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Chapter 1

Executive summary

Deliverable D29 is part of WP5 -“Surprise: Detecting the Unexpected and Learning from it”. According
to the Technical Annex, it presents the activities in the context of

• Task 5.2 - Evaluation of efficient methods to monitor changes in the environment that will be
insensitive to sensor inaccuracies and that compensate eigen-motions/actions of the system in the
environment. In collaboration with the WP4, an internal representation of the environment is
generated that will define the expectations of the system. This representation goes beyond a
geometric representation of the world and will define also contextual and dynamic information
about the world

• Task 5.4 - Generalisation of object form descriptions that allow to reduce the number of necessary
geometric representations for a given object class. The system allows to generalize from a given
basic geometry to the entire class of objects considering deformation of the geometry to match the
current observation to the representation in the Atlas

• Task 5.5 Provide a richer description of action. The research in this field focus on definition of
relevant information that needs to be extracted from human actions that is of interest to plan the
own actions of the robotic manipulator.

The work in this deliverable relates to the follwing fourth year milestone:

• Milestone 10 - Linking structure, affordances, actions and tasks; evaluation of representations
defined by the ontology.

Figure 1.1: Hierarchical processing of a Surprise event (from GRASP Technical Annex)

In the past review meetings, we presented an integration of the perception required to use the surprise
system on different platforms within the GRASP project. The surprise detection framework developed
within the GRASP project is based on observation of objects, actions and results from defined interactions
with the grasp targets. We focused the work on the following aspects in the fourth period of the project.
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We worked on generalization of objects (Task 5.4) to reduce the number of reference shapes in the a-priori
Atlas information. We defined action descriptions in our surprise framework that are able to represent
necessary information from the observation of human actions and own active exploration performed by
the system (Task 5.5). We worked on active exploration of objects to implement the learning loop from
the Technical Annex, where a prediction-action-perception framework is used to refine physical properties
of the object. We worked also on ways how to achieve a best possible knowledge-representation in the
system to support the surprise detection in a most efficient way. The goal was to limit the number of
surprise events that require the system to update its knowledge about physical properties of the object or
its function in a given environment only to cases, where those actually changed. The system has to cope
with the large variation in human actions keeping the number of surprise events to a necessary minimum.

We continued the work on implementation of the Surprise Event Hierarchy (Fig. 1.1) that is now used
for efficient detection of points in time when an observed change in the way how an object is handled lets
the system assume that the physical property of the object (e.g. its filling state) or the object function
changed [5]. New in this period was the addition of Task 5.4 and Task 5.5. The generalization of object
form descriptions leads to further generalization of the information stored in the Atlas information and
allows to generalize between different instantiations of the same category of objects [2,3]. Fig. 1.2 shows
a registration of a complex shape for a better visualization of the system performance. This processing
allows to keep one representative of a shape in the Atlas and allows beside the already presented indexing
function to the entries in the Atlas additionally a deformation map that can be used for grasp adaptation.
The adaptation can use the grasp planning for the reference object to infer a good way to handle the
deformed candidate.

Figure 1.2: Registration of deformed shapes to a single initial reference shape (left). Each line shows
registration results for the two deformations

We worked on making the information about the object richer in by observing not only the static geometric
but also the dynamic properties of the object [6] that allows to estimate relevant physial attributes of the
object which are not observable through simple passive observation (Fig. 1.3). We performed a planing of
appropriate actions that will allow us to estimate the physical attributes of the object. The initial center
of mass hypotheses is generated from the apriori assumption that the object is solid with uniform density
distrubution. After striking the object at pre-planned point (based on estimated Equilibrium Planes (see
above), we are able to estimate the true center of mass and the mass distribution of the object without
inspecting its interior.

We refined our action parsing framework to be able to compare the already known information in the
system with the current perception of the system (Fig. 1.4).
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Figure 1.3: Registration of deformed shapes to a single initial reference shape (top line left). Each
following line shows registration results for the two deformations

Figure 1.4: The system is observing the human action and tries to detect changes in actions that require
a change in the Object Contrainer (physical properties of objects) or in the Functionality Map (framework
representing transport relations and places of object occurance).
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Chapter 2

Description of Work

We motivated our original Surprise definition already in the Technical Annex. The Surprise event is a
mismatch between the prediction from a knowledge database in the system and the observation of the
robot. Therefore, a knowledge database is only a source of information to predict expected behaviors in
the environment and constitutes only the information source that is used in the Suprise Detection System
for predictions. The Surprise System is a module processing (abstracting) the perception and extracting
the necessary information about the actions that would require an update of the information in the
system. Since we are not interested in pure immitation of human actions in GRASP, we needed to define
what type of information do we need to derive from human actions. It is clear that we were not interested
in repeating the strongly varying trajectories of human actions. We decided that the Surprise System
should monitor information that is useful for object-centric information for, e.g., the grasp planner to
constraint motion of the manipulated object in respect to orientation and acceleration constraints. This
already presented Object Container saves object related information about

Figure 2.1: Object Container storing physical and geometric properties of the object.

We store here all information about the underlying geometry, the way how the system can grasp the
object (which may have been derived from the human grasp or stored from previous interactions with
the object).

Information about typical location areas and transport relations between them here we are interested in
observed locations where transport actions of the object originated or ended. The actions of the human
or other manipulation agents are used to fill this information source. Here a significant abstraction of the
action is required, Since we are not interested in a pure immitation but are interested in the information
about where to find or place down a given object while manipulating it and how the trajectory looked like
during this phase. The second is important to reason about possible task constraints while performing a
manipulation. An example here can be a transport motion to put away an object (arbitrary) or to place
it on a very specific place (hand-over or placing on a shelf). An area where extraction of these relations
is very important and where we also migrate our current system is manipulation in medical domain
(minimally invasive surgery), where the surgeon may perform just an approach phase to an operation
area or where we observed a highly confined motion because a specific task (like suturing) is performed.
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The system needs to know here for its future actions, how constraint a specific motion is, that means
how free is it to deviate from a given trajectory to optimize its transport planning.

Figure 2.2: Functionality Map storing the functional relations of the transporation tasks between different
areas in the world representation.

We store this information in the Functionaity Map, which stores the geometric positions of the places
where an object was placed and the connection properties. The connection properties represent in our
system: variation of the trajectory observed over several transport actions and type of grasp.

This information needs definitely to be refined and may be a good example of how and when to generate
a surprise trigger. The system may have observed a trajectory of an object in a previous human action.
This resulted in a new location (Location Area) for the object and new transport relation (action) in the
environment. This could not be predicted from previous observation (first occurence) and it resulted in a
surprise trigger forcing the system to update the object container (how it was moved) and the functionality
map (what was the connection property). The system reasoned from the shape of the trajectory (motion
profile) about the initial variation in the trajectory. Later, if the human performs a similar action, the
system compares it with the stored information and if it can be explained by the knowledge stored in
the system, no update of the information is required. If the human starts suddenly titling the object
and a previous observation observed a constraint on the orientation of the object (in object container)
then a surprise trigger is generated and the information in the Object Container will be adjusted. It
appears that some physical property of the object changed resulting in a new handling modality. We
see that this type of surprise is a hint for a possible change in the physical property of the object (e.g.
full before now empty). Another possibility is that an object suddenly was placed at a new location, for
example a fork moved around on the table before, suddenly was put in the dishwasher. This means that
a new location area for an object (the dishwasher) and a new transport relation (table dishwasher) was
observed. This results in a suprise trigger that updates the functionality map this time. We see that a
mismatch generated in the functionality map relates to a possible change in the function of the object.
Something which was originally a tool, now became a dirty object to stay with the dishwasher example.

An essential part of the Surprise Detection System is the fast processing of perception and an abstraction
and reasoning from the observed information. The knowledge database is just the container which is
important but just a small part of the entire system. This part of suprise detection dealt with the
passive observation of human actions by the system to get an initial idea about the world. In this
context, forces and physical properties of objects cannot be observed (no sensor on the human). We see
that the system can reason about changes in the physical property (mismatch with Object Container
information) and changes in the function of the object (mismatch between observation and the content
of the Functionality Map. During each interaction of human with any object the system is monitoring
the motion and comparing it with its predictions. If it matches the stored information then no surprise
event is generated that means no update of knowledge is required. To address the surprise resulting from
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Figure 2.3: System observing human actions and creating physical (Object Container) and functional
(Functionality Map) representations of knowledge.

system’s own interaction with the object (experience gained in an exploration phase), we added also an
additional component to the system where the true physical properties of an object (which could not
be estimated from passive information) are estimated. Important examples in the object container is
mass center, mass distribution of the object. We cannot guess the mass from pure observation. An active
exploration is required. For this, the system initializes the Object Container with the typical assumptions
about being solid, uniform object with the center of mass in the center of the object. This is the initial
prediction of the system that is reason from pure observation. The system is interacting with an object
(pushing) and compares the expected (predict) behavior with the actual motion of the object due to
its action (act). This is our implementation of the predict-act-perceive loop. In this case, the system
predicts the result of the action based on its generic assumption reasoned from passive observation. It
acts on the object and observes the possible mismatches between the prediction and observation. In case
of a mismatch, a suprise event is generated to update the physical properties of the object in the object
container. Our current system can estimate the mass center of mass and the layered mass distribution
(different density layer inside of the object) from observation of the motion induced by poking the object.
This adds valuable information about the correct physical properties of the object. This knowledge helps
to prevent unstable grasps resulting from, e.g., wrong estimations of the center of mass. We are also able
to reason about the interior of a closed object from its responses to the external activation (see references
of WP5 for details).

2.1 Parsing of Human Actions for Surprise Detection

A system for vision-based estimation of manipulation-relevant properties of objects is developed for
natural scenes based on observation of human actions [5]. The system consists of an a-priori (Atlas)
knowledge about known generic objects in the scene and classifies the scene into mission relevant objects
and background geometry that is important only for collision avoidance. The system has an object-centric
structure and consists of an Atlas representation and a Working Memory. The Working Memory stores
the current knowledge about the scene, the manipulated objects and actions applied to them in the local
environment. The handling properties of objects may change over time. Such a modification is triggered
by a mismatch between the expectation and the observation of the human action.

We focused further on the abstract representations of the manipulation-relevant properties in a given
environment [5]. The requirements on this representation have to be specified and the relevant knowledge
has to be extracted from the observation in an appropriate manner. A very important aspect is, that not
only the object itself (e.g., its properties or physical states) is defining the way, how it is manipulated, but
also the location at which the manipulation is performed. Certain actions takes usually place at specific
locations, which have certain properties. Hence, we need not only a collection of object properties, but
also a map, which links locations in the environment to the specific way how objects are handled at these
locations (see Fig. 2.3). It is important to notice, that we are not interested in the exact registration
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Figure 2.4: Functionality Map of the environment for two exemplary objects.

of the actions to the environment in the sense of navigation, but in an abstract representation of the
functionalities in the environment. We are not using any semantic information about the environment.
Furthermore, the system does not rely on any linguistic information.

The representation of the knowledge about the human actions is split into an object-centric representation,
reflecting the physical properties of an object stored in an Object Container, and a Functionality Map,
representing possible actions related to the environment (Fig. 2.4). While the Object Container is linked
only to the object, the Functionality Map is anchored to the geometric model of the environment. This
framework allows us to limit unexpected events (surprise events), that cannot be explained with the
current knowledge, to situations, where the physical state or the function of an object changed. The
system is insensitive to variations in the execution of the same action. Predictions about the current
situations are based on the information stored in Object Container or the Functionality Map. Therefore,
mismatches between these predictions and observations occur just at an abstract level. They signal the
right moment to update the stored information. To built up such a system, already a small number of
observations of a human performing the task is enough. Our representation contains information about
the user’s intention rather than a simple recording for the imitation of a trajectory.

We develop the concept of the Functionality Map and the Location Areas in [5] further. We make
use of the Location Areas as representations of positions, where manipulations take typically place. The
performance of different tasks requires special dynamic properties of a manipulator system, which depend
on the task-specific operation areas (Location Areas) in the environment. Moreover, efficient dynamic
properties are desirable. Each joint should just need to perform an angular speed, which has a limited
magnitude and a smooth curve over time. Energy can be saved and it is possible to take more care of
the hardware.

The robot should be designed in such a manner, that it is able to perform a desired task. This means
first, that the robot has to reach certain positions. Second, it should be able to perform the desired
manipulations there. This requires certain dynamic capabilities at these positions: The robot’s end-
effector should be able to move into one or more certain directions at certain speeds. The range of
directions and speeds depends on the task. The task itself is usually done within a certain area in the
workspace. There can be areas, where just simple tasks are performed. These tasks can even be performed
by a robot with limited capabilities there. In contrast, complex manipulations can take place at other
areas. Consequently, the task determines not only the areas, where manipulations are performed, but also
the capabilities, which are required from the robot. A good representation of such efficient, task-specific
dynamic properties is essential to reduce the dimensionality. We introduce the maneuverability volume

as an appropriate representation. A exemplary scene is shown in Fig. 2.5.

The Functionality Map and the Location Areas have the advantage, that the manipulation properties
can be extracted through the efficient observation of a human. This is user-friendly and also less time-
consuming than a manual determination of a task. This is already an efficient reduction of the high
number of dimensions in the observations to an abstract representation. Now, the capabilities, which are
required by this abstract task, need to be integrated into the robot’s design. This requires, in turn, a
good representation to reduce the dimensions further. At the end, the robot’s design parameters should
be determined efficiently.

It is important to point out, that we are not interested in the design of a robot, which is a copy of, e.g.,
a human’s arm, or a robot, which simply imitates the observed manipulations. Hence, the manipulated
objects are in the focus. The objects and their manipulation properties are determining the manipulation.
E.g., their functionality puts constraints on the manipulation. This object-centric point of view enables
a design of the robot, which is independent of the human’s anatomy or behavior. Just the desired
manipulation capabilities themselves are important.
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Figure 2.5: Design of a task-specific, efficient robot: Which design parameters does the robot need to
achieve the desired high maneuverability volume (red) at the Location Area (yellow) on the table and a
smaller one on the cupboard? Where has the robot’s base to be positioned to achieve a good performance?
Is, e.g., the manipulator in magenta more efficient than the cyan one?

2.2 Visual estimation of center of mass and mass distribution

of objects with previously unknown internal structure

We developed a novel vision based approach for estimating physical properties of an object such as its
center of mass and mass distribution. Passive observation only allows to approximate the center of mass
with the centroid of the object. This special case is only true for objects that consist of one material and
have unified mass distribution. However, this does not apply for most of the objects. Particularly for
heavy objects, the assumption can cause undesired torques which will result in an unstable grasp.

Figure 2.6: Active striking of an object to perform system identification: mass center and mass distribu-
tion from observation

To our knowledge, the current state of the art methods for vision based graspless active estimation of
physical properties of the object do not address the issue of estimating the mass distribution of the
object, and they either approximate the center of mass by the centroid of the object or do not address it
at all. Thus we introduce an active interaction technique with the object derived from the analogon to
system identification with impulse functions. We treat the object as a black box and estimate its internal
structure by analyzing the response of the object to external impulses. We use a bottom-up technique,
where we make an initial assumption about the center of mass based on the external 3D geometry of
the object. This is used to compute possible points of interaction between the robot and the object.
The impulses are realized by striking the object at points of interaction, and the forces of the strikes
are computed based on the mass of the object. We determine the center of mass from the profile of
the observed angular motion of the object that is captured by a high frame-rate camera. We use the
motion profiles from multiple strikes the mass of the object and its 3D geometry to compute the mass
distribution. Knowledge of these properties of the object leads to more energy efficient and stable object
manipulation.

For qualitative assessment some of the results from the experiments are presented in the figure below.
The first column of the illustration demonstrates the results for mass distribution For the spray bottle,
the region represented by yellow dots is estimated to have weight of 29.3 g, green dots 22.6g, and blue
dots 5.1g. Note that here the bottle is empty and the only thing that the blue region contains withing
itself is the tube for pumping out the liquid. For juice bottle, the yellow region has an approximate
wight of 29.8g, the blue region representing the container part has weight of 7g, and the green region that
represents the cap has a weight of 18.2g. Here the container is also empty. For the empty salt cylinder,
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the estimated weights are 31g, 2.3g, 0.1g for the yellow, blue and green regions correspondingly. The
second column of the illustration demonstrates the results for the center of mass estimation. Here the
green dost represent the true location of the center of mass and the red dots represent the estimated
location (Fig. 2.7.

Figure 2.7: Results from the mass distribution evaluation from active exploration in the learning phase.
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2.3 Visual Modeling of Independent Motion Parameters in Dy-

namic Scenes

Fusion of information from moving object in a scene requires robust matching of points between the images
or captured data. In domestic environments it is important not only to capture the static geometry of
the scene but it becomes also important to understand the motion parameters of moving objects in the
scene for correct prediction of expectations. This is required, for example, for robot interaction or for
motion planning involving collisions with near objects and for capturing not only the current pose of the
objects but also their functions and current states.

In each loop iteration a tentative model is built from the preceived data and two types of elements are
derived: those that support or fit such tentative model are called inliers and the remaining elements or
outliers. The model with the largest amount of inliers is the closest approximation to the searched model
and can be considered the output of the method. In most of the cases, however, the set of inliers are used
again to re-compute the model using an optimization algorithm, whereas the outliers, like in any robust
estimation, are commonly ruled out. In this approach we show that outliers can also contain information
about the evolution of the state of a dynamic scene. Having a set of matched features, either in 2- or
3D, of a scene observed from two different poses at different times, we profit from the fact that not all
the information classified as outlier is derived from noisy or mismatched data and that this information
gives, in turn, patterns that can be considered as input sets of data indicating probable independent
events inside the same scene. In order to detect these good outliers in this work we make use of a dual
layered framework for 3D mapping that stores the mapped elements as 3D blobs representing tentative
object candidates; however, the detection of these elements can be performed in other different ways.
The advantage of using this framework is twofold: ) in this work, the geometric layer of the framework
helps to relate spatially the mapped elements with the outlier position information, ) for future works,
once a mapped element was detected it was moved, additional properties, like grasping points or labels
like movable, can be assigned to that element and stored in the abstract layer of the framework.

Fig. 2.8 shows the matched features of poses in time k and (k + 1), both sets are displayed in the second
pose image. This allows to estimate the egomotion of the system.

Outliers that are not conform with the global ego-motion estimation of the system are used to estimate
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Figure 2.8: Flow of valid feature matches C2D = (I1; I2). Blue circles indicate the features of the first
set and the red circles indicate the matched features of the second scene.

the indipendent motion parameters of the objects. This information is stored in the Object Container
extending the available action description also to motion parameters (Fig. 2.9).

Figure 2.9: Ego-motion Estimation observing a Dynamic Scene. a) 3D blob map at the first registration is
displayed, b) shows the pose frames that were reached by the robot and the sequence of static registrations
enumerated by color:1-green, 2-yellow, 3-orange, 4-blue, 5-red, 6-light blue 7-pink, the blob at the right
was not moved, hence, all the registrations (colors) are overlapped on it; c) motion detection of two
objects between poses 4-blue and 5-red are detected in the map, the scene is observed from above, d)
shows the updated map at the end of the sequence.
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2.4 Deformable 3D Shape Registration

We continued the work on implementation of the Surprise Event Hierarchy (Fig. 1.1) that is now used
for efficient detection of points in time when an observed change in the way how an object is handled lets
the system assume that the physical property of the object (e.g. its filling state) or the object function
changed [5]. New in this period was the addition of Task 5.4 and Task 5.5. The generalization of object
form descriptions leads to further generalization of the information stored in the Atlas information and
allows to generalize between different instantiations of the same category of objects [2,3]. Fig. 1.2 shows
a registration of a complex shape for a better visualization of the system performance. This processing
allows to keep one representative of a shape in the Atlas and allows beside the already presented indexing
function to the entries in the Atlas additionally a deformation map that can be used for grasp adaptation.
The adaptation can use the grasp planning for the reference object to infer a good way to handle the
deformed candidate.

Deformable (non-rigid) shape registration is a fundamental problem in computational geometry with
applications in the fields of computer vision, computer graphics, medical image processing and many
others. The problem consists of finding a reasonable deformation which aligns two given 3D shapes. The
rationale behind this work in the context of GRASP is to use such a method in order to fit a given 3D
object model to a scene which contains an object similar, however not identical, to the given model. Based
on the deformably fitted model, grasp simulation and prediction can be performed in a more precise and
reliable manner.

We developed a new method for solving the deformable 3D shape registration problem. The algorithm
computes shape transitions based on local similarity transforms which allows to model not only as-rigid-
as-possible deformations but also local and global scale. We formulate an ordinary differential equation
(ODE) which describes the transition of a source shape towards a target shape. We assume that both
shapes are roughly pre-aligned. The ODE consists of two terms. The first one causes the deformation by
pulling the source shape points towards corresponding points on the target shape. Initial correspondences
are estimated by closest-point search and then refined by an efficient smoothing scheme. The figure below
compares the correspondence estimation based on closest-point search only (a) and the one based on our
smoothing scheme (b). The improvement is obvious (Fig. 2.10).
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Figure 2.10: Results of newly developed registration technique applied to challenging problems in the
registration. We chosen these examples to better visualize the performance of the system.
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Abstract —In this paper, we present an efficient 3D object recog-
nition and pose estimation approach for grasping procedures
in cluttered and occluded environments. In contrast to common
appearance-based approaches, we rely solely on 3D geometry
information. Our method is based on a robust geometric descriptor, a
hashing technique and an efficient, localized RANSAC-like sampling
strategy. We assume that each object is represented by a model
consisting of a set of points with corresponding surface normals.
Our method simultaneously recognizes multiple model instances
and estimates their pose in the scene. A variety of tests shows
that the proposed method performs well on noisy, cluttered and
unsegmented range scans in which only small parts of the objects
are visible. The main procedure of the algorithm has a linear time
complexity resulting in a high recognition speed which allows a
direct integration of the method into a continuous manipulation task.
The experimental validation with a 7-degrees-of-freedom Cartesian
impedance controlled robot shows how the method can be used
for grasping objects from a complex random stack. This applica-
tion demonstrates how the integration of computer vision and soft-
robotics leads to a robotic system capable of acting in unstructured
and occluded environments.

1 INTRODUCTION

Robot manipulation tasks in non-industrial environ-
ments cannot rely on hard-coded knowledge about
the scene structure. Since especially human actions
modify the environment in a way which cannot be
foreseen, a vision-based object recognition and local-
ization system is very useful for providing the neces-
sary updates of the scene knowledge. In recent years,
advances in 3D geometry acquisition technology have
led to a growing interest in object recognition and
pose estimation techniques which operate on three-
dimensional data. Furthermore, the knowledge of the
3D geometric shape and the pose of an object greatly
facilitates the execution of a stable grasp. The 2D
appearance of an object may not provide reliable
information about its pose in space because surface

Fig. 1. A robot operating in a household environment.

texture elements may be misaligned (as it often hap-
pens to labels of household objects). Furthermore, 2D
techniques have to deal with changes in viewpoint
and illumination.

The 3D object recognition and pose estimation prob-
lem can loosely be defined as follows. Given a set
of object models and a scene, the task is to identify
the objects present in the scene and to estimate their
position and orientation. The output of an object
recognition and pose estimation algorithm is a list
of recognized model instances each one with a corre-
sponding transform which aligns the model instance
to the scene. For the sake of simplicity, in the rest of
the text, we mean by “object recognition” both object
identification and pose estimation. Furthermore, we
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discuss a special instance of the problem, given by
the following assumptions.

1) Each model is a finite set of points with corre-
sponding surface normals.

2) Each model represents a non-transparent object.
3) The scene is a range image.
4) Each transform which aligns a recognized model

instance to the scene is a proper rigid transform.

Even under these assumptions the problem still re-
mains challenging for several reasons: it is a priori
not known which objects are present in the scene;
usually, there are scene parts not belonging to any of
the objects of interest, i.e., there is background clutter;
the input is typically corrupted by noise and outliers;
the objects are only partially visible due to occlusions
and scan device limitations.

1.1 Contributions and Overview

This paper demonstrates how our original
3D object recognition approach presented
in [Papazov and Burschka, 2010] can be used to
support a manipulation task. We introduce a vision-
based framework that allows a robotic manipulator to
grasp objects in unstructured, dynamically changing
environments.
Our object recognition approach operates directly

on unsegmented point clouds provided by a range
scanner. This does not require scene segmentation
which may be quite time consuming. More specifi-
cally, we make the following contributions. (i) A new
efficient, localized RANSAC-like sampling strategy is
introduced. (ii) We use a hash table for rapid retrieval
of pairs of oriented model points which are similar to
a sampled pair of oriented scene points. This allows
to efficiently generate object and pose hypotheses. (iii)
We provide a complexity analysis of our sampling
strategy and derive a formula for the number of
iterations required to recognize the objects with a
predefined success probability.
The proposed accelerations in our vision processing

allow a seamless integration into a grasping frame-
work, where the recognition interleaves with the ac-
tual manipulation task without causing noticeable
delays in the overall process. The method shows
its potential in a complex experimental use-case. We
employ the DLR Lightweight Robot III (LWR-III)
[Albu-Schäffer et al., 2007], which is equipped with a
Cartesian impedance control method and is able to re-
act to environment disturbances and to process faults
caused by unexpected contact forces in real-time.
Using the proposed 3D object recognition method,
impedance control with reactive recovery strategies,
and a simple grasp planner the robot quickly and
robustly grasps objects from unsorted and cluttered
piles. Furthermore, in case of failures, it reacts accord-
ingly and continues the process if possible1.

1. These experiments are enclosed as multimedia extensions (see
Extensions 1 and 2 in Appendix A).

The rest of the paper is organized as follows. Pre-
vious work is reviewed in Section 2. In Section 3, we
establish some notation and explain in more details
two algorithms important to our work. Our 3D object
recognition approach is introduced in Section 4. In
Section 5, the robot and its overall control concept for
robust and sensitive grasping is described. Section 6
presents experimental results. Conclusions and pos-
sible future topics of research are drawn in the final
Section 7 of the paper.

2 RELATED WORK

Object recognition is closely related to object classi-
fication/shape retrieval. However, the latter methods
only compute the similarity between shapes and not
an aligning transform. Furthermore, it is assumed
that the input represents a single shape whereas we
handle range images containing multiple objects and
background clutter.
The so-called voting approaches represent one

class of object recognition methods. Well-known rep-
resentatives are the generalized Hough transform
[Ballard, 1981], pose clustering [Stockman, 1987], ge-
ometric hashing [Lamdan and Wolfson, 1988] and
tensor matching [Mian et al., 2006]. Although these
methods perform well on complex scenes they tend
to be costly and their integration into a real-world
grasping system will lead to long delays in the overall
processing loop.
Another way to tackle the problem is to model

an object as an assembly of basic shapes (primitives)
and to recover these shapes and their spatial rela-
tionships from an input scene. Many types of primi-
tives can be used within this part-based framework:
generalized cylinders [Binford, 1971], superquadrics
[Barr, 1981], implicit polynomials [Keren et al., 1994],
geometric primitives [Taylor and Kleeman, 2003], and
parametric shapes [Schnabel et al., 2007]. Methods
for efficient recovering of superquadrics from range
data were introduced in [Solina and Bajcsy, 1990],
[Dickinson et al., 1997] and [Biegelbauer et al., 2010].
However, despite their efficiency, the part-based ap-
proaches are limited to a certain shape class, namely,
the one which can be described by the chosen set of
primitives.
The feature-based methods belong to a further

class of object recognition approaches. In a first
step, point-wise correspondences between the mod-
els and the scene are computed, usually using lo-
cal geometric descriptors. Next, the aligning trans-
form is calculated based on the established cor-
respondences. A list of geometric descriptors in-
cludes, without being nearly exhaustive, spin im-
ages [Johnson and Hebert, 1999], local feature his-
tograms [Hetzel et al., 2001], 3D/harmonic shape
context [Frome et al., 2004], intrinsic isometry invari-
ant descriptors [Sun et al., 2009] and manifold har-
monic bases [Wu et al., 2010]. All feature-based al-
gorithms rely on the assumption that the objects to
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be recognized have distinctive feature points, i.e.,
points with rare descriptors. However, especially for
simple shapes, this assumption does not always hold
and the methods degenerate to brute force search
[Aiger et al., 2008].
In [Grewe and Kak, 1995], a hashing technique sim-

ilar to ours was proposed. It is a learning-based
method employing a multiple-attribute hash table for
efficient 3D object recognition. On the positive side,
attribute uncertainties are taken into account and the
number of attributes as well as the size of the hash
table bins are calculated automatically. However, the
system cannot handle free-form objects and in the
presented experimental results only objects composed
of single-colored surfaces are used. Furthermore, the
method relies on a segmentation to identify the planar
or cylindrical surface patches the objects are made of.
A further hashing technique was proposed in

[Matei et al., 2006]. Based on a hash table, a fast in-
dexing into a collection of geometry descriptors of
single model points is performed. In contrast, our
hash table stores descriptors of pairs of oriented
model points (called doublets). This allows to effi-
ciently query the model doublets similar to a sampled
scene doublet and it makes it very easy to compute
the aligning rigid transform since it is uniquely de-
fined by two corresponding doublets. Moreover, in
[Matei et al., 2006], multiple range images are aligned
to each other in order to build a more complete
scene representation and a foreground/background
segmentation is executed. In contrast, our method
operates on a single range image and does not require
segmentation. Furthermore, the test scenes used in
[Matei et al., 2006] contain a single object and some
background clutter.

3 NOTATION AND BASIC ALGORITHMS

An oriented point u = (pu,nu) consists of a point
pu ∈ R

3 and a corresponding surface normal nu ∈
R

3, ‖nu‖ = 1. Accordingly, an oriented point pair
(u,v) is a pair of two oriented points u = (pu,nu)
and v = (pv,nv).

3.1 Fast Surface Registration

In short, rigid surface registration consists of com-
puting a rigid transform which aligns two surfaces.
Assume S is a surface represented by a set of oriented
points. According to [Winkelbach et al., 2006], for a
pair of oriented points (u,v) = ((pu,nu), (pv,nv)) ∈
S× S, a descriptor f : S× S→ R

4 is computed as

f(u,v) =















f1(u,v)

f2(u,v)
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


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Fig. 2. Computing the rigid transform T which aligns
S1 to S2 based on the local coordinate systems Fuv

and Fwx of the oriented point pairs (u,v) and (w,x),
respectively. See text for details on Fuv and Fwx.

where ∠(a, b) is the angle between the vectors a and
b. In order to register two surfaces S1 and S2, each one
represented by a set of oriented points, the method
proceeds as follows. It samples uniformly oriented
point pairs (u,v) ∈ S1 × S1 and (w,x) ∈ S2 × S2

and computes and stores their descriptors f(u,v) and
f(w,x) in a four-dimensional hash table. This process
continues until a collision occurs, i.e., until f(u,v) and
f(w,x) end up in the same hash table cell. Computing
the rigid transform T which aligns (u,v) to (w,x)
gives a transform hypothesis which registers S1 to S2.
Fig. 2 illustrates the alignment. More formally,

T = FwxF
−1
uv (2)

is computed based on the pairs’ local coordinate
systems, each one represented by a 4 × 4 matrix
(homogeneous coordinates) Fuv respectively Fwx. We
have

Fuv =





puv×nuv

‖puv×nuv‖
puv

‖puv‖
puv×nuv×puv

‖puv×nuv×puv‖
pu+pv

2

0 0 0 1





(3)
where puv = pv−pu and nuv = nu+nv. Fwx is defined
analogously by replacing the indices u and v in (3)
with w and x, respectively. The transform hypothesis
T generated in this way is evaluated by transforming
the points of S1, i.e., p

′
i = Tpi, ∀pi ∈ S1 and counting

those p′
i which fall within a certain ǫ-band of S2.

According to [Winkelbach et al., 2006], this process
of generating and evaluating hypotheses is repeated
until either of the following stopping criteria is met:
(i) a hypothesis is good enough, (ii) a predefined time
limit is reached or (iii) all combinations are tested.
Unfortunately, non of these criteria is well-grounded:
the first two are ad hoc and the third one is computa-
tionally infeasible. In contrast, we derive the number
of iterations required to recognize model instances
with a pre-defined success probability. Furthermore,
we modify this technique in a way which allows for
the simultaneous matching of all object models to the
scene.



4

3.2 RANSAC
RANSAC [Fischler and Bolles, 1981] is an iterative
approach for model recognition. It uniformly draws
minimal point sets from the scene and computes a
transform which aligns the model with the minimal
point set. A minimal point set is the smallest point set
which uniquely determines a given type of transform.
In the case of rigid transforms, it is a point triple.
The score of the aligning transform is the number of
transformed model points which lie within an ǫ-band
of the scene. After a certain number of trials the model
is considered to be recognized at the locations defined
by the transforms which achieved a score higher than
a predefined threshold.
The probability PS of recognizing the model in

N trials equals the complementary of N consecutive
failures [Schnabel et al., 2007], i.e.,

PS = 1− (1− PM )N , (4)

where PM is the probability of recognizing the model
in a single iteration. Solving for N gives the number
of trials needed to recognize the model in the scene:

N =
ln(1− PS)

ln(1 − PM )
. (5)

Note that since PS ≈ 1 and PM ≈ 0, one can safely
assume that N ≥ 1.
The RANSAC approach is conceptually simple,

general and robust against outliers. Unfortunately, its
direct application to the 3D object recognition problem
is computationally expensive. In order to compute an
aligning rigid transform, we need two corresponding
point triples—one from the model and one from the
scene. Assuming that the model is completely con-
tained in the scene, the probability of drawing two
such triples in a single trial is PM (n) = 3!

(n−2)(n−1)n ,

where n is the number of scene points. Since PM (n)
is a small number we can approximate the denom-
inator in (5) by its Taylor series ln(1 − PM (n)) =
−PM (n)+O(PM (n)2) and obtain the number of trials
as a function of the number of scene points:

N(n) ≈
− ln(1 − PS)

PM (n)
= O(n3). (6)

In the next section of the paper, we will show that
using oriented point pairs and a localized sampling
strategy leads to a reduction of the time complexity
from O(n3) to O(n).

4 RIGID 3D GEOMETRY MATCHING

Our object recognition method consists of two phases.
The first one, the model preprocessing, is performed
offline. It is executed only once and does not depend
on the scenes in which the objects have to be recog-
nized. The online recognition is the second phase. It is
executed on the scene using the model representation
computed in the offline phase. In the rest of this
section, we describe both phases in detail and discuss
the time complexity of our algorithm.

4.1 Model Preprocessing Phase

We assume that each object model is represented by
a finite set M = {ui = (pu,nu)i}mi=1 of oriented
points. For a given object model M, we sample the
pairs of oriented points (u,v) = ((pu,nu), (pv,nv)) ∈
M×M having pu and pv approximately d units apart
from each other. For each such pair, the descriptor
f(u,v) = (f2(u,v), f3(u,v), f4(u,v)) is computed
according to (1) and stored in a three-dimensional
hash table. Note that f1 is not part of the descrip-
tor since a fixed distance d is used. In contrast
to [Winkelbach et al., 2006], not all pairs of oriented
points are considered, but only those with ‖pu−pv‖ ∈
[d− δd, d+ δd], for a given tolerance value δd. This has
several advantages. It reduces the space complexity
from O(m2) to O(m), wherem is the number of model
points (this empirical measurement is further dis-
cussed in [Aiger et al., 2008]). Using a large d results
in wide-pairs which allow a more stable computation
of the aligning rigid transform than narrow-pairs do
[Aiger et al., 2008]. Furthermore, a larger d leads to
fewer pairs which means that computing and storing
descriptors of wide-pairs results in less populated
hash table cells. Thus, we will have to test fewer
transform hypotheses in the online recognition phase
and will save computation time.
However, the pair width d should not be too large

since occlusions in real world scenes would prevent
sampling a pair with points from the same object.
For a typical value for d, there are still many pairs
with similar descriptors which leads to hash table cells
with too many entries. We avoid this overpopulation,
by removing as many of the most populated cells to
keep only a fraction K of the original number of pairs
(in our implementation K = 0.4). This results in an
information loss about the object shape which we take
into account in the online phase of the algorithm.
In order to compute the final representation of all

models M1, . . . ,Mq , each Mi is processed in the way
described above using the same hash table. In this way,
a simultaneous recognition of all models is possible
instead of sequentially matching each one of them
to the scene. Furthermore, in order to keep track of
which pair belongs to which model, every hash table
cell stores the pairs in separate model-specific lists.

4.2 Online Recognition Phase

The input to the online recognition algorithm is a
set M = {M1, . . . ,Mq} of object models and a
scene range image S. The output is a list T =
{(Mk1

, T1), . . . , (Mkr
, Tr)}, where Mkj

∈ M is a
recognized model instance and Tj is a proper rigid
transform (an element of the special Euclidean group
SE(3)) aligning Mkj

to the scene. Before turning
to the details, it is advisable to read Algorithm 1
although some of the steps may not be completely
clear at this point. In the rest of this section, the lines
we are referring to are the lines of Algorithm 1.
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input : a setM = {M1, ...,Mq} of object models;
a scene range image S;
output: a list T = {(Mk1

, T1), ..., (Mkr
, Tr)}, with

Mkj
∈M and Tj ∈ SE(3);

// 1) initialization
1 compute an octree for the scene S to produce a
modified scene S∗;

2 T ← ∅; // an empty solution list
// 2) number of iterations

3 compute the number N of iterations;
4 repeat N times

// 3) sampling
5 sample a pu uniformly from S∗;
6 L = {x ∈ S∗ : ‖x− pu‖ ∈ [d− δd, d+ δd]};
7 sample a pv uniformly from L;

// 4) normal estimation
8 estimate normals nu at pu and nv at pv;
9 (u,v) = ((pu,nu), (pv,nv));

// 5) hash table access
10 fuv = (f2(u,v), . . . , f4(u,v)); // see (1)
11 access the model hash table cell at fuv and
12 get its oriented model point pairs (uj ,vj);

// 6) generate and test
13 foreach (uj ,vj) do
14 get the model M of (uj ,vj);
15 compute the rigid transform T that aligns

(uj ,vj) to (u,v); // see (2)
16 if µ accepts (M, T ) then
17 T ← T ∪ (M, T );
18 end
19 end
20 end

// 7) removing conflicting hypotheses
21 remove conflicting hypotheses from T ;

Algorithm 1: Online recognition phase.

Searching for closest points (line 8) and for points
lying on a sphere around a given point (line 6) have
to be performed very often in the online recognition
phase. Thus, a fast execution of these operations is
of great importance for the runtime of the algorithm.
An efficient way to achieve this is to use an octree
[de Berg et al., 2000].

Step 1) Initialization
In step 1 of the algorithm, an octree with a fixed leaf
size L (the edge length of a leaf) is constructed for
the input scene points. The full octree leaves (the ones
containing at least one point) are voxels ordered in a
regular axis-aligned 3D grid and have unique integer
coordinates. Two full leaves are considered neighbors
if their corresponding integer coordinates differ by
not more than 1. Next, a down-sampled scene S∗ is
created by setting its points to be the centers of mass
of the full octree leaves. The center of mass of a full
leaf is the average of the points it contains. In this
way, a one-to-one correspondence between the points

in S∗ and the full octree leaves is established. Two
points in S∗ are neighbors if the corresponding leaves
are neighbors.

Step 2) Number Of Iterations

In this step, the number N of iterations is estimated
such that all objects in the scene will be recognized
with a certain user-defined probability. This will be
explained in detail in Section 4.3.

Step 3) Sampling

As in classic RANSAC, we sample minimal sets from
the scene. In our case, since we use normals, a min-
imal set consists of two oriented points. In contrast
to RANSAC, they are not sampled uniformly and
independently of each other. Only the first point, pu,
is drawn uniformly from S∗. The second one, pv, is
drawn uniformly from the scene points in S∗ which
are approximately within a distance d from pu. To
achieve this, we first retrieve the set L of all full leaves
intersecting the sphere with center pu and radius d,
where d is the pair width used in the offline phase (see
Section 4.1). This can be performed very efficiently
due to the hierarchical structure of the octree. Finally,
a leaf is drawn uniformly from L and pv is set to be
its center of mass.

Step 4) Normal Estimation

We estimate the normals nu and nv at the points
pu and pv by performing a PCA: nu and nv are set
to be the eigenvectors corresponding to the smallest
eigenvalues of the covariance matrix of the points
in the neighborhood of pu and pv . The result of
this step is the oriented scene point pair (u,v) =
((pu,nu), (pv,nv)).

Step 5) Hash Table Access

In line 10, fuv = (f2(u,v), f3(u,v), f4(u,v)) is com-
puted according to (1). Next, in lines 11 and 12, fuv
is used as a key to the model hash table to retrieve
all model pairs (uj ,vj) similar to (u,v).

Step 6) Generate and Test

For each (uj ,vj), its model M is retrieved (line 14)
and the rigid transform T which aligns (uj ,vj) to
(u,v) is computed according to (2) (line 15). This
results in the hypothesis that the model M is in
the scene at the location defined by T . Finally, the
hypothesis is saved in the solution list T if it is
accepted by the acceptance function µ (line 16).

Acceptance Function

µ consists of a visibility term and a penalty term.
Similar to RANSAC, the visibility term, µV , is pro-
portional to the number mV of transformed model
points which fall within a certain ǫ-band of the scene.
More precisely, we set µV (M, T ) = mV /m, where m
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(a) µV = 4/12, µP = 0. (b) µV = 3/12, µP = 2/12.

Fig. 3. A 2D top schematic view of the same scene
(blue dashed line) with two different model hypotheses
(models are shown as gray boxes). The lines of sight
are shown as thin black lines originating from the scan-
ning device. In (a), 4 (out of 12) model points match
the scene and no model points are occluding scene
points. In (b), 3 model points match the scene and
2 model points (marked by the ellipse) are occluding
scene points. The resulting values for µV and µP are
shown below the corresponding figure.

is the total number of model points. µV is an approx-
imation of the visible object surface area expressed as
a fraction of the total object surface area. Thus, µV can
be interpreted as an estimation of the object visibility
in the scene.
In contrast to RANSAC, our algorithm contains an

additional penalty term, µP , which is proportional to
the number of transformed model points which oc-
clude the scene. Obviously, a correctly recognized and
localized non-transparent object should not occlude
any visible scene points when the scene is viewed
from the viewpoint of the range scanner. In other
words, if we view the scene from the perspective
of the scanning device, we will not be able to see
scene points lying behind the localized model since
we cannot see through non-transparent surfaces. The
penalty term penalizes hypotheses which violate this
condition. It is computed by counting the number
mP of transformed model points which are between
the projection center of the range image and a range
image pixel and thus are “occluding” reconstructed
scene points. We set µP (M, T ) = mP /m, where m is
the number of model points.
For (M, T ) to be accepted by µ as a valid hypothesis

it has to fulfill

µV (M, T ) > V and µP (M, T ) < P, (7)

where V ∈ [0, 1] is a visibility and P ∈ [0, 1] a penalty
threshold. In Fig. 3, a simple scene is shown with two
different model hypotheses and the corresponding
values for µV and µP .
The visibility threshold is one of the most crucial

parameters in the algorithm. In the experimental part
of the paper, we examine how this threshold affects
the recognition and the false positives rates of our

method. In the case of perfect data, the penalty thresh-
old P should be 0. However, since we are dealing with
real range images, we use P = 0.05.

Step 7) Removing Conflicting Hypotheses

A hypothesis (M, T ) “explains” a subset P ⊂ S∗ if
there are points from T (M) lying in the octree leaves
corresponding to P. After accepting (M, T ), the points
explained by it are not removed from S∗ because there
could be a better hypothesis, i.e., one which explains a
superset of P. We call hypotheses conflicting if the in-
tersection of the point sets they explain is non-empty.
In other words, conflicting hypotheses transform their
models such that they intersect in space.
Since the scene points explained by the accepted

hypotheses are not removed from S∗, there are many
conflicting ones in the solution list T after the execu-
tion of the main loop (lines 4 to 20) of Algorithm 1.
To filter the weak hypotheses, we construct a so-called
conflict graph. Its nodes are the hypotheses in T and
an edge is connecting two nodes if the hypotheses are
conflicting ones.
To produce the final output, the solution list is

filtered by performing a non-maximum suppression
on the conflict graph. We borrow this technique from
image processing. To perform a non-maximum sup-
pression on a gray-scale image, the pixel under ob-
servation is set to zero (it is suppressed) if its value is
not a maximum in a window placed around that pixel.
In this case, the window defines the neighborhood
of each pixel. In the case of our conflict graph, the
neighborhood is defined by the graph structure. Using
the neighborhood of each node, we perform non-
maximum suppression essentially in the same way as
in image processing: a node η is suppressed if there
is a better one in its neighborhood, i.e., a node which
explains more scene points than η.

4.3 Time Complexity

The dominating factor in the complexity of the pro-
posed method is the number N of iterations needed
to recognize all models with a predefined success
probability (see the main loop of Algorithm 1, lines
4 to 20). In the following, we discuss the dependency
of N on the number of scene points.
Consider a scene S∗ consisting of |S∗| = n points

and a model instance M therein consisting of |M| = m
points. In Section 3.2 on RANSAC, we derived the

number N = ln(1−PS)
ln(1−PM ) of iterations required to rec-

ognize M with a predefined success probability PS ,
where PM is the probability of recognizing M in a
single iteration. Again in Section 3.2, we obtained
PM ≈ 1/n3 which resulted in the cubic time com-
plexity of RANSAC. In the following, we show that
our sampling strategy and the use of the model hash
table lead to a significant increase of PM and thus to
a reduction of the complexity.
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If P (pu ∈M,pv ∈M) denotes the probability that
both points are sampled from M (lines 5 and 7 of
Algorithm 1), then the probability of recognizing M

in a single iteration is

PM = KP (pu ∈M,pv ∈M), (8)

with K being the fraction of oriented point pairs for
which the descriptors are stored in the model hash
table (see Section 4.1). Using conditional probability
and the fact that P (pu ∈ M) = m/n we can rewrite
(8) to obtain

PM = (m/n)KP (pv ∈M|pu ∈M). (9)

P (pv ∈M|pu ∈M) denotes the probability to sample
pv from M given that pu ∈ M. Recall from Sec-
tion 4.2 that pv depends on pu because it is sampled
uniformly from the set L of scene points which are
close to the sphere Sd(pu) with center pu and radius
d, where d is the pair width used in the offline
phase. Assuming that the visible object part has an
extent larger than 2d and that the reconstruction is
not too sparse, L contains points from M. In this case,
P (pv ∈M|pu ∈M) = |L∩M|/|L| is well-defined and
greater than zero.
Let us discuss C := |L ∩M|/|L|. It depends on the

scene clutter, the number of outliers and the extent
and shape of the visible object part. If all scene points
originate from known objects (in particular there is no
background) and if the objects are well separated then
|L∩M| = |L| since the sphere Sd(pu) intersects scene
octree leaves containing only points from the object
pu belongs to. In this extreme case, C = 1. On the
other hand, occluded scenes with many outliers can
be constructed in which Sd(pu) intersects only objects
other then the one pu belongs to. This leads to C = 0
and simply means that the object is too occluded to
be recognized.
In our implementation, we estimate C by 1/4. This

accounts for up to 75% outliers and scene clutter.
Thus, we obtain for PM as a function of n (the number
of scene points)

PM (n) = (m/n)KC. (10)

Approximating the denominator ln(1 − PM (n)) in (5)
by its Taylor series −PM (n) + O(PM (n)2) we obtain
for the number of iterations

N(n) ≈
− ln(1 − PS)

PM (n)
=
−n ln(1 − PS)

mKC
= O(n). (11)

This shows that the number of iterations depends lin-
early on the number n of scene points. Furthermore,
Eq. (11) provides means for computing the number of
iterations required to recognize the model instances
with the desired success probability PS .

5 OBJECT MANIPULATION

The object recognition is only one link in the over-
all processing chain. In order to enable the robot
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Fig. 4. Hybrid state automaton for controlling the over-
all object manipulation process. The logical clauses
A,B and C defining the transition conditions, are the
following: A = no − object, B = no − grasp and
C = collision ∨ failed− grasp. A grasp is considered
as a failure if the robot gripper completely closes.

to perform the recognition together with the object
manipulation in a loop and to recover from faulty
grasps, the overall process is controlled by a hy-
brid state automaton. The scheme is based on the
work in [Haddadin et al., 2009], [Parusel et al., 2011],
[Fuchs et al., 2010] and relies on the disturbance
observer introduced in [Haddadin et al., 2008]. The
high-level schematic is shown in Fig. 4 and consists
of the following phases:

1) Go to overview: The robot moves to an overview
pose in order to avoid scene occlusion.

2) Recognize objects: The object recognition
method recognizes the objects in the scene (see
Section 4).

3) Select a grasp: Select an object (from the list of
recognized ones) together with a suitable grasp
(see Section 5.1).

4) Grasp object: The robot performs the grasp on
the selected object (see Section 5.2).

5) Carry away: The robot carries the object to the
place designated for it.

6) Place down: The robot softly and safely puts the
object on its place (see Section 5.2).

Next, the phases 3), 4) and 6) are explained in detail.
Phase 5), bringing an object to a specified location,
is out of the scope of this paper and will not be
discussed any further.

5.1 Grasp Selection

The first step in the manipulation chain is the selec-
tion of an object (from the list of recognized objects
returned by the recognition method) together with a
suitable grasp. Each object in the database is asso-
ciated with a finite set of plausible grasps. A grasp
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G (also called grasp frame) consists of an orientation
and a position of the robot end effector relative to
the object. The orientation is represented by a 3 × 3
rotation matrix. Its last column is a vector, called the
approach vector vappr , which is aligned with the z-
axis of the end effector and points towards the object.
The idea of the grasp selection is to go for the up

most object, i.e., the one whose center of mass has
the largest z-coordinate. This is measured according
to the world coordinate system which has its z-axis,
zw, perpendicular to the table the objects are placed
on. (More details on the scene setup will be given in
Section 6.3.) Next, among the grasp frames associated
with the selected object, the one with the lowest

cost(G) = w1crit1(G) + w2crit2(G), (12)

is chosen, where

crit1(G) = ∠(−vappr, zw) (13)

is the alignment of the end effector with respect to the
z-axis of the world coordinate system and

crit2(G) = |ϕwrist
0 − ϕwrist

req |, (14)

is the absolute difference between ϕwrist
0 , a desired

(neutral) wrist orientation, and ϕwrist
req , the one re-

quired to perform the grasp. In our implementation,
we set w1 = 3 and w2 = 1 (see (12)) which makes
the end effector alignment more important than the
wrist orientation. Note that (12) uses the negative of
vappr such that it shows in the same direction as zw.
Furthermore, the selected grasp is discarded if it is
“too parallel” to the table plane, i.e., if crit1(G) ≥ ϕz

(we set ϕz = 30◦). If this is the case, then the next
lower object is inspected.
The selected grasp frame G is projected 0.1 m

along the approach vector for acquiring the grasping
motion.

5.2 Impedance Control and Collision Detection
for Sensitive Grasping and Placing

To achieve robust and careful grasping and placing,
we employ the Cartesian impedance controlled LWR-
III [Albu-Schäffer et al., 2007]. Especially its soft-
robotics features are crucial for such a delicate task.
Since it is equipped with torque sensors in every joint,
both impedance and accurate position control are pos-
sible at the same time. In order not to damage its en-
vironment and in particular the objects it is supposed
to manipulate, the robot should be able to quickly
detect collisions and safely react to them. The collision
detection method we use was introduced and evalu-
ated in [De Luca et al., 2006], [Haddadin et al., 2008].
It provides not only binary contact information but
also an accurate estimation of the external torques.
Based on this additional input, we employ a decision
algorithm [Haddadin et al., 2009] which enables the
robot to react in an appropriate manner to unex-
pected interaction forces. For example, such forces

occur when the object pose estimated by the object
recognition algorithm is too imprecise such that the
robot collides with the object as it reaches for it.
However, since the robot quickly detects the collision
it is able to stop before damaging the object. After
that, the robot moves to a well-defined position and
restarts the recognition process (as depicted in Fig. 4).

In order to demonstrate the importance of
impedance control and collision detection for a safe
object manipulation, we conducted a series of ob-
ject grasping and placing experiments with different
impedances and with distinct collision behavior.

Fig. 5 and 6 illustrate the robot behavior while
grasping and placing an object using different stiffness
values and tip velocities with and without collision
detection. The plots depict the z-coordinates of the
desired (dashed curves) and measured (continuous
curves) contact force Fextz , position z and velocity ż.
In both figures, the left columns are obtained for a
high stiffness value while the right ones for a low
value. The red curves indicate a lower tip velocity
(about 0.1 m/s) while the blue ones a higher velocity
(about 0.8 m/s). The upper row is obtained without
collision detection and reaction, while the lower one
visualizes the binary collision detection signal, hf1,
together with a respective response which obviously
leads to different curves.

If collision detection and handling is activated, a
contact is classified as a collision if the magnitude of
the contact force exceeds a certain limit. According to
the figures, a high stiffness always leads to very high
contact forces which might destroy the object to be
handled. In contrast, low stiffness and collision de-
tection contribute to a significant reduction of contact
forces and practically eliminate the risk of damaging
the object if a planned grasp is misaligned.

Fig. 7 shows an image sequence of grasping a
bottle with low stiffness. We intentionally degraded
the pose estimation accuracy such that the end effector
collided with the bottle. Nevertheless, because of the
impedance control, the end effector was able to adjust
and successfully grasped the bottle.

Extension 1 exemplary shows some of the experi-
ments described in this section.

6 EXPERIMENTAL RESULTS

In this Section, we experimentally validate the pro-
posed geometry matching algorithm (Section 6.1), the
impedance controlled grasping strategy (Section 6.2)
and the grasping capabilities of the overall system
(Section 6.3). The object models involved in the tests
are shown in Fig. 8.

The algorithm presented in this paper is imple-
mented in C++ and all tests were performed on a
Linux PC with 4GB RAM and an Intel Xeon 2.67GHz
CPU with four cores.
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Fig. 5. Grasping behavior with high stiffness (left) and low stiffness (right) without (top) and with (bottom) collision
detection and reaction.
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Fig. 7. Grasping behavior with low stiffness. Note that despite the imprecise object pose the robot is able to
grasp the bottle.
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Fig. 8. (a) The models used in the tests of the geometric matching algorithm (models provided by
[Mian et al., 2006]). (b) The models involved in the grasping test scenarios (our own scans made with a low-
cost light intersection-based scanning device).

6.1 Rigid 3D Geometry Matching

The scenes used in the following test cases
were digitized with a Minolta VIVID 910
scanner [Konica Minolta, 2011] and provided by
[Mian et al., 2006]. Examples and more information
about the scenes will be given in the following
subsections.

6.1.1 Matching a Single Object in Occluded Scenes

In the first test scenario, we examined how the suc-
cess rate and the false positives rate of the geome-
try matching algorithm depend on the most impor-
tant parameter, namely, the visibility threshold (intro-
duced in Section 4.2) and the actual object occlusion
in a scene. According to [Johnson and Hebert, 1999],
the occlusion of an object model is given by

occlusion = 1−
visible model surface area

total model surface area
. (15)

The aim of this test was to establish a value for the
visibility threshold which, on the one hand, results in
a high success rate even in highly occluded scenes,
and on the other hand leads to as few as possible
false positives. In this experiment, only the model
of the Chef (Fig. 8(a)) was used for matching in
three different scenes each one containing a total of
three or four objects. The Chef was present in each
scene at different locations and at different levels of
occlusion (self-occlusion as well as occlusion caused

by the other objects). The three test scenes together
with typical recognition results are shown in Fig. 9.
Since the matching algorithm is a probabilistic one,

we ran 100 trials on each scene and computed the
recognition (success) rate and the mean number of
false positives in the following way. We visually in-
spected the result of each trial. If object A (in this case
only the Chef) was recognized k times (0 ≤ k ≤ 100),
then the recognition rate for A is k/100. The mean
number of false positives is (k1+ ...+k100)/100, where
ki is the number of false alarms in the i-th trial.
The results of the test are summarized in Fig. 10.

As expected, the visibility threshold had to fall below
a certain value, namely, 1 − occlusion in order to
achieve a positive recognition rate. More importantly,
the plots suggest that the number of false positives
practically does not depend on the actual level of
occlusion but mainly on the visibility threshold: in
all three cases it starts to grow when the visibility
threshold falls below 0.15. In summary, it can be said
that the method achieved a recognition rate of 1.0 in
highly occluded scenes (up to 85% occlusion) at the
cost of no false positives. In order to handle more
occlusion the visibility threshold had to fall below 0.15
which gave rise to some false positives.

6.1.2 Matching Multiple Objects in Noisy Scenes
In this scenario, we tested the algorithm under vary-
ing noisy conditions. The four models involved are
shown in Fig. 8(a) and the noise-free scene is shown in
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(a) 62.3% object occlusion (b) 70.4% object occlusion (c) 86.2% object occlusion

Fig. 9. The test scenes used for the Chef model matching. The level of occlusion for the Chef is indicated for
each scene. On the left of each subfigure, the input scene is shown as a blue mesh, whereas on the right, the
recognized Chef model is placed at the location computed by our algorithm and rendered as a yellow mesh.
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(b) 70.4% object occlusion
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Fig. 10. The success rate and the mean number of false positives as functions of the visibility threshold for three
different scenes each one containing the Chef model at an occlusion level of (a) 62.3%, (b) 70.4% and (c) 86.2%.
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Fig. 11. (a) Noise-free scene. (b), (c) Typical recognition results for data sets degraded by zero-mean Gaussian
noise for different variance σ2 which is given as percentage of the bounding box diagonal length of the scene.
On the left side of each subfigure, only the noise-corrupted scene is shown, whereas the right side shows the
scene plus the recognized models placed at the locations estimated by the matching algorithm.

Fig. 11(a). We degraded the noise-free scene with zero-
mean Gaussian noise with different variance values
σ2. Again, 100 recognition trials on each noisy scene
were performed and the recognition rate, the mean
number of false positives and the Root Mean Square
error (RMSe) were computed as functions of σ2.
For two point sets P and Q and a transform T the

RMS error measures how close each point qi ∈ Q

comes to its corresponding point pi ∈ P after trans-
forming Q by T [Gelfand et al., 2005]. The smaller the
error the closer the alignment between the point sets.
More formally,

RMSe(P,Q, T ) =

√

√

√

√

1

N

N
∑

i=1

‖pi − T (qi)‖2, (16)

with N being the number of points. Since the ground
truth location of each model in the test scene is
known, the RMS error of the rigid transform com-
puted by our method was easily calculated2. Note
that we did not compute the RMS error for the trans-
formed model and the scene but for the transformed
model and the same model placed at the ground truth
location. Fig. 11(b) and (c) exemplary show typical
recognition results for two of the twelve noisy scenes.
The results of the tests are reported in Fig. 12.

2. The ground truth rigid transform for the models is available
on http://www.csse.uwa.edu.au/∼ajmal/recognition.html

http://www.csse.uwa.edu.au/~ajmal/recognition.html
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Fig. 12. (a) Recognition rate, (b) mean number of false positives and (c) RMS error as functions of the variance
σ2 of Gaussian noise. Note that the RMS error is computed for the successful trials only. Both σ2 and the RMS
error are given as percentage of the bounding box diagonal length of the scene.

6.1.3 Comparison with Spin Images and Tensor
Matching

Next, we compared the recognition rate of our ge-
ometry matching algorithm with the spin images
[Johnson and Hebert, 1999] and the tensor match-
ing [Mian et al., 2006] approaches on the same 50
data sets used in [Mian et al., 2006]. This made a
direct comparison possible without the need of re-
implementing either of the two algorithms. The mod-
els of the four toys involved in the tests are shown in
Fig. 8(a). The toys (not necessarily all four of them)
are present in the scenes in different positions and
orientations. Since each scene was digitized with a
laser range finder from a single viewpoint the back
parts of the objects were not visible. Furthermore,
the toys were usually placed such that some of them
occluded others which made the visible object parts
even smaller. Four (out of the 50) test scenes are
shown in Fig. 9 and Fig. 11(a). Again, we ran 100
recognition trials on each scene and computed the
recognition rate for each object in the way described
in Section 6.1.1. Since the occlusion of every object in
the test scenes was known we report the recognition
rate for each object as a function of its occlusion. The
result of the comparison is summarized in Fig. 13(a).
Note that the chef was recognized in all trials, even
in the case of occlusion over 91%. The blue dots
represent the recognition rate in the three chicken test
scenes in which our method performed worse than
the other algorithms. This was due to the fact that in
these scenes only the chicken’s back part was visible
which contains strongly varying normals which made
it difficult to compute a stable aligning transform.

Our method needed in average about 7.5 seconds
for the recognition of the objects in each scene and
sampled about 450 oriented point pairs per scene.
For a comparison, 250 tensors, respectively, 4000 spin
images per scene were used in the experiments per-
formed in [Mian et al., 2006].

6.1.4 Runtime

We experimentally validated the linear time complex-
ity of the matching algorithm in the number of scene
points. Eleven different data sets were involved in
this test case — a subset from the scenes used in the
comparison test case (Section 6.1.3). Note that we did
not take a single data set and down/up-sampled it to
get the desired number of points. Instead, we chose
eleven different scenes with varying scene extent, num-
ber of points and number of objects. This suggests that
the results will hold for arbitrary scenes. We report the
results of this test in Fig. 13(b).
Note that the iterations of the main loop of the

matching algorithm (lines 4 to 20 of Algorithm 1)
can be executed independently of each other which
makes it possible to run them in parallel. This is
a very important issue since parallel computing has
become the dominant paradigm in computing archi-
tectures, mainly in the form of multicore processors
[Asanovic et al., 2006]. In Fig. 13(c), we report the
processing time as a function of the used CPU cores.
Note that the parallel execution on four cores runs
more than three times faster than on a single core.
This indicates a great potential for further speed-up
when more CPU cores become available.

6.2 “Blind” Grasping with an Impedance Con-
trolled Robot

In contrast to Section 5.2, where the importance of
impedance control and collision detection for a safe
object manipulation was demonstrated, in this section,
we conducted a series of grasping experiments with
the aim to find a set of impedance parameters that
maximizes the grasping success in the presence of
simulated object pose errors. The robot altered its
Cartesian translation stiffness in y-direction (denoted
by Kt,y) and its rotation stiffness in x-direction (de-
noted by Kr,x). These directions are the lateral com-
pliance along the gripper motion and the rotation
perpendicular to this. Due to the inherent structure
of the gripper, they are the significant parameters
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Fig. 13. (a) Comparison with spin images [Johnson and Hebert, 1999] and tensor matching [Mian et al., 2006].
The recognition rate of our algorithm for each object as a function of its occlusion is indicated by the continuous
lines. The dashed lines give the recognition rate of the spin images and the tensor matching approaches on
the same scenes as reported in [Mian et al., 2006]. Note that our algorithm outperforms both other methods.
(b) Computation time as a function of the number of scene points for the simultaneous recognition of seven
models. The line indicates a linear complexity. (c) Runtime as a function of the number of used CPU cores for
the recognition of seven models in a scene consisting of around 60,000 points.

Kt,y[N/m] Kr,x [Nm/rad] success [%]

1 200 20 60

2 200 75 80

3 200 200 90

4 750 20 70

5 750 75 80

6 750 200 40

7 2000 20 50

8 2000 75 60

9 2000 200 70

TABLE 1
Grasping success with varying stiffness for a

translational object pose error of 1.5 cm.

governing the grasping process. The object involved
in this test scenario was the soda club bottle (Fig. 8(b)).
The object pose error was simulated by translating the
bottle by 1.5 cm in a random direction parallel to the
table in front of the robot. We performed ten grasping
trials for each of the following stiffness configurations:
“soft”, “moderately stiff” and “rigid”. The success
rate is listed in Table 1. The optimal values (line 3)
correspond to a soft (very compliant) translation and
a rigid rotation behavior. A soft translation and a
moderately stiff rotation (line 2) as well as a moderate
stiffness in both translation and rotation (line 5) led
to good success rates too.

6.3 Vision-Based Impedance Controlled Grasping

In this Section, we experimentally validate the overall
vision-based impedance controlled grasping system.
The models involved in these tests are shown in

Fig. 14. The setup of the vision-based grasping experi-
ments. The robot has grasped a green soda club bottle
and is about to put it in the further red bin. The Kinect
sensor can be seen in the upper right corner. In the
lower left corner, the range image and the recognized
models are shown (before the bottle has been taken
away) from a viewpoint close to the one of the sensor.

Fig. 8(b). We started with grasping single stand-
ing objects, moved on to object grasping from
an unsorted pile and finished with a more com-
plex task of cleaning up a table. We used the 7-
degrees-of-freedom Cartesian impedance controlled
DLR Lightweight robot III developed at the German
Aerospace Center (DLR). It was mounted on a table
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object

test scenario Soda Club Amicelli Rusk

single standing objects 100% 95% 95%

object pile 95% 95% 90%

TABLE 2
Success rates in the grasping experiments.

Fig. 15. (Left) The single standing object grasping
scenario. (Middle, Right) two input range images (top)
and the recognition results (bottom) for the rusk and
the Amicelli box, respectively. The points off the plane
(used for matching) are shown in light blue.

and covered an area of approximately 2.5 square
meters. The scene was digitized with a Kinect sen-
sor [Kinect for Xbox 360, 2011]. Since all objects were
standing on or above the table, its plane was detected
in each range image (using a simple RANSAC proce-
dure) and all points belonging to the plane or lying
below were removed. The setup is shown in Fig. 14.

6.3.1 Grasping Single Standing Objects
In the first scenario, multiple grasps were performed
on single standing objects (see Fig. 15). We varied the
pose of the objects such that all pre-saved grasp poses
were executed. A grasp trial was considered success-
ful if the object was correctly recognized, grasped and
carried to the right place (table corner for the rusk
box or one of the red bins for the Amicelli box/soda
club bottle). We ran ten trials for each object pose and
recorded the number of successful trials. The results
are summarized in the first row of Table 2. One grasp
failed for the Amicelli and the rusk box, respectively.
This was due to the fact that the alignment computed
by the matching algorithm was too imprecise.

6.3.2 Grasping from an Object Pile
Next, the robot performed multiple grasps on a pile
consisting of seven objects placed next and on top
of each other. Again, we changed the positions of
the items such that the robot tried all pre-saved
grasp poses for each object. A grasp was considered
successful if the robot picked a correctly recognized
object and carried it to the right place. After an object
had been taken away, we built up a new pile, i.e.,
the robot had to deal every time with a full pile.

This experiment added some additional difficulties
to both the geometry matching and the robot control
algorithms. Obviously, the risk of recognition failures
increased since there were more objects in the scene.
Besides that, objects in a pile are in a more unstable
configuration (from a statics point of view) compared
to single standing ones. This made it more difficult
for the impedance-based control to compensate for
matching imprecision. We performed ten trials for
each grasp pose and recorded the number of success-
ful trials. The results are compiled in the second row
of Table 2. As to be expected, the failure rate increased
compared to the first grasping experiment.

6.3.3 Cleaning up the Table
In the last test scenario, we let the robot repeatedly
perform a more complex task, namely, cleaning up
the table in front of it. Seven objects were randomly
placed on a pile which resulted in highly cluttered
and occluded scenes. The task to the robot was to pick
each object, put it away and halt when it “believes”
that the table is empty. The recognition process was
restarted each time an object was carried away. Thus,
the robot had to deal with the changing scene and
with unforeseen situations which happened during
the cleanup like, e.g., an object falling off the pile. The
task was accomplished if at the end each object was
at the place designated for it. This time we did not
consider it a failure when an object slipped out of the
gripper as long as it was picked up later on and left
in the right place. After each cleanup trial we built up
a new pile and let the robot perform the task again.
We repeated this 15 times and counted the number of
successful trials. The robot achieved a success rate of
80%. Fig. 16 exemplary shows one cleanup process.
More examples can be seen in Extension 2.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a vision-based approach
for grasping of known objects. Our approach relies
on a robust 3D geometry matching algorithm for
the recognition and localization of multiple objects
in noisy, partially reconstructed and unsegmented
scenes. The matching algorithm is based on a ro-
bust geometric descriptor, a hashing technique and
an efficient, localized RANSAC-like sampling strat-
egy. We provided a theoretical complexity analysis
and derived a formula for computing the number
of iterations required to recognize the objects with
a predefined success probability. The result of the
complexity analysis, namely a linear time depen-
dency on the number of scene points, was exper-
imentally validated. Tests on real range data con-
firmed that our method performs well on complex
scenes in which only small parts of the objects are
visible. In a direct comparison with the spin images
[Johnson and Hebert, 1999] and the tensor match-
ing [Mian et al., 2006] approaches, our method per-
formed better in terms of recognition rate. A further
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Fig. 16. (Left to right, top to bottom) A sequence of images showing the robot cleaning up the table. The first
and the last image show the beginning and the end of the task, respectively. Each in-between shot shows the
robot in the moment of grasping an object. Note that the first Amicelli box and all bottles are placed in a lying
orientation in the red bins and are not visible from this point of view.

experimental validation with the DLR Lightweight-
Robot III showed how well this new method can be
exploited for grasping in unstructured and cluttered
environments. The presented solution is capable of
quickly recognizing and robustly grasping known
objects from an unsorted pile of different everyday
items. This is extremely useful for typical service
robotics or industrial co-worker tasks.

One possible extension of the recognition algorithm
would be to incorporate higher dimensional geomet-
ric descriptors. We expect this to lead to more uni-
formly spread model point pairs in the feature space
and to further reduce the overpopulation of hash table
cells mentioned in Section 4.1. Furthermore, in the
current implementation of the recognition method, the
pair width d is selected manually based on the extent
of the object models stored in the hash table and on
the expected degree of object occlusion in the scene.
An elaborate way of automatically selecting the right
value for d is the current topic of our research.
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APPENDIX A: I NDEX TO MULTIMEDIA EXTEN-
SIONS

Extension Media Type Description

1 Video Impedance control and collision
detection for sensitive grasping
and placing.

2 Video Cleaning up a table full of grocery
items.
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In this paper, we propose a new algorithm for pairwise rigid point set registration with unknown point

correspondences. The main properties of our method are noise robustness, outlier resistance and global

optimal alignment. The problem of registering two point clouds is converted to a minimization of a non-

linear cost function. We propose a new cost function based on an inverse distance kernel that signifi-

cantly reduces the impact of noise and outliers. In order to achieve a global optimal registration

without the need of any initial alignment, we develop a new stochastic approach for global minimization.

It is an adaptive sampling method which uses a generalized BSP tree and allows for minimizing nonlinear

scalar fields over complex shaped search spaces like, e.g., the space of rotations. We introduce a new tech-

nique for a hierarchical decomposition of the rotation space in disjoint equally sized parts called spherical

boxes. Furthermore, a procedure for uniform point sampling from spherical boxes is presented. Tests on a

variety of point sets show that the proposed registration method performs very well on noisy, outlier cor-

rupted and incomplete data. For comparison, we report how two state-of-the-art registration algorithms

perform on the same data sets.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction and related work

Point set registration is a fundamental problem in computa-

tional geometry with applications in the fields of computer vision,

computer graphics, image processing and many others. The prob-

lem can be formulated as follows. Given two finite point sets

M ¼ fx1; . . . ;xmg � R
3 and D ¼ fy1; . . . ; yng � R

3 find a mapping

T : R
3 ! R

3 such that the point set T(D) = {T(y1), . . . ,T(yn)} is opti-

mally aligned in some sense to M. M is referred to as the model

point set (or just the model) and D is termed the data point set.

Points from M and D are called model points and data points,

respectively.

If T is a rigid transform, i.e., T(x) = Rx + t for a rotation matrix R

and a translation vector t, we have to solve a rigid point set regis-

tration problem. This special case is of major importance for the

tasks of object recognition, tracking, localization and mapping,

and object modeling, just to name a few. The problem is especially

hard when no initial pose estimation is available, the point sets are

noisy, corrupted by outliers and incomplete and no correspon-

dences between the points of the input sets are known. In Fig. 1,

a model and a data set are shown before and after rigid

registration.

1.1. Rigid point set registration

One class of rigid point set registration approaches consists of

methods designed to solve the initial pose estimation problem.1

These methods compute a (more or less) coarse alignment be-

tween the point sets without making any assumptions about their

initial position and orientation in space. Classic initial pose estima-

tors are the generalized Hough transform [2], geometric hashing

[3] and pose clustering [4]. These algorithms are guaranteed to find

the optimal alignment between the input point sets. However, be-

cause of their high computational cost and/or high memory

requirements, these methods are only applicable to small data sets.

Johnson et al. introduced in their work [5] local geometric

descriptors, called spin images, and used them for pose estimation

and object recognition. The presented results are impressive, but

no tests with noisy or outlier corrupted data were performed. Gelf-

and et al. [6] developed a local descriptor which performs well un-

der artificially created noisy conditions, but still, defining robust

local descriptors in the presence of significant noise and a large

amount of outliers remains a difficult task.

A more recent approach to the initial pose estimation problem

is the robust 4PCS algorithm introduced by Aiger et al. [7]. It is

an efficient randomized generate-and-test approach. It selects an

appropriate quadruple B (called a basis) of nearly coplanar points

from the model set M and computes the optimal rigid transform
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between B and each of the potential bases in the data set D and

chooses the best one. In order to achieve high probability for suc-

cess, the procedure is repeated several times for different bases

B �M. Note, however, that the rigid transform, found by the algo-

rithm, is optimal only for the two bases (i.e., for eight points). In

contrast to this, the rigid transform we compute is optimal for all

points of the input sets and thus we expect to achieve higher accu-

racy than the 4PCS algorithm. This is further validated in the exper-

imental results in Section 5 of this paper.

Since the accuracy of the pose computed by the above men-

tioned methods is insufficient for many applications, an additional

pose refinement step needs to be performed. The pose refining

algorithms represent another class of registration approaches.

The most popular one is the Iterative Closest Point (ICP) algorithm.

Since its introduction by Chen and Medioni [8], and Besl and

McKay [1], a variety of improvements has been proposed in the lit-

erature. A good summary as well as results in acceleration of ICP

algorithms have been given by Rusinkiewicz and Levoy [9]. A major

drawback of ICP and all its variants is that they assume a good ini-

tial guess for the pose of the data point set (with respect to the

model). This pose is improved in an iterative fashion until an opti-

mal rigid transform is found. The quality of the solution heavily de-

pends on the initial guess. Furthermore, the methods compared by

Rusinkiewicz and Levoy [9] use local surface features like surface

normals which cannot be computed very reliably in the presence

of noise.

Recently, a variety of registration algorithms based on robust

statistics has been proposed. Granger and Pennec [10] formulated

the rigid point set registration as a general maximum likelihood

estimation problem which they solved using expectation maximi-

zation principles. Tsin and Kanade [11] introduced the kernel cor-

relation approach as an extension of the well-known 2D image

correlation technique to point sets. The model and data sets are

represented by a collection of kernel functions each one centered

at a model/data point. If each point in the model set has a close

counterpart in the data set the kernel correlation value is large.

Thus the registration problem is converted to the maximization

of the kernel correlation of the input point sets. An extension of

this approach through a Gaussian mixture model was proposed

by Jian and Vemuri [12]. Instead of using one-to-one correspon-

dences between the points of the input sets, the above cited meth-

ods work with multiple, weighted correspondences. Although this

significantly widens the basin of convergence the resulting compu-

tational cost limits the applicability of the algorithms to small

point sets only [13].

A further class of rigid registration methods is based on particle

filtering. Ma and Ellis [14] pioneered the use of the unscented par-

ticle filter for registration of surfaces in the context of computer-

assisted surgery. A major limitation of the method is its running

time: it takes 1.5 s for a data set consisting of 15 points. Moreover,

outlier robustness was not addressed by the authors. Further inter-

esting approaches from this class are the algorithm of Moghari and

Abolmaesumi [15] which is based on the unscented Kalman filter

and the point set registration method via particle filtering and sto-

chastic dynamics introduced by Sandhu et al. [16]. Although these

algorithms have a band of convergence significantly wider than the

one of local optimizers, they still depend on the initial alignment of

the point sets.

1.2. Optimization-based point set registration

Solving the registration problem by minimizing a cost function

with a general-purpose optimizer has already been introduced in

the literature. Depending on the choice of either a global or a local

optimization procedure the corresponding registration approach

belongs to the class of initial pose estimators or pose refining

methods, respectively.

Breuel [17] used a deterministic branch-and-bound method to

globally maximize a quality measure which counts the number

of data points a given rigid transform brings within an �-neighbor-
hood of some model point. Although this method always finds the

global optimal solution its computational cost seems to be very

high since only planar rigid transforms (with three degrees of free-

dom) were considered.

Olsson et al. [18] also used a deterministic branch-and-bound

algorithm to globally minimize the sum of squared distances be-

tween corresponding entities (points, lines or planes) in M and D.

This method is guaranteed to find the global optimal solution,

however, at a high computational cost: a problem consisting of

10 point-to-plane, 4 point-to-line and 4 point-to-point correspon-

dences is solved in about 10 s. Furthermore, when applied in the

case of point set registration, the correspondences between the

points have to be known in advance which is seldom the case in

a real world setting.

Another deterministic solver based on Lipschitz global optimi-

zation theory was introduced by Li and Hartley [19]. On the

positive side, the method does not assume any known correspon-

dences across the point sets and it always solves the problem in

a globally optimal way. Unfortunately, the algorithm is very costly

(about 18 minutes for input sets consisting of 200 points each) and

it is based on some unrealistic assumptions: (i) the model and data

sets have exactly the same number of points, (ii) there are no out-

liers and (iii) there is no missing data, i.e., there is a 100% overlap

between model and data.

Mitra et al. [20], Pottmann et al. [21] and Fitzgibbon [22] also

formulated the registration problem as a minimization of a

geometric cost function. For its minimization, however, a local

Fig. 1. Pairwise rigid point set registration obtained with our method. The input point sets, model and data, are shown in (a) and (b), respectively. Although rendered as

meshes no surface information (like, e.g., normals) is used for the registration. Note that the scans are noisy and only partially overlapping. (c) and (d) Our registration result

(shown from two different viewpoints) obtained without noise filtering, local ICP refinement [1] or any assumptions about the initial pose of the input scans. (e) A closer view

of the part marked by the rectangle in (d). Observe the high quality of the alignment.
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optimization method is used. This results in the already mentioned

strong dependence on a good initial transform estimation.

1.3. Stochastic optimization

Stochastic optimization has received considerable attention in

the literature over the last three decades. Much of the work has

been devoted to the theory and applications of simulated anneal-

ing (SA in the following) as a minimization technique [23–25]. A

comprehensive overview of this field is given in [26]. A major prop-

erty of SA algorithms is their ‘‘willingness’’ to explore regions

around points in the search space at which the objective function

takes values greater than the current minimum [27]. This is what

makes SA algorithms able to escape from local minima and makes

them suitable for global minimization. A known drawback of SA

algorithms is the fact that they waste a lot of iterations in generat-

ing candidate points, evaluating the objective function at these

points, and finally rejecting them [26]. In order to reduce the num-

ber of rejections, Bilbro and Snyder [28] select candidate points

from ‘‘promising’’ regions of the search space, i.e., from regions in

which the objective function is likely to have low values. They

achieve this by adapting a k-d tree to the objective function each

time a new candidate point is accepted. If, however, the current

point is rejected, the tree remains unchanged. This is a consider-

able waste of computation time since the information gained by

the (expensive) evaluation of the objective function is not used.

In contrast to this, our algorithm adapts a generalized BSP tree at

every iteration and thus uses all the information collected during

the minimization. Furthermore, the use of a generalized BSP tree

allows for a minimization over complex shaped spaces and not

only over rectangular regions as in the case of [28].

1.4. Contributions and overview

Our registration algorithm aims to robustly solve the initial

pose estimation problem in the case of noisy, outlier corrupted

and incomplete point sets with unknown correspondences be-

tween the points. Our main contributions are (i) a noise and outlier

resistant cost function, (ii) a stochastic approach for its global min-

imization, (iii) a technique for a hierarchical rotation space decom-

position in disjoint parts of equal volume and (iv) a procedure for

uniform sampling from spherical boxes. The work presented here

is a significant extension of the concept introduced in the confer-

ence paper [29].

The rest of the paper is organized as follows. In Section 2, we de-

fine the task of aligning two point sets as a nonlinear minimization

problem and define our cost function. In Section 3, a stochastic ap-

proach for global minimization is presented. In Section 4, we moti-

vate the choice of the rotation space parametrization we use in

combination with our minimization approach and introduce a

technique for a hierarchical rotation space decomposition. Further-

more, a procedure for uniform sampling from spherical boxes is

described. Section 5 presents experimental results obtained with

our registration algorithm as well as comparisons with two

state-of-the-art registration methods. The paper ends with some

conclusions in Section 6.

2. Registration as a minimization problem

Consider, we are given a model point set M ¼ fx1; . . . ;xmg � R
3

and a data point set D ¼ fy1; . . . ; yng � R
3. Suppose, we have a con-

tinuous function S : R
3 ! R, called the model scalar field, which at-

tains small values at the model points xj, j 2 {1, . . . ,m} and

increases with increasing distance between the evaluation point

and the closest model point. Our aim is to find a rigid transform

T : R
3 ! R

3 of the form T(x) = Rx + t for a rotation matrix R and a

translation vector t 2 R
3 such that the functional

FðTÞ ¼
X

n

i¼1

SðTðyiÞÞ; yi 2 D ð1Þ

is minimized. This definition of F is based on the following idea

common for most registration algorithms: we seek a rigid transform

that brings the data points as close as possible to the model points.

2.1. Definition of the model scalar field

Given the model point set M = {x1, . . . ,xm}, we want our model

scalar field S : R
3 ! R to attain its minimal value at the model

points, i.e.,

SðxjÞ ¼ smin 2 R; 8xj 2 M; ð2Þ

and to attain greater values for all other points in R
3, i.e.,

SðxÞ > smin; 8x 2 R
3 nM: ð3Þ

Define

dMðxÞ ¼ min
xj2M

kx� xjk ð4Þ

to be the distance between a point x 2 R
3 and the set M, where k � k

is the Euclidean norm in R
n. If we set

SðxÞ ¼ dMðxÞ; ð5Þ

we get an unsigned distance field which is implicitly used by ICP

[1]. It is obvious that this choice for S fulfills both criteria (2) and (3).

Mitra et al. [20] and Pottmann et al. [21] considered in their

work more sophisticated scalar fields. They assumed that the mod-

el point set M consists of points sampled from an underlying sur-

face U. The scalar field S at a point x 2 R
3 is defined to be the

squared distance from x to U. In this context, S is called the

squared distance function to the surfaceU. We refer to [20] for de-

tails on computing the squared distance function and its approxi-

mation for point sets.

The version of S given in (5) and the ones used by Mitra et al.

[20] and Pottmann et al. [21] are essentially distance fields. This

means that S(x) approaches infinity as the point x gets infinitely

far from the point set. This has the practical consequence that a

registration technique which minimizes a cost function based on

an unbounded scalar field will be sensitive to outliers in the data

set. This is because data points lying far away from the model point

set will have great impact on the sum in (1) and thus will prevent

the minimization algorithm from converging towards the right

alignment. A similar problem arises in the case of model and data

sets with low overlap. In this case, there will be a lot of data points

which have no corresponding model points and vice versa. The dis-

tance between such a data point and the closest model point will

be large and thus will deteriorate the sum in (1). A simple way

to overcome this is just to exclude data points which are too far

away from the model set. However, this strategy introduces dis-

continuities in the cost function which cause a problem for many

optimization methods.

Fitzgibbon presented in his work [22] a more convenient way to

alleviate these difficulties which does not lead to a discontinuous

cost function. He proposed to use either of the following two ro-

bust kernels:

SðxÞ ¼ log 1þ
dMðxÞð Þ

2

r

 !

ðLorentzian kernelÞ or ð6Þ

SðxÞ ¼
ðdMðxÞÞ

2 if dMðxÞ < r

2rdMðxÞ � r2 otherwise

(

ðHuber kernelÞ: ð7Þ
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However, we still have limdMðxÞ!1SðxÞ ¼ 1 for both kernels as in the

case of (5). Thus a cost function based on (6) or (7) will still be sen-

sitive to outliers. We further validate this in the experimental re-

sults presented in Section 5 of the paper.

To avoid this sensitivity, we propose to use a bounded scalar

field satisfying (2) and (3) and having the additional property

lim
dMðxÞ!1

SðxÞ ¼ 0: ð8Þ

We set

SðxÞ ¼ �uðdMðxÞÞ; ð9Þ

where u : R
� ! R

�, for R� ¼ fx 2 R : x P 0g, is a strictly monotoni-

cally decreasing continuous function with

max
x2R�

uðxÞ ¼ uð0Þ and ð10Þ

lim
x!1

uðxÞ ¼ 0: ð11Þ

In our implementation, we use an inverse distance kernel of the

form

uðxÞ ¼
1

1þ ax2
; a > 0 ð12Þ

because it is computationally efficient to evaluate and can be con-

trolled by a single parameter a (see Fig. 2a). This results in the fol-

lowing model scalar field:

SMa ðxÞ ¼ �
1

1þ aðdMðxÞÞ
2
; a > 0: ð13Þ

It is easy to see that (2), (3) and (8) hold. Different values for a in

(13) lead to different scalar fields. The greater the value the faster

SMa ðxÞ convergences to zero as dM(x)?1 (see Fig. 2b). In Section

2.2, we will discuss how to choose a suitable value for a and why

this particular form of SMa ðxÞ leads to an outlier robust cost function.

2.2. Cost function definition

The group of all rigid transforms in R
3 is called the special

Euclidean group and is denoted by SE(3). At the beginning of Sec-

tion 2, we formulated the rigid point set registration problem as

a functional minimization problem over SE(3). Using a parametri-

zation of SE(3), the functional F in (1) can be converted to a

real-valued scalar field F : R
6 ! R of the form

Fðu;w; h; x; y; zÞ ¼
X

n

i¼1

SMa ðRu;w;hyi þ ðx; y; zÞÞ; ð14Þ

where y1, . . ., yn are the data points, SMa is the model scalar field

defined in (13), Ru,w,h is a rotation matrix parametrized by u, w, h

and ðx; y; zÞ 2 R
3 is a translation vector. In order to achieve good

optimization performance, it is very important to choose the right

parametrization of the rotation group. We employ an axis-angle

based parametrization which is especially well suited for our

branch and ‘‘stochastic bound’’ minimization method. Furthermore,

we introduce a new technique for a hierarchical decomposition of

the rotation space in spherical boxes and describe a procedure for

uniform sampling from them. Since the advantages of these tech-

niques are best seen in the context of our minimization algorithm

we postpone the detailed discussion to Section 4 after the introduc-

tion of the minimization method in Section 3.

A global minimizer x� 2 R
6 of F defines a rigid transform that

brings the data points as close as possible to the model points.

What makes the proposed cost function robust to outliers is the

fact that outlier data points have a marginal contribution to the

sum in (14) depending on a. More precisely, given a positive real

number d, we can compute a value for a such that SMa ðxÞ
�

�

�

�

�

� is less

than an arbitrary d > 0, if dM(x) > d holds. In this way, the contribu-

tion of an outlier point to the sum in (14) can be made arbitrary

close to zero and F will behave like an outlier rejector. However,

too large values for awill lead to the rejection of data points which

do not have exact counterparts in a sparsely sampled model set,

but still are not outliers. In our implementation we set

d ¼
1

4
minfbboxxðMÞ; bboxyðMÞ; bboxzðMÞg; ð15Þ

d ¼ 0:1; ð16Þ

where bbox(M) denotes the bounding box of the model point set

and bboxs(M), s 2 {x,y,z} is the extent of the bounding box along

the x, y or z axis. Using the absolute value of the right side of (13)

and solving for a yields

a ¼
1� d

dd
2

: ð17Þ

The cost function given in (14) is nonconvex and has multiple local

minima over the search space (see [19] where this is experimentally

verified for a similar cost function). Using a local optimization pro-

cedure—common for many registration methods—will lead in most

cases to a local minimizer of F and thus will not give the best align-

ment between model and data. To avoid this, we employ a new sto-

chastic approach for global minimization described in the next

Section.

3. Stochastic adaptive search for global minimization

Our stochastic minimization approach is inspired by the simu-

lated annealing (SA) method of Bilbro and Snyder [28]. The main

difference between their work and a typical SA algorithm is the

way how the minimizer candidates are generated. As we already

mentioned in Section 1.3, SA algorithms are known to waste many

iterations in sampling candidate points from the search space,

evaluating the cost function at these points and finally rejecting

them [26]. In order to reduce the number of rejections, Bilbro

Fig. 2. (a) The inverse distance kernel (defined in (12)) for three different a values. (b) The model scalar field SMa ðxÞ (defined in (13)) based on the inverse distance kernel from

(a) for a = 0.1 and a = 1. In this example, the Stanford bunny is used as the model set. SMa ðxÞ is visualized by evaluating it at a number of points lying on the three planes and

mapping the scalar values to gray levels.
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and Snyder [28] sampled the points from a distribution which is

modified iteratively during the minimization such that its modes

are built around minimizers of the cost function. They achieved

this by building a k-d tree and sampling the candidates from those

leaves of the tree which cover ‘‘promising’’ regions of the search

space, i.e., regions in which the cost function is likely to attain

low values. Although this leads to fewer candidate rejections and

thus saves computation time the method in [28] still has two

drawbacks. First, the candidate points are sampled directly from

the tree leaves which are n-dimensional boxes of the form

[a1,b1] � � � � � [an,bn], where ½ai; bi� � R is a closed interval. This

strategy is based on the implicit assumption that the search space

can be covered efficiently by such boxes. This, however, is not the

case if we have a more complex shaped space, e.g., the space of

rotations (see Section 4). Second, the k-d tree used in [28] is up-

dated only if the generated candidate is accepted. In the case of a

rejection, the tree remains unchanged. This is a waste of computa-

tion time since the information gained by the expensive cost func-

tion evaluation is not used.

We account for the first drawback by formulating our minimi-

zation algorithm using a more general spatial data structure,

namely, a generalized binary space partitioning tree (we will call

it a G-BSP tree in the following). As opposed to the classic BSP trees

(see, e.g., [30]), we do not require that the subspaces represented

by the tree nodes are convex sets. Thus we can minimize efficiently

over more complex shaped search spaces like, e.g., the space of

rotations (see Section 4). To avoid the second drawback, i.e., to

use all the information gained by the cost function evaluation,

we update the tree at every iteration—even in the cases of bad min-

imizer candidates. This apparently minor modification leads to a

rather different algorithm (than [28]) and enables a faster rejection

of the regions in which the cost function is likely to have high (i.e.,

poor) values and thus speeds up the convergence.

3.1. Generalized BSP trees

A binary space partitioning tree (BSP tree) is a spatial data

structure which decomposes the real space R
n in a hierarchical

manner. At each subdivision stage, the space is subdivided by a

(hyper)plane in two disjoint parts of arbitrary size. Thus the result-

ing decomposition consists of arbitrarily shaped convex polygons

[30]. Each node of the tree has exactly two or zero child nodes. A

node with zero children is called a leaf. If we drop the assumption

that the space subdivision is performed by planes we get a general-

ized BSP tree (G-BSP tree). This results in a decomposition made up

of subspaces of arbitrary shape.

3.2. Problem definition

Given a set X (called the search space) and a function f : X ! R

our aim is to find a global minimizer of f, i.e., an x� 2 X such that

f ðx�Þ 6 f ðxÞ 8x 2 X: ð18Þ

The following assumptions about X should hold:

� X � R
n is a bounded set of positive volume (Lebesgue measure

in R
n).

� There is an algorithm of acceptable complexity which can build

a G-BSP tree for X such that each two subsets of X at the same

level of the tree are of equal volume (have the same Lebesgue

measure in R
n).

� X is simple enough for sampling algorithms of acceptable

complexity to be able to sample uniformly from the G-BSP

tree nodes, i.e., from the subsets of X represented in the

G-BSP tree.

Furthermore, the cost function f is required to be bounded and

defined at each x 2 X.

3.3. Overall algorithm description

We use a G-BSP tree to represent the n-dimensional search

space X. The root g0
0 is at the 0th level of the tree and represents

the whole space X0 = X. g0
0 has two children, g1

00 and g1
01, which

are at the next level. They represent the subsets X00 and X01,

respectively, which are disjoint, have equal volume and their union

equals X0. In general, a node gk
s (where kP 0 and s is a binary

string of length k + 1) is at the kth level of the tree and has two chil-

dren, gkþ1
s0 and gkþ1

s1 , which are at the next, (k + 1)th, level. The vol-

ume of gk
s is 1/2k of the volume of X. This concept is easily

visualized in the case n = 2 and X and its subsets being rectangles

(see Fig. 3a).

During the minimization, the G-BSP tree is built in an iterative

fashion beginning at the root. The algorithm adds more resolution

to promising regions in the search space, i.e., the tree is built with

greater detail in the vicinity of points in X at which the objective

function attains low values. The overall procedure can be outlined

as follows:

1. Initialize the tree (see Section 3.4) and set an iteration counter

j = 0.

2. Select a ‘‘promising’’ leaf according to a probabilistic selection

scheme (see Section 3.5).

3. Expand the tree by bisecting the selected leaf. This results in the

creation of two new child nodes. Evaluate the objective function

at a point which is uniformly sampled from the subset of one of

the two children (see Section 3.6).

4. If a stopping criterion is not met, increment the iteration coun-

ter j and go to step 2, otherwise terminate the algorithm (see

Section 3.7).

3.4. Initializing the tree

For every tree node gk
s the following items are stored: (i) a set

Xs � X and (ii) a pair (xs, f(xs)) consisting of a point xs, uniformly

sampled from Xs, and the corresponding function value f(xs). The

tree is initialized by storing the whole search space X and a pair

(x0, f(x0)) in the root.

3.5. Selecting a leaf

At every iteration, the search for a globalminimizer begins at the

root and proceeds down the tree until a leaf is reached. In order to

reach a leaf, we have to choose a concrete path from the root down

to this leaf. At each node, we have to decide whether to take its left

or right child as the next station. This decision is made probabilis-

tically. For every node, two numbers p0, p1 2 (0,1) are computed

such that p0 + p1 = 1. Arriving at a node, we choose to descend via

either its left or right child with probability p0 or p1, respectively.

We make these left/right decisions until we reach a leaf.

Computing the probabilities p0 and p1. The idea is to compute the

probabilities in a way such that the ‘‘better’’ child, i.e., the one with

the lower function value, has greater chance to be selected. We

compute p0 and p1 for each node gk
s based on the function values

associated with its children gkþ1
s0 and gkþ1

s1 . Let fs0 and fs1 be the func-

tion values associated with gkþ1
s0 and gkþ1

s1 , respectively. The follow-

ing criterion should be fulfilled:

fs0 < fs1 () p0 > p1: ð19Þ

If fs0 < fs1 we set

p0 ¼ ðt þ 1Þ=ð1þ 2tÞ; p1 ¼ t=ð1þ 2tÞ; ð20Þ
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for a parameter tP 0. For t?1we get p0 ¼ p1 ¼ 1
2
and our minimi-

zation algorithm becomes a pure random search. Setting t = 0

results in p0 = 1 and p1 = 0 and makes the algorithm deterministi-

cally choosing the ‘‘better’’ child of every node which leads to the

exclusion of a large portion of the search space and in most cases

prevents the algorithm from finding a global minimizer. For fs1 < fs0
we set

p0 ¼ t=ð1þ 2tÞ; p1 ¼ ðt þ 1Þ=ð1þ 2tÞ: ð21Þ

Updating the probabilities. From the discussion above it becomes evi-

dent that t should be chosen from the interval (0,1). For our algo-

rithm the parameter t plays a similar role as the temperature

parameter for a simulated annealing algorithm [23] so we will refer

to t as temperature as well. Like in simulated annealing, the search

begins at a high temperature level (large t) such that the algorithm

samples the search space quite uniformly. The temperature is de-

creased gradually during the minimization process so that promis-

ing regions of the search space are explored in greater detail. More

precisely, we update t according to the following cooling schedule:

t ¼ tmax expð�vjÞ; ð22Þ

where j 2 N is the current iteration number, tmax > 0 is the temper-

ature at the beginning of the search (for j = 0) and v > 0 is the cool-

ing speed which determines how fast the temperature decreases.

3.6. Expanding the tree

After reaching a leaf gk
s , the set Xs associated with it gets bi-

sected in two disjoint subsets Xs0 and Xs1 of equal volume. The cor-

responding child nodes are gkþ1
s0 and gkþ1

s1 , respectively. In this way,

we add more resolution in this part of the search space. Next, we

evaluate the new children, i.e., we assign to the left and right one

a pair (xs0, f(xs0)) and (xs1, f(xs1)), respectively.

Note that the parent of gkþ1
s0 and gkþ1

s1 , namely, the node gk
s ,

stores a pair (xs, f(xs)). Since Xs = Xs0 [ Xs1 and Xs0 \ Xs1 = ; it fol-

lows that xs is contained either in Xs0 or in Xs1. Thus we set

ðxs0; f ðxs0ÞÞ ¼ ðxs; f ðxsÞÞ if xs 2 Xs0 or ð23Þ

ðxs1; f ðxs1ÞÞ ¼ ðxs; f ðxsÞÞ if xs 2 Xs1: ð24Þ

To compute the other pair, we sample a point uniformly from the

appropriate remaining set (Xs0 or Xs1) and evaluate the function

at this point (see Fig. 3b for the case n = 2 and X and its subsets

being rectangles).

Updating the tree. During the search we want to compute the

random paths from the root down to a certain leaf such that prom-

ising regions—leaves with low function values—are visited more

often than non-promising ones. Thus, after evaluating a new

created leaf, we propagate its (possibly very low) function value

as close as possible to the root. This is done by the following updat-

ing procedure. Suppose that the parent point xs is contained in the

set Xs1 belonging to the new created child gkþ1
s1 . Therefore, we ran-

domly generate xs0 2 Xs0, compute f(xs0) and assign the pair

(xs0, f(xs0)) to the child gkþ1
s0 . Updating the tree consists of ascending

from gkþ1
s0 (via its ancestors) to the root and comparing at every

parent node gj
u the function value f(xs0) with the function value

of gj
u, i.e., with f(xu). If f(xs0) < f(xu) we update the current node

by setting (xu, f(xu)) = (xs0, f(xs0)) and proceed to the parent of gj
u.

The updating procedure terminates if we reach the root or no

improvement for the current node is possible.

Note that if f(xs0) is the lowest function value found so far, it will

be propagated to the root, otherwise it will be propagated only to a

certain level l 2 {1, . . . ,k + 1}. This means, that every node contains

the minimum function value (and the point at which f takes this

value) found in the subset associated with this node. Since the root

represents the whole search space, it contains the point we are

interested in, namely, the point at which f takes the lowest value

found up to the current iteration.

3.7. Stopping rule

We break the search if the following two criteria are fulfilled. (i)

The leaf gk
s selected in the current iteration has a volume which is

smaller than a user predefined value dv > 0. (ii) The absolute differ-

ence between the minimal function value found so far and the

function value computed in the current iteration is less than a user

specified df > 0.

The first condition accounts for the desired precision of the

solution and the second one assures that the algorithm makes no

significant progress any more.

3.8. Remark

We want to emphasize that it is very important that each two

nodes at the same tree level are of equal volume. Note that the

points are uniformly sampled within the tree nodes (see Section

3.2). In this case, if two differently sized nodes at the same tree le-

vel are selected equally often, the part of the search space repre-

sented by the smaller node will be sampled more densely than

the other part. Thus, the algorithm will possibly prefer parts of

the search space only because the G-BSP tree is constructed in a

particular way and not because of the cost function.

4. Processing in the space of rigid transforms

As already mentioned in Section 2.2, the choice of a parametri-

zation of SE(3) (the group of rigid transforms) is an important issue

since different parametrizations lead to different optimization

Fig. 3. (a) An example of a two-dimensional G-BSP tree and a rectangular search space X. In this case, the G-BSP tree is a two-dimensional k-d tree. (b) Expanding the leaf gk
s .

In this example, after the bisection of gk
s , the point xs lies in the box Xs1, hence gkþ1

s1 adopts the pair (xs, f(xs)) from gk
s . For the other child, gkþ1

s0 , a point xs0 is sampled uniformly

from Xs0 and the objective function is evaluated at that point.
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performance. We decompose SE(3) into a translational and a rota-

tional part. While parametrizing translations is straightforward

special care is needed when dealing with rotations since the geom-

etry of the rotation space is more complex than the geometry of R3.

In the following, we concentrate on the rotation space.

In view of our branch and ‘‘stochastic bound’’ minimization

method, three specific problems have to be solved. (i) We need

to parametrize rotations. (ii) We have to hierarchically decompose

the rotation space in disjoint parts of equal volume. In other words,

a G-BSP tree has to be computed in which the nodes are represent-

ing equally sized parts of the rotation space. (iii) We need to sam-

ple points (i.e., rotations) uniformly from each leaf of the G-BSP

tree. These issues are discussed separately in the next three

subsections.

4.1. Parametrizing rotations

There are many ways how to parametrize 3D rotations. Discuss-

ing all of them is far beyond the scope of this paper. An excellent

introduction to this topic is included in the books by Kanatani

[31] and Watt and Watt [32] in the context of computer vision

and computer graphics, respectively. The set of all 3 � 3 rotation

matrices is a group (under matrix multiplication) which is referred

to as SO(3). A parametrization of SO(3) is a mapping R: U? SO(3),

where U is a subset of R3 since every rotation has three degrees of

freedom.

Parametrizing rotation matrices using Euler angles is probably

the most widely used technique which is, however, inefficient in

conjunction with our minimization method. This is due to the fact

that Euler angles are a redundant representation of rotations. In or-

der to represent all elements in SO(3) the following range, E, for the

three Euler angles is needed: E = [0,2p) � [0,2p) � [0,p]. However,

the corresponding parametrization R: E? SO(3), which is given in

[31], is not one-to-one. There are infinitely many combinations of

Euler angles (within the range E) which lead to the same rotation

matrix (see [32]). A minimization method like ours which consid-

ers the whole search space will waste computation time exploring

regions in E which should be completely ignored because they do

not lead to ‘‘new’’ rotation matrices. The same applies to determin-

istic branch-and-bound methods (see, e.g., [33]).

In order to avoid this difficulty, we employ a redundant-free

rotation space parametrization based on the axis-angle representa-

tion of SO(3). According to Euler’s theorem (see [31]), each rotation

in R
3 can be represented by an axis specified by a unit vector n and

an angle h of rotation around it. n can itself be parametrized using

spherical coordinates u and w:

n ¼ ðsinðwÞ cosðuÞ; sinðwÞ sinðuÞ; cosðwÞÞ: ð25Þ

Fig. 4a visualizes this concept. In order to represent all rotation

matrices, we need to consider the following range for the spherical

coordinates (u,w) and the rotation angle h:

ðu;w; hÞ 2 ½0;2pÞ � ½0;p� � ½0;pÞ ¼ A: ð26Þ

The parametrization R: A? SO(3), which can be found in [31], is a

one-to-one mapping between A and SO(3).

4.2. Hierarchical decomposition of the rotation space

According to the axis-angle representation and to (26), it is pos-

sible to express the set of rotations by the open ball in R
3 with ra-

dius p which we will denote by B3(p) (see Fig. 4b). Thus a

straightforward way to decompose the rotation space is to enclose

B3(p) in the cube C3(p) = [�p,p]3 and to divide C3(p) into smaller

cubes by simply bisecting the x, y or z axis. Hartley and Kahl [33]

used this technique in conjunction with a deterministic branch-

and-bound minimization method to estimate the essential matrix

and to solve the relative camera pose problem. However, if com-

bined with our minimization algorithm, this technique leads to

two problems. First, the sub-cubes of C3(p) which do not lie within

B3(p) have to be ignored since the rotations they represent are in-

cluded in other cubes within B3(p). This gives rise to nodes in the

corresponding G-BSP tree which have only one ‘‘legal’’ child. Sec-

ond, the sub-cubes of C3(p) which are partially intersecting B3(p)
represent a smaller region of the rotation space than sub-cubes

at the same tree level which are fully enclosed in B3(p). Thus the

minimization algorithm will prefer rotations which are close to

the boundary of B3(p).
We solve these two problems by changing the shape of the

building blocks of the decomposition. Since we are dealing with

a three-dimensional ball the most natural shape is the shape of a

spherical box (see Fig. 4b). In ball coordinates, we define a spheri-

cal box S3 to be a point set of the form

S3 ¼ fðu;w; hÞ : ðu;w; hÞ 2 ½u1;u2Þ � ½w1;w2Þ � ½h1; h2Þg; ð27Þ

where [u1,u2) � [w1,w2) is the range of the spherical coordinates

and [h1,h2) limits the distance of the points to the origin. Decompos-

ing the rotation space means to hierarchically subdivide B3(p) into
disjoint spherical boxes of equal volume (see Fig. 5). Note that the

volume of S3 is given by

volS3 ðu1;u2;w1;w2;h1;h2Þ¼

Z u2

u1

Z w2

w1

Z h2

h1

h2 sinwdhdwdu ð28Þ

¼ðu2�u1Þðcosw1�cosw2Þ
h32�h31

3
: ð29Þ

Our aim is to consecutively cut S3 along the u, w or h axis such that

the resulting pieces have the same volume. Since volS3 depends in a

different way from each of the ball coordinates u, w and h we get a

different rule for cutting along each axis. We are looking for

u 2 ðu1;u2Þ; w 2 ðw1;w2Þ; h 2 ðh1; h2Þ ð30Þ

such that

volS3 ðu1;uÞ ¼ volS3 ðu;u2Þ; ð31Þ

volS3 ðw1;wÞ ¼ volS3 ðw;w2Þ; ð32Þ

volS3 ðh1; hÞ ¼ volS3 ðh; h2Þ; ð33Þ

where, for the sake of clarity, volS3 is expressed as a function of two

variables only, namely, the ones defining the interval which is

currently cut. Using (29) to solve the Eqs. (31)–(33) leads to

u ¼
u1 þu2

2
; w ¼ arccos

cosw1 þ cosw2

2

� �

;

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h31 þ h32
2

3

s

: ð34Þ

Thus we fully specified how to hierarchically decompose the space

of rotations in disjoint equally sized parts such that a G-BSP tree can

be built. Furthermore, the shape of the parts is optimally tailored to

our minimization algorithm.

4.3. Uniform sampling from spherical boxes

Our method for sampling points uniformly from a spherical box

is grounded on the following basic result from Statistics called the

inverse probability integral transform. Since it is proved in many

textbooks (like, e.g., in [34]) we state it here without a proof.

Theorem 1. Let F be a cumulative distribution function (c.d.f.) on R

and let U be a random variable uniformly distributed in [0,1]. Then the

random variable X = F(U)�1 has c.d.f. F.

Based on this result we perform the uniform sampling from a

spherical box S3 = [u1,u2) � [w1,w2) � [h1,h2) in three steps:
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1. Sample a u uniformly from [u1,u2).

2. Sample a w from [w1,w2) according to a c.d.f. F2 such that the

point in R
3 with spherical coordinates (u,w) is uniformly dis-

tributed on the spherical patch S2 = [u1,u2) � [w1,w2).

3. Sample a h from [h1,h2) according to a c.d.f. F3 such that the

point in R
3 with ball coordinates (u,w,h) is uniformly distrib-

uted in the spherical box S3.

Step 1 is easy to perform. In step 2, we need to compute the area

of a spherical patch (of the unit 2-sphere) as a function of an inter-

val [u1,u2) � [w1,w2):

areaS2 ðu1;u2;w1;w2Þ ¼

Z u2

u1

Z w2

w1

sinwdwdu ð35Þ

¼ ðu2 �u1Þðcosw1 � cosw2Þ: ð36Þ

Thus the c.d.f. we need in step 2 is given by

F2ðwÞ ¼
areaS2 ðu1;u2;w1;wÞ

areaS2 ðu1;u2;w1;w2Þ
ð37Þ

¼
cosw1 � cosw

cosw1 � cosw2

; ð38Þ

Analogously, we see that the c.d.f. in step 3 is given by

F3ðhÞ ¼
volS3 ðu1;u2;w1;w2; h1; hÞ

volS3 ðu1;u2;w1;w2; h1; h2Þ
ð39Þ

¼
h3 � h31

h32 � h31
; ð40Þ

where (40) follows from (29). Note that both F2 and F3 can easily be

inverted and we can use Theorem 1 to sample according to F2 and F3
and hence uniformly from the spherical box S3.

4.4. Computing the search space and the G-BSP tree

Now since all details regarding the parametrization and decom-

position of SO(3) and the sampling from spherical boxes are given,

we define the search space X and specify how to build the corre-

sponding G-BSP tree. We set

X ¼ A� bboxðMÞ; ð41Þ

where A is, according to (26), the domain of the axis-angle based

parametrization of SO(3) and bbox(M) (the bounding box of the

model M) represents the translational part of the search space.

Since bbox(M) is a rectangular box of the form ½x1; x2��

½y1; y2� � ½z1; z2� � R
3 it can easily be broken up into smaller boxes

of the same size by simply bisecting it along the x, y or z axis.

The root g0
0 of the G-BSP tree represents the whole set X. The

child nodes of the root, namely, g1
00 and g1

01, represent the subsets

X0 and X1, respectively, resulting from cutting the 0th interval of

X—which is [0,2p) in (26)—using the rule (34)1. In general, a node

gk
s (where kP 0 and s is a binary string of length k + 1) is at the kth

level of the tree, represents a subset Xs of the 6D search space and

has two children, gk
s0 and g

k
s1. The child nodes represent the sets Xs0

and Xs1, respectively, which are computed by cutting the (k mod

6)th interval of Xs according to (34) if 0 6 k mod 6 6 2 (rotational

part) or by dividing it in the middle if 3 6 k mod 6 6 5 (transla-

tional part).

5. Experimental results

In this Section, we test our registration method on a variety of

point sets. All tests presented in the paper are performed on a

laptop with a 3GHz CPU and 4GB RAM running a Linux operating

Fig. 4. (a) The axis-angle based parametrization of SO(3). The two bold dots in the figure represent a point before and after rotation by the angle h around the axis defined by

the unit vector n, which is itself parametrized using spherical coordinates (u,w). (b) The rotation space represented as the open ball in R
3 with radius p. The spherical

coordinates (u,w) of the point (shown as a bold dot) define the rotation axis and the distance to the origin gives the angle of rotation h. The bold lines depict a spherical box.

Fig. 5. Decomposing the rotation space (represented as B3(p)) into spherical boxes of equal volume. In this example, only one spherical box at each splitting step is further

decomposed.
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system. The algorithm is implemented in C++. The parameter val-

ues used in all experiments presented here are given in Table 1.

Since our method is a probabilistic one, it computes each time a

(slightly) different result. In order to make a statistical meaningful

statement about its performance, we run 100 registration trials for

each pair of inputs and report the mean performance values. We

measure the success rate and the accuracy under varying amount

of noise and outliers in the input sets. The success rate gives the

percentage of registration trials in which a transformwhich is close

to the global optimal one is found. The accuracy is measured using

the RMS error (see [6]). The type of noise added to some of the

model and data sets is Gaussian and the outliers are simulated

by drawing points from a uniform distribution within the bound-

ing box of the corresponding point set. We report the number of

outliers as percentage of the original number of points and not

as percentage of the points in the corrupted set. For example,

100% means that there are so many outliers in the corrupted point

set as there are points in the outlier-free set. We did it so because

the results in [7], which we use for comparison, are reported in this

way.

We also measure the number of cost function evaluations and

the computation time for varying cooling speed v (defined in

(22)). We analyze the robustness of our method using two different

kernels in the cost function. Furthermore, we report how two

state-of-the-art registration approaches perform on the same point

Table 1

The parameter values used in all experiments in this paper. The value of dv equals the

volume of a spherical box with side one degree times the volume of a box with sides

equal to one percent of the sides of the bounding box of the model point set.

Parameter Defined in Value

Cost d Eq. (15) 1/4 (min bbox side(M))

function d Eq. (16) 0.1

Cooling tmax Eq. (22) 50.0

schedule v Eq. (22) 0.00008

Stopping dv Section 3.7 1� rot. and 1% transl.

rule df Section 3.7 0.1

Fig. 7. (a) The success rate as a function of the percentage of outliers in the data sets shown in Fig. 6. The success rate of the registration is shown when using the inverse

distance kernel (12) (our kernel) and the Huber kernel (7). Note that our kernel leads to an almost constant success rate of 100% even in the presence of a very large amount of

outliers whereas at the level of 100% outliers the registration completely fails if the Huber kernel is used. (b) The RMS error between the ground truth pose for each data set

and the estimated pose is shown as a function of the percentage of outliers. Only the successful trials are used for computing the RMS error. Note that our kernel leads to

much more precise registration results which are almost independent of the amount of outliers. (c) and (d) We compare our method with the robust 4PCS algorithm [7] and a

local descriptor based approach (LD). A combination of a spin-image based descriptor and integral invariants are used as local descriptors (see [7]). Note that the graphs

corresponding to LD and 4PCS end by r = 4.0 and 40% outliers. This is because the authors in [7] did not test their methods on point sets with more noise or outliers whereas

we did. Observe that our algorithm is quite insensitive to noise and outliers and it outperforms both other methods. The alignment error is measured using the RMS error

between the model and the data after registration. One unit corresponds to 1% of the bounding box diagonal length of the model set.

Fig. 6. (Top row) The model set is shown as a blue mesh (note that only the mesh vertices are used for the registration). The outlier corrupted data sets are rendered as yellow

point clouds. The size of each point set and the number of outliers as percentage of the original number of input points are shown below each figure. Further note that the data

sets are incomplete and sparsely sampled compared to the model. (Bottom row) Typical registration results obtained with our algorithm using the model scalar field (13)

based on the inverse distance kernel (12). Observe the high quality of the alignment even in the presence of a significant amount of outliers. A registration trial took between

9 and 17 s (depending on the number of points). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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sets and compare the runtime of our algorithm with the one of a

deterministic branch-and-bound method. In the following, we de-

scribe each test scenario in detail.

First, the success rate and the accuracy of our method are tested

with two different kernels, namely, the inverse distance kernel (12)

used in our cost function and the Huber kernel (7) used in [22]. The

point sets used in this test together with some typical registration

results are shown in Fig. 6. Note that outliers are added only to the

data set and it is a subset of the model. This case occurs in real

world scenarios in which one has a complete (relatively clean)

model of an object and wants to align it to a low quality data set

which only partially represents the object (due to visibility issues

like, e.g., occlusion and scene clutter). As already mentioned in Sec-

tion 2.1, we expect a registration method which minimizes a cost

function based on the (unbounded) Huber kernel to have difficul-

ties with outlier corrupted data sets. This is confirmed by the re-

sults of this test case which are summarized in the Fig. 7a and b.

In the second test case, we align two partially overlapping parts

of the Coati model under varying conditions. This time, noise and

outliers are added to both the model and the data set. This situa-

tion occurs in practice when building a complete object model

out of multiple partially overlapping scans. We compare our

Fig. 8. Registration of partially overlapping noisy and outlier corrupted point sets. The models are shown in blue whereas the data sets in yellow. (Top row) Partial scans of

the Coati model degraded by noise or outliers. The r of the Gaussian noise or the amount of outliers as percentage of the original number of input points is indicated below

each figure. One r unit equals 1% of the bounding box diagonal length of the corresponding point set. (Bottom row) Typical registration results computed with our algorithm.

5,000 (randomly sampled) points from each point set are used for the registration. The results are obtained without any noise or outlier removal, ICP refinement [1] or

assumptions about the initial pose of the point sets. Each registration trial took about 33 s. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 9. (Left) Computation time comparison between our algorithm and the box-and-ball (b&b) registration algorithm of Li and Hartley [19] which is based on global

deterministic Lipschitz optimization theory. The processing time is given in seconds. In the case of 200 input points, our algorithm outperforms [19] by three orders of

magnitude. (Right) Runtime of our algorithm as a function of the number of input points. The figure clearly indicates a linear time complexity. Model and data used in this test

case are downsampled copies of the outlier-free version of the data set shown in the top row of Fig. 6. In all tests, our method achieved a success rate of 100%.

Fig. 10. From left to right: success rate, RMS error, number of cost function evaluations and computation time of our registration algorithm as a function of the cooling speed

v (defined in (22)). Model and data used in this test case consist of 100 points randomly sampled from the outlier-free version of the data set shown in the top row of Fig. 6.

One RMS error unit equals 1% of the bounding box diagonal length of the point set.
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results with the ones reported in [7] which are obtained with the

robust 4PCS algorithm and a state-of-the-art local descriptor based

approach. We perform the tests on the same point sets which are

used in [7]. This allows for a precise comparison without the need

of re-implementing neither of the two algorithms. The model and

data sets together with some typical registration results obtained

with our method are shown in Fig. 8. In the Fig. 7c and d, we plot

our results together with the ones reported in [7].

In the third test scenario, we measure the computation time of

our algorithm and compare it with the one of the deterministic

registration method of Li and Hartley [19]. Since we run the tests

on a similar (i.e., not more powerful) hardware as the one used

in [19] an accurate comparison is possible. The results are summa-

rized in Fig. 9.

Next, we measure the performance of our method for varying

cooling speed v defined in (22). We report the results in Fig. 10.

Our algorithm achieves a success rate of 100% and an RMS error be-

low 0.5 for less than 2.5 s (for point sets consisting of 100 points).

Fig. 11. (Left) The complete model of a box (shown in green; 236,089 points) and three views of the very low quality data set (shown in red; 5000 out of 9623 points were

randomly sampled and used for the registration). The data was obtained with a correlation based stereo algorithm under poor lighting conditions. (Right) Our method

robustly achieved the right alignment in 10 out of 10 trials. Each registration trial took about 30 s. The high amount of noise and outliers which almost completely destroy the

shape of the object makes this a challenging example. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 12. Registration result in the case of a noisy and very sparsely reconstructed data set (shown by the red ‘‘curve’’) and a complete noise-free model (transparent green

mesh). Note that in this case the state-of-the-art integral volume descriptor (used in [6]) will fail since the curve which represents the data set does not enclose a volume in

R
3. Local descriptors which use surface normals like, e.g., spin images [5] will fail as well since in general the normal of a curve which lies on a surface does not match the

surface normal. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Registration of noisy point sets with low overlap. Although rendered as meshes only points are used for the registration. Note that the input scans, (a) and (b),

represent different parts of the face and the model set, shown in (a), contains no parts of the neck. (c)–(e) A typical registration result obtained with our method shown from

three different viewpoints.

Fig. 14. Point sets leading to a cost function which has two almost equally low

minima. The nearly optimal solution differs from the optimal one by a rotation of

the data set by 180� about the axis which corresponds to the upright orientation of

the bottle.
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Finally, we demonstrate the ability of our method to deal with

partially overlapping and very sparsely sampled point sets cor-

rupted by noise and outliers which are not artificially generated

but originate in scan device imprecision. In Fig. 11, we show that

our method successfully computes the right registration even in

the case of an extremely degraded data set which represents only

a subset of the model. Fig. 12 illustrates the stability of our algo-

rithm when dealing with very sparsely sampled data sets. Figs. 1

and 13 show typical registration results for partially overlapping

points sets.

Note that our registration method could lead to incorrect results

for a class of shapes for which several almost equally good align-

ments exist and the registration ambiguity can be dissolved by

small scale features only. An example of such a shape is a large

cup with a small handle. In this case, the corresponding point sets

lead to a cost function with several local minima which are almost

as ‘‘good’’ as the global one (see Fig. 14).

6. Conclusions

We introduced a new technique for pairwise rigid registration

of point sets. Our method is based on a noise robust and outlier

resistant cost function which itself is based on an inverse distance

kernel. One of the main messages of the paper is that a registration

method which minimizes an objective function based on an un-

bounded kernel will be sensitive to outliers in the point sets. This

was fully validated by comparisons between our kernel and the

Huber kernel which were presented in the experimental part of

the paper.

A further property of our algorithm is that it does not rely on

any initial estimation of the globally optimal rigid transform. This

was achieved by employing a new stochastic algorithm for global

optimization. In order to minimize efficiently over complex shaped

search spaces like the space of rotations we generalized the BSP

trees and introduced a new technique for hierarchical rotation

space decomposition. Furthermore, we derived a new procedure

for uniform point sampling from spherical boxes.

Tests on a variety of point sets showed that the proposed meth-

od is insensitive to noise and outliers and can cope very well with

sparsely sampled and incomplete data sets. Comparisons showed

that our algorithm is by three orders of magnitude faster than a

deterministic branch-and-bound method and that it outperforms

a recently proposed generate-and-test approach and a state-of-

the-art local descriptor based method in terms of accuracy and

robustness.
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Abstract

In this paper, a new method for deformable 3D shape registration is proposed. The algorithm computes shape

transitions based on local similarity transforms which allows to model not only as-rigid-as-possible deformations

but also local and global scale. We formulate an ordinary differential equation (ODE) which describes the transi-

tion of a source shape towards a target shape. We assume that both shapes are roughly pre-aligned (e.g., frames

of a motion sequence). The ODE consists of two terms. The first one causes the deformation by pulling the source

shape points towards corresponding points on the target shape. Initial correspondences are estimated by closest-

point search and then refined by an efficient smoothing scheme. The second term regularizes the deformation by

drawing the points towards locally defined rest positions. These are given by the optimal similarity transform

which matches the initial (undeformed) neighborhood of a source point to its current (deformed) neighborhood.

The proposed ODE allows for a very efficient explicit numerical integration. This avoids the repeated solution of

large linear systems usually done when solving the registration problem within general-purpose non-linear opti-

mization frameworks. We experimentally validate the proposed method on a variety of real data and perform a

comparison with several state-of-the-art approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—

1. Introduction

Deformable (non-rigid) shape registration is a fundamental
problem in computational geometry with applications in the
fields of computer vision, computer graphics, medical im-
age processing and many others. In recent years, 3D ge-
ometry acquisition techniques have been developed which
allow to capture the surface of deforming objects in real
time [WLG07]. In order to analyze the motion of the object
it is important to register subsequent scans and/or to regis-
ter a complete geometric model to the scans. Since the ob-
ject is undergoing a non-rigid motion, rigid registration al-
gorithms [CM91, BM92, GMGP05, PB09] can not be used
adequately in this setting.

The problem of deformable shape registration can loosely
be defined as follows. Given a source shape S and a tar-
get shape T find a “reasonable” deformation F that brings
S “close” to T . In this paper, we assume that S and T are
consisting of a finite set of points with an underlying neigh-
borhood structure. Examples include range images, meshes
and volumetric grids, just to name a few. In this case, the de-

formation we are looking for is a mapping F : S → R
3. To

choose a reasonable one from the space of all mappings, we
have to impose some constraints on the deformation. This
is called regularization of F . We use a regularizer that pulls
each source shape point xk towards its rest position given by
the optimal similarity transform which matches the initial
(undeformed) neighborhood of xk to its current (deformed)
neighborhood. This is a generalization of the object defor-
mation technique presented in [MHTG05, RJ07, SOG08],
where local rigid shape matching is used. Employing sim-
ilarity transforms instead of rigid ones allows to model as-
rigid-as-possible shape deformations plus local scale. Note
that the topic of the papers [MHTG05, RJ07, SOG08] is the
generation of physically plausible animations. To the best of
our knowledge, this is the first paper which exploits rigid
and similarity-based shape matching as regularizers in the
context of deformable 3D shape registration.

In order to deform the source shape such that it comes
closer to the target shape T , each source point moves to-
wards a corresponding point on T . We use closest-point
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search to establish preliminary correspondences which are
further refined by a simple but effective vector field smooth-
ing procedure.

Considering the regularizer and the correspondence field,
we introduce a system of ordinary differential equations
(ODEs) which describes the non-rigid motion of the source
shape. The iterative solution of the ODEs yields a trajectory
for each source point from its initial position to its end posi-
tion on the target shape. In the case of incomplete data, the
points move according to the regularizer and fill in missing
regions in a reasonable way. Our method computes a dense
correspondence between source and target. Since the initial
correspondence estimation is based on closest-point compu-
tations we assume that both shapes are roughly pre-aligned.
This assumption holds in a variety of situations like, e.g., in
the case of scanning a deforming object at high frame rates
such that the inter-frame displacements are small.

The rest of the paper is organized as follows. After review-
ing previous work in Section 2, we describe our algorithm in
Section 3. Important implementation issues are discussed in
Section 4. Section 5 presents experimental results. Conclu-
sions are drawn in the final Section 6 of the paper.

2. Related Work

There is a large variety of deformable registration algorithms
each one having its advantages and drawbacks. In this paper,
our main criterion to judge the methods is the processing
time they require.

One class of deformable registration approaches con-
sists of the feature-based methods. Several papers [WAS10,
WZL∗10, BK10, RBBK10] proposed to use local invariant
geometric descriptors to compute a one-to-one mapping be-
tween corresponding features on the input shapes. However,
detecting feature points and establishing the correspondence
can be problematic especially in the presence of noise and
missing data. Furthermore, many shapes do not have distinc-
tive features which gives rise to many ambiguous correspon-
dences and the matching algorithm degenerates to a brute
force search [AMCO08].

A different strategy is to transform the shapes to a canon-
ical representation in a suitable space in which the cor-
respondence problem is easier to solve. Several papers
[EK03, BBK06, WSBA07, WSB09] proposed to compute
isometry-invariant embeddings of the original shapes in a
low-dimensional Euclidean space and to establish the corre-
spondence using rigid registration algorithms. These meth-
ods, however, tend to be costly and, moreover, fail for in-
complete data (caused by surface holes, partial views, etc.).

The methods cited so far solve the correspondence prob-
lem even in the presence of significant deformations and
without making any assumptions about an initial alignment
of the shapes. However, the deformations are restricted to

isometries (an exception is [BK10] which can handle an
additional global or local scaling). Furthermore, the actual
warp between the shapes has to be computed in an addi-
tional step using the established correspondences as con-
straints [MHTG05, RJ07, BPWG07, SOG08]. In contrast to
this, our method is not restricted to a particular family of
transformations and it efficiently computes both a dense cor-
respondence and the warp between the shapes.

There is a variety of registration algorithms specialized
to articulated shapes. [ACP03] presented a framework for
deformable marker-based fitting of a high-resolution tem-
plate to 3D scans of different humans in the same pose.
In [ASK∗05] a deformable model was learned that is able to
synthesize realistic muscle deformations based on the pose
of an articulated human skeleton. Both methods can be used
for human shape completion as well. Further shape comple-
tion algorithms which use deformable registration modules
were presented in [KS05, PMG∗05]. In [CZ08], a fully au-
tomatic approach for articulated shape registration was pro-
posed. The registration problem is converted to a discrete
labeling problem and solved via graph cuts. However, this
seems to be very costly since the authors report processing
times of more than an hour for shapes consisting of not more
than 12,000 points.

A further class of non-rigid registration algorithms con-
sists of iterative solvers. They deform the source shape in an
iterative fashion until an “optimal” alignment to the target
shape is achieved. Many methods in this class are extensions
of the classic ICP algorithm [CM91, BM92]. In [IGL03], a
non-rigid registration technique was introduced which de-
composes the input scans in a coarse-to-fine hierarchical
manner in overlapping rigid pieces which are aligned sepa-
rately. However, the resulting deformation is not continuous
which can lead to artifacts in the overlapping regions. Fur-
thermore, the procedure has a quadratic time complexity in
the number of pieces. In [BR04], the discontinuity issue was
resolved by incorporating a global thin-plate splines warp
which guarantees the smoothness of the solution. A general-
ization of this method to the simultaneous matching of mul-
tiple scans was proposed in [BR07].

Instead of assuming a one-to-one correspondence be-
tween the shape points, one-to-many relaxations can be used
in order to enlarge the basin of convergence and thus to in-
crease robustness against imprecise initializations. Signifi-
cant contributions along these lines are the softassign and
deterministic annealing technique [CR03] and the coherent
point drift algorithm [MS10]. A statistical registration ap-
proach without explicitly establishing point-to-point corre-
spondences was proposed in [TK04]. The input point sets are
modeled as probability distributions and a distance measure
between them is minimized over the transform space. Re-
cently, a Gaussian mixture models-based approach [JV11]
was proposed which can be seen as a generalization of
[CR03, TK04, MS10]. However, these algorithms compute

c© 2011 The Author(s)
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registration results which are not as precise as ours and are
much slower than our method (see the experimental compar-
isons in Section 5).

A deformable ICP extension was introduced in [ARV07].
The authors formulated a cost function, similar to the one
used in [ACP03], which measures the cost of a given non-
rigid alignment between the shapes. The deformation is
modeled using one affine 3 × 4 transformation matrix per
shape point. This gives rise to a cost function of 12m vari-
ables, where m is the number of points in the source shape.
In order to solve this highly over-determined system, a stiff-
ness term (a regularizer) is introduced. It penalizes differ-
ences between the transformation matrices of neighboring
points.

A similar strategy was proposed in [SAY∗09]. The au-
thors iteratively minimized an error measure which is based
on an elastic convolution between the difference of corre-
sponding points in the shapes. This is the 3D surface patch
analog to 2D template matching commonly used in image
processing. In [LSP08], the deformation is also modeled
using one affine transformation matrix per point. The cost
function comprises four energy terms and depends on 15m+
6 variables. The authors minimized it with the Levenberg-
Marquardt algorithm.

Note that the iterative methods cited above model the de-
formation in a very redundant way: many more degrees of
freedom (DoFs) are introduced than needed to describe an
arbitrary motion of a system of m points in R

3. This results
in high-dimensional and computationally heavy optimiza-
tion problems. In contrast to this, our approach is based on a
system of ODEs with 3m unknowns, which is the least num-
ber necessary to model a general motion of a system with 3m

DoFs. Furthermore, since the proposed ODEs system allows
for a very efficient explicit integration we avoid to repeatedly
solve large linear systems which is usually done during the
minimization of non-linear cost functions. Thus, our method
is efficient in terms of both computational complexity and
memory.

3. Method Description

Before we describe our deformable shape registration algo-
rithm in detail let us first introduce some notation used in
the paper. Consider the source shape S = (VS,ES), where
VS = {x0

1, . . . ,x
0
m} ⊂ R

3 is the set of initial positions of the
points x1, . . . ,xm and ES = {N1, . . . ,Nm} is the neighbor-
hood structure. Each Nk contains the indices (including k) of
the neighbors of xk. The position of xk at a time t is given by
a function t 7→ xk(t), with initial value xk(0) = x0

k . Let Xk(t)
denote the position of xk and its neighbors at a time t, i.e.,
Xk(t) = (xk1

(t), . . . ,xkNk
(t)), where {k1, . . . ,kNk

} = Nk.

Analogously, the target shape is a pair T = (VT ,ET ) with
VT = {y1, . . . ,yn} ⊂ R

3 being the set of points and ET =
{M1, . . . ,Mn} being the neighborhood structure. Note that

xk

0

sk , Rk , t k
rk

xk t 

Figure 1: The initial (undeformed) neighborhood Xk(0)
(shown on the left) is matched to the current (deformed)

neighborhood Xk(t) (indicated by the dashed lines on the

right) using the similarity transform which minimizes the

sum of squared distances between the corresponding points

x0
i ↔ xi(t). The rest position rk for xk(t) is the transformed

point x0
k .

since T does not deform we use y1, . . . ,yn to denote both
the target points and their positions in R

3.

3.1. Shape Matching-Based Regularization

The regularizer pulls each point xk towards its rest position
rk which is computed in the following way:

rk = skRkx
0
k + tk. (1)

sk ∈ R is the scale factor, Rk ∈ SO(3) is the rotation matrix
and tk ∈ R

3 is the translation vector which optimally match
the initial (undeformed) neighborhood Xk(0) of xk to its cur-
rent (deformed) neighborhood Xk(t). More formally,

(sk,Rk, tk) = argmin
s,R, t

∑
i∈Nk

‖(sRx
0
i + t)−xi(t)‖

2
. (2)

Note that sk, Rk and tk depend on the current positions of
the neighbors of xk. This means that sk, Rk, tk and the rest
position rk are functions of Xk(t). To stress this, when nec-
essary, we write rk(Xk(t)). Fig. 1 illustrates the idea of the
regularization based on similarity shape matching.

The minimization problem (2) is called the absolute orien-
tation problem and is often encountered in different fields as
part of different computational problems [BM92, MHTG05,
MS09]. Our solution is based on [MS09]. First, a linear de-
formation matrix Ak is computed:

Ak = ∑
i∈Nk

(xi(t)− ck(t))(x
0
i − c

0
k)

T
, (3)

where the center of mass of the initial and the deformed
neighborhood of xk are denoted by c0

k and ck(t), respectively.
Next, the optimal rotation matrix Rk is extracted from Ak us-
ing its singular value decomposition Ak = UΣV T in the fol-
lowing way:

Rk = UCV
T
, C = diag(1, ...,1,det(UV

T )), (4)

where the diagonal matrix C assures that Rk is a rotation and
not a reflection. The scale factor is given by

sk =

√

∑i∈Nk
‖xi(t)− ck(t)‖2

∑i∈Nk
‖x0

i − c0
k
‖2

(5)
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(a) (b) source & target

Figure 2: The correspondence field computed with a closest-

point search (a) and with our smoothing procedure (b) for

the input shapes on the right. The black rectangle on the

right marks the part of the little finger magnified in (a) and

(b). Obviously, our procedure estimates the correspondences

much more accurate.

and the translation vector is computed as tk = skRkc0
k −ck(t).

Using Eq. (1) with sk = 1 results in a rigid shape
matching-based regularizer which is well-suited to model
as-rigid-as-possible deformations. Computing the scale ac-
cording to (5) allows us to include a local scale.

The rigid shape matching regularizer was first intro-
duced in [MHTG05] for the generation of physically plau-
sible animations of deforming objects. Further improve-
ments, again, for animating deformations, were proposed
in [RJ07, SOG08]. To the best of our knowledge, there is
no paper which exploits the rigid shape matching (sk = 1)
or similarity-based (sk according to (5)) regularization in the
context of deformable 3D shape registration.

3.2. Correspondence Estimation

In this subsection, we introduce a correspondence field
d : S → R

3 which defines a pointwise correspondence be-
tween the source shape S and the target shape T . As al-
ready discussed in Section 2, there is a substantial amount
of work in the field of non-rigid correspondence estima-
tion [BK10, RBBK10, WZL∗10, WAS10, ZWW∗10]. These
methods solve the problem without making any assumptions
about the initial alignment of the shapes but, unfortunately,
tend to be costly. In contrast to this, we exploit the fact that
consecutive scans of deforming objects exhibit small inter-
frame displacements and design a simple but effective cor-
respondence establishment procedure.

Perhaps the most common way of doing this (see [BM92,
ARV07, LSP08]) is to compute the vector connecting each
source point xk to its closest point on T :

cT (xk) = argmin
yi∈T

‖xk −yi‖ − xk. (6)

This, however, leads to many wrong correspondences, even
for shapes which are not very far from each other (see
Fig. 2(a)). In this paper, we use cT only as a starting point
of a simple and effective smoothing technique which sig-
nificantly improves the correspondence estimation. In many

cases (like the one shown in Fig. 2(a)), cT is quite irregu-
lar in the sense that it varies too strong when evaluated at
neighboring points on the source shape. This should not be
so since scanning a deforming object at high frame rates pro-
duces a smoothly varying surface which, in turn, results in
a smooth correspondence field between consecutive frames.
This is the reason why we expect a smoothing of cT to im-
prove the correspondence estimation between the shapes.

More precisely, we use cT as a starting point for a local
optimization procedure which returns a displacement field
d : S → R

3 which minimizes the smoothness term

Es(d) =
m

∑
k=1

∥

∥

∥
d(xk)−d(xk)

∥

∥

∥

2
, (7)

where m is the number of source shape points and d(xk) =
1

Nk
∑i∈Nk

d(xi) is the mean value of d over the neighborhood
of xk. Furthermore, Es has to be minimized under the con-
straint

xk +d(xk) ∈ T , ∀xk ∈ S. (8)

Essentially, (7) penalizes displacement fields which vary at
neighboring source points and (8) assures that the solution is
indeed a correspondence field, i.e., that d brings each xk to a
point on the target shape and not to some arbitrary position
in R

3. This means that d has the form d(xk) = ym − xk for
some ym ∈ T and we have a discrete optimization problem.
Having this in mind, we construct the following optimization
procedure:

1. Initialize d0 := cT and j := 0.
2. Compute d j+1

[for each xk ∈ S compute d j+1(xk)]

a. Get the target point yl which corresponds to xk , i.e., yl =
xk + d j(xk).

b. Among the neighbors of yl , choose the target point ym ∈ T
with minimal ‖(ym −xk)−d j(xk)‖

2.
c. Set d j+1(xk) := ym −xk .

[end for]

3. If Es(d j+1) < Es(d j) increment j and go to step 2. Otherwise
terminate the procedure.

The only parameter of this algorithm is the radius of the
neighborhood of the target point yl in step 2.b.. The big-
ger the radius the more global the search, i.e., the greater
the chance to overcome local minima in the landscape of
the smoothness term. Of course, this comes at the cost of a
higher computational load. The algorithm always converges
since yl is part of its own neighborhood and after a certain
number of iterations no further minimization of the terms in
step 2.b. is possible which results in Es(d j+1) = Es(d j).

Fig. 2(b), shows a correspondence field computed with
our smoothing procedure. The improvement compared to the
closest-point field cT is obvious.
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3.3. The ODEs System and its Integration

In contrast to [MHTG05, RJ07, BPWG07], we are not in-
terested in creating physically plausible animations of de-
forming objects. Thus, our approach is not based on a
physical model like, e.g., Newton’s second law used in
[MHTG05, RJ07, BPWG07].

At each time instance every source shape point should
move according to both the regularizer and the correspon-
dence field. In other words, the velocity of each xk is a lin-
ear combination of the vector pointing to its rest position,
namely, rk − xk and the vector given by the correspondence
field evaluated at xk which is d(xk). More precisely, we set
the velocity to be a convex combination of rk−xk and d(xk).
Writing this down in a formal way, leads to the following
system of m ordinary differential equations (with m being
the number of source shape points):

.
xk(t) = α(rk(Xk(t))−xk(t))+(1−α)d(xk(t)), (9)

xk(0) = x
0
k . (10)

Using a convex combination instead of a general linear com-
bination has the advantage of introducing only one parame-
ter α ∈ [0,1] which can be interpreted as the stiffness of the
source shape: the greater the value the more rigid the motion
of the shape. (9) together with (10) define an initial value
problem which we solve numerically using the following in-
tegration scheme:

x
n+1
k = x

n
k +α(rn

k −x
n
k)+(1−α)d(xn

k), (11)

where n is the iteration number. Since this is an explicit
method (Euler’s method with step size 1) its stability is a-
priori not guaranteed. If the step size is chosen too large,
explicit integration schemes can overshoot the equilibrium
of the system by an amount which increases in each itera-
tion and finally leads to an “explosion” [MHTG05]. In our
case, however, this does not happen. Recall from Section 3.2
that for each source point xn

k the correspondence field has the
form d(xn

k) = ym − xn
k for some target point ym. Using this

we can rewrite (11) to get

x
n+1
k = αr

n
k +(1−α)ym. (12)

This means that the new point xn+1
k lies on the straight line

between rn
k and ym and thus can not overshoot the equilib-

rium since it lies on this line as well. Using a step size larger
than 1 leads to an xn+1

k which overshoots the line (and thus
the equilibrium) and can lead to instability.

3.4. The Overall Registration Procedure

The overall deformable registration algorithm works as fol-
lows. We start the integration of the ODEs system using the
numerical scheme described in Section 3.3 with a high stiff-
ness value α = 0.95. In each iteration, the rest positions and
the correspondences are recomputed as described in Sec-
tions 3.1 and 3.2, respectively, using the updated positions of

Figure 3: A deformation graph computed for a range scan of

a hand. The magnified part on the right shows the nodes as

yellow spheres. Neighboring nodes are connected with black

lines.

the source shape points. This is repeated until convergence
which is detected by checking whether (11) has reached a fix
point. The stiffness parameter is then lowered by 0.05 and
the integration continues. The registration terminates when
the stiffness falls below 0.5.

Note that this procedure does not cope well with missing
data since the correspondence field guides each source point
xk towards a target point no matter if it is the one which se-
mantically corresponds to xk or not. What happens to such a
source point in the course of the registration is that its neigh-
borhood gets too distorted, especially for lower stiffness val-
ues. We detect these points using a simple deformation mea-
sure and let them move only according to the regularizer. We
use

D(n,k) =
1

Nk −1 ∑
i∈Nk

i6=k

|‖xn
i −xn

k‖− lik|

lik
, (13)

as the measure of deformation of the source point xk in the n-
th iteration of the registration algorithm. (This is essentially
the definition of strain in mass-spring systems [WOR10].)
Recall that Nk is the set of indices (including k) of the neigh-
bors of xk and Nk = |Nk|. lik denotes the distance between xi

and xk in the undeformed source shape, i.e., lik = ‖x0
i −x0

k‖.
Note that D(n,k) is dimensionless meaning that it does not
depend on the units in which the shapes are saved. If D(n,k)
exceeds a certain fixed threshold the neighborhood of xk is
considered too distorted and from the n-th iteration on the
point moves only according to the regularizer without being
directly attracted to the target shape. In our implementation,
we set this threshold to 0.2.

4. Implementation Issues

Note that the registration algorithm introduced in the last
section is applicable to all shapes which are represented by
a finite set of points plus an underlying neighborhood struc-
ture. In this Section, we will briefly discuss two important
special cases, namely, range scans and triangular meshes.

A range scan is a 2D image in the xy-plane which stores
a depth value along the z-direction [LSP08]. The range
scans used in the experimental part of the paper contain
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around 30,000 points. This introduces a significant computa-
tional load and leads to an unpractical registration algorithm.
Moreover, many deformations of practical interest like, e.g.,
articulated motion have much fewer degrees of freedom and
can be described in a more efficient way. This is the reason
why we decouple the complexity of the registration algo-
rithm from the geometric complexity by using a so-called
deformation graph [SSP07]. It consists of nodes connected
by undirected edges. We exploit the regularity of the range
scans and cover the xy-plane with non-overlapping three-
dimensional boxes of a certain fixed size. The z-coordinate
of each box is chosen to be median of the z-coordinates of all
shape points being covered by this box. Then for each box
the shape point closest to its center is defined to be a node in
the deformation graph. Boxes having integer xy-coordinates
which do not differ by more than 2 and having z-coordinates
which do not differ by a certain amount (we use 30mm) are
considered to be neighbors. Fig. 3 illustrates this concept.

If the source shape is represented by a triangular mesh,
we use a different strategy. In this case, the deformation
graph is an octree of fixed leaf size. If, furthermore, the mesh
represents a closed surface, we add all leaves to the octree
which are contained within the surface. In this way, a solid
3D lattice is created which results in more stable deforma-
tions [BPWG07].

After the deformation graph has been built it is used for
the registration instead of the original source shape. How-
ever, since we are interested in deforming the shape itself,
the deformation computed for the graph has to be transferred
to the shape. This is done using thin plate spline (TPS) in-
terpolation of the vector field defined by gi − g0

i , where gi

is the position of the i-th graph node after the registration
and g0

i is its initial position. Each source shape point is then
transformed using the computed TPS. We chose this inter-
polation scheme since it produces high-quality vector fields
and is easy to compute for scattered data.

5. Experimental Results

In this Section, the proposed registration algorithm is exper-
imentally validated on a variety of real data sets. All tests
are performed on a laptop with a 3GHz CPU, 4GB RAM
and a Linux operating system. The method is implemented
in C++.

Qualitative Tests First, we show two qualitative test re-
sults using a doll head model as the source shape and a head
model of a girl and a boy as the target shapes. The shapes are
represented as closed triangular meshes. Since they were not
pre-aligned, we preformed a manual rigid registration based
on 8 landmarks. Even after this user intervention the test sce-
nario remains challenging because the models are represent-
ing different “subjects” and there is a significant scale differ-
ence between the shapes. Figure 4 shows the input data sets
and the registration results from several view points.

Range Scan Pairs Next, we run our method on pairs of
range scans representing the same object in different poses.
In order to evaluate the method quantitatively, we measure
the source shape deformation and the RMS error between
source and target and plot them versus the iteration number.
The source shape deformation is defined using (13) as

D(n,S) =
1

m

m

∑
k=1

D(n,k) (14)

and the RMS error between S and T is given by

RMS(n,S,T ) =

√

1

m

m

∑
k=1

‖cT (xn
k
)‖2, (15)

where n is the iteration number, m is the number of points
in S and cT (xn

k) computes the vector connecting xn
k to its

closest point in T (see (6)).

Figures 5 to 9 show the data sets used in the test. The scans
are shown as they were captured by the scanning devices
without any additional alignment. These configurations are
used as starting point for our registration algorithm. Fig. 5
shows a range scan pair which is part of a sequence repre-
senting a slowly closing hand. The inter-frame displacement
is small and mainly caused by the bending finders. The reg-
istration computed with our method together with the defor-
mation measure and the RMS error are shown on the right
side of the figure.

Fig. 6 shows a further example of a closing hand. This
time, there is a larger bending deformation plus an additional
global translation. As is to be expected from the initial con-
figuration of the scans the RMS error at the beginning of
the registration is bigger. Furthermore, since the fingers bend
more than in the last example the amount of deformation re-
quired to register the scans is larger. This is confirmed by the
plots on the right side of the figure.

Fig. 7 demonstrates the ability of our algorithm to deal
with incomplete data. Note that there are many holes in both
scans caused by self-occlusion and scan device imperfection.
Our method successfully registers the scans even in areas of
low overlap as the magnified parts of the figure show.

Fig. 8 shows registration of an articulated object, namely,
a bending arm. Note that there is a significant deformation
between the scans. This is a challenging example for feature-
based methods since the scans are smooth and lack distinc-
tive features. Our method successfully recovers the deforma-
tion as depicted in the figure.

In Fig 9, a further example of a moving hand is shown.
Additionally to the local deformation caused by the closing
fingers this example contains a significant global rotation.

Range Scan Sequence Next, we test our method on a se-
quence of range scans representing a closing hand. The first
frame of the sequence is used as the source shape and is se-
quentially registered to the other frames. The result for the
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target shape – 474,962 points

source shape – 371,436 points

target shape – 502,575 points

front view top view

registration results

source shape and

deformation graph

deformed source shape

Figure 4: Registering a doll head (upper left) to a head of a girl and a boy (lower left). The landmarks used for these registration

tests are shown as red dots. Note that there is a significant difference in scale between the source and the target shapes. Our

algorithm successfully performs the registration as shown on the right. The models were downloaded from the AIM@SHAPE

Repository – http://shapes.aim-at-shape.net/

deformation graph

1,435 nodes

initial

alignment

registration

result

source shape

37,658 points

target shape

37,954 points

Figure 5: Registering two range images representing the front part of the same hand in two different poses. The data sets were

obtained with a 3D geometry scanner [WLG07] and are publicly available on the authors webpage.

current frame is used as initialization for the next one. The
sequence consists of 100 frames. Fig. 10 exemplary shows
some frames and the corresponding registration results.

Comparison Finally, we compare the performance of
our method (both registration quality and runtime) with
the performance of several state-of-the-art non-rigid reg-

istration algorithms: the softassign + deterministic anneal-
ing (SDA) approach [CR03], the kernel correlation-based
(KC) method [TK04], the coherent point drift (CPD) al-
gorithm [MS10] and the Gaussian mixture models-based
(GMM) algorithm [JV11]. Note that the KC [TK04] and
the GMM [JV11] methods can perform the registration us-
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deformation graph

1,173 nodes

initial

alignment

source shape

30,492 points

target shape

31,467 points

registration

result

Figure 6: Range scans representing the back part of the same hand in two different poses. The poses differ not only by the

local bending deformation of the fingers but also by a global translation. The data sets were obtained with a 3D geometry

scanner [WLG07] and used in [SAY∗09].

source shape

34,735 points

target shape

39,175 points

deformation

graph

956 nodes

registration

result

initial

alignment

Figure 7: Registering two facial expressions. Note that the scans are noisy and incomplete. Our methods correctly aligns the

shapes even in areas of low overlap.

ing two different deformation models, namely, thin plate
splines (TPS) and Gaussian radial basis functions (GRBF).
This effectively results in six different registration methods
which we will denote as follows: SDA+TPS is the abbrevia-
tion for [CR03], CPD+GRBF stands for [MS10], KC+TPS,
KC+GRBF denote [TK04], and GMM+TPS, GMM+GRBF
stand for [JV11], depending on which deformation model is
employed.

We use the implementation of the above mentioned meth-
ods, publicly available on http://gmmreg.googlecode.com,
and run them on the same hardware and with the same data
sets as our algorithm. The quality of the registration com-
puted by the algorithms is compared using the source shape
deformation measure (14) and the RMS error (15). Table 1
shows the results of the quality comparison. Note that our
algorithm outperforms the others since it produces a lower
RMS error for virtually the same source shape deformation.
The results of the runtime comparison are summarized in
table 2. Our algorithm clearly outperforms all six methods
with the difference in processing time being up to two or-
ders of magnitude.

data set
method Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9

GMM+TPS 497 315 273 332 453
GMM+GRBF 361 244 237 269 267

SDA+TPS 1004 621 501 642 1033
CPD+GRBF 4389 2443 1368 2269 5952

KC+TPS 491 314 273 331 451
KC+GRBF 361 243 237 267 267

our alg. 14 13 11 18 21

Table 2: Computation time (in seconds) taken by our algo-

rithm and six state-of-the-art approaches for the registration

of the scans presented in the paper. Our method clearly out-

performs the others.

6. Conclusions

In this paper, we proposed an efficient algorithm for de-
formable registration of 3D shapes. We focused on modeling
as-rigid-as-possible shape deformations augmented with lo-
cal scale. In contrast to many recent methods, our approach
is not formulated within a general-purpose optimization
framework. The minimization of high-dimensional, non-
linear cost functions is computationally very demanding
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data set
method Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9

GMM+TPS 0.04 0.6 0.05 0.8 0.10 1.4 0.08 1.4 0.06 2.1
GMM+GRBF 0.03 0.8 0.03 0.9 0.07 2.4 0.05 2.2 0.06 2.5

SDA+TPS 0.09 0.7 0.09 0.7 0.11 1.2 0.08 1.3 0.08 0.9
CPD+GRBF 0.30 1.4 0.30 1.2 0.20 1.5 0.30 3.6 0.20 1.7

KC+TPS 0.04 0.6 0.05 0.8 0.10 1.3 0.08 1.4 0.06 1.8
KC+GRBF 0.03 0.8 0.03 0.9 0.09 2.2 0.06 2.2 0.07 2.4

our alg. 0.02 0.2 0.03 0.4 0.07 0.6 0.04 0.7 0.07 0.5

Table 1: Comparing the quality of the registration computed by our algorithm and six state-of-the-art approaches for the scans

presented in the paper. The first number in each table cell gives the source shape deformation (Eq. (14)) and the second one

gives the RMS error in millimeters (Eq. (15)). Our method provides the most precise alignment for a low shape deformation.

deformation graph

1,149 nodes

source shape

34,948 points

target shape

35,271 points

initial alignment
registration result

Figure 8: Registration of a bending arm.

since it involves the repeated solution of large linear systems.
Instead, we rely on a simple and effective numerical integra-
tion scheme and solve an ODEs system which models the
non-rigid motion of a source shape towards a target shape.
The ODE we proposed is based on a correspondence field
and a regularization term. Preliminary correspondences are
estimated with a closest-point search and further refined with
an efficient smoothing procedure. The regularizer is a gen-
eralization of the rigid shape matching technique recently
developed in the context of physically plausible deformation
modeling. We experimentally validated our method on a va-
riety of real range scans and demonstrated that it performs
well on noisy and incomplete data. Finally, an experimental
comparison to six state-of-the-art approaches showed that
the proposed algorithm outperforms them in terms of both
registration quality and processing time.
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Framework for Consistent Maintenance of Geometric Data and

Abstract Task-Knowledge from Range Observations

Juan Carlos Ramirez and Darius Burschka

Abstract— We present a framework for on-line exploration
of object attributes from range data designed to include the
cognitive aspects for surprise detection. In this framework we
introduce a layered representation of the environment that
couples the pure geometric 3D representation of the world to
the abstract knowledge about the structures in the scene. This
knowledge in the higher layer represents a-priori known, task-
relevant information about structures in the world like mass,
handling properties and grasping points being examples in the
case of a manipulation task. The coupling of abstract knowledge
to the geometry in the dual layered structure of our map helps
to ensure consistency of the representation.

The focus of the paper is on data association of dense
3D points from range sensors. We introduce a z-buffered re-
projection method as a way to filter outlier information in
sensor readings and present our technique for fusion based
on the uncertainties in the map representation and the current
observation. In contrast to common registration methods, our
approach does not store the data as one rigid model but as
a set of independent point clusters (foreground) embedded in
a 3D point cloud of the supporting structure (background).
This allows us to cope with dynamic changes in the world. We
register the incoming data not rigidly to the entire map but
we update independently the pose of single objects represented
in our hierarchical model. The fusion approach combines a
local-heuristic with a global-robust procedure and the corre-
spondence search cost of O(nm) is reduced to a set of m sub-
searches with linear cost each. The benefit of the re-projection
is twofold: it helps speeding up the point matching search by
ordering the 3D data according to the manner they might have
been captured and making the matching process robust by
filtering out outliers and occluded object parts. We present the
theoretical framework and we validate our approach on range
data from a binocular stereo setup.

I. INTRODUCTION

As with humans, when it comes to interacting effectively

with its environment, the first step for a robot is to determine

what is where, the next step would imply to determine how.

These steps involve the recognition and localization of the

objects a robot can interact with and based on these assump-

tions and a given task determine the strategies of interaction

to be carried out. Furthermore, mission and path planning

for mobile systems require a knowledge about the geometric

structure of the world. This information can be provided a-

priori from CAD models or explored with the sensors of

This work was supported by a DAAD-Conacyt Interchange Program
under grant code number A/06/13408 and also partially supported by
the European Communitys Seventh Framework Programme FP7/2007-2013
under grant agreement 215821 (GRASP project).
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che Universitaet Muenchen. 85748 Garching b. Muenchen, Germany
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Fig. 1. Data abstraction in the dual layered framework. (a) The scene
image, (b) its corresponding range image. (c) Octree, geometric layer
representation, (d) tree of blobs, or blobtree, representation of the scene.

the robot. There exist systems like KARTO from SRI 1,

which stores the world as 2D maps to be able to navigate

in them without any additional knowledge. On the other

hand, manipulation tasks usually deal with single objects

with, most of the time, known geometries. An exploration

of the environment for manipulation is a challenging tasks

that we aim to support with our approach. Our framework

has the goal to support manipulation tasks in addition to

traditional mobile exploration, therefore, a 3D representation

of the world is required. An on-line exploration allows to

update the map representation to the most current state. In a

typical configuration, we assume that three-dimensional data

along with the estimated position of the sensor in the world

frame is passed to the map. In Fig. 1 we present an overview

of our layered framework. From a range image of a scene we

build first a geometric representation by means of an octree,

the higher layer in the map is represented by a tree of blobs

or blobtree, which contains a set of 3D blobs as tentative

object candidates with the capacity to incorporate abstract

knowledge or properties of each blob.

A. Motivation

The recent development in the area of range measuring

devices allows a cheap perception of the three-dimensional

information from the environment. While the sensors become

cheaper with steady increasing robustness, the reconstructed

1http://kartorobotics.com



data provides only very limited information about the actual

independent objects in the scene and their properties. Since

video-based devices provide only a limited field of view and

due to occlusions in the scene, the fusion of the sensor

data from consecutive views becomes a very challenging

task. The still poor sensor accuracy requires a continuous

refinement of the position of the reconstructed objects in

the map, especially for distant objects. Partial occlusion of

the objects and lack of knowledge about the rigid structures

in the environment can lead to distortion of the fused

information, where object pose becomes partially corrected

while the occluded parts remain untouched. Additionally,

the current development in the scene perception requires

not only a modeling of the static scene structure but re-

quires additional parameters like motion parameters, physical

properties to be maintained in the map. We address this

problem in our framework, where we introduce a two-layer

representation of the environment, which stores in addition

to the pure geometry information also additional information

about compact connected components observed as separated

entities in the world. The abstract layer allows also to store

additional information which is not important for the map

fusion but which may be useful for the applications using

this information, like manipulation or navigation systems.

Because we are primarily concerned on resolving what is

where as the first step for a intelligently interaction, in this

work we focus basically on the detection and isolation of 3D

blobs as potential heterogeneous objects candidates.

In the next section we discuss the theory and praxis related

to this work. In section III our approach is described and its

fundamental parts are delineated, and tested in section IV.

The analysis and validation are addressed in section V.

II. THEORETICAL BACKGROUND AND RELATED WORK

The main objective of a Data Fusion System (DFSys) is to

combine and integrate data from different (types of) sensors

or multiple observations from the same sensor in order

to understand the phenomenon under observation and to

increase the confidence of a observation when several sensor

readings confirm that observation or state; Under a DFSys

architecture [1], two basic functional blocks are the data

alignment and the data association steps. The former consists

in transforming the data received from the observations into

a common spatial and temporal reference frame, it comprises

basically coordinate and time transformations. The latter is

concerned with correlating the multiple observations and

determine whether a group of those belong to a new or the

same event or target. Roughly speaking, given two noisy

data sets, the Data Association (DA) problem is defined

as that of finding for each point in one of the sets the

appropriate corresponding matching point in the other set.

DA problems arise mainly in registration systems in which

new observations have to be integrated to previous ones. Two

examples of theses systems are the tracking of objects or

features [2] and the Simultaneous Localization and Mapping

(SLAM) [3] [4] dilemma. Some authors have tackled the

SLAM DA as a probabilistic issue [5] [6] and made used of

family of filters to deal with the uncertainty in the prediction-

correction model of the Kalman filter [7] [8]. There exists

another branch of techniques to treat the uncertainty in

DA that do not rely on the Bayesian filtering scheme but

instead on statistical and geometric analysis like the use

of Mahalanobis distance metric (MD) [9] and the Nearest

Neighbor algorithm. In the context of 3D scene modeling

with stereo cameras, the work described in [10] is based on

stereo-SIFT features for plane extraction, object recognition

and scene registration. Although in their work they deal with

reconstructed stereo points and scene registration they do

not consider the uncertainties in the stereo reconstruction

and the spatial distribution of the points in order to identify

heterogeneous objects; the approach is based on recognizing

objects with already known object models in a database.

After the objects in the scene are recognized and replaced

by their corresponding models, an octree is used to detect

possible obstacles before interaction. Since its introduction

by Chen and Medioni [11], and Besl and McKay [12], the

Iterative Closest Point (ICP) algorithm has been the most

popular method for rigid point registration and a variety of

improvements has been proposed in the literature. A good

summary as well as results in acceleration of ICP algorithms

have been given by Rusinkiewicz and Levoy [13]. A major

drawback of ICP and all its variants is that they assume a

good initial guess for the pose of the data point set (with

respect to the model). This pose is improved in an iterative

fashion until an optimal rigid transformation is found. The

quality of the solution heavily depends on the initial guess.

Furthermore, the methods compared in [13] use local surface

features like surface normals which cannot be computed very

reliably in the presence of noise. Another drawback of ICP is

that insufficient results are obtained in the presence of noisy

points and outliers. Although in our approach a pre-filtering

procedure is performed, the presence of noisy points still

remain throughout the scene.

III. APPROACH

A general overview of the system can be seen in Fig. 2.

The scheme shows the data flow and the relations between

the principal components and procedures that are explained

in this section.

Object
Container

3D 
reconstruction 

& 
plane 

detection

Blob 
Detection

FUSION

Object 
Layer

Geometric
Layer

Sensor

Blobs

3D Data

MAP

Objects 3D Structure

Geometric
Blobs

Map 
Update

System

Input Data Stream Output Data Stream

Fig. 2. Principal components of our approach.



A. Object Container

The Object Container (OC) is the model in which the

properties of the potential object candidates are collected,

Fig 3. Adding new properties to this model means the

acquisition of new knowledge about an actor in the scene.

The acquisition of these properties can arrive from different

sources: a-priori properties, or learned, extracted properties,

acquired by observation, experience or interaction [14]. In

this approach, the OC is represented by a 3D blob that

contains information about the spatial structure of an object

candidate like dimensions and orientation.

Fig. 3. The Object Container (OC) collects the a-priori known information
and new extracted properties about an actor or object in a scene.

B. 3D Stereo Reconstruction and Plane Detection

With a calibrated stereo camera system we infer the depth

of 3D point by computing the disparity value d = ul−ur be-

tween two corresponding imaged points (ul, vl) and (ur, vr)
lying in the left and right camera image plane respectively.

Given a point in the space Pi = (Xi, Yi, Zi), its estimated

depth is given by z = (b/d) ·f , where f is the focal length of

the cameras (with similar internal parameters) and b is the

baseline. Any point pi = (x̄i, ȳi, di) in disparity space has an

associated reconstructed 3D point p̄i = (x̄i, ȳi, z̄i,Λi) where

Λi = diag(σ2
x, σ

2
y, σ

2
z) is the covariance matrix representing

the uncertainty of the 3D reconstruction in each axis:

σ2
z = b·f

px·d
· ∆d

(d−∆d)

σ2
x = ∆d·px

f · z̄ + (u+∆d)·px

f · σ2
z (1)

σ2
y = ∆d·px

f · z̄ + (v+∆d)·px

f · σ2
z

where px is the pixel dimension and ∆d is the disparity error.

The first step after the 3D reconstruction is the detection of

the supporting plane. This is done by applying the random

sample consensus (RANSAC) [15] procedure. In this work

only the supporting plane is considered due to its immediate

spatial proximity to the entities of interest, see Fig.1(c).

C. Octree and Blob Detection

After plane detection, the 3D reconstruction is stored in

an octree. This data structure allows to spatially order three-

dimensional data in a hierarchical and recursive fashion by

partitioning the space in octants or voxels. The octree repre-

sents the low layer of abstraction in our framework because

the information stored in it still constitutes a simple group

of raw points without any spatial relation connecting any of

them. This relation is setup by searching and identifying the

connected components (leaves) inside the octree. We perform

this search by traversing the octree according to the Depth-

First Search (DFS) algorithm. The octree resolution, i.e. the

size of the tree’s leaves, has to be modified in order to adapt

the search to more dense scenes in which we obtain more

data points within reduced spatial regions, see Fig4.

Fig. 4. Blob detection in two scenes with different spatial observation
densities. First row shows the scene images and the corresponding segmen-
tations are showed below them.

D. Fusion

Typically the output of registration methods, after mini-

mizing the distance of entity correspondences between two

sets, is a rigid spatial correction that is applied and affects

to all entities in such sets uniformly. In stereo vision, the

3D reconstruction of entities does not present an uniform

error distribution and applying such global correction might

hinder a proper registration in some regions while improving

it in others. In this framework the newly captured 3D data

is associated to our map not as rigid entity but as a group of

individual clusters, blobs. The fusion between new sensor

readings and the map is performed in a blob-pair-wise

manner considering the local measurement errors presented

in that region and the association of their corresponding

geometric entities. One of the main advantages of this dual-

layered framework is that of updating/correcting the state

of an individual blob by propagating to all its points any

modification in its geometric structure and abstract knowl-

edge attributes even in the presence of occlusion or partial

visibility. In our approach two blobs are fused only if their

points are associated, and this association occurs whenever

the rules and steps explained later in this section are carried

out.

1) Blobtree and Blob Management: The blobtree is an

octree-like structure that represents in our framework the

higher level layer of knowledge of the scene. Unlike an

octree, in which only the leaves store information, the

blobtree nodes are also able to store data. A 3D blob is

assigned to the smallest node that can contain it. This means

that larger blobs are placed in higher level nodes inside the

tree structure. Before a blob is inserted, it is encapsulated

in a rectangular box whose dimensions and orientations are

computed through the Principal Component Analysis (PCA)

procedure (Fig 5). Additional to storing, the blobtree helps in



the process of detection of overlappings between incoming

blobs with the stored ones as well as in the blob management

during the fusion process. Furthermore, the blobtree repre-

sents our final map whenever it is updated, this is, when

there are no more blob fusions to be performed. Basically,

our map M(k) = {Bj(k)} at time k, is defined as the set of

blobs {Bj(k)}, where each blob Bj = {pi, Pi, CVi}, is the

set of captured points along with their spatial uncertainty and

confidence value CV (Sec. III-D.3). The pseudo-code of the

blob intersection search is outlined in Algorithm 1 and the

blob fusion procedure in Algorithm 2. In Algorithm 1.5 the

Fig. 5. Two 3D-blob groups of the same scene captured at different times:
(left) Bj(k), (middle) Bi(k + 1), (right) intersection observed from pose
in (k + 1).

Algorithm 1 Blob Intersection Search

Require: Map M(k) = {{Bj(k)}∪ {Bi(k+ 1)}}, with j =
1, 2, . . . , J and i = 1, 2, . . . , I

Ensure: List of intersection containers Ψ(k) = {ψb} where

ψb = {Bb(k) ∩ Bm(k + 1)} with b ≤ J and m ≤ I
1: Ψ(k)← ∅
2: for all Bj(k) ∈M(k) do

3: ψj ← ∅ ⊲ Bj(k)’s intersection container

4: for all Bi(k + 1) ∈M(k) do

5: if Bj(k) ∩ Bi(k + 1) then

6: ψj ← ψj ∪ (Bj(k) ∩ Bi(k + 1))
7: end if

8: end for

9: if ψj 6= ∅ then

10: Ψ(k)← Ψ(k) ∪ ψj

11: end if

12: end for

13: return Ψ(k)

condition refers to the intersection of 3D geometric bodies,

in our particular case, to the collision of rectangular solids.

For this kind of plane-faced geometries, it is sufficient to

detect a contact of an edge on one object with a face of the

other [16]. In Algorithm 2.5, however, the condition makes

reference to the fusion of blobs through the association of

their points. This condition and the call DOASSOC() are

treated in the next subsection. The call UPDATELIST() is

needed to update the references of the blobs as they are

fused.

2) Z-buffered Re-projection and Data Association: By

re-projection we mean the emulation of a camera screen

containing only the visible points of the two blobs to be

fused. To determine what point is visible when more than

one is reprojected to the same pixel we use the z-buffer

of each point and infer its depth, the point closest to the

Algorithm 2 Blob Fusion

Require: Map M(k) and List Ψ(k)
Ensure: Map M(k + 1)

1: Γ← ∅ ⊲ updated list of blobs

2: for all ψb ∈ Ψ do

3: Bb(k + 1)← EXTRACTFROMMAP( Bb(k) )

4: for all Bm(k + 1) ∈ ψb do

5: if Bb(k + 1) ∩ Bm(k + 1) then

6: Bb(k+1)← DOASSOC(Bb(k+1),Bm(k+1))
7: end if

8: end for

9: Γ← Γ ∪ Bb(k + 1)
10: UPDATELIST( Ψ(k) )

11: UPDATELIST( Γ(k) )

12: end for

13: M(k + 1) ≡M(k)←M(k) ∪ Γ
14: return M(k + 1) ⊲ Map updated

camera is selected. In Fig. 6 two different re-projection

screens are showed between two blobs captured from two

different poses. In this association phase we imply that the

observation-to-observation association is based on positional

information that has been determined previously to some

degree of certainty by an unbiased sensing process. At time

k + 1, a measurement zi(k + 1) of a point pi(k + 1) with

covariance matrix Ri(k+ 1), is normally distributed around

its estimated value or state ẑj(k + 1|k) of pj(k + 1|k) =
T k+1

k pj(k) with covariance Pj(k + 1|k) = HjPj(k)H
T
j ,

where T k+1
k represents a rigid transformation to the current

pose and H represents the measurement model matrix; the

innovation or observation residual is defined as:

vij(k + 1) = zi(k + 1)− ẑj(k + 1|k) (2)

the quantification of similarity between the observations is

given by the Mahalanobis distance χ2:

χ2
ij = vijS

−1
ij v

T
ij < χ2

α (3)

where

Sij = Pj(k + 1|k) +Ri(k + 1) (4)

is the innovation covariance. In order to find the correspon-

dences between an observation zi(k+1) from a data set S1 =
{p1,i} with i = 1, 2, 3, . . . , n and prediction state ẑj(k+1|k)
from a data set S2 = {p2,j} with j = 1, 2, 3, . . . ,m, that

fulfill Eq.3, we re-project both sets to an emulated camera

screen with camera model C(k + 1) in the current pose

T (k + 1)

(ui, vi) = C(k + 1)zi(k + 1) (5)

(uj , vj) = C(k + 1)ẑj(k + 1|k) (6)

By the re-projection we have bucketed [17] the data points

in screen pixels (u, v) and confined the matching search to

a small pixel neighborhood around the predicted state repre-

sented by (uj , vj) and corresponding to the point pj(k+1|k).
The matching search cost is reduced from O(nm) to O(km)



where k is the number of neighbor pixels. Considering

bucketing as a re-quantization loss of information can occur

when more than one point is reprojected to the same pixel.

For the case in which we re-project the current-pose observed

points, (Eq. 5), the loss is negligible. For the case of Eq. 6,

we examine the z-buffer of each point in order to determine

which point is visible and which ones are occluded. We

consider only the visible points of each set for association

as we are interested in the restoration of what can constitute

the shell or chassis of the actors in the scene. The validation

Fig. 6. Re-projection of objects of the same scene from two different
poses. (Left) The objects are not intersected, (middle) they intersect, (right)
they are fused (red points).

of correspondences by Eq.(3) constitutes the local-heuristic

part of the process. After this, a new set of corrected, fused

points are obtained:

pl(k + 1|k + 1) = pj(k + 1|k) +K(k + 1)vij(k + 1) (7)

with the gain K defined by:

K(k + 1) = Pj(k + 1|k)HjS
−1
ij (8)

and the covariance propagation

Pl(k+1|k+1) = Pj(k+1|k)−K(k+1)HjPj(k+1|k) (9)

We obtain a set L = {(S′

1,S
′

2)l} of L matching-ordered

subsets (S′

1,S
′

2), where S′

1 ⊂ S1 and S′

2 ⊂ S2 and a

set of fused points F = {fl ≡ pl(k + 1|k + 1)} with

l = 1, 2, 3, . . . , L. As a global matching validation we apply

RANSAC to the matched subsets in order to determine the

two rigid transformations [18] that relate with the smallest

error each of them to the corrected point set

RANSAC(Σ2
i =

∑

s∈S′

i
,f∈F

‖f − (Ris+ Ti)‖
2) (10)

for i = 1, 2.

The application of these rigid transformations to the entire

blob sets S1,S2, can also be considered as a blob state

update propagation in a static environment since they modify

spatially the blob data points to the current state.

3) Map Maintenance: The map maintenance is based on

the degree of credibility or confidence value assigned to each

point during the association process. With each re-projected

point to the current camera frame we can state that it is

inside the current scope and with its z-buffer we can infer

whether it is visible or not. This leads to the next analysis

based on the current observed point pi(k+1), for simplicity

p1,i; similar situations would result based on the predicted

point pj(k + 1|k), here p2,j .

p1,i is visible and . . .

• it has to be visible, i.e. there exists a corresponding

point p2,j predicting the existence of p1,i to be matched.

This constitutes a matching. The confidence value of

the fused point is increased.

• it has not to be visible, i.e. there is not a corresponding

predicting point: p2,j is occluded or out of scope. p1,i

is a new (noisy) point or outlier. This is an unpredicted

observation. p1,i’s confidence value is initialized.

p1,i is not visible and . . .

• it has to be visible, i.e. there is a corresponding pre-

diction p2,j anticipating a new observation p1,i in its

region: pj(k) was probably a noisy point or outlier. This

is an unobserved prediction. p2,j’s confidence value is

decreased.

• it has not to be visible. This affects to the rest of the

points in- or outside the scope. Their confidence values

remain the same.

The CV updating is based on the number of times a

observed point is supported so(k) or unsupported uo(k)
up through time k; In dynamic environments, this same

procedure applied at blob level will be the base for an

object-removal/addition detection (surprise detection), and

with rates for learning α and forgetting β the rule to updating

the CV will be: CV i(k) = 1 − e−(soi(k)/α−uoi(k)/β), as

proposed in [19].

IV. EXPERIMENTS AND RESULTS

Our stereo camera rig constitutes two Guppy F-080C IRF

cameras. For the evaluation of our framework we took a

sequence of observations at different positions and distances

of the scene in Fig. 7(a). In Fig. 7(i) a view of the final

blobtree is showed and in Fig. 7(j) shows the final map in

which the blobs have been valuated by assigning confidence

values to each point. Each point color in the blobs has

an integer confidence value from 0 to 7 corresponding to

the colors: white, yellow, light brown, orange, green, violet,

purple and red, respectively. Two final valuated blobs are

shown in Fig 8.

Fig. 8. Two blobs of the final map with assigned confidence values. Left,
the pop corn box and right, the cereal box.

In a first experiment we are concern in evaluating how

precise the points with confidence value assignments de-

scribe the actual size of a mapped object. We present the

results for the two boxes of the scene presented in Fig. 7

which are the objects whose blob point readings undergo

the widest range of error observations due to the variations

in the proximity of the objects to the cameras as the cameras

moved around the scene. In Tables I and II we summarize the



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. Sequence of the captured scenes. (a) The scene, (b-h) the captured scenes in the geometric layer, (i) blobtree after the fusion of all scenes, and
(j) valuated blobs in the final map.

results obtained with the valuated points of the cereal box

blob and pop corn box blob respectively. The tables show

by confidence value assignation the percentage of points

that belong to that value, the measured size of the box

these points define, and the root mean square deviation as

a measure of error fitting between the valuated blob points

with its corresponding actual-size box model yielded by the

Iterative Closest Point (ICP) algorithm. Visually this fitting

can be observed in the pictures of Fig.9. Similar results were

obtained for the second box.

TABLE I

RESULTS OF THE CONFIDENCE VALUE (CV) ASSIGNMENTS TO THE

CEREAL BOX BLOB POINTS AFTER A SERIES OF MAP UPDATES.

Cereal Box, actual size = 13.6 x 5.3 x 21.2 cm

CV Points(%) Measured Size RMS Error Figure

7 0.52 13.67x4.83x20.23 0.000081 Fig.9(a)

6 2.17 15.36x8.21x22.21 0.000098 Fig.9(b)

5 12.7 16.01x12.13x22.43 0.000092 Fig.9(c)

4 56.53 18.36x11.38x23.16 0.004374 Fig.9(d)

3 12.92 18.98x13.14x23.12 0.005539 Fig.9(e)

2 6.41 18.37x10.06x24.29 0.005946 Fig.9(f)

1 4.29 18.26x10.38x24.38 0.006908 Fig.9(g)

0 4.46 19.1x9.19x24.45 0.005781 Fig.9(h)

TABLE II

RESULTS OF THE CONFIDENCE VALUE (CV) ASSIGNMENTS TO THE POP

CORN BOX BLOB POINTS AFTER A SERIES OF MAP UPDATES.

Pop Corn Box, actual size = 16 x 5.75 x 11.7 cm

CV Points(%) Measured Size RMS Error

7 1.19 15.23x7.697x10.75 0.002548

6 3.61 17.69x8.91x11.01 0.002792

5 10.09 18.61x11.15x13.45 0.003715

4 54.46 20.09x12.29x15.90 0.004805

3 14.41 21.34x12.58x15.24 0.007764

2 8.9 19.45x11.76x14.60 0.006681

1 4.77 19.28x12.41x12.40 0.003378

0 2.55 18.90x11.26x12.45 0.003580

In a second experiment we want to observe the updating

and the propagation of a blob state under partial occlusion

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 9. Cereal box valuated points (black points) with different confidence
values and the cereal model box (blue points) fitted by ICP .

but now in a context of a dynamic environment. For this, we

took a sequence of measurements of an object before and

after being occluded, the partially occluded object is slightly

rotated after the occlusion, Fig. 10. The small updated

rotation of the occluded blob points can be better observed

by fitting its corresponding object model.

Finally, we present a first tentative output of our frame-

work. Fig. 11 shows a 3D object-candidate detection screen

of the scene in Fig. 1(a). The framework is able to segment

the 3D scene by first subtracting the supporting plane and

then clustering and characterizing the potential objects for

further processing.

V. CONCLUSIONS

We have presented a dual layered framework for scene

mapping aimed at covering not only the geometrical aspects



(a) (b) (c)

(d) (e) (f)

Fig. 10. Update and propagation of the state of a blob under partial
visibility. (a) The pop corn box before the occlusion, (b) and (c) show
the zoomed-in images of the valuated pop corn blob fitted with its object
model before and after the occlusion from camera and bird’s eye perspective
respectively, (d) the pop corn box is occluded and rotated, (e) mapped blobs
of the scene and (f) the rotation is better perceived by observing the fitted
model from above.

Fig. 11. 3D object-candidate detection screen: Labeling of the 3D
information using the representation of the map observed from the camera
perspective.

of the captured data but also being able to incorporate

the abstract knowledge of the potential object-candidates

represented by 3D blobs. Our approach decomposes each

sensor observation into a set of independent blobs and

registers two consecutive sensor readings in a blob-pair-wise

fusion. This allows flexibility in the registrations as opposed

to most rigid registration methods between entire images.

With the re-projection we are able to obtain a linear cost

in the matching search by looking for potential matching

points in a reduced neighbor of pixels in the re-projected

screen. With the results of Tables I and II we can see

that the points with higher degrees of credibility are more

precise and define better the surface of the objects. Criteria

for stopping the updating and fusion in a certain blob have

not been outlined yet. One criterion might be to stop such

process as soon as a blob can be substituted for a well-

fitted object model taken from a local data base, or for

a basic geometric body. With the second experiment we

observed that the new information added to a state of blob,

like a change in the object pose, is also propagated to all

its points even when the blob is partially visible. This fact

is important not only when working in dynamic scenes but

also in static ones where the state propagation of an object

is updated as more partial views of the object are captured

and fused. An immediate improvement to our approach is

the addition of a procedure to split a blob in two or more

blobs. In scenes in which objects are very close to each other,

and due to the inherent noise in readings and in 3D stereo

camera reconstruction, there always exists the possibility that

two or more objects are captured as one single blob. The

presented work constitutes our basic functional framework

that describes the principal mechanisms for 3D mapping

building and update, which are to be tested and improved

in more different, complex and larger scenes.
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Representation of Manipulation-Relevant Object Properties and Actions

for Surprise-Driven Exploration

Susanne Petsch and Darius Burschka

Abstract— We propose a framework for the sensor-based
estimation of manipulation-relevant object properties and the
abstraction of known actions in a learning setup from the
observation of humans. The descriptors consists of an object-
centric representation of manipulation constraints and a scene-
specific action graph. The graph spans between the typical
places, where objects are placed. This framework allows to
abstract the strongly varying actions of a human operator and
to monitor unexpected new actions, that require a modification
of the knowledge stored in the system. The usage of an abstract,
object-centric structure enables not only the application of
knowledge in the same situation, but also the transfer to similar
environments. Furthermore, the information can be derived
from different sensing modalities.

The proposed system builds up the representation of
manipulation-relevant properties and actions. The properties,
which are directly related to the object, are stored in the
Object Container. The Functionality Map links the actions
with the typical action areas in the environment. We present
experimental results on real human actions, showing the quality
of the results, that can be obtained with our system.

I. MOTIVATION

A robot should be able to learn unsupervised through

the observation of human actions in its environment. Un-

fortunately, humans do not follow exact trajectories, while

performing repetitive manipulation tasks. The system needs

to be able to abstract the manipulation actions, in order to

focus only on information, which is necessary to accomplish

a manipulation or to cooperate with a human in a given

environment. A mismatch between the expectation of the

robot as an observer system and a current human action

should occur only in situations, in which the change appears

to be a result of a changed function or physical property of

the object. We will call such a mismatch a surprise event in

the following. A surprise event triggers the refinement or the

modification of the stored information. Important examples

are the following: Motion constraints are suddenly changed

in the object transport phase (e.g., a cup carried always

upright is now tilted arbitrarily); an object is suddenly placed

on an unexpected place, e.g., a cup on the floor. These

observations are usually an indication, that the physical

properties of the object (e.g., the level of the liquid in the

object) or their function (not a drinking cup, but a dirty

This work was supported by the European Communitys Seventh Frame-
work Programme FP7/2007-2013 under grant agreement 215821 (GRASP
project)

Susanne Petsch and Darius Burschka are with the Machine Vision
and Perception Group, Department of Informatics, Technische Universität
München. 85748 Garching, Germany
{petsch|burschka}@in.tum.de

Fig. 1. The system creates an abstract map of possible manipulation actions
and goals in the environment.

dish) changed. This needs to be considered in the internal

representation of the manipulation system.

Our aim is to define a model, that allows to map different

physical properties of the object to modifications in the

handling properties. The model should efficiently abstract

known actions applied to a given object, in order to be

able to correctly predict the often strongly varying transport

trajectories and goals. This second property of the system

allows to reason about changes in the function of a specific

object in a given environment. For example, a tool is not

used for its specific purpose anymore, but just put away. The

representation of the object specific properties and actions

needs to be independent of exact Cartesian motion.

A-priori knowledge about an object class is stored in an

Atlas, introduced in [1]. It contains already known properties

of the objects as well as a-priori knowledge about the han-

dling alternatives. Different handling properties might occur

for the same object depending on the context. The correct

alternative has to be selected based on the observation. This

handling property may change over time. Such a modification

is triggered by a mismatch between the expectation and the

observation of the human action. The abstract knowledge

from the Atlas can be mapped into the current context and

stored in the Working Memory. The Working Memory is the

explored representation of the current scene, where the a-

priori (Atlas) knowledge gets registered to provide additional

information about the structures observed by the system. The

Atlas information gets mapped onto representations in the

working memory, that describe the handling properties of

objects and the observed functional relations between the

typical places, where these objects can be found. In this

paper, we focus on these representations of the manipulation-

relevant properties in a given environment. The requirements

on this representation have to be specified and the relevant

knowledge has to be extracted from the observation in an

appropriate manner. A very important aspect is, that not
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only the object itself (e.g., its properties or physical states)

is defining the way, how it is manipulated, but also the

location at which the manipulation is performed. Certain

actions takes usually place at specific locations, which have

certain properties. For example, washing the dishes is usually

done in the sink and not on a flat table without any water

source around. The conclusion is, that we need not only a

collection of object properties, but also a map, which links

locations in the environment to the specific way how objects

are handled at these locations (see Fig. 1). It is important

to notice, that we are not interested in the exact registration

of the actions to the environment in the sense of navigation,

but in an abstract representation of the functionalities in the

environment. We are not using any semantic information

about the environment. Furthermore, the system does not rely

on any linguistic information.

The representation of the knowledge about the human

actions is split into an object-centric representation, reflecting

the physical properties of an object stored in an Object

Container, and a Functionality Map, representing possible

actions related to the environment. While the Object Con-

tainer is linked only to the object, the Functionality Map is

anchored to the geometric model of the environment. This

framework allows us to limit unexpected events (surprise

events), that cannot be explained with the current knowledge,

to situations, where the physical state or the function of an

object changed. The system is insensitive to variations in the

execution of the same action. Predictions about the current

situations are based on the information stored in Object

Container or the Functionality Map. Therefore, mismatches

between these predictions and observations occur just at an

abstract level. They signal the right moment to update the

stored information.

It is important to consider, that the robot might face

different types of input like, e.g., vision data. This can be

useful in a household environment. Further examples include

procedural descriptions, which provide knowledge in topo-

logical form (e.g., the steps of a surgical procedure). Here,

the trajectories of the human motions are neither used for

workflow applications nor for planning of actions. We focus

on the object-centric constraints and the object’s function in

the environment. Our system does not rely on a trajectory

in a certain representation, like x,y,z-coordinates, or on a

certain colored texture of an object. The properties acquired

in our system have to be sufficient for a manipulation task.

At the same time, they have to be generic and extractable

from different sources.

The goal of this paper is the presentation of a system,

which provides the manipulation-relevant knowledge in a

way, such that the described requirements can be met.

The paper is structured as follows: our approach is pre-

sented in the next section. First, the manipulation-relevant

object properties and the Functionality Map of the envi-

ronment are described, followed by the presentation of the

knowledge extraction. The results of the experiments with

real human actions are described in Section III. We end with

conclusions and future work.

A. Related Work

An extensive work exists in the field of imitation learning.

In [2], HMMs are used for imitation learning of arm move-

ments in manipulation tasks for humanoid robots, in order

to achieve a human-like reproduction of the motions. It is

important to point out the difference between our approach

and non-object-centric approaches. Such approaches are, for

example, imitation learning of motor skills or imitation of

movements with Dynamic Movement Primitives (DMPs),

which encode the trajectories themselves directly [3], [4].

This paper does not aim to encode the trajectories with, e.g.,

DMPs or using the model in [5]. Calinon et al. use imitation

learning, in order to learn control strategies [6]. Approaches

related to Reinforcement Learning [7] use the observations of

humans as reward [8], [9] in the context of imitation learning.

In contrast to theses approaches, our aim goes beyond simple

imitation. We want to generalize the observation to cope with

variations in repetitive human actions.

The intention in imitation tasks is addressed by Jansen and

Belpaeme [10]. They train their agent in a grid with blocks

in a computer simulation. In contrast, we deal with more

complex, real-world environments and our system needs

much less training instances than the one presented in [10].

A real-world example of capturing the user’s intention about

sequential task constraints is presented in [11]. Their system

reasons about the existence of sequential dependencies of

operations.

The object’s motion has to be analyzed, in order to achieve

a further understanding of the object’s functionality. The

effects on a manipulated object (position, orientation) are

taken into account in [12]. The difference to our approach is,

that we obtain information about the manipulation properties

of the object and, furthermore, to the objects functionality in

the environment. In [13], function from motion is analyzed

for “primitive motions”, which are translations or rotations

relative to the main axes of primitive objects. Our approach

goes further to more and more general manipulation-relevant

object properties. In [14], functional roles of objects, like

“pour out”, have been explicitly introduced. These roles

do not refer to the object’s properties, which are directly

observable during manipulation.

It should be to pointed out, that we are not interested

in the reconstruction or the analysis of the environment,

like [15]. We split the information in pure grasp related

object-centric information and the information for trajectory

planning represented by the Functionality Map. The rela-

tive/absolute position of objects to each other have been used

for the consideration of the environment in manipulation

properties in [15]. In [16], a perceptual space (for the color

and shape object properties) and a situation space (for the

displacement of the objects in the scene) are introduced. In

contrast, the object properties in our paper are beyond the

pure visual appearance of the object, since we are interested

in the manipulation-relevant object properties (like motion

constraints, and known linkages between geometric static

occurrences of the object).
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Fig. 2. Object Container and Functionality Map. The Object Container
stores the object properties. The Functionality Map is an abstract repre-
sentation of the manipulation-relevant operating areas in the environment.

II. APPROACH

An overview of the system is given in Fig. 2. It illustrates

the Object Container with the object properties, and the

representation of the actions in the Functionality Map. The

map is represented by a graph, which encodes Location Areas

and their connections between them.

A. Manipulation-Relevant Object Properties

Since we are interested in a general knowledge of the

object properties, we do not want to list the x,y,z-coordinates

of the recorded trajectory points, but the abstract handling

properties important for grasp planning. The properties, we

consider as important, are the variation of orientation, the

maximal allowed acceleration, the grasp type allowing a

successful grasp with a given manipulator, the mass and the

center of mass. Some of these properties are not observable

with a pure vision or tracking system. Therefore, the already

described information database Atlas [1], which contains the

“experience” (a-priori information), is used to provide initial

information. The other properties need to be extracted, using,

for example, a vision system.

The handling properties themselves are constraints, which

limit the handling possibilities of the object in a certain sit-

uation. Our object-centric representation has the advantage,

that the representation of a constraint does not rely on a

specific Cartesian position in space. For a specific object, the

internal properties, like fragile or liquid content, constraint

merely the velocity and acceleration parameters independent

of the position in the environment.

B. Functionality Map of the Environment

The Functionality Map provides information about possi-

ble trajectories in the environment. The first component of

the Functionality Map are the Location Areas. These areas

are the locations in the 3D space, where a manipulation

sequence can start or end. We define explicitly location

areas and not single points, since an object is usually

placed in a certain area and not on one certain point in

space. A Location Area does not necessarily imply, that the

manipulated object is standing on a surface. A hand-over step

(e.g., changing hands) can also establish a Location Area,

Fig. 3. Functionality Map of the environment for two exemplary objects.

which is, therefore, not connected to a surface, but to an

area in space.

The connections between different Location Areas are the

next component of the Functionality Map. A connection

exists, if an action has been performed directly between

both areas without visiting another one in between. It is

important to consider, that a connection is directed. A

connection itself stores the different manipulation properties

of the actions, which are performed on this connection. The

properties depend on different factors. The first factor are the

objects themselves. The other factor are the different grasp

alternatives, that can occur for each object. Two exemplary

instantiations of a Functionality Map can be seen in Fig. 3.

The properties, which are stored in the Functionality Map,

are the following:

• pushed object vs. lifted object - An object can be

manipulated by lifting or by pushing it. A pushed object

needs just to be pushed in the desired direction, whereas

lifting an object requires an entire grasp planning (in-

cluding knowledge about the object’s weight).

• arbitrary movement vs. constrained trajectory - The

trajectory between two Location Areas has either an

arbitrary shape or it is the result of a constrained motion.

A constrained motion connects the Location Areas in

a direct manner, avoiding deviations. In contrast, an

arbitrary movement is unconstrained.

• connection relevance - The connection relevance shows

the probability of a connection property, based on the

observed actions.

• velocity constraints during pick-up - The three phases

defining an action introduced in [1] are used: the pick-

up, the transportation and the placement phase. The

maximal speed during the pick-up phase is stored as

velocity constraint in the Functionality Map. It is an

indicator for the difficulty to pick up the object.

• grasp taxonomy - The grasp type is mainly important

for the pick-up and placement phase of the manipulation

and not part of this paper. The grasp taxonomy we

consider for the system is summarized in [17].

• grasp approach vector - The grasp approach vector

is, similarly to the grasp type, mainly important for

the pick-up and placement phase of the manipulation

and is not part of this paper. The grasp direction is

the direction, from which the object is grasped in the

object-centric point of view.
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The assignment of the properties to the Object Container

or the Functionality Map depends on the type of the property.

A property, which is related to the function in the environ-

ment, is assigned to the Functionality Map. For example,

the velocity constraint during the pick-up is part of the

Functionality Map, since the possible velocity constraint

depends on the environment of the object (e.g., obstacles).

In contrast, a property, which is directly related to the object

and its state, is a part of the Object Container. An example

for such a property is the maximal allowed acceleration for

an object in a certain state (e.g., no high acceleration for a

filled cup).

C. Acquisition of Knowledge

The presented Object Container and Functionality Map

need to be filled with information. For example, a scene can

be observed with a system, which provides a 6-DoF trajec-

tory of the manipulated objects.

1) Object Container: The properties for the Object Con-

tainer, which we want to consider in this paper, are the

maximal acceleration value and the variation of observed

orientation of the object during the manipulation.

a) Maximal Acceleration: The maximal acceleration

value is approximated by the difference of two consecutive

velocity samples, which, in turn, are computed as the differ-

ence of two consecutive samples.

b) Orientation: The observed orientation is determined

from the given 6-DoF trajectory. Just the orientation change

relative to the gravitational vector is of interest for the

constraints in the manipulation task. The aim is to distinguish

a motion with rotation from a motion without tilting. We use

Hidden Markov Models (HMMs) [18] for the classification

because of their ability of generalization. They are statis-

tical classifiers, which use an observation sequence for the

estimation of the underlying state-sequence. Moreover, they

take into account knowledge of the past (previous state) in

the sequential input. Discrete HMMs with λ = (A,B,Π) are

chosen. They comprise a transition probability matrix A, an

observation symbol probability distribution matrix B and an

initial state distribution Π .

First, the preprocessing takes place, until a codebook of

the rotation information is built. An overlapping window

of 400 ms with a 200 ms overlap (according to [19])

is applied on the sequential input. For each window, the

angles between the axes of the current coordinate frame and

the coordinate frame at the beginning of the manipulation

are measured. Depending on the object and the way of

recording its trajectory, different angular variations can occur

for different objects. A relative amount of change is needed

for each object. Therefore, the angles are normalized for each

object with its maximum angle, occurring in all movements

of the object. After this preprocessing, the collected data

of the rotation information is clustered with the K-means

algorithm [20] independent of its time of occurrence. The

result is a 64 symbol rotation information codebook.

Then two HMMs (each with 10 states) are built, in order

to classify the motions as ones which contain a rotation

(λr) or as rotation-free ones (λnoR). The transition and

emission probabilities for each model are calculated with the

maximum likelihood estimation, using the labeled training

sequences.

For evaluation, the system receives test sequences,

which are preprocessed as described above. The k-nearest-

neighbors-method (knn) is used for the assignment to the

corresponding symbols in each codebook. To evaluate the

classification performance of the trained HMMs, the max-

imum log likelihood log P (otest|λi) of a given model λi

is computed for each test sequence with observations otest
similar to [21]:

λ∗

r
= argmax[log P (otest|λnoR), log P (otest|λr)] . (1)

2) Functionality Map:

a) Location Areas: The possible Location Areas have

to be determined first. Therefore, the available trajectories

are split up in single sequences. A sequence starts as soon

as the human grasps the object. The end of the sequence is

reached, when the hand and the object are not in contact any

more. The collected 3D-points of the start and end positions

are clustered. The resulting cluster-centers are the centers of

the Location Areas. It is possible, that the system detects two

Location Areas, which coincide in fact, but appear randomly

as two. If these Location Areas are close to each other and

have the same connection properties, they can be fused.

b) Connection Properties: The next step is the deter-

mination of the connections between the detected Location

Areas and the corresponding properties of the connections

for each object. The properties, we are using in this paper,

are the distinction of a pushed vs. a lifted object, an arbitrary

movement vs. a movement with a constrained trajectory,

the velocity constraints during the pick-up phase and the

connection relevance of a movement property on a certain

connection. If possible, the grasp type of the manipulation

is determined.

Pushed Object vs. Lifted Object: An object is pushed,

if it is in contact with its background during the whole

manipulation. In order to check this contact, the distance

between the object and the supporting surface is measured

along the normal vector of the surface (see [1] for the

computation).

Arbitrary Movement vs. Movement with Constrained Tra-

jectory: A Principle Component Analysis PCA (with rescal-

ing) is performed for the distinction of an arbitrary movement

and a movement with a constrained trajectory. The PCA is

done on a 4.8 s window with a 2.4 s overlap, the resulting

principal components are normalized. We check for arbitrary

motion, where the motion has no major direction component,

but the movement is relatively large in all directions. There-

fore, we are especially interested in the third (and smallest)

component of PCA, since it shows the variation of motion. If

this component has a high amplitude, then all three principal

components have relatively high amplitudes. In this case, the

movement is large in all directions and it is an arbitrary

movement. We define the amplitude of the third component

as “high”, if it meets one of two requirements. The first one
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is a comparison with the main direction of motion (= the

first principal component): If the magnitude of the first and

the third component are relatively “close” to each other,

there is hardly any main direction of the movement and the

movement is arbitrary. “Close” means the following: The

component of the smallest movement is multiplied with a

factor (multiplication factor arbitrary-movement). This factor

is the maximal ratio of the first and the third principal

component among all arbitrary movements. It determines,

how many times the largest movement is maximally allowed

to be larger than the smallest movement to classify it still

as an arbitrary motion. The second requirement for a “high”

amplitude of the third component is occurring, when the this

component is higher than a threshold (arbitrary-movement-

threshold). The arbitrary-movement-threshold has to be cho-

sen in the magnitude of the third principal component of

the arbitrary movements. If all the described criteria are not

met, the direction of the smallest motion is not high and the

movement is a movement with a constrained trajectory.

Velocity constraints during the pick-up: The pick-up phase

is defined manually with 50 samples from the starting

position. The speed is computed for two consecutive samples.

Connection relevance: The connection relevance can eas-

ily be determined by dividing the number of occurrences of

a certain movement property on a connection by the number

of all movements on this connection.

Grasp Type: In the current implementation, grasp type is

determined by manual labeling.

III. RESULTS

The proposed system is tested on sequences (seq.) of real

human actions. First, we test our system on external tracking

data (subsection III-A). This data provides directly the 6-

DoF trajectory of the tracked markers, which are placed

on top of the manipulated objects (obj.). The system is

also evaluated on stereo data directly from the manipulation

system (subsection III-B).

A. Basic Results on Tracking Data

The tracking data is recorded with a marker-based IR

tracking system1 at 50 Hz. The data is preprocessed first:

Each sample, which does not differ from the consecutive

one, is deleted. The remaining motion corresponds to an at

least minimal movement. Furthermore, the trajectories are

smoothed with a 1.4 s moving-average-window, in order

to eliminate high-frequency noise, which can especially

occur at the beginning of the movement. After this basic

preprocessing, the sequences vary between 4.3 s and 17.72 s,

the average is 7.45 s (example in Fig. 4, left).

The sequences are recorded with four different objects: a

milk carton, a spoon, a cup and a vase. The cup is grasped

twice: at the handle and at the cylindrical part from the side.

This leads to five “different“ objects for the test. For each

object, there are 18 different actions of a person, shown in

Table I. The implementation is done in Matlab (Statistics

1Advanced Realtime Tracking system. Advanced Realtime Tracking
GmbH, url: http://www.ar-tracking.de/ .

Fig. 4. Left: Arbitrary movements of the tracking data (in mm) for
the cup in red (without rotation) and in blue (with rotation) (line =
original movements, dotted line = result of the basic preprocessing). Right:
Trajectory of a pushed object (seq. 1, vision data).

TABLE I

Left: DESCRIPTION OF THE SEQ. (TRACKING DATA). Right: FURTHER

DESCRIPTION OF THE FOUR CONSTRAINED TRAJECTORY (SEQ. 1-4, 5-8,

9-12, 13-16). POSITIONS: table-start = POS. ON THE TABLE, box = POS.

ON A BOX ON THE TABLE, corner = CORNER OF THE TABLE.

Seq Movement Rotation Seq Start Pos. End Pos.

1-2 constr.: line 1 table-start box

3-4 constr.: pushed 2 box table-start

5-8 constr.: curve 3 table-start corner

9-12 constr.: line x 4 corner table-start

13-16 constr.: curve x

17 arbitrary

18 arbitrary x

Toolbox: PCA, HMM, K-mean algorithm. Bioinformatics

Toolbox: knn-classification.).

The parameters and the initial values for the knowledge

extraction (see Section II-C) are set as follows. The knn-

assignment of a new value to a cluster in the rotation

information codebook is done with k=3. The multiplication

factor arbitrary-movement for the third component is 15,

and the arbitrary-movement-threshold is 0.06. The height

difference to the table is measured along its vertical axis for

the distinction pushed vs. lifted object. The object is pushed,

if its height difference to the table is not changing (±5 mm).

The maximal acceleration is computed for a window of 8 ms.

Furthermore, the initialization of the cluster for the build-

up of the rotation information codebook is set. Otherwise,

the results of the clustering are not always deterministic,

even though they look mostly very similar. The initialization

values are chosen between 0 and 1, since the input values

are the normalized changes of the angles.

1) Object Container: A leave-one-out cross validation is

made for the rotation classification. The results show, that

42 of 45 of the motions without tilting are correctly labeled,

and 30 of 45 motions with titling are correctly classified (see

Table II).

The final result of the Object Container can be seen in

Table III. Acceleration classes are introduced, in order to

make the Object Container more generic. The number of

acceleration classes is set to three for illustration. Each class

represents an approximately equal sized part of the achieved

acceleration values. Table III shows the number of observa-

tions per acceleration class and the rotation-classification.
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TABLE II

STATISTICAL RESULTS OF THE CLASSIFICATIONS.

Property: Accuracy True positive True negative
(T = Tracking data, rate rate
V = Vision data)

Rotation (T) 80.0% 66.7% 93.3%

Pushed Object (T) 98.9% 100.0% 87.5%

Arbitrary Traj. (T) 94.4% 80.0% 96.3%

Rotation (V) 77.5% 93.8% 66.7%

Pushed Object (V) 95.0% 87.5% 96.9%

Arbitrary Traj. (V) 80.6% 100.0% 78.6%

TABLE III

RESULT: OBJECT CONTAINER. (R = MOTION WITH ROTATION).

Acceleration class 1 2 3

Objects Tracking no R R no R R no R R

Milk 3 3 6 3 3 0
Spoon 3 1 3 4 4 3
Cup-handle 2 4 3 8 1 0
Cup 5 2 8 1 2 0
Vase 10 4 4 0 0 0

Objects Vision no R R no R R no R R

Object 1 1 1 0 1 2 5
Object 2 3 0 0 0 4 3
Object 3 2 1 1 1 1 4
Object 4 0 2 2 2 1 3

2) Functionality Map: All three used location areas have

been correctly identified. A leave-one-out cross validation is

done for the classification of the (non-)arbitrary movements

(at first without the distinction of a pushed or lifted object).

8 of 10 arbitrary movements are correctly labeled, and 77

of 80 movements with a constrained trajectory are correctly

classified. This shows, that the system performs definitely

better than guessing. One has to consider for the true positive

rate (see Table II), that there are just 10 arbitrary movements

among all 90 sequences, leading to a significant influence of

every mislabeled arbitrary movement.

The classification of the pushed vs. the lifted object is

successful for all sequences except one spoon-sequence.

The results of the Functionality Maps show, that the

system is able to handle some misclassifications, since the

correct high connection relevance is gained for all objects

except for the cup-handle. The best (= completely correct)

results are achieved for the cup and the milk (Fig. 5, left).

The worst result is the Functionality Map of the cup-handle,

since it contains the highest number of misclassifications

(two misclassifications) among all Functionality Maps. The

misclassified arbitrary movements (red self-loop LA 2) and

the misclassified movements with a constrained trajectory

(magenta connection from LA 1 to LA 2) are drawn in Fig. 5

(top, right). The Functionality Maps of the other two objects

have just one misclassification.

B. Results from a Vision System

The vision data is recorded with a Firewire Marlin

FO46C camera at 30 Hz and an image size of 640x480 pixel

(width x height). The trajectories are acquired as described

Fig. 5. Top: Functionality Maps of the tracking data (left: milk, right:
cup-handle). Bottom: Functionality Maps of the vision data (left: obj. 1,
right: obj. 2). Red arrow = constrained trajectory, green arrow = pushed
obj., magenta arrow = arbitrary movement. P = probability.

TABLE IV

SEQUENCE PROPERTIES - VISION SYSTEM. THE START AND END

POSITIONS ARE THE BOTTOM RIGHT (BR), THE BOTTOM LEFT (BL), THE

TOP RIGHT (TR) AND THE TOP LEFT (TL) OF A TABLE.

Seq.: Movement Rotation Start Pos. End Pos.

1, 11, 21, 31 constr.: push br tl

2, 12, 22, 32 constr.: push tl bl

3, 13, 23, 33 constr.: curve bl br

4, 14, 24, 34 arbitrary br br

5, 15, 25, 35 constr.: curve br tl

6, 16, 26, 36 constr.: curve tl br

7, 17, 27, 37 constr.: curve x br tr

8, 18, 28, 38 constr.: curve x tr br

9, 19, 29, 39 constr.: curve x br bl

10, 20, 30, 40 constr.: curve x bl br

in [1]. The C++ Implementation of Hidden Markov Model by

Dekang Lin 2 is (slightly modified) used for the implemen-

tation of HMMs. The PCA, the K-means algorithm and the

knn-classification are done with OpenCV. Ten sequences are

recorded with each of the used four objects. The properties

of the sequences are listed in Table IV. An example is shown

in Fig. 4 (right).

A basic preprocessing is performed (minimal movement

> 0.01/sample, 140 sample moving-average-window) sim-

ilarly to the tracking data. Furthermore, the first and last

20 samples are cut of, in order to deal with the arbitrary

motions at the beginning and at the end of the sequences.

The initialization and threshold values are set as for the

experiment with the tracking data, except for the arbitrary-

movement-threshold (0.06 for the vision data) and the win-

dow for the acceleration-computation (16 ms).

1) Object Container: The occurrence of (non-) rotation is

correctly identified for 31 of 40 sequences (Table II). Eight

sequences are mislabeled as sequences with rotations. All of

them show, that one or both horizontal angles vary during

the manipulation. The variations are not as strong as for most

of the sequences with rotation, but it is still visible. Table III

shows the final result of the Object Container.

2) Functionality Map: The Location Areas themselves

are successfully determined. The assignment is successful

2Copyright (C) 2003 Dekang Lin, lindek@cs.ualberta.ca,
url: http://webdocs.cs.ualberta.ca/ lindek/hmm.htm .
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for 77 of 80 positions (96.3%). The misclassifications occur

for the end positions of sequence 8, 21 and 33. These

misclassifications are mainly caused by the z-components

(the depth) of the end positions, which are closer to other

Location Areas.

As the statistical measures in Table II show, the result

of the distinction between a pushed object and an object,

which is lifted for the movement, is remarkable. There is

just one sequence mislabeled as pushed object, and one

sequence mislabeled as raised object. The performance of the

classification as arbitrary movement or as movement with a

constrained trajectory achieves a true positive rate of 100.0%.

Consequently, no arbitrary movement is mislabeled as non-

arbitrary movement. Six sequences are misclassified as ar-

bitrary movements instead of movements with constrained

trajectory. These movements contain small parts with an

arbitrary shape. The kind of grasp is analyzed according to

[17]. All used grasps are power grasps with an abducted

position of the thumb.

The Functionality Maps of object 1 and 4 have just one

wrong assignment of an end location each, everything else is

correct (see object 1 in Fig. 5, left). The Functionality Map

of object 2 suffers mainly from misclassifications as arbitrary

movements (see Fig. 5, right). One movement of object 3 can

be seen a outlier, since its connection property, as well as

the assignment of its end location, are wrong. Besides one

further misclassified connection property, the Functionality

Map of object 3 is correct.

IV. CONCLUSIONS AND FUTURE WORK

The proposed system is developed for abstract representa-

tion of manipulation-relevant knowledge about objects. This

system aims to monitor object properties and function in a

given environment. The experiments on external tracking and

vision data show, that the system can derive the knowledge

from different sources. The presented system allows an

efficient monitoring scheme for the detection of unexpected

(surprising) event, that require an update of the information

in the internal representation. The proposed framework al-

lows to deal with the strong variations in actions performed

by a human operator, reducing the number of false positive

surprise events to a minimum. The proposed descriptors,

consisting of an Object Container and a Functionality Map

spanning typical object locations in a graph, allow a close

monitoring of changes in a physical state of the object and

its function in the environment.

The results from the vision system show, that a single tra-

jectory is not enough to avoid a misclassification. However,

an observation of multiple actions along a given edge of the

Functionality Map allows a robust estimation. Our next goal

is to focus more on unknown situations and environments.

They provide new information to the system.

REFERENCES

[1] S. Petsch and D. Burschka, “Estimation of Spatio-Temporal Object
Properties for Manipulation Tasks from Observation of Humans,” in
IEEE International Conference on Robotics and Automation, Anchor-
age, USA, 2010, pp. 192–198.

[2] T. Asfour, P. Azad, F. Gyarfas, and R. Dillmann, “Imitation learning
of dual-arm manipulation tasks in humanoid robots,” International

Journal of Humanoid Robotics, vol. 5, no. 2, pp. 183–202, 2008.
[3] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement Imitation

with Nonlinear Dynamical Systems in Humanoid Robots,” in IEEE

International Conference on Robotics and Automation, Washington,
DC, USA, 2002, pp. 1398–1403.

[4] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
Generalization of Motor Skills by Learning from Demonstration,” in
IEEE International Conference on Robotics and Automation, Kobe,
Japan, 2009, pp. 763–768.

[5] K.Ogawara, J.Takamatsu, K.Kimura, and K.Ikeuchi, “Generation of a
task model by intergrating multiple observations of human demon-
strations,” in Proceedings of the IEEE Intl. Conf. on Robotics and

Automation (ICRA ’02), May 2002, pp. 1545–1550.
[6] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. Billard,

“Learning and Reproduction Gestures by Imitation,” IEEE Robotics

and Automation Magazine, vol. 17, pp. 44 – 54, 2010.
[7] R. S. S. und A. G. Barto, Reinforcement Learning: An Introduction.

MIT Press, 1998.
[8] D. Verma and R. P. N. Rao, “Imitation Learning Using Graphical

Models,” in ECML 2007, J. N. K. et al., Ed., vol. 4701. Lecture Notes
in Artificial Intelligence, Springer-Verlag Berlin Heidelberg, 2007, pp.
757–764.

[9] G. Bombini, N. D. Mauro, T. M. A. Basile, S. Ferilli, and F. Esposito,
“Relational Learning by Imitation,” in KES-AMSTA 2009, A. H. et al.,
Ed., vol. 5559. Lecture Notes in Artificial Intelligence, Springer-
Verlag Berlin Heidelberg, 2009, pp. 273–282.

[10] B. Jansen and T. Belpaeme, “A Model for Inferring the Intention in
Imitation Tasks,” in The 15th IEEE International Symposium on Robot

and Human Interactive Communication, RO-MAN’06, 2006, pp. 238–
243.

[11] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zöllner, “Incremental
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