 0.90 0.10 Stable 0.87 0.13

Unstable 0.46 0.54 Unstable 0.21 0.79



TABLE V: Average percentage of time steps to reach de-
cision on stable grasp compared to full grasp observation
sequence.

D1 Mean filt. Exp. filt. No filt.
Time 68.6% 66.9% 59.6%

TABLE VI: Confusion matrices for validation tests.

Mean filt. P. Stable P. Unstable
Stable 0.77 0.23

Unstable 0.39 0.61
Exp. filt. P. Stable P. Unstable

Stable 0.76 0.24
Unstable 0.38 0.62
No filter P. Stable P. Unstable
Stable 0.90 0.10

Unstable 0.46 0.54

stopped when the classifier decides that a stable grasp has
been achieved. Table V presents the results with different
filter types. For example, if a whole grasp sequence is 1000
time steps long, the classification using a mean filter can
stop the grasp at time step 686 on average, if the grasp is a
stable grasp. Without a filter, the average time goes down as
expected but with a cost of overall classification rate as seen
in Table IV.

2) Validation tests: To mimic a real world usage scenario,
dataset D1 was used to train the SVM classifier. Then
using the trained classifier, dataset D2 was classified. Each
observation sequence in the dataset was classified with mean
and exponential filters and without filtering. The results are
show in Table VI. Compared to results in Table I, the number
of false positives rises. This effect might be due to tactile
sensor hysteresis, i.e. the output from the sensors changes
between the collection of datasets which in turn means that
dataset D1 does not represent the data in D2 and leads to
worse results.

V. CONCLUSIONS

In this paper, we focused on learning grasp stability from
labeled data, similar to approaches in [1], [2]. We utilized a
well-known classifier, SVM, and trained it using grasp data
acquired from the sensors of the humanoid hand of ARMAR-
IIIb. We showed that we are able to reach similar results
with ARMAR-IIIb as previously reported on other types of
hardware, such as Schunk Dextrous Hand or Barrett hand.
We also extended the SVM based grasp stability classifier
with use of filters to whole grasp sequence instead of just
the end of the grasp sequence. This allows faster decisions
for stable grasps.
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