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Chapter 1

Executive Summary

This report presents the work of year four in WP4. WP4 is concerned with modelling perceipts and
contextual information of objects in relation to affordances, actions and task ocntext. With grasp context
we refer to the information relevant to the grasp, which at its core includes the grasp points on the objects
but also the relationship to the complete object, the hand, the task, and the attention on the target object.
The overall objective is to perceive grasping points on unknown objects by the end of the project. This is
planned to be shown in two set-ups. The class-based approach infers object grasp information via object
class recognition and a pose alignment. The part-based approach focuses on potential grasp points and
locally estimates shape of a part to infer grasp points.

This work relates to the tasks

• [Task 4.2] - Perceiving task relations and affordances The objective is to exploit the set of
features extracted in Task 4.1 to obtain a set of features relevant to the grasping of objects and to
learn the feature relations to the potential grasping behaviours and types.

• [Task 4.3] - Linking structure, affordance, action and task The objective is to provide the
necessary input to the grasping ontology developed in WP2, which represents knowledge about the
task-relations learned. It contains relations and constraints to (1) the object and its properties
such as size, shape and weight, to (2) perceived affordances (potentialities for actions) and grasping
points, to (3) the task that is executed, e.g., grasping for pick up or to move as cup, and to (4) the
context or surrounding of relevance. It is investigated how such a link can be efficiently established
and used to obtain task-based grasping of object categories and to achieve extendibility for grasping
new objects.

The work in this deliverable relates to the following final year Milestones (project month 48):

• [Milestone 10] Linking structure, affordances, actions and tasks and a first evaluation of repre-
sentations defined by the ontology.

The advance in the last year focused on attention (Section 1.1), to early find potential grasp point, on
locally establishing graspable part shapes (Section 1.2), and on learning object categories to generalise
grasps to new objects in relation to known object classes (Section 1.3). Finally, we show with task-based
grasping how this milestone is reached with an integrated demo on ARMAR (Section 1.4).

1.1 Attention Points for Grasping

When presented with an everyday scene, robots so for are not able to segment the scene into meaningful
objects. Segmentation itself works, as shown in the last years, only for separated objects and using a
planar support surface assumption.

To be able to grasp an object in a cluttered scene or from a pile or basket (task for year 4), we adopt the
method to first create attention points, which may then be used as starting points for grasping. What
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we essentially want is the system to segment objects that can be picked up, or, if that is not possible due
to clutter or occlusion, we want to at least detect good initial grasp points. These tend to be located
somewhere on parts sticking out from the scene. This leads to the problem of identifying good seed
points. Inspired by pre-attentive vision theory recent research has suggested the use of attention points,
which can be extracted from saliency maps.

While so far primarily 2D cues have been investigated, we exploit stereo of RGB-D images to include 3D
pre-attentive cues as also known to be used in humans. We then propose a learning-based approach that
extends to top-down search tasks. Using the Microsoft Kinect depth sensor sensor we have created an
RGB-D image database, consisting of different types of table scenes that are challenging for segmentation,
owing to the presence of fully and partially occluded objects, multi-coloured objects etc. Labelling was
done by one person, whose task was to segment objects in the scenes as precisely as possible. The main
novelty of the work lies in the understanding how and what pre-attentive cues shall be combined for
calculating attention points for segmentation of graspable objects. This work has been published and is
presented in Appendix [A] and is used to obtain seed points for potential grasping in the Demo ”Empty
the Basket” and for ”Adaptive Grasping”, where the seed point is used for further purely tactile grasping.

Figure 1.1: Pairs of examples scenes and corresponding saliency maps: a)/e), b)/f), c)/g), and d)/h).
Images e)-h) show examples of saliency maps based on 2D cues from [Itti, 1998] and on the 3D cues
relative surface orientation, occluded edges and surface height (Appendix [A]).

1.2 Part-based Grasping

Results in the first three years [Tasks 4.1 and 4.2] showed that local image information can be very
well used to obtain shape information about objects. Based on this, a novel method for learning grasp
points in relation to object parts is investigated. The idea is to link local object part shape with the
affordances and tasks formulated in WP2. This enables to break down the detection of new objects to
object parts, which in themselves typically indicate where to grasp an object. We attempt to extend
the scope of affordance features to define Conceptual Equivalence Classes and to recognize these classes
leading to scalable unit (part/ part assembly/ object) recognition system. The advantage is that grasp
points from related object classes can then be used for grasping of new objects. A further advantage is
that parts and in partiuclar part relations can be used to describe not only grasp affordances but a wide
range of affordances, e.g., support, containment, 2D or 3D rolling. We made the affordance features and
descriptions widely available with the idea to initiate discussion on how to model affordances beyond the
grasping affordance. This work has been published and will be presented in Appendix [B].

The work is combined with the method to obtain attention points as basis for the live demo ”Empty
the basket”. From the attention points an over segmentation is achieved that is used to locally fit parts
and evaluate which parts best describe the scene. The parts are parametrised to yield grasp hypotheses,
which are then selected in grasp planning.
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1.3 Class-based Grasping

The idea is that from the knowledge about the object class it is possible to derive graasp hypothesis.
Hence, both KTH and TUW investigated class-based grasping approaches. Furthermore, if the robot
is given a specific task, the grasp hypothesis can be selected appropriately. This has been done in a
combined demo at KIT on ARMAR (Section 1.4).

The work at TUW looked at the problem on how to learn many object classes efficiently. To this end the
approach based on learning from 3D models available on the internet has been continued and it could
be shown that the learning is highly efficient while still yielding state-of-the-art detection performance
(Appendix [C]). The approach is based on feature histograms that detect the class and best view. However,
for grasps the exact object pose and grasp hypotheses are necessary. This has been develop with a pose
alignment approach reported in Appendix [D].

As next step we extended the learning from 3D internet models to 200 object classes and made the
approach, data and procedure to evaluate object detection freely available on the internet under http://3d-
net.org/. Appendix [E] presents the details. Furthermore, we then exploit the pose alignment to show
that specific affordances are typically linked to object pose in the scene and can now be superimposed onto
novel object once class is detected. Appendix [F] presents the results of detecting available affordances
(are present to the robot) and hidden affordances (require a change of object pose to become available)
of object in the scene. The Figure below gives an example of a table scene with a few objects and the
affordances detected. This approach has also been used to enable pose related task learning in WP2 and
is used for the task-based grasp demo.

Figure 1.2: Examples of object classification (left) and of pose estimation for determining possible affor-
dances, where a hidden affordance requires a pose change of the object.

Complementary to the approach based on depth data, at KTH we addressed the problem of grasp
generation and transfer between objects that share similar geometric properties and functionality. The
system models the dependencies between the tasks, actions and objects taking into account the constraints
posed by each. For example, when pouring from a cup it should be grasped by its handle and not from
the top. The system is built upon an (i) active scene segmentation module [Bjorkman’10], (ii) the object
categorization system using integration of 2D and 3D cues, and (iii) probabilistic grasp reasoning system
[Song’11]. First, an object hypothesis is generated, categorized and then used as the input to a grasp
prediction and transfer system. During the experimental evaluation, we compared individual 2D and
3D categorization approaches with the integrated 2D-3D Object Categorisation system for 14 object
categories, and demonstrated its the usefulness of the categorization in task-based grasping and grasp
transfer in real settings. Results of this work will be published in IEEE International Conference on
Robotics and Automation (ICRA) in May, 2012, see Appendix G. The approaches have been integrated
in the task-based grasp demo.

1.4 Task-based grasping

We implemented a demo application in a humanoid robot ARMAR in the Karlsruhe Institute of Tech-
nology, Germany in which an object is grasped depending on its category and beforehand specified task.
An object is first segmented from the scene using an active segmentation module [Bjorkman’10] and then
classified to one of the object categories using the 2D Object Categorization System (developed in KTH)
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integrated with the 3D Object Categorization System (developed in TUW). Finally, a robot applies a
grasp to an object that is specific to an object category and predefined task. Performance of the inte-
grated systems was demonstrated in a table top scenario for three object categories (mug, bottle, toy-car)
assuming arbitrary pose of an object. Results of this work are recorded in the video: ”Task-based Grasp
Adaptation” (http://www.youtube.com/watch?v=rXNwBurCnTc).
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Learning What Matters: Combining
Probabilistic Models of 2D and 3D Saliency Cues

Ekaterina Potapova, Michael Zillich and Markus Vincze ?
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Abstract. In this paper we address the problem of obtaining mean-
ingful saliency measures that tie in coherently with other methods and
modalities within larger robotic systems. We learn probabilistic mod-
els of various saliency cues from labeled training data and fuse these
into probability maps, which while appearing to be qualitatively similar
to traditional saliency maps, represent actual probabilities of detecting
salient features. We show that these maps are better suited to pick up
task-relevant structures in robotic applications. Moreover, having true
probabilities rather than arbitrarily scaled saliency measures allows for
deeper, semantically meaningful integration with other parts of the over-
all system.

Keywords: 3D saliency cues, cue integration, probabilistic learning

1 Introduction

Vision in complex real world scenarios, especially unconstrained segmentation
of objects, is a notoriously difficult problem and robotics has realised the impor-
tance of attention for robotic systems [23]. Vision in a robot is part of a larger
system, which has specific tasks to solve. These tasks allow to derive constraints
for the vision system to keep vision problems tractable. These constraints come
in the form of attention operators that highlight those parts of the scene most
promising for the task at hand.

The range of robotic tasks we consider for this paper includes manipulation,
grasping and tracking. We therefore assume objects to appear in various locations
and configurations, partly occluded, surrounded by clutter, but typically located
on a supporting surface, such as a table or shelf.

What we essentially want is the system to segment objects that can be picked
up, or if that is not possible due to clutter or occlusion, we want to at least detect
good initial grasp points. These tend to be located somewhere on parts sticking

? The research leading to these results has received funding from the European
Community’s Seventh Framework Programme under grant agreement IST-FP7-IP-
215821 GRASP 2008-2012 and from the Austrian Science Fund (FWF) under
project TRP 139-N23, InSitu.
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out from the scene. Pre-grasp manipulation of such parts might free the object
from the pile.

Scene segmentation is one of the most researched topics in computer vision,
and many different approaches have been proposed [3, 4, 17], but no generic so-
lution suitable for every task exists. Recent state-of-the-art research in this field
suggests the use of seed points to guide the segmentation process [18, 14, 22]. This
leads to the problem of identifying good seed points. Inspired by pre-attentive
vision theory recent research has suggested the use of attention points, which can
be extracted from saliency maps, using for example a winner-takes-all (WTA)
algorithm [15].

Many well-known and widely acknowledged models for computation of saliency
maps, such as [10, 13, 12, 11, 1] use only 2D information about the scene. Itti-
Koch-Niebur (IKN) [13] is a generic cue inspired by physiological models, and
has proven its efficiency in 2D images. Fig. 1,e) shows the saliency map com-
puted by the IKN cue for the image in Fig. 1,a). Several recent extensions to
3D take advantage of the increased availability of 3D sensing equipment, such
as inexpensive laser or time-of-flight sensors and RGB-D cameras [9, 16, 21, 2].

However, classical saliency cues indicate only outliers in the scene, while we
require regions with specific task-relevant properties to stand out. One can see
this problem as the top-down attention task described in [20, 8], while our current
goal is to build a bottom-up attention system tuned to identifying particular
properties of the visual search space. Finally, given that there is a number of
intuitively plausible saliency cues (2D and 3D) there is no model for combining
these cues in a principled manner with respect to a given task, without using
top-down specific features of required objects or parts of visual space.

We address the above issues with a learning based approach, which can be
extended to top-down search tasks in the future. Using the Microsoft Kinect
depth sensor sensor we have created an RGB-D image database, consisting of
different types of table scenes which are challenging for segmentation, owing to
the presence of fully and partially occluded objects, multi-colored objects etc.
The database consists of four types of scenes: a) isolated free-standing objects
(IFSO), b) occluded objects (OO), c) objects placed in a box (BO) and d) a
box containing objects and surrounded by other objects (BOSO). For each type
of scenes multiple configurations of objects are presented. In total there are 86
RGB-D images in the database. Task regions were hand-labeled by outlining
them with a polygon. In our problem task relevant regions are whole objects.
Labeling was done by one person, whose task was to segment objects in the
scenes as precisely as possible. For BOSO objects we are interested only in
objects situated directly in the box, that is why objects around the box were
not labeled at all. Fig. 1, a)-d) show examples of labeled images.

The main novelty of this paper lies in the area of understanding how and what
preattentive cues should be combined in a specific robotics task of calculating
attention points for segmentation of graspable objects.
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Fig. 1. Four pairs of images and saliency maps (a) and e), b) and f), c) and g), d) and
h)). Images a)-d) show examples of images along with labeling for isolated free-standing
objects, occluded objects, objects placed in a box and a box containing objects and
surrounded by other objects respectively. Images e)-h) show examples of saliency maps
based on IKN cue, RSO cue, OE cue and SH cue respectively.

2 Investigated Cues

Inspired by findings from preattentive human vision [6, 5, 19] we investigated
several 3D cues, e.g. based on surface height (SH), relative surface orientation
(RSO) and occluded edges (OE) and combined them with cues obtained from
2D information (color, orientation and intensity). As input we have a point cloud
P = {pij} of the table scene, arranged as a rectangular array. I.e. for each image
pixel i, j we have a 3D point pij together with its RGB color value.

2.1 Surface Height Cue

For the task of picking up objects in a cluttered scene, the simplest way to
start grasping is first to pick up all objects that stick out from the clutter.
These objects are good candidates for initial grasping attempts, and they should
therefore be considered more interesting than the rest. These objects can be
pointed out by attention points derived from the surface height preattentive
cue, which is based on a height map of the scene. Fig. 1,h) shows the saliency
map based on the SH cue for the image in Fig. 1,d).

To calculate height we need to determine a reference, i.e. the supporting
plane on which objects rest (e.g. a table). We use RANSAC [7] to determine
the plane coefficients Ax + By + Cz + D = 0. Note that we can assume from
the task context of grasping objects from a table that such a single supporting
plance exists. For every point pij its distance to the supporting plane d(i, j)
is calculated. We set dmax to be the distance between the ground plane and
the most remote point in the point cloud. Values of the SH cue are calculated
according to:

SH(i, j) = f(d(i, j)) (1)
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We furthermore scale height values non-linearly according to f(x) = ax2 to
obtain more pronounced salient regions, where a is chosen such that f(dmax) = 1

2.2 Relative Surface Orientation Cue

The surfaces of objects parallel to the supporting plane often present good can-
didates for first grasping positions, because they usually indicate top-surfaces
of simple objects that can be easily grasped. One of our 3D preattentive cues
aims to identify top-surfaces based on surface orientation. We calculate relative
orientation between local surface normals and supporting plane normal. Fig. 1,f)
shows the saliency map based on the RSO cue for the image in Fig. 1,b).

With n the normal vector of the supporting plane and nij the local surface
normal vector determined from a plane fitted to the neighborhood of pij , values
of the RSO cue are calculated according to:

RSO(i, j) = |nij · n| (2)

2.3 Occluded Edges Cue

The success of the segmentation based on seed points depends a lot on the
position of the seed point. The more central the location of the seed point with
respect to the object, the higher is the probability that the object will be properly
segmented. To this end we designed a cue based on occluded edges. The cue is
derived from the depth map of the scene. Fig. 1,g) shows an example of the
saliency map based on the OE cue for the image in Fig. 1,c). Using the Canny
operator an edge map EM is calculated from the depth map. From every point
p(i0, j0) that belongs to one of the edges we create a potential field P (·) according
to:

P (d) = a
1

d
− b (3)

where d is the distance from the current point p(i, j) to the initial edge point
p(i0, j0) whose influence we are calculating, a is set to 0.5 and b is set to 0.01
in our experiments. The influence is expanded only in directions of decreasing
values of the depth map, i.e. the object side of the occluding edge. The value of
the point p(i, j) in the OE map is equal to:

OE(i, j) =
∑

∀(i0,j0):EM(i0,j0)≥0

P (
√

(i− i0)2 + (j − j0)2) (4)

Finally, OE map is linearly normalized to the range [0,1].

2.4 Cue Combination

We investigated two approaches for cue combination to obtain a final saliency
map SM . The first approach is similar to cue combination used in IKN method:
the final saliency map SMS is equal to the sum of individual cues:

SMS(i, j) = w1IKN(i, j) + w2SH(i, j) + w3RSO(i, j) + w4OE(i, j), (5)
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where
∑

wi = 1 and we set wi = 0.25.
The second combination method uses multiplication instead of summation,

so that we obtain SMM as multiplication of individual cues:

SMM (i, j) = IKN(i, j)SH(i, j)RSO(i, j)OE(i, j). (6)

Fig. 6 e)-h) and Fig. 6 m)-p) show examples of SMS and SMM combination
types for different types of the scenes.

3 Probabilistic Learning

Combining cues according to Eq. 5 or 6 does not take into account the relative
importance of cues. One way to address this is to learn weights for individual
cues. Another possibility is to directly learn probabilistic models of cues and
then combine these. We used a labeled database to train a probabilistic model
of relevance for each saliency cue. For each cue ci we learned the probability of
observing that for given cue a pixel was marked as task relevant salient (s = true)
- situated inside labeled polygons, or non-salient (s = false) - situated outside
labeled polygons.

p(ci | s = true)

p(ci | s = false)
(7)

We estimated parameters for normal distributions for every type of cue sep-
arately and for two types of cue combination: addition and multiplication. Note
that our labels essentially mark whole objects, with parts of them being salient
(different parts for different cues) and other parts not salient, i.e. we use generic
labels, rather than labeling for each cue individually. But this means that esti-
mating the above probabilities directly from the labeled images would essentially
learn that inside a region labeled as salient, all sorts of saliency values can ap-
pear. But we know that inside labeled regions we are only interested in what
makes part of that region salient, not the fact that not all of it is salient. To this
end, during estimation of the normal distribution, we weight pixels with saliency
I according to w(I) = I2. Note that this measure would not be necessary with
marked regions, precisely outlining salient regions for each cue individually. We
chose this method however, because we want one set of generic labels, applicable
to various different cues, picking up saliency somewhere inside those regions.

Fig. 2 shows estimated normal distributions of saliency values (in the range
[0, 1]) for the IKN cue constructed for occluded objects scenes and for the RSO
cue constructed for a box with objects surrounded by other objects (scenes (a)
and b) respectively). We can clearly see that distributions are well separated,
allowing distinction of salient from non-salient regions. Note that the choice of
a normal distribution is strictly speaking not correct, as values are truncated to
the interval [0, 1]. Further work will investigate the use of a truncated normal
distribution or beta distribution on [0, 1].
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Fig. 2. Normal distribution of saliency values inside and outside labeled regions: a) for
IKN cue for occluded objects scenes, b) for RSO cue for a box with objects surrounded
by other objects scenes

Following Bayes rule we can then infer the posterior probability of saliency as

p(s | ci) =
p(ci | s) p(s)

p(ci)

=
p(ci | s) p(s)∑

k∈{t,f} p(ci | s = k)

(8)

with p(s) being the prior probability of saliency. This could be obtained from
top level context information, but is simply assumed 1 here, as we are more
interested in the relative differences between cues.

Fig. 3 a)-d) shows the posterior probabilities of salient values for different
cues and combinations of cues for different types of scenes. The smaller slope of
the IKN as well as OE cues over all types of images indicates that for our type
of scenes they are less distinctive than the others. This means that these cues
cannot precisely distinguish regions belonging to different objects.

Based on evaluated parameters of the normal distributions, posterior prob-
ability images were built for a validation set. The relative sizes of training set
and test set were 0.8:0.2.

Fig. 4 shows examples of posterior probability images for different types
of cues and cue combinations for the image shown in Fig. 1 d). For an ideal
probabilistic image regions of different objects should have the highest saliency
values (in our case 1) and be separated from each other. As we can see from
Fig. 4 among individual cues RH and RSO cues show the best performance, while
combination by multiplication performs better than combination by summation.

As can be seen from the Fig. 4 the IKN cue for such complex scenes assigns
high probability values to areas, which do not belong to any object. This is
because IKN does not take into consideration 3D spatial positions of the objects,
and thus cannot distinguish objects with e.g. similar color. Probability images
give us insight into how cues can be combined in terms of top-down attention
for a specific task of segmentation for grasping.
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Fig. 3. Probability of salient regions being situated inside labeled regions for different
types of scenes: a) isolated free–standing objects b) occluded objects c) objects placed
in a box, and d) a box containing objects and surrounded by other objects for different
individual cues and cue combinations (for all plots probability via salient value).

4 Evaluation and Results

To evaluate individual cues as well as the cue combinations, we calculated the
ratio of first five WTA [15] attention points from the saliency map being situated
inside labeled regions of a hold-out set of training images. Averaged results are
presented in Fig. 5. Results indicate that especially for complicated scenes with
occluded objects 3D saliency cues based on surface height and relative surface
orientation perform better than simple 2D cues. Furthermore the cue based on
occluded edges did not prove to be a useful cue for our tasks.

Evaluation results go along with distributions obtained from probabilistic
learning, while there is still an open question what cue combination is the best
for the given task and more experiments on that should be provided.

Fig. 6 shows examples of images with first five attention points indicated in
blue color and corresponding saliency maps.
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Fig. 4. Posterior probability images for image shown in Fig. 1 d) for a) IKN cue, b)
SH cue, c) RSO cue, d) OE cue, e) SMS cue and f) SMM cue.

5 Conclusion and Future Work

In this paper we investigated the use of 3D cues to obtain attention points that
can be used as seed points for segmentation of objects for robotic grasping tasks.
We implemented three 3D cues to compete against the standard IKN model
[13]. Scenes with growing complexity (isolated free-standing objects, occluded
objects, objects in a box, and a box containing objects and surrounded by other
objects) were evaluated against each cue and two types of cue combination –
summation and multiplication. We furthermore estimated probabilistic models
over the whole set of images for every type of cue. We could show that height and
relative surface orientation cues considerably improve performance in calculating
attention points on potential objects for grasping over the standard IKN model
[13]. In the most complex cases the combination of both 3D cues gives clearly the
best results. This indicates that 3D cues deserve more attention when moving
out into the real world with robots.

Our future work will lie in the area of implementing and evaluating more
types of 3D preattentive cues and using the results in actual grasping scenarios.
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3D Point Cloud Parametrization for Cognitive Grasping    

Karthik Mahesh Varadarajan and Markus Vincze 

 

Abstract— Grasping by Components (GBC) is a very 

important component of any scalable and holistic grasping 
system that abstracts point cloud object data to work with 

arbitrary shapes with no apriori data. Superquadric 
representation of point cloud data is a suitable parametric 

method for representing and manipulating point cloud data. 
Most Superquadrics based grasp hypotheses generation methods 
perform the step of classifying the parametric shapes into one of 

different simple shapes with apriori established grasp 
hypotheses. Such a method is suitable for simple scenarios. But 

for a holistic and scalable grasping system, direct grasp 
hypothesis generation from Superquadric representation is 
crucial. In this paper, we present an algorithm to directly 

estimate grasp points and approach vectors from Superquadric 
parameters. We also present results for a number of complex 

Superquadric shapes and show that the results are in line with 
grasp hypotheses conventionally generated by humans. 

Keywords- Superquadrics, Grasp Hypotheses, Grasp Points, 
Approach Vectors, Dexterous Manipulation 

I.  INTRODUCTION 

The Grasping by Components (GBC) paradigm, first 

presented in [7] is a very important component of any scalable 

and holistic grasping system that abstracts point cloud object 

data to work with arbitrary shapes with no apriori data. In [5], 

we present a scalable object segmentation and parametric 

representation system for grasping. The framework for the 

system is shown in figure 1. This model uses Superquadrics for 

parametric representation of object 3D point cloud data. Most 

Superquadrics based grasp hypotheses generation methods 

perform the step of classifying the parametric shapes into one 

of different simple shapes with apriori established grasp 

hypotheses [1, 2]. These methods are suitable only for simple 
scenarios. But for a holistic and scalable grasping system, such 

as the one presented in [5], direct grasp hypothesis generation 

from Superquadric representation is crucial. In this paper, we 

present an algorithm to directly estimate grasp points and 

approach vectors from Superquadric parameters, extending our 

object segmentation and representation system presented in [5]. 

We also present results for a number of complex Superquadric 

shapes and show that the results are in line with grasp 

hypotheses conventionally generated by humans. 

 

II. ALGORITHM 

A. Parametric Superquadric Representation of 3D Object 

Parts 

Superquadrics serve as highly efficient generic geometric 

primitives in order to obtain grasp configurations for parts/ 

objects with no a-priori model knowledge. Superquadrics can 

model superellipsoids as well as supertoroids [1, 2]. Most 

typical symmetrical 3D geometries – such as cubes, cones, 

cylinders, spheres, cuboids etc. can be modeled using 
superquadrics. However, super-quadrics are not very efficient 

in modeling concavities. Hence, we restrict the parameter 

values of the superquadric fitting process to only convex 

structures. Noise and sparsity of the 3D point cloud generated 

can be serious issues in the fitting process. In our framework 

presented in [5], this issue is resolved in the range pre-

processing step. The selected data points are then resampled 

for use with the superquadric fitting. The convergence rate of 

the superquadric fitting depends on the minimality of the data 

size. Furthermore, it is necessary to have a uniform sampling 

rate in the 3D space of the object. However, the number of 

data points on surfaces that are tangential to the camera 
viewpoint is typically very low. In order to alleviate these 

issues, a content adaptive point-cloud importance resampling 

based on curvature in depth has been used (with sampling 

rates varying from low to high towards the edges of parts). 

Superquadrics can be represented by the following implicit 

equation: 

Figure 1. Grasp Synthesis Pipeline (Src: [5]) 
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where ��  and ��  are squareness parameters and define the 

transition from a smooth curvature (as in the case of a sphere) 

to sharp edges (as in the case of a cuboid); ��, ��, ��define the 

scale of the superquadric along the x, y, z dimensions. The 

fitting of the superquadric is based on the error metric – the 

inside-outside function (F) that evaluates whether a point is 

inside or outside or on the surface of the superquadric. The 

error metric is conventionally made independent of �� , the 
shape of the superquadric in order to obtain rapid 

convergence. 
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Furthermore, in order to normalize the convergence rates 

and directions, the scale factors ������ are introduced in the 

error metric, resulting in the fitting function, ����, �, �� �	������������, �, �� � 	1� 
The final error metric to be minimized for the superquadric 

fitting is given by 

min !"�#�#�#������$ , �$ , �$; #�, #� , . . . . , #��� � 	1�'�(
$)�  

where, #$ are the parameters of the superquadric. 

Superquadric based 3D point cloud data approximation can be 

extremely efficient in the identification of stable grasp points. 

This enables a continuous space parameterization of objects in 

the scene. These parameters will form the feature vectors for 

the classification of geometric primitives that serve as discrete 

space parameterizations. The superquadrics fitting process is 

accomplished using a Particle Swarm Optimization (PSO) 

operating on a constrained superquadric equation 
parameterized as size variables, squareness parameters, 

coordinate transformation and rotation, tapering and bending 

parameters - a total of 15 parameters. For most practical 

scenes, it was sufficient to carry out the fitting process using 

only 11 parameters, by excluding the bending and tapering 

forms. Fitting of super-quadrics (based on 15/11 parameters) 

to pruned 3D data is a relatively easier task due to quantitative 

nature of the representation. The suitability of initial 

conditions is very important for rapid convergence. 

B. Grasp Points Generation for Simple Shape Primitives 

The final step in the pipeline is the generation of grasp 

points. For a given embodiment, the best set of grasp points 

for simple geometric primitives is well established (for eg. 

[3]). For the case of superquadric structures that do not fit into 

one of the shape descriptions, we use the closest match. For a 

two finger Otto Bock hand, the following grasping schema is 

defined: 

 

Cubes/ Cuboids: Cylinder pregrasp shape such that the two 

fingers contact opposite faces. The palm should be parallel to 

the face orthogonal to the two opposing faces. 

Spheres: Spherical pregrasp shape with the palm approach 

vector passing through the center of the sphere. 

Cylinders/Cones: Based on the initial pose and size of the 

cylinder, it can be grasped from the side, or from either end. 

(a) Side Grasp: Cylindrical pregrasp with the approach 

vector perpendicular to the side surface.  
(b) End Grasp: Spherical pregrasp shape with approach 

vector perpendicular to end face.  

For the case of cones, depending upon the size of the cone, 

an end grasp may be more stable. 

 
Additional parameters such as number of parallel planes, 

divisions of 360 degree, grasp rotations and 180 degree 
rotations [3] together with constraints on time and grasp 
accuracy or learning of grasping modes from knowledge bases 
[4] can be used to decide the grasping points. 

 

 
 

 

 
Figure 2. Input image, depth map, generated Superquadrics 

and grasp points based on classification 

C. Grasp Points Generation for Complex Shape Primitives  
 

For the case of complex Superquadric shapes, it is difficult 

to classify the shapes into one of different types with pre-

established grasp points and approach vectors. In this case, it 

is necessary to generate grasp points from the equation of the 

Superquadric directly. In our framework, we employ the 

following approach for generation of grasp points from the 

superquadric equation. 
If the value of the tapering parameter is non-zero, the 

global extrema (minima) for the tapering function is found. 

Note that, unlike the standard Superquadric equation, which 

supports only linear taper, it is possible to apply this method 

for non-linear taper, such as in the case of the equation 

representing the shape of an hour-glass. This minima is chosen 

as the first dimension and the location of the minima as the 

coordinate of contact in the direction of the first dimension. 



This minima is then checked for stability. In other words, the 

minima should have a saddle on either side. In other words, 

the value of the tapering function should be have a numeric 

value on either side of the minima (i.e. the minima cannot be 

at the end of the domain of the function) and should be larger 

than the minima. This prevents the selection of unstable 
minima such as the tip of a cone. If the above condition is not 

satisfied, the global minima is replaced by the next stable local 

minima. This process is repeated until a stable point is found. 

For most conventional tapered objects, the chosen extrema 

value is the maxima. Note that stability check for maxima is 

not necessary. If the Superquadric equation has zero taper 

(rounded to fitting precision), then the minimum scale value 

(��, ��, or	��� is chosen as the first dimension. 

If the values of the bending parameters are non-zero 

(rounded to fitting precision), the point in the bending 

function, where the curvature is maximum is estimated. In 
other words, the kink in the bent surface is determined. If the 

bending is uniform, the center of the axis of the bend is 

chosen. This approach ensures that the grasp is along axial 

coordinates where post-grasp stability of the object part is 

maximized.  

Next, two parallel planes normal to the first dimension are 

generated. These planes are typically defined by the other two 

dimensions of the Superquadric and represent the surface of 

contact of the hand. 
A third plane along the first chosen dimension and passing 

through the center of the Superquadric is generated such that it 

bisects the two parallel planes along two line segments. This 

plane is chosen such that the two line segments are parallel to 

the longest dimension of the Superquadric. The line segments 

form the locus of points at which an optimal grasp can be 

made. In figure 3, the red line segments denote the locus of all 

grasp point pairs for a single approach vector (other loci 

arising from symmetric grasp point pairs are excluded in the 

rendering). For the case of tapered Superquadrics, the grasp 

points loci are reprojected onto the tapered surface of the 

object. 

 

 

  

  

  



   

 

   
 

 

 

 

Based on the width of the gripper or the distance between 
the fingers, the final grasp point is chosen. In figure 3, these 

points are represented in magenta. The maximal depth 

(excluding a safety margin) that the hand can grasp determines 

the grasp point. The approach vectors are shown in blue. As 

seen from the figure, the approach vectors are normal to the 

first dimension.  

It should be noted that due to the symmetric representation 

of Superquadrics, more than one pair of grasp points can be 

generated for the same object. For e.g., in the case of a cuboid, 

two grasp point pairs are generated at the top and the bottom 

of the cuboid. In the case of a cylinder, multiple grasp points 
are generated along the curved surface of the cylinder by 

symmetry. These grasp points are ranked based on gravity. In 

other words, since it can be expected that the arm is likely to 

grasp the object successfully from the top rather than from the 

bottom, these grasp points are ranked higher. The gravity of 

the scene is determined from the orientation parameters of the 

Superquadric. Hence, points on the top of the cube are ranked 

higher than the points at the bottom.  

III. RESULTS 

 

Figure 3 lists grasp points (in magenta) for a number of 

arbitrary Superquadric structures. It can be seen that the 
chosen grasp points are in line with typical grasp hypotheses 

that humans perform while grasping arbitrarily shaped objects. 

The method is shown to work successfully with a number of 

complex shapes.  

This list can be passed on to a path planning system such as 

OpenRAVE, which chooses the most appropriate pair of grasp 

points for grasp execution, based on the priority of the points 

on the list and based on the 3D occupancy space around the 

object. In other words, if the path required for the highest 

ranked grasp hypothesis is occluded by neighboring objects, it 

is possible to choose the next best grasp hypothesis for 

execution. Figure 4 shows objects selected in a complex scene 
for fitting along with OpenRAVE simulation snapshots 

showing Superquadric approximates of the selected objects 

and successful grasps using chosen grasp points. Note that in 

the OpenRAVE simulation snapshots, the objects are depicted 

with normalized pose to demonstrate the quality of grasps 

based on the fitting of the Superquadrics and to discard the 

effects of path planning. The object selected for grasping in 

Figure 3. Primary grasp points generated parametrically for a number of arbitrary Superquadric shapes. Grasp points are denoted 
in magenta. The Superquadric mesh  is also shown. 



the scene is shaded cyan. The selection was done using an 

attention driven approach [8], followed by segmentation using 

the algorithm in [5]. 

 

 

  

 

 

 

 
 

 

 

Figure 4. Row1. Input scene. Rows2-5: Objects selected for grasping  in each scenario (shaded cyan), along with OpenRAVE 
simulation snapshots showing Superquadric approximates of the selected objects and successful grasps using chosen grasp points 



 

 

IV. CONCLUSION 

 

In this paper, we have presented a scalable grasp hypothesis 

generation system from parametric 3D point cloud 
representation. The actual integration of the framework with 

our system in [5] and evaluation of the hypotheses on real 

objects form future work.  
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Abstract

This paper focuses on developing a fast and accurate 3D
feature for use in object recognition and pose estimation for
rigid objects. More specifically, given a set of CAD mod-
els of different objects representing our knoweledge of the
world - obtained using high-precission scanners that de-
liver accurate and noiseless data - our goal is to identify
and estimate their pose in a real scene obtained by a depth
sensor like the Microsoft Kinect. Borrowing ideas from the
Viewpoint Feature Histogram (VFH) due to its computa-
tional efficiency and recognition performance, we describe
the Clustered Viewpoint Feature Histogram (CVFH) and
the cameras roll histogram together with our recognition
framework to show that it can be effectively used to recog-
nize objects and 6DOF pose in real environments dealing
with partial occlusion, noise and different sensors atributes
for training and recognition data. We show that CVFH out-
performs VFH and present recognition results using the Mi-
crosoft Kinect Sensor on an object set of 44 objects.

1. Introduction and related work

Object recognition and pose estimation is a well stud-
ied problem in computer vision due to its endless applica-
tions in scene understanding, robotics, virtual reality, etc.
Several feature descriptors for object recognition have been
presented in the literature, both in 2D (e.g. [6]) and 3D (e.g.
[12]). However, they still can not manage to resolve the
full object recognition problem, especially when faced with
hard problems such as textureless objects noise or missing
parts of the objects. For both 2D and 3D, there are mainly
two different approaches to the object recognition problem:
local (e.g. [1],[2],[4]), or global descriptors (e.g. [5],[8]).

The latter and most relevant in the scope of the paper,
describe the geometry, appearance or both of a whole par-
tial view of an object and are more robust to noise than local
features, specially in the 3D domain but they require the no-

tion of object before recognition which is normally given by
a prior segmentation procedure. Because of its global na-
ture they have problems dealing with missing parts which
are caused by partial occlusions, sensor limitations or seg-
mentation artifacts (see Figure 1).

Figure 1. The figure shows how CVFH can deal with limited
amounts of occlusion. The support plane is shown in blue, the
segmented object candidates from the current scene in red, the rec-
ognized views from the database in green and the corresponding
models overlapped as grey meshes.

These artifacts increase the complexity of the problem,
mostly in our specific scenario where we want to develop
a feature that can be trained on 3D CAD models and yet
perform recognition on real data. Almost none of the de-
scriptors presented in the literature (excepting [13]) have
tackled the problem of training on synthetic data and match-
ing on real data. Creating training databases for a reason-
able number of objects using real devices can be a cumber-
some task, even very difficult if one would like to have all
different viewpoints and poses of an object. On the other
hand, there are publicly available databases of CAD mod-
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els and accurate 3D meshes for thousands of objects found
in our daily life (e.g., Google Warehouse). Given a 3D
CAD model and a rendering system, it is straightforward
to place a virtual camera around the object and obtain all
desired viewpoints without the need of calibrated systems
and a time-consuming capturing process. We believe this is
a crucial factor for cost and ease of scaling the set of objects
the robot can learn and manipulate.

With the advent of the Kinect, depth information at
ranges of 0.8-3.5 meters can be obtained at framerate and at
a moderate price. This cost breakthrough is an enabler for
vision systems and robotics and new low cost depth sensors
such as the WAVI Xtion [9] are following rapidly. Now that
depth information is cheap and easy to get, there is a need
to develop efficient 3D features that will work effectively
with this data in order to support robot object recognition
plus 6DOF pose for manipulation.

We decided to build on the VFH feature which is effi-
cient to compute, and already showed high discriminability
in previous work [8]. As described below, VFH has short-
comings to perform recognition on real data when trained
on synthetic data.

The rest of the paper is organized as follows: In section
2 the Viewpoint Feature Histogram is reviewed and used
to motivate the Clustered Viewpoint Feature Histogram
(CVFH), presented in section 3, that meets our goal of al-
lowing for training on 3D CAD models and yet performing
well on real world data. In section 4, the Camera’s Roll
Histogram is presented as an efficient way to deal with the
invariance to rotations around the camera axis that appear in
3D global descriptors based on partial views. In section 5,
we present the recognition framework allowing for train-
ing and recognition which includes the histogram metric
used for nearest neighbor searches together with the post-
processing applied after CVFH recognition to refine the re-
sults. In section 6, we compare CVFH against VFH and
show that CVFH outperforms it. Finally, we conclude in
section 7 and present our future work lines.

2. The Viewpoint Feature Histogram
The VFH descriptor is a compound histogram represent-

ing four different angular distributions of surface normals.
Let pc and nc be the centroids of all surface points and their
normals of a given object partial view in the camera coor-
dinate system (with ||nc|| = 1). Then (ui, vi,wi) defines a
Darboux coordinate frame for each point pi (see [10]):

ui = nc

vi =
pi − pc
||pi − pc||

× ui

wi = ui × vi

(1)

The normal angular deviations cos(αi), cos(βi), cos(φi)

and θi for each point pi and its normal ni are given by:

cos(αi) = vi · ni

cos(βi) = ni ·
pc
||pc||

cos(φi) = ui ·
pi − pc
||pi − pc||

θi = atan2(wi · ni, ui · ni)

(2)

Note that cos(αi), cos(φi) and θi are invariant to view-
point changes, given that the set of visible points does not
change. For cos(αi), cos(φi) and θi histograms with 45
bins each are computed and a histogram of 128 bins for
cos(βi), thus the VFH descriptor has 263 dimensions.

Though VFH showed promising results in [10], it has a
few shortcomings:

• it is invariant to the size of the object as the compound
histogram is normalized by the total number of points
in the partial view;

• it is invariant to rotations around the camera’s view di-
rection, so it does not allow full pose estimation;

• using the centroid and average normals (pc and nc) to
build the Darboux coordinate system, makes VFH sen-
sitive to missing parts of the object caused by partial
occlusions, segmentation or sensor artifacts.

3. The Clustered Viewpoint Feature Histogram
As outlined in section 2, the major flaws to VFH are its

sensitivity to noise and occlusions (e.g. missing parts of
the object) and the fact that it is invariant to rotations about
the camera axis. By analyzing the data obtained from the
Kinect, we noticed that surfaces that are at a steep angle
relative to the sensor as well as parts that are close to ob-
ject borders contain more noise or even miss a few depth
estimates (see Figure 2).

These effects can result in unstable estimations of the
object points and normals centroid (pc and nc from Eq. 1),
thus affecting the resulting VFH and making it unsuitable
to match against the corresponding synthetic view that will
not present these artifacts.

The main idea behind CVFH is to take advantage from
the object parts that can be robustly estimated by the depth
sensor and use them to build the Darboux coordinate sys-
tem while still using the whole partial view to compute the
descriptor.

Formally, we propose to describe a partial view of an
object, represented by a set of points P , as a set H of Clus-
tered Viewpoint Feature Histograms. The cardinality of H
is the same as the cardinality of S, where S is the set of sta-
ble regions found on P using the procedure defined in the
upcoming section 3.1.



Figure 2. Example of an incomplete surface due to limitations of
the sensor.

Taking si ∈ S with si ⊆ P , we can define a Darboux
coordinate system D = (ui, vi,wi) like in Eq. 1 but in this
case pc and nc represent the euclidean centroid and normal
centroid of si and not of the whole partial view P . Given D
and using Eq. 2, the normal angular deviations for all points
in P can be computed.

Let then (α, φ, θ, β) represent the normal angular devi-
ations already bined in (45,45,45,128) bins, the CVFH his-
togram hi ∈ H is defined as the following concatenation:

(α, φ, θ,SDC, β) (3)

where SDC represents the Shape Distribution Compo-
nent of CVFH computed as follows:

SDC = (pc − pi)
2

max((pc − pi)
2
)

(4)

The number of bins used for this component is again 45
thus making a total size of 308 for CVFH. This component
allows to differentiate surfaces that have very similar nor-
mal distributions and sizes but their points are distributed
differently. For instance we could differentiate an elongated
planar surface from a more compact planar surface.

To avoid scale invariance, each bin in CVFH count the
absolute number of points falling in that bin. To reduce
ambiguities, we first construct a voxel grid over our point
cloud data with a fixed voxel size, and reduce the cloud to
the set of voxel centroids. Because the actual size of the
object is given by the 3D sensor, the amount of points for
a given view will be the same no matter what the distance
to the camera is. Avoiding the normalization step allows us
to distinguish between objects of different size but identical
shape. It also makes the descriptor more robust to missing
parts of the object, as this will only influence local parts
of the descriptor (compare Figure 3). Normalizing the his-

togram by the total number of points would increase the
bins height under the presence of occlusion.
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Figure 3. The CVFH histograms become additive when the cen-
troids are consistent. top: Missing part on the view and the cor-
respondent CVFH signature. bottom: Whole view and and the
correspondent CVFH signature.

The advantages of CVFH are two-fold: (i) the coordinate
system is more likely to resemble the one obtained from the
synthetic view making the descriptor more stable and (ii)
because the set of CVFHs represent a multivariate descrip-
tion of the partial view, we can better handle occlusions as
long as any of the stable region is visible. Please note that
the CVFH histograms inH are independent from each other
and not complementary as they describe the same geometry
but encode them differently. To understand how CVFH is
used for recognition, we refer the reader to the next section
(Recognition Framework).

3.1. Stable regions clustering

To overcome the instability caused by missing object
parts and local noise artifacts, we first identify stable re-
gions in partial view obtained by the depth sensor. To do so,
we apply a smooth region growing algorithm on the points
obtained from a partial view of an object after removing
points with high curvature (caused by noise, object edges or
non-planar patches).

Each new cluster is initialized with a random point. A
point pi with normal ni is added to a cluster Ck if the clus-
ter contains a point pj with normal nj in the direct neig-
bourhood of pi with a similar normal, i.e. the following
constraint is fulfilled:

∃pj ∈ Ck : ||pi − pj || < td ∧ ni · nj > tn (5)

For our experiments, td is set to three times the voxel grid
size and tn to cos(10◦). For each stable region, a CVFH de-
scriptor is computed as outlined in the previous section. The
number of stable regions for a specific partial view defines
the cardinality of the descriptor setH.



Figure 4. Free shape smooth clustering. Left: a wine glass, and
right: a milk carton. Smooth surfaces are clustered together.
Points in red do not belong to any cluster and points with high
curvature are not shown, e.g. at the edges of the milk carton.

Only regions with more than 50 points in total are con-
sidered to be stable and taken into account. In the case that
no regions are found that fulfill these conditions, the CVFH
centroids are computed using all points in the partial view.

Intuitively, we are trying to define a stable location to
base the computation of the CVFH descriptor even when
parts of the objects are missing. For instance, the base
and stem of the wine glass in Figure 4 is partly missing,
which usually happens due to oversegmentation of its sup-
port plane in an earlier processing step. This will affect the
descriptor centroids if the complete partial view is used, but
the stable region shown in blue remains unchanged. In the
case of the milk carton where 2 stable regions are found, the
centroid for one of the dominant surfaces stays stable when
the other one is occluded and thus the stable CVFH will al-
low for a positive recognition (see Figure 1 where part of
the milk cartoon is occluded).

4. Camera roll histogram and 6DOF pose
Most descriptors based on views of an object like VFH,

CVFH, CAP-SIFT [3] are unable to deliver a complete 6-
DOF pose. Due to the this invariance of CVFH with respect
to rotations along the view direction of the camera (roll),
the object and viewpoint recognition is determined up to an
unknown rotation. To determine the correct orientation of
the object, we introduce a new descriptor that is not invari-
ant to the roll angle. To avoid a higher dimensionality in the
overall descriptor by extending it, which would decrease the
performance of the object/viewpoint recognition noticeably,
we use a final optimization step to find the correct roll angle.
Since the computation of the roll angle is only done for the
best N candidates from the CVFH matching step and fur-

thermore is efficient to calculate, the overall performance is
not affected drastically.

For each CVFH descriptor inH, an additional histogram
is computed - the camera’s roll histogram. We project the
normals at each point onto a plane that is orthogonal to the
vector given by the camera center and the centroid of the
stable region used to compute CVFH. For the projection, we
compute a rotation-axis v and a rotation angle θ using Eq. 6
that transforms the CVFH centroid pc to coincide with the
camera’s z-axis. Since we use an orthographic projection,
the projected normals are given by the first two components
of the transformed normals ni.

v =
pc × z
||pc||

θ = − arcsin (||v||)
(6)

The roll histogram is then computed by taking the an-
gle of the projected normal relative to the up-view vector
of the camera on the plane. The histogram contains 90
bins giving an angular resolution of 4 degrees. The num-
ber of bins for the camera-roll-histogram is selected from
our empirical evaluations to provide a reasonable trade off
between efficiency and accuracy. Due to noise in the input
data, we weight the projected normals by their magnitudes.
This removes most of the equally distributed noise in the
histogram, resulting from unstable projections of normals
that are almost parallel to the roll axis of the camera.

Figure 5 shows two histograms of the same object. The
upper one is from the object in upright orientation, whereas
the bottom histogram is computed from the object rotated
around the roll axis by 44◦.
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Figure 5. The camera roll histograms of the same object in differ-
ent orientations.

In order to estimate the object’s rotation around the roll
axis, we need to find an orientation where the two roll his-
tograms match best according to a metric. This can be con-
sidered a correlation maximization problem. Therefore, we
apply a Discrete Fourier Transform for both histograms, and
multiply the complex coefficients of the database view with



the complex conjugate coefficients, and perform the inverse
transform to compute the cross power spectrum R. The
peaks of this spectrum appear at rotation angles that align
the two roll histograms well.

There are cases where the power spectrum of two roll
histograms can have multiple high peaks due to different
kinds of symmetries. Also, partial occlusions or sensor
noise might deteriorate the roll histograms, so it is gener-
ally not sufficient to rely solely on the maximal peak in R.

In order to select a set of orientations that can be pruned
in a subsequent test, we select a minimum threshold tp for
peaks, and add peaks with higher magnitude to the set. We
start with the highest peak, adding peaks if their correspond-
ing rotation angles do not fall within a certain distance band
td of any of the previously added peaks. This ensures that
the set of orientations does not contain multiple entries for
very similar alignments, but captures local maxima that are
distributed over the whole set of rotations, if they indicate a
good alignment.

In our experiments, we set td = 12◦ and chose a rel-
atively high value for tp in order to keep the size of the
rotation set small. We found a value of tp = 0.9 ∗max(R)
to yield a low number of peaks - typically up to 10 peaks -
while still capturing corner cases.

5. Recognition framework
In this section, we concentrate on the recognition frame-

work which consists of two different parts: an offline train-
ing stage where the CVFH descriptors are computed for the
models in our training set, and an online recognition stage,
in which the real scene is processed. The recognition stage
includes segmentation, recognition and pose estimation us-
ing CVFH and final refinement of the recognition results.
Please note, that in this case, segmentation refers to finding
possible objects candidates in the scene and not to the stable
regions clustering step presented before.

5.1. Training stage

Our training data is generated from a set of CAD models.
Because CVFH works on views from object, our first step
is to take each of the CAD models and generate a set of
distinguishable views. We place a virtual camera on the
vertices of a tesselated sphere looking at the CAD model of
the object and render the object seen from that viewpoint
into a depth buffer from which we can efficiently extract a
partial pointcloud.

For each view, the CVFH descriptor and roll histogram is
computed. Views that are not distinguishable, like symmet-
ric objects as bottles or bowls, are not considered, reducing
the initial number of 80 view to about 12 views per object.

To decide which views can be removed, we align two
different views of the same object using the camera’s roll
histogram and compute the overlapping between the aligned

point clouds by searching for each point in one of the views
the nearest neighbor in the other view. A point is considered
not to overlap if the nearest neighbor is not within a range of
twice the voxel grid size. If more than 2.5% do not overlap
the view is considered to be different and the next view is
checked.

5.2. Recognition stage

The recognition stage runs on a raw pointcloud from a
depth sensor, which in our case is the Kinect. We pro-
ceed first with a segmentation of the scene using dominant
plane extraction and Euclidean segmentation on the remain-
ing points [11]. The segmented groups of points represent
the objects to be recognized. Independently for each object
in the scene:

1. Compute a set of CVFH descriptors (H) and camera’s
roll histograms. Please note, that each CVFH descrip-
tors is paired with a camera roll histogram.

2. For each CVFH in H , a nearest neighbor (NN) search
is performed to find theN closest CVFH descriptors in
the training set, giving a set of views from the trained
objects.

3. As we have performed as many NN-searches as ele-
ments in H , the best N candidates according to the
metric given in Eq. (7) are selected.

4. For the resulting N view candidates the roll angle
is determined using the roll histogram matching and
6DOF pose estimation (as detailed in section 4).

5. After aligning the views using the pose and roll infor-
mation gathered so far, an additional ICP [14] step is
used to refine the alignment.

6. Finally theN best view candidates are sorted using the
number of inliers from the last iteration of ICP using a
distance threshold of twice the voxel grid size.

Because of its efficiency, we use the FLANN library
[7] to perform the nearest neighbor search. FLANN in-
cludes different search and indexing methods such as linear
search, randomized kd-trees or hierarchical k-means index-
ing. Moreover, it provides different distance and histogram
comparison metrics for high dimensional spaces, including
e.g. L1, L2, Histogram Intersection, and ChiSquare.

We have performed different empirical experiments to
determine which is the best metric for our needs. The major
problem with metrics like L1 and L2 are its sensitivity to
outliers. Dealing with partial occlusions implies that the
histograms will have outliers due to missing parts of the
objects even if the rest of the histogram is shaped correctly.
Therefore, we use the following metric:



d(A,B) = 1−
1 +

308∑
i=1

min(Ai, Bi)

1 +
308∑
i=1

max(Ai, Bi)

, (7)

where A and B represent two CVFH descriptors. This
metric is not element-wise addivite, making it unsuitable for
kd-tree search but suitable for hierarchical k-means index-
ing. At the moment, we are using linear search to retrieve
the nearest neighbor since our database contains only 1704
CVFH descriptors for the 44 objects in our training set. The
computation time for finding the nearest neighbor is below
2ms in our experiments, and using other search methods
such as hierarchical indexing requires an addiotional over-
head to construct the appropriate search structure, which is
not necessary for linear search.

6. Results
For the evaluation of CVFH, we perform a different set

of experiments and compare the results to VFH. First, we
evaluate the performance on our training set for noise. We
also evaluate the performance of both descriptors in match-
ing single objects in real scenes obtained with the Kinect
sensor. Finally, we show some scenes with the aligned mod-
els overlapped as a qualitative evaluation, see Figure 7.

The criteria we use to evaluate performance in synthetic
data are multiple:

• Correct view and correct object id, respectively, in the
first result.

• Correct view and correct object id, respectively, in the
first N results.

• To test the performance of the camera’s roll histogram,
all views from the training set are randomly rotated
along the virtual camera’s roll axis. Because of dis-
cretization errors, we assume the result to be correct if
the computed angle is off by 4◦ or less from the applied
rotation.

6.1. Noise

Each view in the training set is noisified by applying a
Gaussian kernel to each point. We use different standard de-
viations to test robustness to noise, ranging from 0.5mm to
2mm for each point in the view. After a view is noisified, we
compute the CVFH and VFH and perform a search for the
nearest neighbors in our descriptors database obtained from
non-noisified views and compute the metrics listed above.
Table. 1 and Table. 2 show respectively the results for VFH
and for CVFH.

Table. 1 and Table. 2 show that with this kind of uniform
noise and without missing parts VFH performs better than

Noise levels (Stdev in mm)
0.5mm 1mm 1.5mm 2mm

View (1st) 99.32% 97.25% 92.76% 86.39%
View (N-1st) 100% 100% 99.93% 99.60%
Roll 98.32% 96.51% 93.89% 90.84%
Id (1st) 99.53% 97.98% 94.63% 89.87%
Id (N-1st) 100% 100% 100% 99.79%

Table 1. Recognition rates and roll angles correctness with differ-
ent amount of noise applied on the training data using VFH.

Noise levels (Stdev in mm)
0.5mm 1mm 1.5mm 2mm

View (1st) 93.89% 94.63% 86.92% 41.51%
View (N-1st) 97.38% 97.58% 93.62% 59.96%
Roll 97.10% 97.52% 94.48% 79.53%
Id (1st) 97.45% 97.38% 94.29% 58.62%
Id (N-1st) 99.53% 99.73% 99.46% 77.33%

Table 2. Recognition rates and roll angles correctness with differ-
ent amount of noise applied on the training data using CVFH.

CVFH. Because in CVFH, the amount of points used for the
computation of the centroid and the average of the normals
which are used to build the Darboux coordinate system is
usually smaller than in VFH, CVFH becomes more sensi-
tive to this noise applied uniformly over the whole partial
view. Another reason is that when the amount of noise in-
creases, the estimation of stable regions becomes very un-
stable thus making the CVFH descriptor also unstable.

It is interesting to note that the roll orientation performs
extremely well (over 90% with 1.5mm noise) when CVFH
or VFH return the correct view.

6.2. Recognition and pose evaluation on real scenes

We have performed recognition experiments on 18 of our
44 objects in the database to estimate the recognition rate
of CVFH, VFH and CVFH + post-processing using Kinect
data. Here, we refer to CVFH + post-processing as the steps
5) and 6) outlined in section 5.2. Because ground truth data
for pose is not easily obtained, we decided to evaluate the
recognition results manually.

To do so we have taken each of the 18 objects inde-
pendently and placed them in the field of view of the sen-
sor. The cluster of points representing the view of the ob-
ject is extracted using Euclidean segmentation and recog-
nized using CVFH, VFH and CVFH + post-processing to
refine the recognition results. The recognition of the three
pipelines are displayed together with the matching view
in the database and the CAD model overlayed. All three
recognitions include the computation of the roll orientation
for a full 6DOF pose. We visually inspected the results and
annotated independently for each 3 results set at which posi-



tion the correct object and pose is found. For each recogni-
tion, 14 nearest neighbors were retrieved. Each object was
recognized 10 times in different stable poses.
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Figure 6. Recognition rate for CVFH, VFH and CVFH including
the recognition framework. We show how often the correct solu-
tion appeared within the first x results.

Figure 6 shows the result of the experiment, where each
point represents how many times we identified the right ob-
ject with in the first x results. It can be seen that CVFH
outperforms VFH both in recognition rate for the first result
and for the accumulated recognition rate over the first 14
results. This is to show that although the recognition rate
just by looking at the first result of CV FH is below 60%
we obtain the correct solution in the top-10 results in 90%
of the cases. If we take into account the top-10 results of
CVFH which include the right solution in 90% of the cases
and sort these with post-processing, we increase the recog-
nition rate in the first result to 70% of the cases. Ideally,
we would like the recognition rate after post-processing to
be 90% meaning that the post-processing can always iden-
tify the right solution if available in the candidates given by
CVFH. In this case, for a desired recognition rate of 90%,
the number of candidates is reduced using CVFH from 1409
(number of views) to 10.

7. Conclusions and future work
We have presented the Clustered Viewpoint Feature His-

togram (CVFH) and shown that it can be robustly used to
recognize objects and detect their poses in real scenes even
when the training data source has different properties. In
the scope of the paper, 44 objects were trained using CAD
models and recognized in real scenes using the Kinect sen-
sor.

Being able to determine a stable normal and a stable cen-
troid on the objects allows us to deal with partial occlusions
and handle properly the different properties of the training
and recognition sensors. In our experiments we have shown
that CVFH returns in 90% of the cases the correct view in
the first 10 results reducing the number of candidates that
need to be processed from approx. 1409 (number of views)
to 10 in less than 2ms.

We have also presented the camera’s roll histogram that

can efficiently compute the rotation about the roll axis of
the camera to which CVFH is invariant.

Future work includes dealing more robustly with higher
degrees of clutter and occlusion, larger object databases and
taking advantage of the semi-global nature of CVFH be able
to solve undersegmentation issues.
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Figure 7. First column: Image of the scene, second column: results obtained using VFH and the third column using CVFH. Both VFH and
CVFH results include the camera’s roll histogram and the post-processing step to refine results.



Shape-Based Depth Image to 3D Model Matching and Classification
with Inter-View Similarity

Walter Wohlkinger and Markus Vincze

Abstract— Object recognition and especially object class
recognition is and will be a key capability in home robotics when
robots have to tackle manipulation tasks and grasp new objects
or just have to search for objects. The goal is to have a robot
classify ’never before seen objects’ at first occurrence in a single
view in a fast and robust manner. The classification task can
be seen as a matching problem, finding the most appropriate
3D model and view with respect to a given depth image.
We introduce a single-view shape model based classification
approach using RGB-D sensors and a novel matching procedure
for depth image to 3D model matching leading inherently to
object classification. Utilizing the inter-view similarity of the
3D models for enhanced matching, the average precision of
our descriptors is increased of up to 15% resulting in high
classification accuracy. The presented adaptation of 3D shape
descriptors to 2.5D data enables us to calculate the features in
real time, directly from the 3D points of the sensor, without
any calculation of normals or generating a mesh from it which
is typical of state-of-art methods. Furthermore, we introduce
a semi-automatic, user-centric approach to utilize the Internet
for acquiring the required training data in the form of 3D
models which significantly reduces the time for teaching new
categories.

I. INTRODUCTION

For service robots to enter real-world home environ-

ments, they require adaptation to changing environments

and knowledge transfer from one setting to another. One

of the key elements for robots to fulfil meaningful tasks

like object search and retrieval or object manipulation is

object and object class recognition. Human robot interaction,

robot localization and mapping, and robotic manipulation

can greatly benefit from a vision system which is able to

categorize even ’never before seen objects’ at first glance.

The domestic setting with its plethora of categories and

their huge intraclass variety demands a great deal of gen-

eralization skill from a service robot. These categories are

characterized by their shape ranging from low intraclass

diversification as in the case of fruits and simple objects

like bottles up to high intraclass variety such as for liquid

containers, furniture and especially toys. The scenario is

aggravated by restrictions on traversability of task space or

on the number of views that can be obtained of the object

of interest in a given amount of time.

Our contribution consists of a 2-fold strategy to tackle

the problems of learning new categories in a fast and semi-

automatic manner and of reliable classification of objects

from a single view.

This work was conducted within the EU Cognitive Systems project
GRASP (FP7-215821) funded by the European Commission.

Vision4Robotics Group, Automation and Control Institute, Vienna Uni-
versity of Technology, Austria [ww,vm]@acin.tuwien.ac.at

(a) A mobile robot equipped
with a Kinect sensor inspect-
ing a table scene.

(b) A close-up of the scene with the seg-
mented point cloud clusters including three
mugs in different poses, a toy-car, a toy-
plane and a toy-chair.

(c) Ranked list of matching 3D models, green representing correct
category, red wrong category, best twelve matches.

Fig. 1. The overview of our system: The robot capturing the data using its
RGB-D sensor, segmentation of the depth image and classification of the
point cloud clusters by matching against a database of 3D models.

First, the robot is provided with access to 3D model repos-

itories on the Internet to use the information found there to

cope with the intraclass variation in classification. By using

3D models from Google Warehouse1 the problem of coping

with a large intraclass variety is inherently addressed, as the

number of available models is found to be proportional to the

intraclass variety, reducing the problem from classification to

nearest neighbor matching.

Second, we use a single-view shape model based approach

for depth image to 3D model matching to give the system

its required speed. Our methodology works directly on the

3D data without a need for time-consuming and sensor noise

dependent operations such as normals calculation and mesh-

generation from the point clouds. As descriptors we present

adaptations of three commonly used 3D descriptors to work

in real time on depth images. For increased matching perfor-

1http://sketchup.google.com/3dwarehouse/



mance we suggest to utilize inter-view similarity of the 3D

models to discard false positives. This new matching scheme

can easily be adapted to work with other global, affine

invariant 3D descriptor to also increase their performance.

The classification is performed with two frames per second

against a database of 3D models which can be generated and

altered semi-automatically by a non-expert. Robust classifi-

cation is achieved in our distributed ROS2-based framework

by choosing multiple complementary feature descriptors,

selecting the appropriate similarity measures, using our

proposed inter-view matching scheme and combining the

descriptors. An illustration of our approach is presented in

Figure 1. The source code for the descriptors is available

online within the Point Cloud Library PCL 3.

II. RELATED WORK

Automatically accessing a internet database with 3D mod-

els for robotics applications was presented by [10] where

they use Shape Distributions [15] on the 3D models to dis-

card wrongly downloaded models, do morphing to increase

the number of models and use 2D contours for image based

object recognition. Spin Images are used for a 3D to range

image matching on 3D LIDAR point clouds by [5] and

by [11] who also uses 3D models from the web to match

against. Range image to 3D model matching for robotic

grasping was done by [4] using a dense SIFT [12] based

descriptor first introduced by [14] which is the top performer

in the SHREC shape retrieval contest of range images4 [3].

The authors of[4] achieve promising results and improved

the matching by extending the visible area of the objects

with a movable sensor head. Object categorization from

multiple views using a humanoid robot by was demonstrated

in [6]. Spin Images [8], D2 Shape Distribution [15] and

geometric properties like bounding box and volume of the

real-world sized 3D model were used for categorization, thus

requiring acquisition of a specialized database for training

with a structured light sensor. A global descriptor based

on histograms of normals was introduced by [16] which

delivers excellent results on range scans for container-like

objects, but requires calculation of normals. The intuitive

idea that objects are similar if they also look similar from

different view points was stated by [18] who introduced the

so called light field descriptor for 3D model matching, which

uses projections from views around the model and encodes

the images by Zernike moments and Fourier descriptors.

Although this descriptor works only on images, it is the top

performer on the Princeton Shape Benchmark. Adaptive view

clustering to reduce the views around the model to a optimal

set of distinct views was shown in [1]. Learning viewpoint

detection models for viewpoint planning was introduced

by [13] where they used the system for finding the next

view with most information gain for the robot. Our approach

adapts the ideas of [18], [1] and [13] for improving matching

performance when matching one view of a model to similar

2http://www.ros.org
3http://pointclouds.org
4http://www.itl.nist.gov/iad/vug/sharp/contest/2010/RangeScans/

Fig. 2. Models acquired from Google’s 3D Warehouse. There is no common
coordinate system among the models or a common scale, but most of the
mugs share a main orientation. The intraclass variety of a common class
like ’mug’ can easily be handled given this large number of examples for
this class.

models where multiple views around the object are available.

The idea is to use 3D descriptors which are capable of

interpolating between neighbouring views. Having multiple

descriptors for the full 3D model, there exists more than one

view matching to the depth image coming from the sensor.

We use this characteristic for pruning wrong matches and

improve matching.

III. METHODOLOGY

The classification is based on matching depth images

against a database of 3D models and a subsequent prob-

abilistic voting scheme. The stages of the system include

the acquisition of the database, object segmentation and

matching against the database. model database acquisition

from internet, 3D object segmentation, calculation of the

descriptors and matching, calculation of the descriptor con-

fidences and a final voting stage.

A. Knowledge Acquisition & Model Preparation

The input into our model acquisition system is the name

of the new object class, which can be entered by the user

via voice or via keyboard. With this keyword, we query the

lexical database WordNet5 to disambiguate the keyword by

presenting the different meanings to the user to select the

appropriate one. Once the correct meaning of the keyword is

known, the synonyms and hyponyms (words sharing a ’type-

of’ relationship with the keyword) provided by WordNet are

used for the 3D model search on 3D Warehouse6. After

download of the models, the user selects one of the models

as the reference model to enable a subsequent process of

discarding wrong models from the database using a similarity

criterion to the reference model. Shape Distributions is used

as our similarity descriptor. A set of models is shown in

Figure 2. Having a semantic meaning and an index for the

word in the hierarchy provided by WordNet enables further

5http://wordnet.princeton.edu/
6http://sketchup.google.com/3dwarehouse/



semantic meaningful manipulation applications like pouring

something into a container-like object.

One way of matching depth images to full 3D models

is to equate the problem to finding the appropriate view

of the 3D model. This can be achieved by formulating the

problem as a partial-view to partial-view matching problem.

To use the models from the web for depth image to depth

image matching, we generate synthetic depth images by

rendering the 3D models and sampling the z-buffer from 20

equally spaced views around the model using the vertices of

a dodecahedron as done in the light field descriptor [18] and

depicted in Figure 4. These 20 views are sufficiently dense

for the type of descriptors used to interpolate between views.

To discard details and therefore improve generalization of the

models, we sample the models by rendering them in 150x150

pixel images which leads to around 5000 data points for the

typical model. Finally, for each of the 20 views of the model

the 3D descriptors are calculated and stored in the database.

The best partial-view out of the 3D models can be found by

comparing the descriptors calculated from the depth image

delivered by the sensor to all descriptors in the database. As

our approach is orientation and scale invariant, we can detect

objects in any pose and and any size, making no distinction

between toy-chairs and real-sized chairs.

B. Matching with Inter-View Similarities

The basic idea is to match the depth image not only to one

single view of the 3D model, but to several views as nearby

views share some similarity. This approach is grounded in

the similarity matrices in Figure 3(a) to Figure 3(c) which

indicate that there are views of an object that are similar.

The number of these similar views depends on the shape

complexity and symmetry of the object which can be clearly

seen on these three example models and their similarity

matrices. Not only neighboring views share some similarity

but also opposing views. The similarity across the views

depends on the type of descriptor used, but for rotational

invariant 3D shape descriptors the difference to similar views

is less dramatic than with 2D descriptors on the viewpoint

images as depicted in Figure 4(b). Using the constraint

that there have to be multiple matching views the false

positive rate can significantly be reduced. After evaluation

on a synthetic database, the matching constraint for our

system was set to three views out of the twenty views

generated by the dodecahedron. Figure 7 in the experimental

evaluation section depicts the improvement of using inter-

view similarities with three views over matching against a

single view.

C. Shape Descriptors

To find the similarity between two depth images, descrip-

tors are calculated from the data and compared against each

other. Our requirements to a descriptor are its computa-

tional efficiency, its size to store and its affine invariance

as we only have a fixed set of views and the descriptor

has to interpolate between the views. The use of multi-

ple descriptors leads to an increased recognition rate as

(a) Views around an object are
equally arranged at the vertices of
a dodecahedron.

(b) The unfolded dodecahedron with
images and depth images taken at
four neighbouring views. Despite the
viewpoint change, the range images
(right) share more similarity than the
2D images(mid column).

Fig. 4. A 3D model of the category ”commercial plane” with the 20
viewpoints enumerated at the vertices of a dodecahedron. The roll of
the cameras around the view-axis is arbitrarily set, as the descriptors are
rotationally invariant.

the performance of descriptors varies with category. When

carefully chosen, the calculation overhead can be kept to

a minimum by memoizing intermediate results. We utilize

the shape distributions [15], moment invariants [17] and

spherical harmonics [9] as descriptors as presented in the

next sections.

1) D2 Shape Distribution: We use a multi-resolution

version of the D2 shape distribution descriptor of [15] who

introduced this descriptor for full 3D model matching and

was also utilized in [6]. The advantage of this descriptor is

that the histogram of distances between randomly sampled

points can be calculated directly from the point cloud. To

capture coarse structures and fine details, the best bin-size

of the distance histogram has to be chosen. We avoid this

by combining multiple bin resolutions into one histogram.

Figure 5 depicts the multi-resolution D2 shape distribution

histogram for three classes with 32, 64, 128 and 256 bins,

normalized inside each sub-histogram. The varying char-

acteristics are clearly visible for these three classes, but

one can imagine how the discrepancy diminishes when the

number of classes is vastly increased, justifying the use of

multiple descriptors with orthogonal/opposed characteristics.

The performance of this descriptor on depth images is

obviously inferior to the performance on full 3D models, as

the distances now capture less than half of the object but is

good enough to distinguish among most classes and used in

conjunction with other descriptors. As our choice of distance

measure we use the Taneja [2] similarity measure given in

(1) with P and Q the histograms to be compared, d the bin

size, and dT the Taneja distance. Taneja performes best for

this descriptor across all classes in our evaluation of all the

similarity measures given in [2].

dT =

d∑
i=1

(
Pi +Qi

2

)
ln

(
Pi +Qi

2
√
PiQi

)
(1)

2) Moment Invariants: For a coarse classification we use

the 3D moment invariants presented in [17] which are the
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(a) Air plane view similarity matrix with white
showing similar views, black dissimilarity.
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(b) Chair view similarity matrix with self similarity
on the diagonal.
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(c) Mug view similarity matrix. Views 0, 2 and 4
are very similar.
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(d) The views of the objects from view 0 to view 19 depicted as images. Numbering as introduced in Figure 4. Green dots mark similar views, red
dots dissimilar views for better illustration (see similarity matrix).

Fig. 3. The similarity matrix of the views around a dodecahedron for three models (descriptor similarity on depth image). Depending on the symmetry
of the object, there are clearly some similar views per model noticeable.
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Fig. 5. The multi-resolution shape distribution histograms for the classes
plane, chair and car with bin sizes 32(green), 64(red), 128(blue) and
256(cyan) combined into a single descriptor.

3D equivalent to the 2D Hu Moment Invariants [7]. The

invariants are calculated directly from the point cloud and

the time necessary for computing is negligible. The invariants

are stacked into a single vector and the similarity measure of

choice for this descriptor is Wave Hedges [2] which is given

in (2) and was chosen as best performing similarity measure

after empirically evaluation. P and Q are the vectors to be

compared, d the size of the vector, and dW the Wave Hedges

distance.

dW =

d∑
i=1

|Pi −Qi|
max(Pi, Qi)

(2)

3) Voxel based Spherical Harmonics: This descriptor

is among the best performing 3D descriptors for full 3D

models on the Princeton Shape Benchmark [19]. Despite its

computational expensive formulation, this descriptor can be

adopted to function in a real-time robotics environment. To

compute this descriptor the point cloud has to be scaled to fit

into a cube with side length 64 and is then converted into a

voxel representation as depicted in Figure 6(a). The spherical

harmonics representation is then calculated for 32 concentric

spheres and 32 frequency bands. Figure 6(b) shows three of

the 32 concentric spheres with the voxels marked red falling

into the sphere with radius 20. Calculation of the descriptor

is done by evaluating the spherical harmonics function for

each voxel and building up the 32x32 histogram. Using a

fixed sized voxel grid to work with, all the computational

expensive calculations for each voxel can be done offline

and stored in a look-up-table, resulting in fast descriptor

calculation at run-time which only consists of iterating over

the voxels and creating the histogram with the aid of the

LUT. This enables the descriptor to be computed in a fixed

amount of time. For the resulting 32 by 32 histogram we

use KDivergence [2] as the similarity measure given in (3)

with P and Q the two histograms, d the histogram size, and

dKdiv the K divergence which is similar to Kullback Leibler

divergence but gave slightly better results in our evaluation.

dKdiv =
d∑

i=1

Pi ln
2Pi

Pi +Qi
(3)

D. Classification

Our framework conveys the use of multiple descriptors to

increase classification performance by using a voting scheme.

In order to combine descriptors with different characteristics

and weight them accordingly, we introduce two confidence

measures. The first confidence measure is a bias calculated

for each descriptor and each class offline on the database



(a) Aircraft in voxel representa-
tion in a 64-cube.

(b) Spherical harmonics are cal-
culated on concentric spheres.

Fig. 6. Schematics of the preprocessing and calculation of the spherical
harmonics descriptor. Slight viewpoint variation can be interpolated with
this descriptor.

of 3D models with the reference model each time a new

category is added. The second confidence measure is calcu-

lated online for each descriptor and each query by calculating

First Tier and Second Tier and calculating the ratio of best

guess to second best guess. This enables us to combine the

results of descriptors running in a distributed system without

the need to know the other detectors/descriptors running in

the system. Calculation of the descriptors takes less than 30

ms on a 2 GHz dual-core laptop. For better scalability to a

higher number of models, we use a hashing approach which

enables us to perform classification in less than one second,

regardless the number of models we have to match against.

IV. EXPERIMENTAL EVALUATION

A. Matching Impact

We demonstrate the performance increase for independent

descriptors with a sample query on the Princeton Shape

Benchmark to clearly single out the advantage of using our

proposed matching scheme. Figure 7 depicts the average pre-

cision (AP) for our three descriptors on a single query with

a range scan of a plane model into the database consisting of

20 categories. The green curve shows the increased matching

performance utilizing inter-view similarity to matching with

a single view, shown in red. The performance increases up

to 15%, false positives are decreased in general and true

positives are pushed forward in the ranked list.

B. Classification with Kinect Data

We introduce a new database for testing object clas-

sification acquired with a RGB-D camera. The database

provides tools for capturing scenes from a Kinect sensor

or a stereo camera, annotation of the scenes with bounding

boxes and labels and to replay selected scenes including

ground truth to ease testing. The database together with

the tools is available as a ROS-package at our repository

(svn.acin.tuwien.ac.at/ros). The database consists of 774

scenes of single objects on a flat surface as the purpose of

this database is classification rather than segmentation.

The 20 categories for testing were taken from the Prince-

ton Shape Benchmark rather than from the web to have

a fixed set of models for better comparability to other

approaches. The categories used for this test include hammer,

Fig. 8. The objects in the V4R2011 database: Each object is captured with
a Kinect sensor on a turntable with multiple views around the object.

mug, bottle, sedan(car), shoe, commercial(airplane), biplane,

fish, knife, dining chair, helicopter, ship, shovel, jeep, couch,

screwdriver, wrench, military tank, handgun and hourglass.

Class Views Classification Rate

hammer 37 76%

mug 174 86%

airplane 59 85%

bottle 14 64%

car 24 75%

shoe 41 68%

We achieve a high overall classification rate matching

against 20 categories. Open challenges are depicted in Fig-

ure 9, where missing data due to material properties lead to

false segmentation and classification which can be seen on

the right for the hammer and (glass) bottle. If there is model

in the database resembling the query object, the system picks

the most similar model, which in case of the closed mug in

Figure 9 is a car model.

Fig. 9. Positive examples are shown on the left side, failed classifications
are shown on the right side with the point cloud colored in red.
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(a) Improved AP (green) with inter-view matching
over single view (red) with SH.
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(b) Improved AP (green) with inter-view matching
over single view (red) with D2.

AveP = 0.202
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(c) Improved AP (green) with inter-view matching
over single view (red) with MI.

(d) ranked list for single view matching with moment invariants (e) ranked list for multiple views matching with moment invariants

Fig. 7. Improvement using inter-view matching. One important fact is the improved ordering of the results: More correct matches are at the beginning
of the ranked list, noticeable in the right-shifting of the green curve.

V. CONCLUSION

In this paper we investigated the use of web-learned

models to detect object classes in depth images from actual

scenes. The intention was to use the object class relations

to derive grasp points for the respective objects. We imple-

mented a scheme to learn view-based 3D models given the

web data. These models can be used for matching with the

depth data provided by a state-of-the-art RGB-D sensor such

as the PrimeSense sensor. The results clearly indicate that

the mixture of features used to describe the object models

achieve high recognition rates. We further showed that by

using multiple views of the 3D models at the matching

stage, the performance of the individual descriptors and of

the whole system can be considerably improved.

The advantage of this approach is that new object class

models can be very efficiently learned from web data and

that matching is robust and fast using the depth images.

Future work comprises the investigation of more and alter-

native features and a deeper analysis of the cases where

pure matching of 3D data is misleading and should be

complemented by adding appearance data, 2D features and

scale to the object class models. As these results in this

framework are achieved without incorporating the specific

sensor modalities, the performance could be boosted by

adapting the synthetic views to the sensor characteristics.
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3DNet: Large-Scale Object Class Recognition from CAD Models

Walter Wohlkinger and Aitor Aldoma and Radu B. Rusu and Markus Vincze

Abstract— 3D object and object class recognition gained
momentum with the arrival of low-cost RGB-D sensors and
enables robotics tasks not feasible years ago. Scaling object
class recognition to hundreds of classes still requires extensive
time and many objects for learning. To overcome the training
issue, we introduce a methodology for learning 3D descriptors
from synthetic CAD-models and classification of never-before-
seen objects at the first glance, where classification rates and
speed are suited for robotics tasks. We provide this in 3DNet
(www.3d-net.org), a free resource for object class recognition
and pose estimation from point cloud data. 3DNet provides a
large-scale hierarchical CAD-model databases with increasing
numbers of classes and difficulty with 10, 50, 100 and 200
object classes together with evaluation datasets that contain
thousands of scenes captured with a RGB-D sensor. 3DNet
further provides an open-source framework based on PCL for
testing new descriptors and benchmarking of state-of-the-art
descriptors together with pose estimation procedures to enable
robotics tasks such as search and grasping.

I. INTRODUCTION

Central tasks for robots are to find, grasp and manipulate

objects. While an industrial robot helper needs to know about

the specific objects in production, home robots should know

about all the object classes typically found in human living

space. And certainly, the user expects that the robot can learn

novel objects and object classes.

Especially the domestic setting with its plethora of cat-

egories and their intraclass variety demands great general-

ization skills from a service robot. The categories are char-

acterized mostly by their shape ranging from low intraclass

diversification as in the case of fruits and simple objects

like bottles up to high intraclass variety of classes such as

liquid containers, furniture, and especially toys. With robots

starting to tackle real-word scenarios, we require fast and

reliable object and object class recognition. Especially in

robotics manipulation, where object recognition and object

classification have to work from all possible viewpoints of

an object, data collection for training becomes a bottleneck.

Especially for classes with high intraclass variability it is

required to obtain a very large number of objects in the

training phase.

With the arrival of an affordable RGB-D sensor, the

Kinect, and the increasing number of mobile manipulators,

e.g., WillowGarage’s PR2, learning classes and objects for

each one of the objects and robots seems like a waste of

This work was conducted within the EU Cognitive Systems project
GRASP (FP7-215821) funded by the European Commission.

Wohlkinger, Aldoma and Vincze are with Vision4Robotics Group, Au-
tomation and Control Institute, Vienna University of Technology Vienna,
Austria [ww,aa,mv] @ acin.tuwien.ac.at

Rusu is with Willow Garage, Menlo Park, USA rusu @
willowgarage.com

Fig. 1. System overview: For classification, the RGB-D image is segmented
to obtain a point cloud cluster and to calculate a cluster descriptor. The
descriptor is compared to synthetically rendered views of CAD-models
downloaded from the web to model object classes. The most similar view
delivers the best 3D model and class label.

resources. The goal should be to have a common knowledge

database shared between the robots. So when one robot in

place A is trained on novel objects or classes, another robot at

place B can update the reference database and detect the new

object classes (maybe with the exception if objects differing

too greatly from country to country). This also holds true

for the introduction of new features and descriptors: once

introduced and integrated, everyone should be able to use

these algorithms. This is especially true for researchers not

working in the field of object and object class recognition,

as for them, classification is a necessary step to achieve their

own research to provide the robot with new functionalities.

To gain momentum towards that vision, we introduce

3DNet (www.3d-net.org), a free resource providing training

data in the form of 3D CAD models, a framework for

implementing and evaluating existing and new 3D shape

descriptors, and out-of-the-box object recognition and object

classification, see Fig. 1. We encourage the community to

exploit and add to this open framework, which presents state-

of-the-art performance compared to Lai [9], see SectionV.

beginning and the features and descriptor possibilities not

fully exploited yet. Our contributions encompass three dis-

tinct but related areas:

• First, we propose to use synthetic CAD models from the

web that are organized according to WordNet and are

provided through 3DNet (www.3dnet.org). This enables

the robotic community to fast and easily train many



object and object class recognition algorithms without

tedious object scanning.

• Secondly, we provide an open-source framework based

on PCL[15] with state of the art descriptors for use with

the 3D model database. These descriptors are automat-

ically trained on the 3d models and enable real-time,

high performance object and object class recognition to

be integrated into common robotics frameworks such as

ROS[13]. The framework provides templates to easily

integrate new descriptors.

• And Third, we propose benchmarks with increasing

complexity to be used as test environment to en-

able objective comparison of descriptor performance.

The benchmark datasets are in addition to the RGB-

D dataset by Lai[10] and the SHREC Range Image

Retrieval Contest[4] where we provide out-of-the-box

evaluation scripts to be tested on these already available

datasets. To provide an unbiased test dataset for our 200

category model database, we start to collect datasets

from the community via 3DNet.

After reviewing related work we present the 3DNet

database in in Section III and the classification framework

in Section IV and present benchmarks and evaluation results

in Section V.

II. STATE OF THE ART

Our reference is the hierarchical RGB-D object test dataset

that was made available to the community by Lai [9].

It presents 51 object classes also organised according to

WordNet relations. In the accompanied approach [10] mul-

tiple features are combined, trained, and evaluated on this

dataset and the authors showed that shape together with

color leads to improved object recognition. Although the

authors collected a large dataset from multiple viewpoints,

the authors did not make the code nor evaluation tools

available to the community. The KIT Object Models Web

Database1 is also a free resource of 3D models with texture

scanned with a structured light setup representing mostly

household items. The closest benchmark to our system is

the SHREC Shape Retrieval Contest of Range Scans2 where

a set of 800 3D models in 40 classes is given as target set and

120 range scans captured with a Minolta Laser Scanner and

converted to meshes are given as query set. The results were

presented in [4] where the top performer reached a nearest

neighbor classification rate of 67.5% with a bag of words

approach with of depth-sift features.

Regarding the development of datasets, an interesting

issue was brought up by Torralba and Efros [18]: datasets

(e.g., Caltech-101 or the Pascal VOC) for measuring and

comparing competing algorithms are biased. This also halts

true for the RGB-D dataset of [9], which has a selected

set of objects, poses, lighting conditions and objects on a

small turntable. The authors of [18] provide suggestions to

minimize the bias in datasets which include:

1http://i61p109.ira.uka.de/ObjectModelsWebUI/
2http://www.itl.nist.gov/iad/vug/sharp/contest/2010/RangeScans/

• Selection Bias: to avoid a bias towards human-selected

images, data should be collected automatically from

multiple sources, using multiple search engines from

multiple countries, or use a large set of not annotated

images and label them by crowd-sourcing as done with

ImageNet[3].

• Capture Bias: as objects almost always appear in the

center of the image and objects tend to have a standard

position (mugs upright with handle to the right). In a

robotic-centered RGB-D context, the capture bias could

be resolved by capturing failed manipulation attempts

which lead to objects in random pose and distance to

the camera and thus avoiding human-biased viewpoints

(e.g., looking down 45 degrees).

• Negative Set Bias: is reduced if we add scenes to the

database that do not contain any of the database objects.

These suggestions motivated us to create a publicly avail-

able community-built test dataset for the unbiased, objective

and extendible comparison of classification and recognition

algorithms for robotics.

III. DATABASE

The intention is to build up and maintain a steadily

growing database of object classes for robotic applications.

We propose to adopt the paradigm of learning models of

classes from the web to easily capture intra-class variability

and simplify data gathering. And we link the classes to actual

scenes with (new) samples of these object classes.

As start we provide four CAD-model databases with

increasing size and complexity accompanied with corre-

sponding test databases. The model databases are constructed

by semi-automatically downloading models from Google’s

3D Warehouse and various smaller, free online repositories

for CAD models3. The models are linked to the WordNet

[5] structure, which provides a hierarchical semantic organi-

zation of the classes. The idea to use 3D models from the

web has an additional advantage: By using 3D models the

problem of coping with a large intraclass variety is inherently

addressed, as the number of available models is found to be

proportional to the intraclass variety.

The classes are organized in four increasingly challenging

datasets as more sophisticated descriptors and additional

cues are necessary to differentiate between 200 classes in

the largest dataset. The test-databases contain only a single

object per scene. Segmentation is provided as a preprocessing

step in the framework. The datasets are introduced in the

following sections.

A. Cat10: Basic Object Classes

The basic dataset consists of common, simple, geomet-

rically distinguishable but partially similar objects. Object

classes were chosen to also be suitable for robotic manipu-

lation. The database consists of 360 3D CAD models in the

classes apple, banana, bottle, bowl, car, doughnut, hammer,

mug, tetra-pak and toilet-paper. The test-database consists of

3www.123dapp.com, turbosquid uvm.



TABLE I

HIERARCHICAL ORGANIZATION OF THE MODELS IN CAT50.

coarse categories (hypernyms) shape categories (hyponym)

animal camel, cow, dinosaur, elephant
horse, shark

musical instrument banjo, guitar
container bottle, can, mug, tetra pack
edible fruit apple, banana, lemon, pear

starfruit, pineapple, strawberry
motor vehicle car, convertible, locomotive

monster truck, pickup, race car, suv
tank, truck

food donut, pretzel, croissant
aircraft airplane, biplane, fighter jet, helicopter
seat armchair, chair, office chair, stool
footwear boot, sandals, shoe, heels, ski boot,
hand tool hammer, pliers, screwdriver, wrench

1600 scenes of single objects on a flat surface in multiple

poses and multiple instances per class. For each scene a color

image, a point cloud and a bounding box with the class label

is provided. In Figure 3, a representative sample of the Cat10

model and test database is given.

The challenges in these classes are twofold: Firstly the

intra-class variance of the classes hammer, mug and bot-

tle, as these three classes are to be found in hundreds

of shape variations in the real world. Secondly, the inter-

class similarity of the classes (mug,toilet paper),(apple,donut)

and (bottle,banana,car) when given only a partial view as

depicted in Figure2.

B. Cat50: Super-Classes

The Cat50 model database consists of the Cat10 database

with forty additional classes. The classes in this database

are still distinguishable by shape only, but also include sub-

categories (chair, office-chair, armchair and car, convertible,

pickup, formula-car). Table I gives an overview of the classes

sharing the same hypernym, i.e., belonging to the same

superclass.

From the point of view of object classification, organiz-

ing objects in a tree has an implicit advantage regarding

evaluation: The level of misclassification of an object can

be measured as the length between the nodes in the tree.

Clearly, misclassification inside a subtree – convertible as

car, or airplane as fighter jet) – is better than outside a

subtree, especially when robustness and user acceptance is

of importance as in home robotics.

The according test database for the Cat50MDB adds

another 1600 scenes which adds up to 3200 test scenes for

the 50 categories.

Fig. 2. Similar partial views of the classes mug vs. toilet paper and and
donut vs. apple

Fig. 3. CAD models of the ten classes with selected test scenes. First two
columns present two typical cad-models from the according class followed
by two object instances from the testset with the whole scene and segmented
scene in point cloud representation.

The challenges in this database include coping with large

shape differences although from the same class (paper air-

plane test object to real model airplanes), similar objects

from super-classes and accidentally matching views – as

already present in the Cat10 database – as a direct result of

scaling the number of CAD models to (exact number here).

Example views of the challenges are depicted in Figure 4.

This database adds objects which are similar in shape

but can be uniquely distinguished when using color as an

additional cue. As stated in the work of Lai [10], color

together with shape leads to improved recognition of objects

and object classes. As depicted in Figure 5, color is not only

improving object class recognition, in these one hundred

Fig. 4. Challenges when matching real objects like inflatable and paper
airplanes to CAD models of planes which only share overall shape.



object classes it is crucial to have color as an additional

cue to differentiate between the newly added classes. The

database now contains many natural objects like fruits and

vegetables, which share a common primitive shape such as

orange, apple, lemon, lime, watermelon, carrot-radish, etc.

Fig. 5. Some classes are almost identical in shape but differ in color.
Lemon and lime are two obvious examples, but most roundish shaped fruits
and vegetables having color as distinct cue.

Man made objects are largely excluded from adding to

this database, as color can not be assumed fixed, even with

common objects such as a tennis ball for example, as it

comes in additional colors to the standard yellow.

C. Cat200: Size

One important aspect of objects and object classes was

not used and not needed in the previous category databases:

size. To successfully distinguish among our 200 categories

database, the real world size of the objects becomes impor-

tant. As classification of objects is subjective – assume a

tennis ball with 30 cm diameter, is it still a tennis ball? –

we advocate a functional viewpoint on classification: If the

object affords the intended function, it is part of the class,

otherwise it is a new class, e.g. toy-tennis ball. Following

this schematic, a huge part of man-made objects depends on

the size cue, e.g., example in Figure 6.

Fig. 6. Size matters: Depending on the real size of the depicted object
it can be waste-bin, a mug or a thimble. Shape, color and texture are not
sufficient any more to classify this object, which is a thimble.

Real world scale information is not yet present in the

database, as CAD models do not come with a common real

word size information and therefore it has to be acquired

from other resources on the web or learned by the system

during successful detections of objects.

D. Community-built Test Database

The test database for these two hundred object classes are

open to be extended by the community to provide a large

unbiased test database. The test database will be fixed once

a minimum of five test objects per category are available for

evaluation in the database. We provide tools and web-space

for uploading test scenes to 3DNet. A test scene is defined

as binary pcd file including X,Y,Z,RGB values captured

with a Kinect-like sensor. Capturing can be done using

standard PCL tools or our provided ROS-based capturing

and annotation tools. To ease segmentation, objects have to

be on a flat surface, e.g. on the floor. Annotation is done by

3DNet according to the classes available. For the follow-up

database Cat300, classes can be requested by the community.

IV. FRAMEWORK

The proposed open-source PCL-based framework targets

real-time classification and object instance 6D0F pose recog-

nition for robotics and provides an easy way of training

descriptors, adding new classes or specific objects. Adding

new descriptors is supported and encouraged by providing

code-templates for an easy transition of C++ code into

the framework. Evaluation and benchmarking are also part

of the framework, as is 6D0F pose estimation and object

recognition.

Usage of the proposed framework for object classification

requires the following steps:

1) SVN check-out framework provided on 3DNet

2) Download CAD models from 3DNet

3) Download test database from 3DNet

4) Use present descriptor or implement own using pro-

vided template

5) Run the program to fully automatically train on the

CAD models and evaluate on test set

6) Plug in a Kinect and classify objects

A. View Generation

The training on CAD models is done by rendering and

sampling the z-buffer from views around the model and

storing the generated partial views as point clouds. Descrip-

tors are computed on these partial views. The number of

views can be chosen from as few as 12 to several hundreds,

depending on the descriptor and application in mind. The

standard number of views used for the experiments in this

paper is 80, as this number provides sufficient views even

for complex objects.

Fig. 7. Partial views of a mug generated by sampling the depth-buffer
while rendering views around the object.

B. Entropy

Having synthetic views and the original model at hand

enables the calculation of the entropy of each view i.e. the

expected value of the information contained in a view. This

follows the idea of using the different levels of informa-

tion in views as shown in [2], where an optimal set of

views(images) of a 3D model is found by adaptive clustering.

These entropy values for each view can be used in a post-

processing step to filter accidental views: Given a model of

a bottle, the view directly from the bottom only represents



a small portion of the object and thus has a low entropy

value assigned. If this view is matched against something

round and curved like an apple or donut, it can be filtered as

real world scenes are rarely represent such extremal views

of objects.

The entropy is calculated as the ratio of the surface area of

the whole model and the visible surface area. Experimental

evaluation of view filtering the nearest neighbor list is

given in SectionV. Another available post-processing step

for filtering is available in the framework using the approach

proposed in [20], where the similarity of nearby views is used

to filter accidental matches.

C. Pose Estimation

Given real-scale models – e.g. by scanning the objects – as

input to the system, pose estimation using the Camera’s Roll

Histogram [1] is used together with any of the descriptors

to calculate the pose of the model and align the 3D model

with the scan from the sensor as depicted in Figure 8 which

enables robotic manipulation tasks. We are currently working

on methods that will be able to deliver the pose and the scale

of the 3D models so that the whole 3DNet database can be

used to recognize objects and estimate their pose targeting

at virtual reality and robotic applications like grasping.

a b c d e f

Fig. 8. Pose Estimation: Given a scan from a Kinect (a,b), the segmented
point cloud (c) is matched against synthetic views of the model (e). Using
the best matching view (d), the model is aligned to the scan(f).

D. Extensibility

Adding a new object class is easily achievable by follow-

ing the following steps

1) Download 3D models of new object class from the

various sources from the web or scan your objects

2) Convert the 3d models to PLY-format ( we suggest

meshconv4 )

3) Put the 3d models into a subdirectory of the already

existing database and start the framework for view

generation

4) Optional: A XML-file in each class directory provides

the link to WordNet and additional attributes to the

class.

E. DESCRIPTORS

The proposed framework comes with a set of available

descriptors. The choice of descriptors is based on speed,

availability and stability. Therefore global 3D descriptor

are the first to be entering the framework such as VFH,

CVFH, SHOT and shape distributions based descriptors as

these provide the needed speed for robotics applications.

Reimplementation and adaptation of Spherical Harmonics

4http://www.cs.princeton.edu/ min/meshconv/

[8] and Spin Images [7] as global descriptors are the next

to be put into action. Local descriptors with Bag-of-Words

approaches as used in [4], [11] and [6] require an extra step

of learning the visual-words which is not yet available in the

framework.

1) VFH: The Viewpoint Feature Histogram is a descriptor

based on normal vectors and was introduced in [14]. The

descriptor is designed to be robust with respect to surface

noise and missing depth information and the main focus is

on recognition of objects learned beforehand. The average

time for calculation and matching is approximately 70 ms.
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Fig. 9. VFH rank plot on the 10 classes test database against 10 Classes.
VFH produces good results but fails on two classes.

The Viewpoint Feature Histogram (VFH) introduced in

[14] is a viewpoint global descriptor based on angular

normal distributions extracted from the surface normals and

a reference coordinate system obtained by averaging the

normals and points on the whole surface. It was designed

to robustly describe the geometry of objects seen from a

certain viewpoint using the same depth sensor for training

and detection. The average time for calculation and matching

is approximately 70 ms.

2) CVFH: The Clustered Viewpoint Feature Histogram

[1] is a semi-global view based descriptor based on VFH.

Because of its semi-global nature, only certain parts of the

objects are used to build the reference systems on which the

computation is based but uses the whole available view infor-

mation to build the angular normal distribution histograms.

Because of its multivariate representation of a partial view, it

can deal with partial occlusions and cope with different data

characteristics between training and detection. The parts of

the object used to build the coordinate systems are obtained

by a smooth region growing stage aiming to detect stable

regions which are robustly estimated by the depth sensor. The

descriptor computation time depends strongly on the region

growing step, both in the number of points and the number

of stable regions found. The average time for computation

and search is approx. 208 ms, ranging from 50 ms and 300

ms.

3) SDVS: The Shape Distribution on Voxel Surfaces de-

scriptor is a descriptor based on histograms of point-to-point

distances and was introduced in [19]. The point distances are

classified to be either on the surface of the partial view, off

or mixed. This descriptor is calculated directly on the point

cloud and does not need any normals to be computed and

takes an average of 25 ms for calculation and matching.

4) ESF: The Ensemble of Shape Functions descriptor is

based on the SDVS descriptor and includes multiple shape
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Fig. 10. CVFH rank plot shows improvement over VFH on 10 classes,
but also has problems with two classes.
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Fig. 11. SDVS rank plot on the 10 classes test database against 10 Classes.
Most confusion is between the classes mug and toilet paper and between
bowl and apple as partial views of these classes resemble parts of the other
class.

function as described in Osada [12], such as A3(angles),

D2(lengths) and D3(areas) and requires 75 ms for calcu-

lation and matching. A supplemental video of classifying

object with this descriptor can be found on 3DNet (3d-

net.org/video).

1 2 3 4 5 6 7 8 9 10
# Nearest Neighbours

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

si
fic

at
io

n 
Ra

te

  95% |   99% apple
  82% |   89% banana
  85% |   94% bottle
  76% |   88% bowl
  95% |   98% car
  78% |   96% donut
  99% |  100% hammer
  99% |  100% mug
  72% |   91% tetra pak
  18% |   61% toilet paper
  80% |   92% OVERALL

Fig. 12. ESF rank plot on the 10 classes test database against 10 Classes.
The tetra pak class is working for this descriptor, but it still has problems
with the similarity of mug and toilet paper classes.

5) SHOT: The SHOT descriptor introduced in [17] is

aimed at surface matching with local descriptors, but is

used here as a global descriptor for the whole object. The

descriptor showcases a high classification rate, but compared

to the other approaches the calculation time is up to than 10

magnitudes larger, so the feature calculation and matching

takes from 130 ms to 4 sec on our test database.

F. Weight Learning on Synthetic Views

Parameters and descriptor weights can be learned on the

synthetic views without having to see a single real scene.

The improvement of the descriptor performance is showcased
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Fig. 13. SHOT rank plot on 10 classes provides good results with no class
less then 20%, but is also the slowest descriptor in this benchmark.
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(a) ESF descriptor with equal weights, no training.
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(b) ESF descriptor with learned weights from synthetic views shows 2 %
performance improvement.

Fig. 14. Weights learned on synthetic views for increased classification
rate.

in Figure 15 where a 2 % improvement was achieved by

learning the descriptor sub-histogram weights on a sample

of the synthetic views. This method for tuning descriptors

can be accomplished with any descriptor having sub-parts

in its histogram and therefore weights can be learned. The

big advantage here is that this can be done offline, without

having a test database to split in training and evaluation parts.

V. BENCHMARK & EVALUATION

3DNET’s intention is to provide benchmarks for 3D

shape descriptors on the test databases in a similar way the

Middlebury Stereo Benchmark [16] is for dense stereo.

For every descriptor rank-plots, confusion matrices and

overview statistics are generated for the test sets against the

model databases, e.g. 10-10, 10-50, 10-200, to provide in-

sight and conclusions on descriptor performances. A sample

benchmark is given for the ESF descriptor for 200 classes

in Figure 14 and Table II.

As speed is a key issue in addition do classification

performance for robotics, we do not follow the approach of

the Middlebury Benchmark providing user to submit bench-

marks. To foster sharing open-source code and enabling com-

parable performance measures, users are invited to include

their descriptor in the framework, add test scenes to the test

databases and add new categories, but benchmarking and



providing benchmarking results on 3d-net.org is done by the

3DNet itself.
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Fig. 15. ESF rank plot on Cat10 test database against 200 Classes.

TABLE II

NEAREST NEIGHBOR CLASSIFICATION AND MOST CONFUSING CLASS

class name 1-NN 10-NN confusing class

per scenes OVERALL 58.22 % 78.23 %
per class OVERALL 49.10 % 71.39 %
apple 81.40 % 98.45 % pumpkin
banana 54.79 % 69.86 % pistol
bottle 48.77 % 79.01 % suv
bowl 50.00 % 76.47 % hat
car 11.52 % 43.64 % suv
donut 20.00 % 62.00 % cap
hammer 83.41 % 96.10 % axe
mug 91.96 % 99.46 % watch
tetra pak 47.09 % 72.09 % mug
toilet paper 2.11 % 16.84 % armchair

VI. CONCLUSIONS

A novel methodology is presented for rapid and scalable

training of 3D shape descriptors using CAD models. To ac-

complish objective comparison of shape descriptors, 3DNet

(3d-net.org) is presented as a free resource providing an

open-source framework and test databases for benchmarking.

Model databases with CAD models in 10,50,100 and 200 cat-

egories are presented as a common training resource. 3DNet

offers to be extended by the community by adding new

categories, creating a common test database and sharing new

shape descriptors. 3DNet provides all necessary resources to

process scenes as depicted in Figure 16. At the current state,

segmentation is the main performance bottleneck, detaining

us from having frame-rate classification. This leaves a lot

of scope for future improvements in the challenging areas

of handling touching objects, occlusions and speed and we

hope with 3DNET, progress is accelerated.
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Supervised Learning of Hidden and Non-Hidden 0-order Affordances
and Detection in Real Scenes

Aitor Aldoma, Federico Tombari and Markus Vincze

Abstract— The ability to perceive possible interactions with
the environment is a key capability of task-guided robotic
agents. An important subset of possible interactions depends
solely on the objects of interest and their position and ori-
entation in the scene. We call these object-based interactions
0-order affordances and divide them among non-hidden and
hidden whether the current configuration of an object in the
scene renders its affordance directly usable or not. Conversely
to other works, we propose that detecting affordances that
are not directly perceivable increase the usefulness of robotic
agents with manipulation capabilities, so that by appropriate
manipulation they can modify the object configuration until
the seeked affordance becomes available. In this paper we
show how 0-order affordances depending on the geometry of
the objects and their pose can be learned using a supervised
learning strategy on 3D mesh representations of the objects
allowing the use of the whole object geometry. Moreover, we
show how the learned affordances can be detected in real
scenes obtained with a low-cost depth sensor like the Microsoft
Kinect through object recognition and 6D0F pose estimation
and present results for both learning on meshes and detection
on real scenes to demonstrate the practical application of the
presented approach.

I. INTRODUCTION

From a robotic perspective, the ability of understanding
a specific environment together with the interaction possi-
bilities provided in it represents a key capability for most
autonomous agents. What an environment potentially affords
depends strongly on two factors: (i) the objects and their
configuration in the environment and (ii) the interaction
capabilities embodied on a specific agent. The combination
of both factors is coined under the term affordance [1]:

”Affordances relate the utility of things, events, and
places to the needs of animals and their actions
in fulfilling them [...]. Affordances themselves are
perceived and, in fact, are the essence of what we
perceive.”

In robotics, affordances have been primarily exploited
in grasping or action-behaviour learning of objects, where
2D motion or colour cues have been related to object
shape, e.g., [2] [3]. However, objects provide several more
affordances, which we refer to as 0-order affordances, that
are supported by geometrical properties of the object. For
instance, objects like chairs or sofas can be used for sitting,
because they provide a surface parallel to the ground and an
attached vertical surface to lean back. Mugs, bowls, and in
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general containers, are used for liquid-containment because
they provide a closed concavity. 0-order affordances do not
depend solely on the geometry of the objects but also on their
configuration in the world. Liquid containers can only fulfill
their function if they are in an upright pose, while objects like
sofas and chairs can be used for sitting only when found in
a specific pose. We term hidden 0-order affordances those
affordances that can be found on an object but not in the
current pose, e.g., a chair or mug upside down. 1

Given a certain task, e.g., fetch a container or prepare
coffee, it becomes necessary for the robot to detect objects
and their affordances. Placing the robot in a house or in an
industrial setting provides structural information to the robot.
Moreover, man-made objects are usually designed to fulfill
their function(s) when placed in a certain pose(s) which due
to the structured man-made world is expected to be stable
on a planar surface. Hence, detecting the current pose of an
object is particularly important to understand whether the
current affordance is hidden or not.

Consequently, in this paper we propose an approach to
learn 0-order affordances for objects modelled as 3D meshes
by discretizing the space of possible orientations using their
stable poses. The learned affordances are detected in real
scenes by recognizing the objects of interest that are currently
present in them and estimating their pose, see Fig. 1. Object
recognition allows a direct mapping to both hidden and
non-hidden affordances, which in turn enables the robot to
either directly interact with the object or to plan interactions
with the environment (e.g. manipulations) to make a hidden
affordance available.

After reviewing related work, we present in Section III
how hidden and non-hidden 0-order affordances can be
learned on 3D mesh models where the whole geometry is
available and therefore stronger cues can be exploited. An
evaluation of several 3D descriptors and classifiers to capture
affordances is also presented. Section IV demonstrates how
through object recognition and 6DOF pose estimation, we
are able to detect both non-hidden and hidden 0-order
affordances in real scenes obtained with a low-cost depth
sensors like the Kinect, which is valuable in the context of
robotic platforms and task-guided agents that have the ability
of manipulating the environment. In Section V we present
an evaluation of the whole pipeline (see Fig. 1) and finally
conclude with several future research directions.

1Following this terminology, 1st-order affordances relate the object to
the specific robot embodiment, e.g., chair height in respect to humanoid
size. And 2nd-order affordances represent what the embodiment handling
on object affords, e.g., placing the object onto a table [4].
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Fig. 1. The two steps of learning and detecting hidden and non-hidden
0-order affordances in real scenes: Step 1: affordances are learned using a
pool of binary classifiers on the full-3D representations of the objects to be
recognized using the methodology presented in Sec. III-E. Step 2: objects
are recognized in range images and their 6DOF pose is aligned to map
affordances based on the stable poses.

II. RELATED WORK

First work on object affordances used full-3D object
models to describe the functions provided by specific object
and object categories and the geometrical attributes or parts
affording that functionality [5]. However, it is difficult to
obtain such accurate 3D data from a robot under realistic
settings, especially with real-time constraints. Hence, several
attempts used 2D images to learn and detect affordances
based on shape, texture and color features, e.g., [6] [3].
The main disadvantage of these approaches are the low-
level features on which the learning is based. As a matter of
fact, 2D features are often not adequate to learn geometrical
attributes of objects, which are eventually used to detect
specific affordances. Only recently 3D cues have been used
in a similar approach [7] to learn the difference between
container and non-container affordances based on robot-
object interaction and depth images.

Probably the best studied affordance in robotics is grasp-
ing, i.e., graspable. Several authors have presented data-
driven grasping techniques based on recognition and 6-
DOF pose estimation [8], [9], [10]. These approaches are
similar to our in that grasp hypothesis are learned from
mesh representations of the object and applied to real objects
after positive recognition and pose estimation. However, we
decide to exclude the graspable affordance from our analysis
for two reasons: (i) it is already a well-studied problem and
(ii) we consider graspable to be a 1-order affordance as it
depends strongly on the agent and, theoretically, all objects
might be grasped with the appropriate embodiment.

Affordance-driven recognition has also been investigated
in related fields. In [11] the authors perform 3D object
categorization based on the definition of a canonical form
of an object. Although not explicitly taking into account

affordances, they (and citations therein) define categories by
grouping objects based on their ”main purpose/function”.
Recently, a similar approach is exploited in [12], where
object affordances and grasping is used as an additional
feature to aid object recognition. Also recently, Grabner et
al. [13] learns the sittable affordance by matching a human
sitting figure to depth images.

III. LEARNING 0-ORDER AFFORDANCES

The ultimate goal of this work is to detect hidden and
non-hidden 0-order affordances by recognizing objects in the
scene and estimating their 3D pose. Also, the objects used to
train the recognition module are represented as 3D meshes
obtained from CAD models or high-precision scanners. Once
the pose is detected by the recognition module, the stable
pose of the object (if any) is used to map the affordances
of the recognized 3D mesh to the current scene. In [4], we
show how this mapping can be obtained, although in that
work a human operator had to manually insert affordances
for each stable pose of the object, this seriously limiting the
scalability of the method.

In this paper, we try to remove - or at least to greatly
loosen up - the dependency from the human operator. By
means of a initial training stage, we adopt a learning ap-
proach to automatically infer affordances on novel meshes.
More specifically, we tackle this problem using a supervised
learning approach to train independent binary classifiers,
each one specialized on a single affordance. Thanks to this
approach, we are then able to associate a set of pre-defined
affordances to any given mesh depicting an object in a stable
pose, by classifying it through the set of trained classifiers.

The set of 0-order affordances we consider are:
• rollable: the object can roll if pushed.
• containment: the object can contain other objects.
• liquid-containment: the object can contain liquids.
• unstable: the stability of the pose is compromised if

pushed.
• stackable-onto: objects can be stacked onto the object.
• sittable: an agent can sit on it like a human would do.
Since in real world most man-made object categories are

designed to fulfill their intended functionality when they
are placed on a stable pose, stable poses are a perfect
candidate to discretize the 0-order affordances space. The
forthcoming sections will investigate the following points:
i) how to compute a set of stable poses of an object; ii)
how to label the models to obtain an initial training set
for classifiers; iii) which descriptors are most adequate to
capture the geometrical attributes of the affordances: iv)
how the proposed approach performs with different, general-
purpose machine learning algorithms. Finally, we conclude
this section by comparing several state-of-the-art descriptors
and classifiers in order to determine the best descriptor-
classifier combination for each affordance.

A. Stable pose computation

An object is in a stable pose if it will persist in that same
pose when not disturbed by external agents. As described in



[14], the stable planes of a model are a subset of the tangent
planes enclosing a model - the planar faces of the convex
hull. The triangle faces of the convex hull can be grouped
in planar faces by performing a hierarchical clustering [15].
The final planar faces represent the tangent planes Π that
need to be further analyzed for stability. We refer the reader
to [4] for a detailed explanation on how we compute the
stable planes of a 3D mesh.

B. Labeling of training models

Given a set of object affordances, A, and an set of objects,
O0, we start by creating supervised object - affordance
relationships inserted by a human operator. We have a CAD
model representation of each object in the initial object set.
An object o ∈ O0 is displayed to the operator together with a
list of all possible affordances A. At this point, the operator
inputs the affordances belonging to the current object, in
addition he inputs whether any of these affordances might
be hidden when the object is found in the environment by a
robotic agent. If there is any, the operator is shown the object
in different stable poses and for each of them, he types in
whether the affordance is hidden or not (see Fig. 2).

Fig. 2. Screenshot of the labeling tool. In the top figure, the user is given a
CAD model to label in terms of its 0-order affordances. When the ”hidden”
button for a specific affordance is pressed, a window (at the bottom) appears
allowing the user to input whether the current affordance is hidden or not.

C. Descriptors

In machine learning approaches the representation of
the input data given to the learning algorithms is a key
factor for the accomplishment of the final application. Thus,
we have tested a pool of 5 3D descriptors, some of them
taken from the literature and others specifically tailored
for our needs. In general, and conversely to most works in
literature, we are looking here for 3D descriptors that are
pose dependant to capture the affordances of the objects
depending on the specific stable pose. A brief review of the
evaluated descriptors is now given. In the following, we will
refer to Cp as the projection of the centroid of the mesh on
the stable plane, as well as to Np as the normal on that plane.

Spherical Extent Descriptor (SEE) [16] — Our
implementation is based on computing the length of
the last N intersections between the mesh and N rays
running from Cp to N points sampled on a tesselated
sphere where the mesh is circumscribed (as shown in Fig.
3) These lengths are binned into a histogram of N elements,
where N depends in turn on the number of tesselations
performed on an initial icosahedron (N = 20 ∗ 4 ∗K) used
to approximate the sphere. For the experiments, we use a
tesselation level of 2, yielding a total of 320 bins.

Fig. 3. Visualization of a Spherical Extent Descriptor for a mug found in
a upside-down pose (left) and upright (right).

Normal Distributions Sliced (NDS) — This descriptor
aims at capturing the distribution of the differences between
the normals on the mesh and Np. Specifically, we take the dot
product between Np and ni, which ranges between [−1, 1].
To capture the spatial distribution of the normals along Np,
the mesh is sampled with 20K points and the sampled points
are sliced along this direction (see Fig. 4). The normal ni is
computed on the mesh triangle where each point has been
sampled from. The normal distribution of all points in a
specific slice is binned into an histogram with 45 bins. We
use 3 (NDS3) or 5 (NDS5) slices and the histograms relative
to each slice are finally concatenated giving a total length
of 45 ∗ #slices. Hence, we aim to render this descriptor
particularly discriminative with regards to affordances such
as stackable-onto or sittable, where several normals of the
sampled points are parallel to Np). In addition, it should
be particularly descriptive also for the ”rollable” affordance,
since when this affordance is accomplished the lowest slice
(i.e. that closest to the ground) should accumulate mostly
negative and uniformly distributed (i.e. without peaks) dot
products, as they would represent a rounded face.

Fig. 4. Slices along Np used by NDS for a chair standing up-right.

SHOT — The SHOT descriptor [17] was originally pro-
posed as a local descriptor, encoding a signature of his-
tograms of topological traits. A 3D spherical grid centered
on the feature to be described and oriented according to a



unique local Reference Frame defines the elements of the
signature. Each element is in turn a histogram, accumulating
the cosine between the normal of the center point and the
normal of each point falling in the current spherical sector
of the grid. For better robustness a quadrilinear interpolation
and a normalization step are also applied.

Spin Images [18] — The Spin Image descriptor is based
on sweeping a discretized plane (the Spin Image itself)
around the normal of the point being described, and accumu-
lating at each bin the number of intersections with the points
of the object through all sweeps. We place the spin image
plane to be perpendicular to Np, spanning from Cp to Cp

plus the height of the object and from Cp to the farthest away
point projected on the stable plane. We then sweep with an
angular resolution of 10 degrees and the accumulation result
represents the spin image with a size 32x64.

Point Feature Histogram [19] — This descriptor is a
modification of PFH. The normal angular distributions of
the normals are computed using the normals of all points on
the mesh (pi, ni) and (Cp, Np) as follows:

ui = Np

vi =
pi − Cp

||pi − Cp||
× ui

wi = ui × vi

(1)

The normal angular deviations cos(αi), cos(φi) and θi for
each point pi and its normal ni are given by:

cos(αi) = vi · ni

cos(φi) = ui ·
pi − pc
||pi − pc||

θi = atan2(wi · ni, ui · ni)

(2)

Finally, the spatial distributions of the points is computed
using the distance from each point to Cp and binned into two
different histograms, one along Np (capturing the height of
pi relative to the stable plane) and the other representing the
distance of the projected points on the plane. The normal
angular distributions are binned into 3 histograms, each 45
bins and the spatial distributions into 2 histograms, also 45
bins. The final histogram is obtained by concatenating the 5
histograms giving a total size of 225.

D. Classifiers

As previously mentioned, in order to automatically asso-
ciate affordances to a CAD model in a specific pose, we
deploy a pool of binary classifiers, each trained on a specific
affordance. Thanks to this approach, we are able to determine
whether each evaluated affordance is actually hidden or not
in the current pose of the object. For this aim, we propose to
use, as the input sample for the classifier, a global descriptor
computed in a pose-dependent way (thus, explicitly avoiding
rotational invariance).

In our experiments, we have used different popular clas-
sifier methods in order to evaluate the generality of our
approach. More specifically, we have employed Support
Vector Machines (SVM) [20], Boosting [21] and Random

Forests [22]. All implementations were provided by the open
source library OpenCV.

During the training stage, a set of global descriptors is
computed on several models (each one in a different pose)
so as to populate the training set. For parameter selection,
a k-fold cross-validation approach is used, by dividing the
training set in k parts and using in different permutations
k−1 folds for training and the remaining one for validation.
Given the specific characteristics of our training set, i.e.
small due to the limited number of objects and poses used
for training, and unbalanced due to a limited number of
positive samples, we have decided to set k = 2. Finally, in
our approach we haven’t used any particular dimensionality
reduction approach, although for certain descriptors this
could have been beneficial given their cardinality (on the
order of a few hundreds): this analysis currently represents
a future direction of this work.

We have used the same training set for all experiments
shown throughout this paper. In particular, it is composed
of 43 CAD models selected from the Google Warehouse
dataset 2, which include the following affordance-rich object
categories: chairs, sofas, bottles, mugs, bowls, stools, office
chairs, toilet paper and tetra pacs.

E. Learning affordances on CAD models - Evaluation

This subsection illustrates an experimental evaluation
aimed at demonstrating affordance detection on CAD models
based on the descriptor and learning techniques previously
introduced. Also, the goal here is to evaluate what is the best
performing descriptor-classifier combination among those
being evaluated. In our experiments, we have selected 45
CAD models from the Princeton Shape Benchmark (PSB)
dataset [23] (obviously not included in the training set) to
form a test set. Ground truth for this set has been obtained by
manual labelling following the same tool and rules used for
the training set. As for the selection of the models composing
our test set, for the sake of the evaluation we favoured objects
having multiple affordances, and included chairs, benches,
mugs, bottles, wheels, sofas, table, glasses, shelves, beds
and stools, which are good representatives for the set of
affordances we take into account.

From the results presented in Fig. 5 we can point out
the following aspects: (i) for certain affordances, learning
is particularly challenging, e.g., stackable-onto and liquid-
containment report a classifications rate below 90%, (ii) there
is no descriptor that clearly outperforms the others over the
evaluated affordance set and (iii) SVM and boost classifiers
seem to outperform random forests. Therefore, as a main
guideline to learn affordances on CAD models, we suggest
to select the best descriptor combined with the best learning
algorithm for each single affordance. Furthermore, we wish
to point out that there are several ways that could help
increasing the classification rates, which we regard here as
future work: (i) increase the size of the training set, improve
the balance between the population of the two classes (ii)

2http://sketchup.google.com/3dwarehouse/
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Fig. 5. Accuracy rates for all descriptors and all affordances. Each
chart is relative to a different classifier: from top to bottom, SVM, Boost,
Random Forests. C,LC,R,U,S,SO stand respectively for containment, liquid-
containment, rollable, unstable, sittable and stackable-onto

use dimensionality reduction techniques to face the sparsity
due to the typically high dimensions of the descriptors and
(iii) combine together multiple descriptors.

One interesting final remark for this section is that for
some object categories — or, more appropriately, for objects
sharing the same functionality — our affordance detector
based on stable poses is able to compute, as by-product,
a semantic alignment of the object up to a rotation about
the stable plane normal (see Fig. 6). This might be of
interest for task-based applications that require objects to

Fig. 6. Princeton Shape Benchmark [23] models displayed in the pose
where, according to our approach, the sittable affordance was detected as
fulfilled (detected using a SVM classifier with a PFH descriptor). Alignment
on the plane is obtained by maximizing symmetry along the z-axis. The
sittable affordance allows for a semantic alignment (up to a rotation over
the plane normal) of objects that can be used for sitting, even when their
geometry is completely different.

be semantically aligned like in [24].

IV. DETECTING HIDDEN AND NON-HIDDEN
AFFORDANCES IN REAL SCENES

As stated throughout the paper, our ultimate goal is to
detect hidden and non-hidden 0-order affordances in real
environments using sensors tipically available on mobile
platforms. We have shown how affordances of object models
represented in the form of full-3D meshes can be learned
using a supervised learning strategy. Now, the challenge
is represented by matching our models, where 0-order af-
fordances have been automatically detected, to objects in
real scenes where the data is represented by partial views
and acquired with a depth sensor (we focus our attention
on low-cost sensors such as the recently released Microsoft
Kinect). In addition, we also aim at estimating their 3D pose
and, finally, estimating the stable pose (if any) on which
the objects are found in the real world so to obtain, by
association, the hidden and non-hidden 0-order affordances.

A. Object recognition

The object recognition module is probably the most inter-
changeable module in the whole pipeline. But, due to the fact
that our models are represented as noiseless meshes — CAD
models downloaded from the Internet or obtained with high-
precision scanners — we need to deploy object recognition
techniques able to deal with the significant differences in
the 3D data characteristics among training and test. Also,
our algorithms cannot rely on color information to improve
their recognition capabilities due to two main reasons: (i)
most CAD models present in public datasets are provided
without texture information (ii) within the scope of thi paper,
we have considered only affordances that can be perceived
(and discriminated among each other) using only shape
cues, therefore it would be interesting to limit the object
recognition module as well to exploit this cue only.

Because of these contraints, we decided to use the Clus-
tered Viewpoint Feature Histogram (CVFH) descriptor and
the recognition pipeline presented in [25], which has been



shown to carry out good performance in a scenario similar
to the one we are facing here. CVFH is a semi-global view-
based descriptor composed by several histograms based on
the normal distributions of the object surface. Because of its
multivariate representation, it can deal with occlusions and
”holes” typically present in the data due to the limited quality
of the deployed 3D sensor (see Fig. 9). Moreover, combined
with the Camera’s Roll Histogram (CRH) [25], aimed at
determining the final degree of freedom over the camera axis
and a post-processing step, it is able to accurately determine
the object poses.

Besides, we also employ, in addition to the CVFH descrip-
tor, two other view-based descriptors: the Viewpoint Feature
Histogram (VFH [19]) and Shape Distributions on Voxel
Surfaces (SDVS [26]), which will be altogether included in
our experimental evaluation. All evaluated descriptors are
used in combination with the same CRH stage and post-
processing stage for a full 6DOF pose estimation. Please
note that the descriptors used in the recognition module are
designed to recognize objects using the depth data obtained
from a certain viewpoint and threfefore, the descriptors
presented in III-C aimed to describe the whole geometry of
an object are not adequate for this problem.

B. Stable pose estimation

Once object recognition and pose estimation have been
carried out, for those objects which one or more hidden
0-order affordances were detected for, we need to further
evaluate if their current pose in the scene makes any hidden
0-order affordance usable. Let M1 represent the object
in camera coordinates once it has been aligned using the
procedure explained in Section IV-A and let ndp represent the
normal of the dominant plane in the scene. LetM2 represent
the same object in object coordinates together with the set of
stable planes Π, where each π ∈ Π has been labeled to have
the specific 0-order affordance hidden or not hidden using the
learning mechanisms presented in Section III. The problem
can then be expressed in the following way: find πi ∈ Π that
best alignsM2 withM1 and check if the affordance for the
stable pose based on πi is hidden or not.

We use the method presented in [27] to alignM2 andM1

(assumed to stand on the plane with normal ndp). Since the
method is based on stable planes, the best alignment yields
a certain πi fromM2. By looking at the labeled information
associated with πi, we can then understand whether, in the
current configuration, the hidden 0-order affordance is hidden
or not. Note that in our representation, a hidden 0-order
affordance is a boolean variable and we do not consider poses
where the object might partially fulfill the affordances. In the
case that the pose retrieved by the procedure in Section IV-A
does not represent a stable pose, the system will consider all
pose-dependant affordances to be hidden. The absence of a
stable pose is detected by thresholding a similarity measure
computed between both meshes after the best stable pose is
found.

V. EVALUATION

We already presented, in section III-E, an experimental
evaluation of descriptors and classifiers aimed at learning
affordances on a training set of CAD models extracted from
the PSB dataset. In this section, we propose an evaluation
of the whole pipeline aimed at detecting hidden and non-
hidden 0-order affordances in real objects acquired with a
Microsoft Kinect sensor. In particular, as depicted in Fig. 1,
the following aspects are being evaluated:

• Learning 0-order affordances on the CAD models rep-
resenting the real objects (see Section III).

• Object recognition and 6DOF pose estimation (see
Section IV-A).

• Stable pose detection (see Section IV-B).
For this purpose, 20 objects are selected and placed in

front of the camera. Several snapshots are acquired for each
object, each one referred to a different stable pose. We take 5
snapshots per object, except for highly symmetrical object,
in which case only 2 (spherical objects) or 3 (cylindrical
objects) snapshots are taken, yielding a total of 85 scenes.
Each scene is manually labeled with hidden and non-hidden
0-order affordances depending on each object and its con-
figuration.

Obviously, since the latter stages of our pipeline highly
depend on the outcome of the previous ones, errors add up
and even with a perfect recognition and pose estimation,
affordances might be incorrectly detected if the learning
algorithms failed to properly classify the affordances on
the mesh. In order to better estimate the performance of
each main stage of the pipeline, the affordances on the 20
mesh models used in these experiments are also manually
labeled so that the errors given by the recognition and pose
estimation methods, together with the stable pose detection,
can be evaluated independently.

As previously mentioned, we use the best combination of
descriptors and classifiers according to the evaluation in Sec.
III-E to learn the affordances for the 20 meshes representing
the real objects. We carry out an experimental evaluation
of our approach by reporting a standard accuracy metric
based on the number of true positives, false positives, true
negatives and false negatives between the detection results
and the labeled scenes used as ground truth. The different
descriptors presented in Sec. IV-A are independently evalu-
ated together with the number of nearest neighbours that are
post-processed. In Fig. 7 the results are presented, both using
the learned affordances and also using manually labeled
affordances in order to isolate the error source. Thus, the
evaluations ∗ GT use the manually labeled affordances and
therefore quantify only the error of the recognition method
and 6DOF pose estimation plus the detection of the stable
pose. Approximately, half of the error is caused by the
learning mechanism and the other half by subsequent stages
of the pipeline.

Even though the test scenes do not present occlusions,
CVFH outperforms both VFH and SDVS, giving an af-
fordance detection rate of 70% using learned affordances
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Fig. 7. Evaluation of the accuracy in the affordance detection using several
descriptors and as a function of the number of nearest neighbours that are
post-processed. All nearest neighbours are post-processed in the same way.

and 84% for the ground truth affordances. Fig. 9 shows
recognition results and affordance detections using CVFH
on a scene where several objects are partially occluded.

It is important to note that in our evaluation we also
take into account hidden affordances and therefore, in some
situations like scenes where a mug is upside-down and
the handle is not seen, the object might be recognized
as a cylinder (if there is a cylinder model with a size
similar to that of the mug), therefore the hidden containment
and liquid-containment affordances will be counted as false
negatives and the hidden rollable affordance (detected in the
cylinder model) will account for a false positive (see Fig.
8). To demonstrate the effect of these circumstances on the
performance, in Table I we report the accuracy rates for
non-hidden affordance using CVFH and we can see how
the performance is significantly improved.

# nearest neighbours
5 10

CVFH 85.2 86.4
CVFH GT 93.5 94.1

TABLE I
ACCURACY RATES OF NON-HIDDEN AFFORDANCE DETECTION USING

CVFH, BOTH FOR LEARNED AND MANUALLY LABELED AFFORDANCES.

VI. CONCLUSIONS AND FUTURE WORKS
We have proposed a method to infer 0-order affordances

on 3D models using supervised learning algorithms, where
3D surface descriptors are employed as a representation of
affordances. Moreover, we have shown how object recogni-
tion methods providing 6DOF pose can be used to detect
affordances in real scenes obtained with the Kinect sensor
by mapping the estimated object and pose to the learned
affordances on the mesh model.

In the evaluation section, some challenges have been
presented demonstrating the difficulty of the task. We be-
lieve that extended representations using texture, color and

Fig. 8. A mug seen from a viewpoint where the handle is not visible and
in an upside-down pose. The mug gets recognized as a cylinder and hidden
affordances are incorrectly detected. Green points depict the view rendered
from the CAD model, while red points depict the segmented clusters in the
current scene. Observe how both red and green points match almost perfectly
despite the challenging scenario, where color information is completely
discarded.

materials will have to be used to discriminate affordances
as the number of considered affordances keep growing.
For instance, the openable affordance will have to use a
texture representation combined with material in order to
be classified. Material might help as well to discriminate be-
tween affordances like containment and liquid-containment.
A human would never use an opened shoe box made of
carton as liquid-container although in the correct pose and
based on geometrical properties, a classification system like
the one we presented here might. Yet, we still believe
that geometrical classifier based on 3D mesh representation
can be very helpful and provide accurate classifiers when
combined with different cues.

Our future research line includes, among others, the in-
tegration of different cues to represent a broader set of af-
fordances and integration with robotic platforms to show the
practical application of affordances in task-based scenarios
where 0-order affordances will be used as starting interaction
chances filtered by the task and higher order affordances.
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From Object Categories to Grasp Transfer Using Probabilistic
Reasoning

Marianna Madry, Dan Song and Danica Kragic

Abstract— In this paper we address the problem of grasp
generation and grasp transfer between objects using categor-
ical knowledge. The system is built upon an i) active scene
segmentation module, able of generating object hypotheses and
segmenting them from the background in real-time, ii) object
categorization system using integration of 2D and 3D cues,
and iii) probabilistic grasp reasoning system. Individual object
hypotheses are first generated, categorized and then used as the
input to a grasp generation and transfer system that encodes
task, object and action properties. The experimental evaluation
compares individual 2D and 3D categorization approaches with
the integrated system, and it demonstrates the usefulness of the
categorization in task-based grasping and grasp transfer.

I. INTRODUCTION

Household environments pose serious challenges to robot-
ic perception and manipulation: objects are difficult to locate
and manipulate due to the unstructured settings, variable
lighting conditions and complex appearance properties. Al-
though some excellent examples of finding and manipulating
a specific object in a scene have been reported in the
literature [1][2], the aspect of generalization have not been
addressed seriously: there are no systems that can flexibly
and robustly, in realistic settings, find objects that fulfill a
certain functionality thus executing tasks such as “Robot,
give me something to hammer with.” or ”Robot, bring
me something to drink from.”

The aspect of function is related to that of affordances [3],
[4] and has been addressed frequently in works that learn
relations between objects and actions [5], [6], [7], [8], [9].
However, none of these consider the aspect of task in their
model: what the agent is required to do with an object will
affect the type of action (grasp) to apply. In this case, the task
will be constraining the action space - not just any grasp can
be applied on the object, see Fig. 1. Another closely related
example is finding something to hammer-with or pour-to that
relates to the notion of functional categories that have been
addressed in a limited fashion in computer vision [10], [11].

In this paper, we present work on encoding object cat-
egorical knowledge with task and action related reasoning.
Knowledge of object category facilitates action (grasp) trans-
fer: i) detecting an object that affords pouring may be easily
pursued at the categorical level, or ii) knowing how to grasp
an object that affords pouring may be transferred to another
object that belongs to the same category. We build upon
our previous work, [12], [13], [14] where we developed
a probabilistic grasp reasoning system. The system models
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(a) pouring (b) hand-
over

(c) tool-use (d) hand-over

Fig. 1. Grasping a cup: (a) pouring and (b) hand-over task (hand should
not block the opening), and a screwdriver: (c) tool-use (hand should grasp
the handle) and (d) hand-over task.

the conditional dependencies between the tasks, actions and
objects taking into account the constraints posed by each.
However, in previous work we concentrated on theoretical
problems of structure learning in graphical models without
considering the aspect of real sensory information extracted
in natural scenes.

We present an integrated approach to task-oriented grasp
reasoning and categorization, with the novel aspect of grasp
transfer. The contributions of the proposed system are that:
• we enable a robot to choose the objects in a 3D scene

that afford the assigned task while
• planning the grasp that satisfies the constraints posed

by the task;
• grasp knowledge can be transferred between objects that

belong to the same category, even under considerable
differences in appearance and physical properties.

Our system integrates 2D and 3D visual information and
captures different object properties (appearance, color, shape)
what makes the categorization process robust in real-world
scenes. We show that the system can successfully discrimi-
nate between objects sharing similar properties but affording
different tasks, such as a carrot and a screwdriver that are
structurally similar but fulfill different functions.

The paper is organized as follows: In Sec. II we present
the probabilistic reasoning framework and in Sec. III object
categorization system. Sec. IV outlines the experimental
evaluation and Sec. V concludes the paper.

A. The system
Our system consists of three main parts, see Fig. 2:
• Visual Front End: here, an active robot head equipped

with foveal and peripheral cameras provides input to the
real-time scene segmentation system [15];

• Categorization: the system provides information about
object class using various object properties such as
appearance, color and shape;

• Reasoning system: the probabilistic grasp reasoning
system, that encodes task-related grasping [12][13].



Fig. 2. Visual Object Category-based grasp generation for an arbitrary scene: objects are first segmented and categorized using our 2D-3D Object
Categorization Systems (OCSs). Then, grasping hypotheses are generated taking the task into account. The image is best viewed in color.

We start by providing the necessary details for our proba-
bilistic reasoning system.

II. ENCODING TASK CONSTRAINTS

In the previous work [12], [13], [14], we have developed
a probabilistic framework for embodiment-specific grasp
representation. We model the conceptual task requirements
using a Bayesian network through conditional dependencies
between task, object, action and constraints posed by each.
The model is trained using a synthetic database of objects,
grasps generated on them, and the task labels provided by a
human. The data generation is based on the toolbox BADGr
[16]. BADGr provides 3D object shape approximation, grasp
planning, execution and also grasp-related feature extraction
and task labeling. We refer the reader for the detailed process
of data generation to [12].

Both the structure and the parameters of the BN are
learned from the database. The BN structure encodes de-
pendencies among the set of task-related variables, and the
parameters encode their conditional probability distributions.
Fig. 3 shows the learned structure of the BN with the features
listed in Table I. Once trained, the model can be used to infer
distribution of a small set of variables based on a partial
or complete observation of others. This property is used to
generate a likelihood map on a set of grasp position around
each object.

Our previous work was done in simulation and the infer-
ence engine assumed the object class unknown. Learning of
the network structure in [13] revealed the importance of the
categorical information. This motivated us to integrate the
object categorization module with the task-constraint grasp
reasoning system.

task

dirobcl

size pos

pshcv coc fvol

fcon

Fig. 3. The structure of the Bayesian network task constraint model.

III. 2D-3D OBJECT CATEGORIZATION SYSTEM

Many household objects that afford different tasks have
similar shape or appearance properties making them hard to
discriminate, e.g. a mug and a roll of toilet paper are alike
in shape but only the former object affords pouring a liquid
to. Thus, our Object Categorization System (OCS) integrates
visual descriptors capturing different object properties such
as appearance, color, shape and does this using both images
(2D) and reconstructed stereo data (3D).

As shown in Fig. 1, we first build a single cue OCS for
each feature descriptor which are then integrated for the final
categorization. All single cue OCSs implement the following
methodology: (a) data acquisition (Sec. III-A), (b) feature
extraction (Sec. III-B), and (c) classification (Sec. III-C). The
methods used to integrate these single cue OCSs will be
described in Sec. III-D.

A. Scene Segmentation

Prior to categorization, object hypotheses are first gener-
ated using a multi-cue scene segmentation system [15]. The
method relies on attentional mechanisms to direct cameras
towards regions of interest, subsequently grouping areas
close to the center of fixation as the foreground. Points of
the disparity maps, computed using the Stable Matching [17],
are then labeled as either the object (foreground), supporting
plane (flat surface) or the background. Important aspect is
that the system generates object hypotheses without relying
on information about object category which is the common
approach in the literature.

The segmented point cloud is further processed to remove
outliers and equalize point density. We rely on the statis-
tical outlier removal and voxel grid filters from the ROS
PCL [18]. The resulting point cloud contains approx. 2000
points representing the visible part of the object. Our system
does not require reconstruction of the whole object from

TABLE I
FEATURES USED FOR THE TASK CONSTRAINT BAYESIAN NETWORK.

Name Dimension States Description
task - 5 Task Identifier
obcl - 7 Object Category
size 3 6 Object Dimensions
dir 4 15 Approach Direction (Quaternion)
pos 3 17 Grasp Position
fcon 11 3 Final Hand Configuration
pshcv 3 3 Grasp Part Shape Vector
coc 3 8 Center of Contacts
fvol 1 4 Free Volume



its partial view as in [19][20]. Such reconstruction methods
often assume objects to be symmetrical which is not always
the case.

B. Feature Extraction

The object representation is crucial for achieving robust
categorization. Several descriptors have been proposed in
the field of computer vision to encode object appearance
(SIFT [21], textones [22]), color (opponentSIFT [23]) and
contour shape (HoG [24]). Studies on 2D cue integration [25]
show that contour- and shape-based methods are adequate for
handling the generalization requirements needed for object
categorization however they are not robust to occlusions. On
the other hand, appearance- and color-based descriptors have
been successfully applied in object (instance) recognition
and detection [21], [22]. However, their performance drops
significantly in case of clutter and illumination changes. In
object retrieval and computer graphics, a number of 3D shape
descriptors have been proposed [26]. Only a few of them are
applicable to real 3D data that covers only the visible part
of the object: spin images [27], RSD [19], FPFH [28],[29].

Motivated by the fact that the object representation should
have high discriminative power, be robust to real world
condition and diverse for cue integration, we extract from
a segmented part of an image multiple 2D descriptors
encoding different object attributes: appearance (SIFT), col-
or (opponentSIFT), contour shape (HoG). The final object
representation for 2D descriptors follows a concept of the
spatial pyramid [30]. The 3D shape properties of an object
are obtained by applying the FPFH descriptor [28] to each
3D point in the segmented point cloud. It was shown that
the normal-based descriptors obtain high performance for the
task [29]. To obtain the final object representation, a bag-of-
words BoW model [31] is employed.

C. Classification

Motivated by the histogram-based object representation
(BoW), we use for classification SVMs with a χ2 kernel
successfully applied in previous studies [23][24][20]. For the
purpose of cue integration, we need information about the
confidence with which an object is assigned to a particular
class. Several studies were devoted to find confidence esti-
mates for large margin classifiers [32], [33]. In principle, they
interpret the value of the discriminative function as a distance
of a sample to the optimal hyperplane. The closer the sample
is to the hyperplane the lower is the probability (confidence)
of a correct classification. In this work, we use the One-
against-All strategy for M -class SVMs and the confidence
measure for a sample x is calculated as [34]:

C(x) = Dj ∗ (x)− max
j=1...M,j 6=j∗

{Dj(x)} (1)

where Dj(x) is equal to the difference between the average
distance of the training samples to the hyperplane and the
distance from x to the hyperplane. Experimentally, this
approach shown to be superior to the Platt’s method [32].

D. Cue Integration

Various cue integration approaches have been applied to
object recognition and categorization based on 2D data.
These methods can be divided into: low level integration and
high level integration. Low level integration operates directly
on feature vectors. Due to the curse of dimensionality [35,
p.170] its applications are mostly limited to the early work
in object recognition [36]. High level integration have been
shown to be more robust to noisy cues and is is commonly
accomplished by an ensemble of classifiers or experts. The
most common techniques include [37]: majority voting of
classifiers [25] and methods based on algebraic combination
of classifier outputs. The classifier outputs can be combined
using linear [33] or nonlinear [38] techniques.

Our object categorization system takes a high level ap-
proach integrating evidences from the single cue OCSs. We
use methods based on an algebraic combination of classi-
fier outputs and we evaluate both the linear and nonlinear
algebraic techniques.

In case of the linear techniques, the total support for
each class is obtained as a linear weighted sum, product or
max function F (·) of the evidences provided by individual
classifiers. The final decision is made by choosing the class
with the strongest support. Let us assume that dij is an
evidence provided by classifier i for a category j, and wi

is a weight for classifier i (both are normalized to sum up
to one for all L classifiers and M categories), then the class
with the strongest support j0 ∈ {1, . . . ,M} is chosen as:

j0 = arg max
j=1,...,M

F(d1j , . . . , dLj ;w1, . . . , wL)∑M
j=1 F(d1j , . . . , dLj ;w1, . . . , wL)

. (2)

The weights wi|i=1,...,L are estimated during training. In
this setup, the sum rule is equivalent to the Discriminative
Accumulation Scheme (DAS) proposed in [33].

In case of the nonlinear techniques, we have used an
approach where an additional SVM classifier is trained to
model the relation between evidences provided by the dif-
ferent single cue OCSs [38]. The outputs from the single cue
OCSs are concatenated to build a feature vector that is fed to
the subsequent SVM classifier. During training, parameters
of the nonlinear function F (·), equal to the classifier kernel
function, are estimated. We have evaluated the performance
of the following three nonlinear function: (a) radial basis
function (RBF), (b) χ2 function, and (c) histogram intersec-
tion.

Linear methods are simple and have low computational
complexity. However, to infer weights wi|i=1,...,L, an exhaus-
tive search over parameter values is needed which becomes
an intractable task for a large number of cues. The nonlinear
methods owing to more complex function may better adapt
to the varying properties of the cues. However, they also
require a larger training dataset which may be infeasible for
real world scenarios.

IV. EXPERIMENTAL EVALUATION
First, we present the dataset and experimental setup in

Sec. IV-A and IV-B. Then, we study robustness of different



Fig. 4. Examples of objects used to create the database presented in Section IV-A. Different objects were
chosen for each category in order to capture variations in appearance, shape and size within each class. The data
for all the 140 objects can be viewed at our web site http://www.csc.kth.se/~madry/research/
stereo_database/index.php.

(a) (b)

Fig. 5. Examples of imperfect seg-
mentation in both 2D and 3D: (a) on-
ly a part of an object is detected,
or (b) the segmentation mask contains
background points (background points
are marked in red).

2D and 3D descriptors in Sec. IV-C followed by a systematic
evaluation of several 2D-3D integration strategies in Sec. IV-
D. We then demonstrate grasp generation on novel objects
based on categorical information. We also show how the
grasp knowledge can be transfered between objects that
belong to the same category. Finally, we study performance
of the integrated system in realistic scenario for multiple
objects, scenes and tasks in Sec. IV-E.

A. Database

Most of the available object categorization databases store
only 2D image information [39] or 3D object structure [40],
and other 2D-3D datasets [20], [41] contain unsuitable
categories to demonstrate the task-directed grasping. We
collected a new database with objects chosen from everyday
categories. This is very challenging for a category-based,
task-oriented grasping system. The dataset contains a number
of objects that are similar in shape and appearance, but
afford different tasks (e.g. ball/orange, orange/carrot, car-
rot/screwdriver). There are 14 categories: ball, bottle, box,
can, car-statuette, citrus, mug, 4-legged animal-statuette,
mobile, screwdriver, tissue, toilet-paper, tube and root-
vegetable, each with 10 different object instances per cat-
egory (in total 140 objects, examples of objects for each
category are presented in Fig. 4). For each object, the 2D
(RGB image) and 3D (point cloud) data were collected from
16 different views of the object (separated by 22.5°) using
the 7-joint Armar III robotic head, see Fig. 2. To differentiate
the object and background we used the active segmentation
method [15] that generated good results in ca. 90% of
cases. For some object categories, such as car-statuette,
animal-statuette and screwdriver, segmentation was more
challenging, see Figure 5. In order to evaluate performance
of the categorization and grasp generation systems in the real
environment, we collected data for 10 natural scenes. Five
subjects were asked to randomly place between 10 to 15
objects from 14 different categories on a table. In the scenes,
different lightning condition and occlusions of objects are
present. Several scenes are shown in Fig. 10 and 12.

B. Experimental Setup

The database was divided into four sets used for: (1) train-
ing, (2) validation of OCS parameters, (3) validation of the
cue integration parameters, and (4) testing. Objects were
randomly selected for each set with the ratio 4:1:1:4 objects
per category. In total, data for 56 objects were used for

training and testing, and data for 14 objects for subsequent
validations. Due to the fact that we aim to test performance
of the system for the object categorization and not object
instance recognition, an object that was presented to the
system during the training phase was never used later to
evaluate the performance.

For testing, we selected 8 views per object separated by
45° (Fig. 6 top row). We also used 8 images per object,
however we varied a number of unknown viewpoints between
0 and 8. Fig. 6 (bottom row) presents a test setup where
half of the views is unknown. This setup reflects the best
the real condition and we called it Setup-50. The results are
reported for a single object view and information provided
by different views was not fused. To average the results each
experiment was repeated five times for randomly chosen
object instances. We report the average categorization rate
and standard deviation (σ).

C. Feature Selection for Object Categorization

We built four identical single cue OCSs, one for each
descriptor, to evaluated performance of descriptors encoding
different object properties: appearance (SIFT), color (oppo-
nentSIFT), contour shape (HoG) and 3D shape (FPFH). The
SIFT and opponentSIFT were extracted using a grid detector,
and HoG descriptor using the Canny edge detector. The final
object representation for the 2D descriptors follows a concept
of the spatial pyramid, and for the 3D descriptor BoW model.

In order to assess the performance of the descriptors
under different viewpoints, we varied a number of unknown
viewpoints in the test set between 0 and 8. The results
are illustrated in Fig. 7. All 2D descriptors obtained rather
high categorization rate when the viewpoint was known (0
views), but the performance dropped significantly when as
the viewpoint varies. The highest performance was obtained
for opponentSIFT which indicates that color information is
less influenced by the viewpoint changes than shape informa-

Fig. 6. Setup-50. Objects from eight different viewpoints selected to train
the system (top row) and evaluate its performance (bottom row).

http://www.csc.kth.se/~madry/research/stereo_database/index.php
http://www.csc.kth.se/~madry/research/stereo_database/index.php


Fig. 7. Performance of descriptors under varying viewpoint.

TABLE II
RESULTS FOR THE FEATURE SELECTION EXPERIMENTS FOR Setup-50.

Descriptor SIFT opponentSIFT HoG FPFH
Av.Categ.Rate 86.2% 86.8% 75.1% 65.8%

σ 4.5% 3.3% 1.8% 2.7%

tion (HoG). The 2D descriptors yielded higher categorization
rates than the 3D descriptor. It can be related to the quality of
stereo data. However, the performance of the 3D descriptor is
only slightly affected by the viewpoint changes. Additionally,
we attach the numerical results for Setup-50 in Table II.

D. Cue Integration

In this section, we present results from combining 2D
and 3D categorization. The best performance of 92% was
obtained for integration of the three descriptors: oppo-
nentSIFT+HoG+FPFH using the linear combination method.
When comparing to the best single cue OCS (based on
opponetSIFT), the combination of 2D and 3D features im-
proved performance of the system in average by 5%. The
confusion matrix obtained for this experiment is presented
in Figure IV-D (d). The results show that capturing diverse
object properties (appearance, contour shape and 3D shape)
and integration of information from different visual sensors
(2D and 3D) not only significantly improve robustness of
the categorization system, but are essential to discriminate
between similar objects that afford different tasks. The
integrated system is able to correctly classify objects that are
alike in shape or appearance, but are to be used for different
purpose. For example, it correctly categorizes objects of
similar: (a) shape, such as screwdriver and root-vegetable
where only the former can be used as a tool, ball and citrus
where only the former affords playing, or mug, can and
toilet-paper where only the former affords pouring a liquid;
(b) appearance: citrus vs. root-vegetable, bottle vs. can. Such
classification is very challenging for a system based on a
single cue.

1) Detailed Results: The categorization results for dif-
ferent choice of features and cue integration methods are
presented in Fig. 9. The results confirm that descriptors
need to be complementary, i.e. capture different object
properties and originate from different sensors. The best
categorization rate is obtained for fusion of all three fea-
tures (opponentSIFT+HoG+FPFH). The second best for the
combination of descriptors that capture different object at-
tributes and originate from different channels: 2D color
and 3D shape descriptor (opponentSIFT+FPFH). Further,
for the color and shape descriptor from the same channel

(a) Features (b) Integration methods

Fig. 9. Average categorization rate for: (a) different pairs/triples of features
(for linear combination method, sum rule), (b) different linear and nonlinear
algebraic combination methods (for opponentSIFT+HoG+FPFH).

(opponentSIFT+HoG) and for the two shape descriptors
(HoG+FPFH). The same trend in performance is observed
for both the linear and nonlinear combination methods. This
is evidence of selective properties of our system.

In case of the linear algebraic methods, we tested the
weighted sum, product and max rule. For all combinations
of features, the approach based on the sum and product rule
improved the performance of the system in comparison to
the best single cue OCS (based on opponentSIFT), and the
sum rule was superior to the product rule. The max rule that
in case of two classifiers is equivalent to the majority voting,
yielded the lowest categorization rate further supporting the
notion of complementarity. In case of the nonlinear algebraic
methods, we evaluated the RBF, χ2 and histogram integration
functions. All the nonlinear functions provided a comparable
performance. In our study, the linear algebraic integration
methods outperformed the nonlinear methods. A small set of
data was used to train the SVM classifier for the nonlinear
methods. We can draw the conclusion that in case of a
limited amount of data, the simpler fusion methods are more
efficient.

2) Natural Scenes: We evaluated performance of the 2D-
3D integrated OCS on 10 natural scenes where each contains
10-15 objects randomly placed on a table. To categorize
objects, we chose the best classifier trained following the pro-
cedure from Section IV-B. For each object in the scene, we
estimated a confidence vector over the 14 object categories.
The final label was found by choosing a category with the
highest support. We obtained a high categorization rate of
91.7%. The categorization results for a few scenes together
with a confidence vector for each object are presented in
Fig. 10. The confidence values reflect the same trend as
presented in the confusion matrices in Fig. IV-D. The most
difficult remained the differentiation between the ball and
citrus category (see Scene: 3, Object: 8). Mugs are likely to
be confused with cans when a part of an object is not visible
due to occlusion (S: 3, O: 11) or inaccurate segmentation (S:
2, O: 6). We showed that the system is capable to operate in
a very challenging scenario.

E. Object Category-based Task-constrained Grasping

In this section, we summarize the results of an integrated
system considering categorization for task-constrained object



(a) opponentSIFT (b) HoG (c) FPFH (d) opponentSIFT+HoG+FPFH

Fig. 8. Confusion matrices obtained for: (a) color (opponentSIFT), (b) contour shape (HoG), (c) 3D shape (FPFH) descriptor, and (d) integrated
opponentSIFT+HoG+FPFH (linear combination method, sum rule). The images are best viewed in color.

grasping. Our experimental scenario considers multiple ob-
jects grasp planning constrained by the assigned tasks. In
addition, we take the robot embodiment into account. The
robot is presented with a scene containing several unknown
objects, see Fig. 11. First, object hypothesis are segmented
from the background. Secondly, each hypothesis is fed
into our object categorization system. In the given scene,
13 objects are found and they are all correctly classified.
The categorization confidence value of each object provides
evidence for which object to grasp first.

Next, given the assigned task, the robot needs to decide:
(1) which object should be grasped, and (2) how to grasp
it to fulfill the task requirements. For this purpose, we use
the embodiment-specific task constraint model. The model
is trained on a grasp database that includes stable grasps
generated on a set of synthetic object models using the hand
model from the humanoid robot Armar [42]. The object mod-
els are extracted from the Princeton Shape Benchmark [43]
(3-8 models per category), each of which includes 4 different
object shapes scaled to 2 sizes – small and average. Five tasks
were labeled: hand-over, pouring, dishwashing, playing and
tool-use. The total training set includes 1227 cases with 409
cases per grasping task.

1) Grasp Transfer: Our goal is to infer the most suitable
grasp position pos for an object in the 3D scene given the
assigned task task and the categories of the objects obcl.
Since, the BN allows to infer local distribution of a small
set of variables, based on partial or complete observation
of others, we can create a likelihood map on a set of
grasp position around each object, i.e. P (pos|obcl, task).
An example of such a grasp map for an obcl = mug and
task = pouring is presented in Figure 11. The point that
has the highest P (indicated by the brightest color) implies
the best grasp position for the task.

The pos variable in the BN is represented in the synthetic
object local coordinate system. In order to transfer grasp
information to an arbitrary object in the scene, it is nec-
essary to convert the pos data from the local object frame
to the world coordinates. This transformation requires the
knowledge of object size, position and orientation in a scene.
In this paper, we assume that the orientation of the object
is known. The size and position determined by estimating a
minimum bounding sphere for the the filtered 3D point cloud
(outliers and background points are removed). We assume

that a diameter of the sphere corresponds to the longest
object dimension. Several examples of grasp transfer to the
real objects are presented in Fig. 11. For each object in the
scene that was classified as a mug, the grasp map is presented
in the front (camera), top and back view. It is important
to note that by transferring the grasp map, we are able to
generate grasp points for the back (not visible) part of an
object without reconstructing the full object shape.

2) Task-constrained Grasping in a Real Scene: Fig. 12
shows the results of the experiment for natural scenes. We
show the likelihood maps for each object using colored sam-
ple points of P (pos|task, obcl) and for five tasks: hand-over,
tool-use, pouring, playing and dishwashing. For each scene,
the joint probability of an object and task P (obcl, task) is
used together with the categorization confidence to specify
which objects should be grasped first giving priority to
objects that are categorized with a high confidence and
affords a task (have high P (obcl, task)).

In Fig. 12 (Scene 3, Column 2), we see that for the pouring
task, the likelihoods of the sample points around mugs and
bottles are clearly higher than for other objects indicating
that they are the only objects affording the task. Similarly,
screwdrivers are the only objects that can be used as a tool
(Sc. 3, Col. 3), and cars and balls to play (Sc. 2, Col. 4).
For the hand-over task, all objects have high likelihood. This
indicate that using the object category information and the
task constraint BN, we can successfully select the object
according to their task affordance.

For the object that affords pouring, for example mugs in
Scene 3 (Col. 2, Objects 6 and 9) the likelihood maps show
darker color on the top of the object. This is because the
robot hand should not block the opening of an object when
pouring a liquid. When using the screwdriver as a tool (Sc. 2,
Col. 3, Obj. 2), the network favors the position around the
tip of the screwdriver whereas leaving the handle part for
regrasp.

V. CONCLUSIONS AND FUTURE WORK

Robots grasping objects in unstructured environments need
the ability to select grasps for unknown objects and transfer
this knowledge to other objects based on their category and
functionality. Although for pure categorization 2D informa-
tion may be sufficient, 3D information is a must for grasping
and manipulation of objects and can thus also be used for



categorization. The categorization system is integrated with a
task constrained model for goal-directed grasp planning. We
showed that the object category information can be efficiently
used to infer the task affordance of the observed objects. The
proposed system allows for reasoning and planning of goal-
directed grasps in real-world scenes with multiple objects.

We have presented a 2D-3D object categorization system
that is built upon an active scene segmentation module. The
system allows generating object hypotheses and segment-
ing them from the background in real-time. Experimental
evaluation showed that the proposed system achieved high
categorization rate (up to 92%), significantly better than the
classic single cue SVM for the same task. Moreover, cue
integration method proposed in this paper is very efficient
and capable to model situations where limited amount of
data is available. The results show that capturing diverse
object properties (appearance, contour shape and 3D shape)
and integration of information from different visual sensors
(2D and 3D) not only significantly improve robustness of
the categorization system, but are essential to discriminate
between similar objects that afford different tasks.

One avenue for the future research is the integration of the
proposed system with the on-line stability estimation system
proposed in [44]. The aim will be to condition the choice of
grasps based on the perceptions available to a robot prior to
and while lifting and transporting an object.
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Fig. 10. Categorization results for natural scenes. For each object in a scene, confidence values over 14 categories are shown. All objects were correctly
classified except three objects marked using a blue square in confidence vector.

Fig. 11. Grasp transfer from a synthetic object model to real objects in a scene. The grasping points with a high value of P (pos|obcl, task) (good
grasping points) are represented by bright color in the heat maps.

Fig. 12. Generated grasp hypotheses and associated probabilities for the natural scenes. The grasping probability around an object is indicated by a color
of the point (the brighter is the point, the higher is the probability). For each scene, we specify which objects should be grasped first (bar on the right side
of a scene grasp map). Objects in Scene 2 and 3 are displayed in gray color to provide a better contrast for grasp maps. The images are best viewed in
color. For the accurate 3D information, we kindly direct the reader to our web site http://www.csc.kth.se/~madry/research/madry12icra
where the movies with the experimental results are available.

http://www.csc.kth.se/~madry/research/madry12icra
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