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Chapter 1

Executive summary

Deliverable D3 presents part of the developments within workpackage WP1 - ”Learning to Observe
Human Grasping and Consequences of Grasping” of GRASP, for the first twelve months of the project.

WP1 is responsible for translating raw visual data into higher level descriptions of where humans and
their hands are in a certain scene and how they move. These descriptions should have multi-scale
representations, since different levels of detail are required at different levels of reasoning about human
actions (e.g. global hand position might be relevant during hand pre-shaping before grasping, but finger
positions might be interesting just before grasping occurs). The output of WP1 is provided to WP2 that is
responsible for understanding human activities. This output is at the level required to be able to interpret
these activities, map them to robotic embodiments and finally execute them. At the same time, WP2
provides valuable feedback to WP1 since the interpretation results of WP2 can feed lower level detection
and tracking modules with valuable constraints. Information on the location and motion of humans and
human hands is also very useful to the work carried out in WP4 with respect to the perception of the
environment and the exploitation of contextual knowledge. The perception of consequences of grasping
can directly assist the maintenance of the background/foreground model of the environment. Additionally,
“interesting” things (i.e. in terms of what constitutes foreground/background) are expected to happen
at the vicinity of hands or at a direction compatible to their intended motion. Therefore, knowledge
on the location, posture and motion of the hands may constitute an important cue in driving attention.
Inversely, contextual knowledge (e.g. knowledge of the geometry of environmental structures) may be
used to constraint the perception of humans and hands.

In particular, and, according to the Technical Annex of the project, D3 presents activities in the context
of tasks 1.3 and 1.4. The objectives of these tasks are the following:

• [Task 1.3] - Observing humans: Definition and development of a system that detects and tracks
humans and their movements in particular. Activities in this task will focus on the important
problem of acquiring real 3D motion of the arms while the human is interacting with objects. The
tracking should be successful also in cases when the robot does not have a frontal view of the human.

• [Task 1.4] - Observing human grasping: Definition and development of a computational
method that detects, tracks and represents human hands in action. The derived representation
includes aspects and features in the full 4D spatiotemporal space (3D space and time dimensions).
The aim is to extract from a sequence of stereoscopic hand observations, the information that is
necessary and sufficient for subsequent (WP2) parsing and interpretation of observed hand activities
that, in turn, support future repeats by a robotic hand. Activities within this task will address im-
portant subproblems such as figure-ground segmentation (environmental modelling, motion/colour
based segmentation, coarse object categorisation) tracking humans/hands in 2D/3D (feature se-
lection, hand models, representation of prior knowledge of motion models, prediction and search
strategies), etc.

The related WP1 activities follow the spiral development model. According to this model, the devel-
opment proceeds in cycles, each of which improves incrementally the sophistication, functionality and
quality of the results of the previous cycles. The development of the tracking modules in GRASP proceed
in several such cycles, each consisting of three phases: a) specifications phase, b) research and integration
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phase and, c) trials and validation phase. Each cycle addresses the tracking problem at different levels
of complexity regarding the information extracted from the sensory data, the assumptions regarding the
human actor and the environmental conditions. The definition of these phases makes it possible to use
the evaluation of the results of one cycle as important feedback for the next cycle, the early detection of
potential problems and the reorientation of method design and implementation. It should also be noted
that the adoption of the spiral development model in WP1 of GRASP capitalizes heavily on know-how,
research results and technologies that are already available to the involved members of the consortium.
Along these directions, several activities have been carried out in the course of the twelve first months of
the GRASP project. The rest of this document is organized in three chapters.

Chapter 2 reports on the activities related to the task 1.3, “Observing humans”. The basic approach to
the problem is presented in section 2.1 where UniKarl presents a method for 3D human body detection
and tracking. This work was accepted for publication in the ICRA’09 conference. The manuscript of this
publication is provided as an attachment at the end of this deliverable. Section 2.2 presents a method for
partial, elastic 2D shape matching technique that has been developed by FORTH, which can be used to
improve the observation model of a human body tracking method. Additionally, in section 2.3 FORTH
presents a novel technique that, based on skin color, can robustly track naked human body parts such as
faces and hands.

Chapter 3 reports on the activities related to the task 1.4, “Observing human grasping”. This chapter
presents in detail the work carried out by FORTH along this direction. The description includes the
rationale behind developing a hand tracker specifically for grasping hands, the construction of a 3D hand
model and of the tools to manipulate it, the observation model as well as the techniques considered for
tracking the 3D hand model in image sequences based on the adopted observation model. In section 3.2,
FORTH describes preliminary work on a parallel and, hopefully, very useful approach towards a compact
representation of hand trajectories that is based on Restricted Boltzmann Machines. The rationale behind
this work is that this approach might well enhance the robustness and the quality of hand tracking results
when appropriately integrated with a probabilistic hand tracking framework. Section 3.3 reports on
joint activities among LMU, UniKarl and FORTH in acquiring an annotated data set of hand grasping
sequences. Several subjects perform different type of grasps on several types of objects. Each and all
of these experiments is observed by a calibrated stereo vision system and image sequences are recorded.
Simultaneously, a Polhemus tracker, records (synchronously to the image sequences) the trajectories of
eight carefully selected points on the subject’s hand (five fingers, wrist, thumb, and center of palm). The
resulting data set is expected to prove very useful as a benchmark for the qualitative and quantitative
evaluation of hand tracking in the context of grasping activities.

The deliverable concludes in chapter 4, with a brief summary of current and future activities towards the
goals of WP1.
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Chapter 2

Human body detection and tracking

This chapter reports on the activities related to the task 1.3, “Observing humans” of WP1. The basic
approach to the problem is presented in section 2.1 where UniKarl presents a method for 3D human
body detection and tracking. This work was accepted for publication in the ICRA’09 conference. The
manuscript of this publication is provided as an attachment at the end of this deliverable. Section 2.2
presents a method for partial, elastic 2D shape matching technique that has been developed by FORTH,
which can be used to improve the observation model of a human body tracking method. Additionally, in
section 2.3 FORTH presents a novel technique that, based on skin color, can robustly track naked human
body parts such as faces and hands.

2.1 Human motion tracking

We have investigated new methods to robustly track the motions of persons in real-time without special
marker setups. Our focus was on methods that can be implemented with the sensors available on a
humanoid robot (e.g. stereo-cameras) and that can track human motions in every-day environments. In
order to perceive and understand human grasping, it is not sufficient to track the hands only, but whole
body tracking is required. This task becomes particularly hard when the human is perceived through
the robot’s onboard cameras only. By using the cameras built-in the robot head only, the angle of view
is limited to essentially a single perspective and depth resolution is limited due to the small baseline. In
the attached paper [FHD09], we present a novel approach, which is able to deal with these issues and
still run in real-time on regular hardware.

2.1.1 Method description

In our previous work, we presented a stereo-based approach that combines 3D position tracking of key
body parts (hands and head) with articulated upper body tracking in real-time [AUAD07]. The goal
was on accurate acquisition of real 3D upper body motion, intended for reproduction and imitation with
humanoid robot systems. The system runs with a processing rate of approx. 15Hz on regular hardware.

Our primary goal was now to remove the dependency on the skin-color based hand tracker, in order to
achieve more robust application in the presence of occlusions and heavily cluttered backgrounds. Secondly,
our previous method required a uniformly colored shirt for the purpose of figure ground segmentation, in
order to distinguish body contour edges from background edges. Furthermore, tracking of the legs was
to be incorporated. Note that the increase in robustness by removing the dependency on a hand tracker
is bought at the expense of less accurate estimation of the hand positions.

In the attached paper [FHD09], a novel approach to the 3D human motion tracking problem is proposed,
which combines several particle filters with a physical simulation of a flexible body model. The flexible
body model allows the partitioning of the state space of the human model into much smaller subsets, while
finding a solution considering all the partial results of the particle filters. The flexible model creates the
necessary interaction between the different particle filters and allows effective semi-hierarchical tracking
of human body motion. The physical simulation does not require inverse kinematics calculations and is
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hence fast and easy to implement. Furthermore an appearance model is built on-the-fly, which allows
successful application without figure ground segmentation. The system offers a convenient initialization
procedure, which allows to start tracking automatically. The processing rate amounts to 10Hz on a
regular PC using a stereo camera and is hence suitable for Human-Robot Interaction applications.

The core of the system is a physical simulation of a flexible body model. This model is a mass-spring
system that models important joints as mass-points and the bones as springs between the joints. The
structure of the model is illustrated in Fig. 2.1. The model is enhanced with further constrains for the
range of angular motions and self collisions.

head

neck

left shoulder

left elbow
left waist

left wrist
left hip

left knee

left ankle

Mass-Spring
System

Head
PF

L. Arm
PF

R. Arm
PF

R. Leg
PF

L. Leg
PF

Figure 2.1: Left: Mass-Spring model of a human. Center: Interaction between the particle filters (PF)
and the simulation. Right: Subset of the model used for filtering.

The actual tracking consists of two steps: First the head is tracked with a regular skin-color based head
tracker – this is the only part that makes use of the stereo camera – and the position of the model is
moved according to the head position. Then the arms and legs are tracked by first estimating the state of
the arms and legs individually with the particle filters. In the next step, the four estimates are integrated
into a final estimate for the body state by inserting the results for the extremities into the body model
and then running the physical simulation under gravity. Fig. 2.1 (center) shows the interaction between
the particle filters and the model. The particle filters and the simulation interact with each other and
can mutually correct mistrackings.

The particle filters for the extremities make use of a motion model that is tailored to tracking with a
single perspective, in particular by increasing noise in the depth direction. The constraints of the flexible
model are enforced within the motion model. This allows to deal with non-linear arm and leg motion (see
Fig. 2.1, right). The measurement model for evaluating a given hypothesis combines and edge cue and
a region-based color cue. The arms and legs are modeled as cylinders, which allows efficient projection
into the image. The measurement model incorporates an occlusion model, which is important when using
only a single perspective. The color cue compares the color in the image with a color model for the arms
and legs, which is learned during the automatic initialization procedure.

The single-threaded tracking system runs on a Pentium 4 3.2 GHz CPU with a processing rate of 10 Hz.
Image processing is performed on 640×480 color images. The particle filters use 200 particles per ex-
tremity and 100 particles for the head. Processing time amounts to ≈35 ms for the image processing and
≈50 ms for particle filtering, where the motion model is consuming about half the processing power.

The tracking of the arms is able to follow the motions of a single arm robustly, even through complicated
and ambiguous situations. It is even able to detect if parts of a limb are hidden behind the body or the
head. The interactions of the two arms are tracked as long as both arms are visible to a certain extent,
cross-over situations are successfully tracked due to the occlusion model. Legs are tracked individually,
including the detection of knee bends and folded up calves. When a person turns sideways, one leg is
completely occluding the other, which can cause significant confusion for the filters. As the tracking
depends strongly on the localization of the head, more precisely the face, the person cannot turn away
more than 90 degrees from the camera. The suspension of the head together with the simulation of
gravity implies that the person must be standing. The constraint framework allows easy implementation
of external constraints such as collisions with objects or furniture.
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2.2 Recognition of human postures based on elastic, partial,
scale invariant contour matching

2D shape matching is a fundamental problem in computer vision which amounts to describing a 2D shape
and calculating its similarity to others. The rationale behind this work in the context of GRASP is that
given such a method, the 2D outline/contour of a human figure in an image can be matched with one of
a few example, prototype contours, representing a human in a particular posture. This might be helpful
in both (a) identifying a segmented object as a human and (b) recognizing their posture. Despite the
fact that this approach has been originally developed for human detection and posture recognition, the
methodology is broad enough and can be applied also to perform hand posture recognition or even object
recognition. As such, the interest in it is not isolated to the task 1.3 of GRASP (human detection and
tracking) but extends to the task 1.4 (hand detection and tracking) and also to the WP4 activities related
to environment perception. The methodology followed to the problem of 2D shape matching is the theme
of a publication under preparation.

2.2.1 Brief overview of the proposed method

Most of the existing shape matching methods [LJ07, BMP02, EAACC08, FS07, BCB09, WTYY09,
dSTF07, BET09] work by defining shape descriptors which are then compared by the selection of an
appropriate distance function. The smaller the distance of the representations, the closer the shape
similarity between source and reference shapes. The quality of the shape matching process depends on
whether the shape descriptor really captures the essential, intrinsic aspects of shape and on whether
the similarity measure between such descriptors is a function that agrees with the human perception
of shape similarity. Despite their simple definition, both these dimensions of shape matching prove

(a)

(b)

Figure 2.2: Matching open with closed contours. A set of open contour prototypes (a) have to be matched
with a closed contour (b). Figure (b) also shows the results of matching.

to be challenging problems. Shapes belonging to the same class may differ substantially in scale and
orientation. For the particular case of articulated and/or deformable objects such as humans and hands,
transformations between instances of the same object may result in quite different shapes. Contours to
be matched are the result of some kind of segmentation process which, being imperfect, may result in
considerable amounts of noise that needs to be tolerated. Objects may appear occluded by other objects,
so the identification of the correct class should also be based on partial evidence. Being viewpoint
dependent, 2D shapes of the same objects may differ considerably. On the other hand, shapes that
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are globally quite similar may correspond to different classes because of the existence of some local
discriminating property. Last but not least, in realistic settings, all of the above complexities do not
appear isolated, but combined, making the solution of the 2D shape matching problem a very challenging
one. The problem is further complicated when one needs to match part of a closed contour with an open
one [CFH+09, LMWY07].

Consider for example the situation shown in Fig.2.2. Figure 2.2(a) shows four prototype open contours
(shown in red) corresponding to parts of a human figure. These prototypes are annotated with points
corresponding to critical aspects of human shape (joints). Given another, possibly scaled, rotated and
deformed closed contour of a human figure (see figure 2.2(b)), we are interested in determining which of
the open prototype contours of figure 2.2(a) matches best to the closed contour of the human figure in
figure 2.2(b). It can easily be verified that all the aforementioned difficulties contribute in complicating
the 2D shape matching problem. None of current shape matching techniques provides solutions to all
problems listed above [LMWY07]. The proposed approach solves efficiently this problem and gives, as
a byproduct, the correspondence of the selected points between the open and the closed contours (also
shown in figure 2.2(b)).

In the context of this work we developed a new technique for matching 2D shapes. First, we proposed a
new descriptor as a means of local, 2D shape representation. The proposed descriptor is, by construction,
totally scale and rotation invariant. Moreover, it tolerates substantial articulations and non-rigid shape
deformations. Given this descriptor, we introduce a scheme for sampling a given 2D contour for deciding
where 2D shape descriptors should be computed. The rationale behind this spatially non-uniform sam-
pling method is to provide sparser shape representations in areas of the shape that are less discriminant
and denser shape representations in areas of the shape that are more discriminant. This makes it possible
to provide less ambiguous input to the global shape matching method performed in subsequent steps.
Another key property of this sampling process is that it produces approximately the same number of
shape descriptors in scaled and rotated versions of the same shape. Once the shape descriptors have been
computed, a variant of an existing dynamic-programming based matching technique [SFC07] is proposed
to take care of the global 2D shape matching process. The key novelty in this variant is its ability to
handle partial matching. Thus, matching of a source, open contour to the best matching part of another
closed, target contour can be established. Figure 2.2(c) shows an example of matching the open contour
of Fig.2.2(a) to the contour of the foreground region in Fig.2.2(b). The details of the proposed approach
is part of a publication which is currently under preparation.

2.2.2 Experimental results

The proposed approach for 2D shape matching has been validated by several experiments. The experi-
ments can be classified into two classes, one related to the performance of the variant of the method for
closed contours, and another one that assesses the capabilities of the proposed method to match closed
and open contours.

For the problem of full shapes matching, and for the sake of quantitative evaluation, we performed
experiments with MPEG-7 Core Experiment CE-Shape-1 data set [Lat]. This data set contains 70
different classes of objects, each containing 20 class representatives, resulting in 1400 different images.
We did an exhaustive classification test that employed each of the 1400 images as a query object. The
goal of the proposed method was to rank the similarity of the query object against the full data set of
1400 images. Representative results from this experiment are shown in Figure 2.3.

Figure 2.4 presents quantitative results on the performance of the proposed method on the Bullseye test
over the MPEG7 data set. The performance of another state of the art method [LJ07] is also provided
for comparison.

Similar results have been also obtained in “GESTURES” and “MARINE” data sets [Pet].

On the MPEG7 data set, we also tested the performance of the proposed method in matching open
contours. Characteristic examples are shown in figure 2.5.

Additionally, the proposed method has been tested in more GRASP-oriented, home-made data sets. More
specifically, open contours corresponding to hand postures have been manually defined (figure 2.6, top)
and then matched in long sequences of performing hands. Snapshots of the results obtained are shown
in figure 2.6, bottom. Analogously, open contours corresponding to human body postures have been
manually defined (figure 2.7, top) and then matched in long sequences of performing humans. Snapshots
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Figure 2.3: Characteristic results for the MPEG7 sequence. The first column corresponds to the query
image, the rest columns are retrieved shapes in the order of decreasing similarity.

Figure 2.4: Performance of the proposed method in the Bull’s Eye test on the MPEG7 data set.

of the results obtained are shown in figure 2.7, bottom. As a byproduct, the results show the identified
human body joints in the test snapshots.
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Figure 2.5: Characteristic examples of open (partial) contour matching in the MPEG7 data set.

Figure 2.6: Matching open with closed hand contours. A set of open contour prototypes top) have to be
matched with closed contours (bottom).

Figure 2.7: Matching open with closed body contours. A set of open contour prototypes (top) have to
be matched with closed contours (bottom).
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2.3 Skin-color based tracking of human body parts

In this section, we present a novel technique that, based on skin color, can robustly track naked human
body parts such as faces and hands. Such body parts may move in complex trajectories, occlude each
other in the field of view of the camera and vary in number over time [AL04, BALT08, ZBA08]. A block
diagram of the proposed method is presented in Fig. 2.8. As shown in this figure, the proposed approach
consists of three layers.

2.3.1 Layer 1: Assignment of probabilities to pixels

Within the first layer, the input image is processed to identify pixels that potentially depict human
hands and faces. For this purpose, we utilize color information as well as information from a fore-
ground/background extraction algorithm. The results of this first step is the probability P (H | C =
c, F = f) for each pixel that this pixels belongs to a hand or a face (H), given its color c and the
information of whether it belongs to foreground or not (F = f).

2.3.2 Layer 2: From pixels to blobs

This layer applies hysteresis thresholding and connected components labeling on the probabilities deter-
mined at layer 1. These probabilities are initially thresholded by a “strong” threshold Tmax to select all
pixels with P (H | C = c, F = f) > Tmax. This yields high-confidence skin pixels that constitute the seeds
of potential hand/face blobs. Then, a second thresholding step is performed with a “weak” threshold
Tmin that also takes into account connectivity with already identified skin-colored pixels. During this
step, pixels with probability P (H | C = c, F = f) > Tmin where Tmin < Tmax, that are immediate
neighbors of skin-colored pixels, are recursively added to each blob. A connected components labeling
algorithm is then used to assign different labels to pixels that belong to different blobs. Size filtering on
the derived connected components is also performed to eliminate small, isolated blobs that are attributed
to noise and do not correspond to meaningful skin-colored regions.

2.3.3 Layer 3: From blobs to hypotheses

Within the third processing layer, blobs are assigned to hand and/or face hypotheses which are tracked
over time. Tracking over time is realized through a scheme which can handle multiple objects that may
move in complex trajectories, occlude each other in the field of view of a possibly moving camera and
whose number may vary over time.

According to this approach, a new hypothesis is created each time a new blob appears. A Kalman
tracker is assigned to each hypothesis in order to track its location and its speed. In order to solve the

Figure 2.8: Block diagram of the proposed approach. Processing is organized into three layers.
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data association problem, i.e., to assign image pixels to hypotheses in the presence of occlusions, a novel
approach has been developed and used. Image pixels are propagated in time according to a motion model
that corresponds to the current Kalman filter state and the uncertainty in the position and the speed
of the whole blob. Pixels belonging to observed blobs are assigned to old hypotheses according to the
density of the propagated pixels.

(a) (b)

(c) (d)

Figure 2.9: The proposed approach in operation. (a) Initial image, (b) background subtraction result,
(c) pixel probabilities, (d) hand and face hypotheses.

Fig. 2.9 depicts various intermediate results obtained at different stages of the proposed approach. A frame
of the test sequence is shown in Fig. 2.9(a) Fig. 2.9(b) depicts the result of the background subtraction
algorithm, i.e., P (H | C = c, F = f). Fig. 2.9(c) depicts the pixel probabilities and, finally, Fig. 2.9(d)
depicts the hand and face hypotheses as tracked by the proposed approach

The operation of the tracker developed for layer 3 of the proposed approach is illustrated in Fig. 2.10
and Fig. 2.11. In Fig. 2.10(a) and Fig. 2.10(c) we can see the magnified 95% uncertainty ellipses for
the predicted location and speed of each hypothesis. As can be easily observed, hypotheses that move
rapidly (e.g., hypothesis 2 in Fig. 2.10(a)) or hypotheses that are not visible (e.g., hypothesis 2 in
Fig. 2.10(c)) have larger uncertainty ellipses. On the other hand, hypotheses that move very slowly
(e.g., face hypotheses) can be predicted with more certainty. This is also reflected on the location of the
predicted pixels (Fig. 2.10(b) and Fig. 2.10(d)) which tend to be more concentrated (higher density) for
hypotheses that are more predictable.

In Fig. 2.11 we can see how the algorithm behaves in a case where three hypotheses simultaneously
occlude each other, leading to a difficult data association problem. The top row depicts the predicted
pixel locations for each of the three valid hypotheses. The bottom row depicts the final assignment of
blob pixels to hypotheses, according to the density of the predicted pixel locations.

The performance of the proposed tracker is also demonstrated in Fig. 2.12 which shows the state of the
tracker corresponding to a number of frames out of the same image sequence. As can be easily observed,
the tracker succeeds in keeping track of all the three hypotheses despite the occlusions introduced at
various fragments of the sequence.
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(a) (b)

(c) (d)

Figure 2.10: Tracking hypotheses over time (a,c) magnified uncertainty ellipses corresponding to predicted
hypotheses locations and predicted hypothesis speed, (b,d) predicted pixel locations.

(a) (b) (c)

(d) (e) (f)

Figure 2.11: A difficult case with three hypotheses that appear as a single blob. (a,b,c) predicted pixel
locations for each of the three hypotheses, (d,e,f) pixels finally assigned to each hypothesis.
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(a) (b) (c)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 2.12: Indicative tracking results for twelve segments of the office image sequence used in the
previous examples. In all cases the algorithm succeeds in correctly tracking the three hypotheses.
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Chapter 3

Human hand detection and tracking

This chapter reports on the activities related to the task 1.4, “Observing human grasping”. This chapter
presents in detail the work carried out by FORTH along this direction. The description includes the
rationale behind developing a hand tracker specifically for grasping hands, the construction of a 3D hand
model and of the tools to manipulate it, the observation model as well as the techniques considered for
tracking the 3D hand model in image sequences based on the adopted observation model. In section 3.2,
FORTH describes preliminary work on a parallel and, hopefully, very useful approach towards a compact
representation of hand trajectories that is based on Restricted Boltzmann Machines. The rationale behind
this work is that approach might well enhance the robustness and the quality of hand tracking results
when appropriately integrated with the probabilistic hand tracking framework. Section 3.3 reports on
joint activities among LMU, UniKarl and FORTH in acquiring an annotated data set of hand grasping
sequences. Several subjects perform different type of grasps on several types of objects. Each and all
of these experiments is observed by a calibrated stereo vision system and image sequences are recorded.
Simultaneously, a Polhemus tracker records (synchronously to the image sequences) the trajectories of
eight carefully selected points on the subject’s hand (five fingers, wrist, thumb, and center of palm). The
resulting data set is expected to prove very useful as a benchmark for the qualitative and quantitative
evaluation of hand tracking in the context of grasping activities.

3.1 Detection and tracking of a grasping hand

Hand tracking has great potential as an attractive method for providing natural human-computer in-
teraction (HCI). Other areas of hand tracking application include navigation in virtual environments,
gesture recognition, human-robot interaction and motion capture for animation use.

Capturing hand articulation is a challenging problem, because the hand is the most effective, general-
purpose interaction tool among the other body parts, presenting dexterous functionality in communication
and manipulation and exhibiting many degrees of freedom. Representing the hand pose by the angles at
each joint, the configuration space spans a 27-dimensional space. In addition, self-occlusions of fingers
introduce uncertainty for the occluded parts. Another reason that makes the problem really difficult is
that a huge amount of data needs to be processed for each sequence of frames and a real-time imple-
mentation of any algorithm becomes quite demanding in terms of computational power. Finally, the fact
that the hand moves often in front of cluttered background and that it has very fast motion capabilities
make the real-time tracking procedure a very demanding task.

Two general approaches have been pursued to capture hand articulation. The first one is the appearence-
based approach, which estimates hand configurations from images directly after having learned the map-
ping from the image feature space to the hand configuration space [AS03, RASS01, Shi01, SSKM98,
WH00]. The mapping is highly nonlinear due to the variation of the hand appearences under different
views. Further difficulties are posed by the collection of large training data sets and the accuracy of pose
estimation. On the other hand, appearence based methods are usually fast, require only a single camera
and have been successfully employed for gesture recognition tasks.

The second approach is the model-based approach, which uses a 2D or 3D hand model [RK94, SMC01,
SMFW04]. In case of a 3D model the hand pose is estimated by matching the projection of the model
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Figure 3.1: Skeletal hand model: hand anatomy (left) and hand kinematics (right)

and the observed image features. The task is then formulated as a search problem in a high dimensional
configuration space. The research areas of this method include the efficient construction of realistic 3D
hand models, the dimensionality reduction of configuration space and the development of fast and reliable
tracking algorithms to estimate the hand posture.

3.1.0.1 Literature review

Different methods have been proposed to capture human hand motion. A recent overview of hand tracking
methods in the context of Human Computer Interaction (HCI) can be found in [EBN+07]. The following
review will be divided into four parts, corresponding to hand modeling methods, observation modeling
methods, filtering methods used for tracking and dimensionality reduction methods used to handle the
high dimensional nature of the problem.

Hand modeling

Several approaches have been presented for the modeling of hand’s kinematics and shape, ranging from
simple and rough to complete and analytical models.

Regarding the kinematics modeling, most of the works adopt a 27 DOF model, which complies with
recent biomechanical studies [DPD+07] (see Figure 3.1). The nine Intermediate phalanges (IP) joints
can be accurately described as having only one DOF, flexion-extension. All five Metacarpo-Phalangeal
(MCP) joints, however, are described with two DOF, namely abduction/adduction in the plane defined
by the palm and flexion/extension. The kinematic hand model described above is the most natural
choice for parameterizing the 3D hand configuration but there exist a few exceptions using other types
of representations. Sudderth et al. [SMFW04] proposed independent rigid bodies for each component of
the hand, leading to a highly redundant model. The kinematic constraints between these rigid bodies
were enforced using a prior model in a nonparametric belief propagation scheme. Heap et al. [HH96]
modeled the entire surface of the hand using PCA applied on MRI data. Such a representation requires
further processing to extract useful higher-level information, such as pointing direction. However, it was
shown to be very effective in reliably locating and tracking the hand in images.

As far as the shape modeling of the hand is concerned, both articulated and elastic components have to
be taken in consideration. However, computational efficiency reasons make the use of very complex shape
models inevitable, because the hand model needs to be projected many times on the input image(s) to
obtain matching features. The above fact has motivated the use of geometric primitives such as cylinders,
spheres and ellipsoids attached to each link of the hand skeleton. Stenger et al. [SMC01] used quadrics as
shape primitives. Using projective geometry, fast algorithms were provided for projecting the hand model
on the image plane and accounting for the self-occlusions during the projection phase. An even more
economical, view-dependent model called cardboard model was used by Wu et al. [WH01]. Although these
rough hand models can be processed efficiently, one may also anticipate systems with better performance
using more complex models. In [KH94] a B-spline surface was used to model the hand’s surface and in
[BKMVG04, DDH04, dlGPF08] a deformable skin model was implemented using a skinning technique.
However, some of these studies make use of 3D features obtained from depth sensors or stereo vision,
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eliminating complex projection operations.
Finally, the problem of kinematic fitting is tackled in various ways. In most cases manual calibration is
performed, using markers or landmark points. Recenty, Lien et al. [Lie05] introduced a marker-based
calibration method using scalable inverse kinematic solutions.

Observation modeling

Feature extraction and matching is a very crucial module in a hand tracking system. The design and
implementation of this module has a considerable effect on the robustness of the system to self-occlusions
and background clutter. The hand motion creates images that are very difficult to analyze in general. High
level features (such as fingertips, fingers etc) provide a compact representation of the input supporting
high speeds. However, the extraction of features can not be done robustly without any severe pose
restrictions. Therefore the majority of studies rely on low-level features.

Edges or contours are features that can be used in any model-based technique. In [SMC01] for example
a volumetric model of the hand is projected to the images and the occluded contours are calculated. The
point correspondences between 3D model contour points and image edges are computed based on a certain
proximity criterion. The distance between corresponding points give the matching error. Edge orientation
is combined with chamfer matching to a more robust application in [TSTC03]. In [STTC04, SMFW04]
skin color models were employed to increase robustness. The likelihood of the segmentation, asserted
by the projection of the model, was calculated using background and skin color models as a measure of
similarity. A combination of edges, optical flow and shading was proposed in [SLSO03] to successful track
hand motion, under severe occlusions.

There are also a few studies that use 3D features. 3D data contain valuable information that can help
eliminate problems due to self-occlusions which are inherent in image-based approaches. On the other
hand, an exact, real-time and robust reconstruction of the hand from multiple cameras is very difficult
and computationally inefficient.

Filtering methods

The tracking algorithms that have been applied to hand tracking problem can be divided to two categories.
The first one contains single hypothesis algorithms while the second one constains algorithms that can
track multiple hypotheses.

Single hypothesis tracking corresponds to a best fit search where the matching error is minimized. For
this purpose, Gauss-Newton method augmented with a stabilization step was used in [RK94]. A plethora
of other minimization algorithms were used, including Nelder Mead Simplex (NMS) [OH99a], Genetic
Algorithms (GA) and Simulated Annealing (SA) [NSMO96]. Bray et al. [BKMVG04] used Stochastic
Gradient Descent along with depth features. A small number of points were selected randomly at each
iteration to reduce computational cost and avoid spurious local minima. The resulting algorithm was
called Stochastic Meta Descent (SMD). Finally, the Unscented Kalman Filter has been used for single
hypothesis tracking in [SMC01]. UKF applies a deterministic weighted sampling of the Gaussian posterior,
in order to be able to handle a nonlinear observation model.

There are many approaches for multiple hypotheses tracking. The majority of them use a Bayesian
approach or some similar formulation. Particle filtering is a well-known technique for implementing
recursive Bayesian estimation using Monte Carlo simulations. It is used in [SMFW04] in combination
with a Bayesian network, in which inference was made using Nonparametric Belief Propagation algorithm
to produce robust tracking results in the presence of self-occlusions. Thayananthan et al. [TSTC03]
have implemented Bayesian filtering in a grid-based manner, resulting in the algorithm called tree-based
filtering. Bayesian filtering was performed over the tree by assuming piecewise constant distribution over
its leaves. During tracking, the tree was traversed to update the probabilities.

Dimensionality reduction methods

Although active motion of the hand is highly constrained, this fact is not reflected in the kinematic model.
An attempt to capture natural hand motion constraints is by complementing the kinematic model with
direct constraints. However, the very intricate structure of the hand does not allow expressing all the
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constraints in a closed form. Furthermore, in some specific applications (e.g. grasping) the motion of
the hand is further restricted by the scope of the spcecific movement and therefore other constraints
which have nothing to do with structural limitations are also posed. These problems have motivated
the use of learning-based approaches, which exploit some ground truth data (collected using data gloves
or other types of sensors). Thus, the feasible configurations of the hand are expected to lie on a lower
dimensional manifold due to the constraints that exist. Lin et al. [LH04] applied PCA on a large amount
of joint angle data to construct a 7-dimensional space. Another way to use data collected from a glove
is to generate synthetic hand images to build a template database of all possible hand configurations as
in [STTC04, AS03]. In another approach, the dynamics of hand motion were learned in an attempt to
help the tracking algorithm. Precisely, [ZH03] presented an eigen-dynamic analysis method for modeling
the non-linear hand dynamics and applied PCA to reduce the dimensionality of the problem. Finally,
Thayananthan et al. [TSTC03] represented the configuration space as a tree, which was constructed using
hierarchical clustering techniques. This tree structure enables fast hierarchical search through Bayesian
Filtering.

3.1.0.2 Design decisions

Being motivated by the aforementioned literature review we have taken some decisions regarding the
components that will be used to design our hand tracking system. The fact that the hand tracker will be
used during hand grasping motions played a principal role to the design of our system.

Therefore we decided to adopt the hand model proposed by Stenger et. al in [SMC01]. This model,
despite the fact that it is not complete it captures the kinematics and the shape of the hand in a quite
precise way, such that the residual error between model projection and hand image is assumed to be
negligible. Additionally, the projection of the 3d model into the image plane is done in a computationally
efficient way, allowing the tracking system to run in real-time or close to real-time.

Another design decision that we have taken is the use of edge and skin color cues in the observation
model. These low-level features can be efficiently computed and matched with the model projection.
This characteristic turns to be very important as the feature extraction and matching procedure is
repeated many times during the minimization of the residual error.

Finally, regarding the tracking algorithm and the dimensionality reduction approach that will be followed,
research is still in progress. Although some initial tracking system has been implemented (UKF), it does
not fulfill our requirements. Thus, another tracking system in combination with some dimensionality
reduction algorithm will be developed. Some more details can be found in the future work section of this
report.

3.1.1 3D model of a human hand

3.1.1.1 Types of models and model selection

The choice of a particular model for the human hand raises important questions and is a crucial task
that affects its robust and effective tracking in a sequence of images. Most of the common models used
for modeling the human hand or other human limbs could be described as being based on a skeleton that
contains a set of articulations connected by links that define their relative positions. Different types of
primitives representing either parts of the hand or some features that can be observed or measured, are
attached to these skeletons.

Some authors use models that approximate parts of the human hand, in terms of shape, while others
prefer simpler models that are rough representations of the shape but precise in terms of relative position
of some particular features. Most models that are created for animation purposes are based on splines or
meshes, as they can produce a more realistic visual representation of the modeled part (i.e. human hand,
human body), whereas those created for computer vision applications are mostly based on quadrics or
other simpler geometric shapes.

More specifically, the works of Stenger [SMC01], Ouhaddi [OH99b], Sidenbladh [SBF00] and Delemarre
[QO01] employed rough geometric models based on cylinders, spheres and even parallelepipeds. More
precise models were used by Terzopoulos [TM91] who used superquadrics, Sminchisesku [ST03] who used
meshes derived from sampling the surfaces of superquadrics, Deutscher et al. [DBR00] who used quadrics
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whose surface was sampled to create a mesh of 3D points and Lerasle [FGD99] who used a mesh of points
to model a human leg.

The advantage of the use of quadrics comes from their simple manipulation and the possibility of applying
all kinds of affine transformations and still obtain their definition in analytical form, as well as their
projection in the image plane of some camera. On the contrary, analytical expressions for mesh based
models are, in general, not possible to derive and their projection on an image must be done on a point-by-
point basis while also taking care of their neighborhood relationships. Although mesh-based models are
adequate for applications that require a great modeling precision, they may be completely inappropriate
for other applications that require computational efficiency.

Deformable models have the advantage that they can be adjusted precisely to each tracked target, but
these deformations represent additional degrees of freedom that increase the dimensionality of the prob-
lem. Another reason for rejecting this kind of models is that the articulated structures, as said before,
are based on a skeleton whose configuration defines the appearance of the object. The deformations that
appear on the object’s surface due to some elasticity of the flesh and skin are normally small when com-
pared with changes in the relative position of the limbs due to rotation around some articulations. Thus,
rough models (e.g. based on quadrics) are better suited for vision-based tracking applications where the
ease of model manipulation is of greater importance relative to the visual realism.

Taking into account the aforementioned considerations, the human hand is modeled as a 3D articulated
structure composed of truncated quadrics. These geometric primitives can be easily manipulated and
projective geometry provides the tools to obtain their projections in an elegant way. The adopted hand
model does not model local deformations. This implies that when the model and the hand are in the
same pose, a residual error between model projection and hand image still remains. However, it may be
assumed that this error is not significant for the purpose of pose recovery, and may be tolerated given the
efficient contour projection. In the following sections we provide a detailed description of the construction
of the proposed hand model.

3.1.1.2 Projective geometry of quadrics and conics

A quadric in projective 3-space P3 is the locus of all points X satisfying a homogeneous quadratic equation

XT QT = 0 (3.1)

where X = [x, y, z, 1]T is a homogeneous vector representing a 3D point and Q is a 4x4 symmetric matrix
only defined up to a scale. It can be easily verified that the equation above corresponds to the quadratic
equation:

q11x
2 + q22y

2 + q33z
2 + 2q12xy + 2q13xz + 2q23yz + 2q14x + 2q24y + 2q34z + q44 = 0 (3.2)

Thus, a quadric depends only on nine independent parameters.

Quadrics of interest to modeling a hand

There are 17 standard types of quadratic surfaces, but only four of these types are of particular interest:
ellipsoids, cones, elliptic cylinders and parallel planes. These types of quadrics are shown in Fig.3.3 and
their properties are presented below in detail.

Ellipsoids are represented by
x2

a2
+

y2

b2
+

z2

c2
= 1 (3.3)

and the corresponding matrix is given by

Q =


1
a2 0 0 0
0 1

b2 0 0
0 0 1

c2 0
0 0 0 −1

 (3.4)

and it is full rank.
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Figure 3.2: Quadrics of particular interest to modeling a human hand: ellipsoid, cone, elliptic cylinder,
pair of planes

Cones are represented by matrices Q with rank(Q)=3. The equation of a cone aligned with the y-axis
is

x2

a2
− y2

b2
+

z2

c2
= 0 (3.5)

and the corresponding matrix is

Q =


1
a2 0 0 0
0 − 1

b2 0 0
0 0 1

c2 0
0 0 0 0

 . (3.6)

Elliptic Cylinders are represented by matrices Q with rank(Q)=3. The equation of an elliptic cylinder
aligned with the y-axis is

x2

a2
+

z2

b2
= 1 (3.7)

and the corresponding matrix is

Q =


1
a2 0 0 0
0 0 0 0
0 0 1

b2 0
0 0 0 −1

 . (3.8)

Pairs of planes π1 and π2 are represented by matrices Q = π1π
T
2 + π2π

T
1 with rank(Q)=2. The

equation of a pair of planes, which are parallel to the xz-plane is

(y − y1)(y − y2) = 0 (3.9)

where π1 = [0, 1, 0,−y1]T and π2 = [0, 1, 0,−y2]T and the corresponding matrix is

Q =


1 0 0 0
0 0 0 − (y1+y2)

2
0 0 0 0
0 − (y1+y2)

2 0 y1y2

 . (3.10)

Coordinate transformations of quadrics

Any point X that verifies equation (3.1), i.e. is situated on quadrics’ surface can be transformed by pre-
multiplying it by some homogeneous matrix H. This matrix can represent transformations like rotation,
translation, scaling and shear, and combinations of those. As long as this transformation can be inversed,
we may rewrite equation (3.1) as

(H−1HX)T QH−1HX = 0 (3.11)
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Figure 3.3: A truncated ellipsoid QΠcan be obtained by finding the points of the quadric Q that satisfy
XT ΠX ≥ 0

Thus, replacing X ′ = HX we get
X ′T H−T QH−1X ′ = 0 (3.12)

Then, it holds that
X ′T Q′X ′ = 0 (3.13)

where Q′ = H−T QH−1.

Equation 3.13 implies that any quadric matrix Q′ can be factored into components representing its shape,
given in normal implicit form and motion in the form a Euclidean transformation. Furthermore, given
this result, it is possible to arrange a set of quadrics in any relative configuration by applying the required
transformation to each of them. This is also required to perform the animation of a model composed
of quadrics linked by articulations. For any model based on a kinematic chain (i.e. the human hand
model), a transformation matrix needs to be computed for each parameter of the model, be combined
with matrices resulting from the precedent parameters and then be applied to each subsequent part. The
combined transformation matrix Hj to be applied to part j of the chain is given by

Hj = Hj−1T j (3.14)

where T j represents the transformation to be applied to part j relatively to the previous one. H0 = T 0

represents the transformation encoding the rotation and translation of the base part of the kinematic
chain relative to the world coordinate system.

Truncated quadrics

Truncated quadrics can be used as building blocks for modeling more complex shapes [RK94, SMC01,
TM91]. For any quadric Q the truncated quadric Qπ can be obtained by finding the points X for which:

XT QX = 0 (3.15)

and
XT ΠX ≥ 0 (3.16)

where Π is a matrix representing a pair of planes that delimit the quadric (see Figure 3.3).
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Geometry of imaged quadrics

Consider an image of a quadric surface. Any homogeneous point on the surface, X, projects into the
image as x = PX where P represents the 3 × 4 projection matrix for the camera. This projection
equation can be expanded, representing the projection matrix as P = [A a] with A and a being 3× 3
matrix and a 3-vector respectively, as:

[
A a

] [
X3

1

]
= λx. (3.17)

The scalar, λ, is an arbitrary scale factor. It follows that back-projecting a ray from the image point x
gives

X3 = λA−1x − A−1a. (3.18)

Due to the needs of the following analysis, it will be useful to expand equation (3.1) as

[
XT

3 X
] [

Q33 q
qT q

] [
X3

X

]
= 0 (3.19)

where Q33 is a symmetric 3× 3 matrix, q a 3-vector and q is a scalar. Substituting equation (3.18) into
the quadric equation (3.19) gives a quadratic equation in λ. To simplify the notation, the substitution
c = −A−1a is made (c representing the camera center):

(xT A−T Q33A
−1x)λ2 + 2(xT A−T Q33c + xT A−T q)λ + (cT Q33c + 2cT q + q) = 0 (3.20)

Hence there are zero, one or two real solutions for λ, which, substituted into equation (3.18) give X (the
point(s) on Q projecting to x). The different solutions for λ have the following geometric interpretations:

• If there are two real solutions for λ, there must be two corresponding points, X1 and X2, from
equation (3.18). Hence the ray hits the quadric surface at two points and the image point x lies
within the image of the quadric.

• If there are no real solutions for λ, the ray defined by equation (3.18) does not intersect with the
quadric Q at any real point. Thus, the point x does not lie within the image of the quadric. As λ
is complex, the point X will be correspondingly complex and have no geometric meaning.

• If there is just one real solution (two equal roots) to equation (3.20), there is a single point of
contact between the ray and the quadric surface; The ray ”touches” the surface, and the point X
lies on the contour generator (see Figure 3.4). Hence, the point x lies on the apparent contour or
silhouette of the surface in the image.

It should be noted that equation (3.20) makes no assumption about the rank of Q, and therefore holds for
all quadric surfaces. If the quadric passes through the camera center c, the final term, cT Q33c+2cT q+q,
disappears and λ = 0 is a solution for all x, as expected.

As stated earlier, a point on the apparent contour of Q is characterized by the fact that the back-projected
ray touches the surface at a single point. In this equation (3.20) gives two coincident solutions for λ. It
follows that the two solutions are given by

λ± =
−b±

√
b2 − 4ac

2a
, (3.21)

with
a = xT A−T Q33A

−1x (3.22)

b = 2(xT A−T Q33c + xT A−T q) (3.23)

c = cT Q33c + 2cT q + q (3.24)

The two solutions are coincident if, and only if, the discriminant, b2 − 4ac, is zero:

xT (A−T [Q33ccT Q33 + 2qcT Q33 + qqT − (cT Q33c + 2cT q + q)Q33]A
−1)x = 0 (3.25)
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Figure 3.4: The projection of a quadric Q onto the image plane is a conic C. The ray X(λ) defined
by the camera center and the point x on the conic is parameterized by the depth λ and intersects the
quadric at X(λ0)

It can be seen that equation (3.25) defines a conic in the image such that the image point x obeys the
conic equation xT Cx = 0 where

C = A−T [Q33ccT Q33 + 2qcT Q33 + qqT − (cT Q33c + 2cT q + q)Q33]A
−1 (3.26)

As an aside, it is interesting to note that this conic can be written as C = A−T C ′A−1 where

C ′ = Q33ccT Q33 + 2qcT Q33 + qqT − (cT Q33c + 2cT q + q)Q33. (3.27)

C ′ is also a conic which is only dependent on the camera center and Q, whilst C is a 2-D projective
transformation (homography) of C ′. This is an example of the more general rule that a change of the
orientation and other parameters of the camera (here specified by A) whilst maintaining the camera
center fixed, induces a general homography in the image. It is often possible to choose one camera matrix
as P = [I 0] so that the equation (3.26) reduces to

C = qqT − qQ33. (3.28)

In this case, for the points x on the conic C, the unique solution of equation (3.21) is

λ0 = − q

qT x
(3.29)

which is the depth of the point on the contour generator of the quadric Q (see Figure 3.4).

The normal vector n to the conic C at a point x can be computed in a straightforward way. The line l
which is tangential to the conic at the point x ∈ C is

l = Cx. (3.30)

For a proof of the above one can refer to [HZ04]. For l = [l1, l2, l3]T its normal in Cartesian coordinates
is given as n = [l′1, l

′
2]

T and is normalized to unit length.

3.1.1.3 Hand model construction

Structural model

Structurally, the hand model is composed of a set of quadrics {Qi}
NQ

i=1 as proposed by [SMC01] repre-
senting the anatomy of a real human hand [DPD+07].
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Figure 3.5: A 26 DOF 3D Hand Model composed by 35 quadrics

Figure 3.6: The kinematic model of a human hand. Nodes correspond to different hand parts and edges
to part joints

The palm is modeled using a truncated elliptic cylinder, its top and bottom closed by half-ellipsoids.
Each finger consists of three truncated cones, one for each phalanx. They are connected by truncated
spheres, representing the joints. Spheres are also used for the tips of fingers and thumb, as well as for
the connection of the fingers to the palm. The shape parameters of each quadric are set to be as close as
possible to the anatomical concrete values (measured on an adult healthy hand) reported in [DPD+07].
The set of the employed quadrics is shown in Figure 3.5.

Kinematic model

The kinematic constraints between the different hand model components are well described by revolute
joints [WH01]. Figure 3.6 shows a graph representing this kinematic structure, in which edges correspond
to rigid bodies and edges to joints. The two joints connecting the phalanges of each finger and thumb
have a single rotational degree of freedom, while the joints connecting the base of each finger to the palm
have two degrees of freedom, representing grasping and spreading motions. Thus, twenty joint angles
are required to describe the relative positions of all hand parts. The full configuration of the hand is
described by these angles along with the palm’s global position and orientation, giving a total of 26
degrees of freedom. Given the values for the aforementioned 26 angles, the derivation of the position and
orientation of each rigid body forms a forward kinematics problem which is easily solved via a series of
transformations using the Denavit-Hartenberg parameters (see [MTHC03] for more details).
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Figure 3.7: Constructing the model of a finger based on quadrics. Side-view of the finger (left) and
close-up view of the bottom joint(right)

Constructing a finger - an example

Figure 3.7 illustrates how truncated quadrics can be joined together in order to design a finger of the
hand. There may be several ways to represent the model shape. However, it is highly desirable to adopt
a compact representation dependent on the smaller possible number of values. These values are then
used to set the parameters of the quadrics. Each finger is built up based on cone segments and truncated
spheres. First, the parameters of the cone are determined, given the height of the cone segment h and
the radius r of the bottom joint (see figure 3.7). Let θ be the angle between the central axis of the cone
and a line on the cone passing through the origin. First, tanθ is derives as

sinθ =
r

h
⇒ cosθ =

√
1− r2

h2
=

√
h2 − r2 ⇒ tanθ =

r

h

h√
h2 − r2

=
r√

h2 − r2
, (3.31)

which is then used to obtain the width of the cone:

tanθ =
h

w
⇒ w =

hr√
h2 − r2

. (3.32)

The cone segment is clipped at y0 = h0 − f1H and y0 = h, where H is the distance between the centers
of the spheres representing the bottom joint and the center of the hemisphere on the tip of the finger,
and f1 is the ratio between the bottom finger segment to the complete length H of the finger.

The spheres are clipped so that they form a continuous shape with the conic segments.

sinθ =
y1

r
⇒ y1 = rsinθ =

r2

h
(3.33)

The parameters for the other cones and spheres representing the finger can be derived in a similar way.

3.1.1.4 Contour drawing

The idea when plotting a general conic is to factorize the conic matrix C in order to obtain its shape in
terms of a diagonal matrix D and a transformation matrix V such that C = V DV T .

Starting from the conic equation xT Cx = 0 and by rewriting it as

[
x y w

] a b d
b c f
d f g

x
y
w

 = 0 (3.34)
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ax2 + 2bxy + cy2 + 2dxw + 2fyw + gw2 = 0 (3.35)

and by making w = 1, this expression becomes the well known general expression of a planar quadratic
curve

ax2 + 2bxy + cy2 + 2dx + 2fy + g = 0 (3.36)

It can easily be verified that this equation contains terms that are not present when the conic is centered
and aligned with the frame axes. So, performing the required alignment consists primarily in determining
and applying the transformation that forces these terms to vanish.

The xy term can be eliminated by a suitable rotation. For a rotation of an arbitrary angle θ, the rotation
is performed by [

x
y

]
=

[
cosθ sinθ
−sinθ cosθ

] [
x′

y′

]
(3.37)

Substituting x and y into equation (3.36) and grouping items, it turns that

a′x′2 + 2b′x′y′ + c′y′2 + 2d′x′ + 2f ′y′ + g′ = 0 (3.38)

where the coefficients are
a′ = acos2θ − 2bcosθsinθ + csin2θ (3.39)

b′ = b(cos2θ − sin2θ) + (a− c)sinθcosθ (3.40)

c′ = asin2θ + 2bsinθ cosθ + ccos2θ (3.41)

d′ = dcosθ − fsinθ (3.42)

f ′ = dsinθ + fcosθ (3.43)

g′ = g (3.44)

The term 2b′x′y′ may vanish by forcing b′ = 0. This implies that

θ =
1
2
cot−1(

c− a

2b
) (3.45)

and the equation (3.38) becomes

a′x′2 + c′y′2 + 2d′x′ + 2f ′y′ + g′ = 0 (3.46)

Now, it is possible to translate the conic so it becomes centered on the origin by noting that the above
expression can be transformed as

a′x′′2 + c′y′′2 = g′′ (3.47)

where

x′′ = x′ +
d′

a′
(3.48)

y′′ = y′ +
f ′

c′
(3.49)

g′′ = −g′ − d′2

a′
− f ′2

c′
(3.50)

So the aligned conic in matrix form is

D =

a′ 0 0
0 c′ 0
0 0 g′′

 (3.51)

and the transformation that makes this conic gain its original configuration is

V =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

1 0 − d′

a′

0 1 − f ′

c′

0 0 1

 (3.52)

We have now both the aligned conic and the transformation that can be used to produce the original
one. Similarly, such transformation can be applied to any point belonging to the aligned conic bringing
it to the corresponding position on the projected conic.
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Figure 3.8: Clipping of the projected conic segments

Drawing ellipsoids

We can draw C by drawing D and transforming these points according to V . From the ellipse equation
x̂T Dx̂ = 0 the radii a and b can be found as

a =
√
−d22

d00
b =

√
−d22

d11
(3.53)

where x̂ = [x′′, y′′, 1]T .

In order to find the ellipse points that are between the clipping planes it is more efficient to find the end
points of the arches to be drawn. For this the contour generator is intersected with the clipping planes
and these points are projected to the image. The contour generator is parameterized as

X(t) =
[
x(t)
ζ(t)

]
(3.54)

where ζ(t) is the inverse depth obtained from equation (3.29). One of the clipping planes is given by

π =
[

nπ

−dπ

]
(3.55)

The points of intersection of the contour generator and this clipping plane are given by the solution of
the equation

XT (t) π = 0 ⇔ ak1cost + bk2sint + k3 = 0 (3.56)

where the vector k is defined as
k = nπ +

qdπ

q
(3.57)

The solution to equation (3.56) can be derived by using the sine addition formula.

Drawing cones and cylinders

Being the case where the projection reduces to a single point, rare, uninteresting, and of trivial solution,
we will devote our attention to the other ones. Having obtained the expression of the centred and aligned
conic, which is known to be degenerate and corresponding to two lines for the projection of cylinders or
cones, two points will be easily chosen on each of these lines.
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Figure 3.9: Examples of handling self-occlusions of a 3D hand model

For the parallel line cases, we known that all the points have coordinates either y′′ = ±
√

g′′ for any x′′,
and x′′ = ±

√
g′′ for any y′′, for the horizontal and vertical cases respectively. So after knowing the value

of the constrained coordinate, it suffices to choose any convenient value to the other.

For the concurrent lines cases, we have x′′ = ±
√

b′y′′, so by replacing y′′ with any two values will give
the corresponding x′′ values. After defining the lines that correspond to the projection of the degenerate
quadrics, one has to find the clipping points that will become the extremities of the line segments.

Starting with two points {xi}, i = 1, 2 on each of the projected lines, the corresponding 3D counterparts
Xi can be found as in equation (3.54).

The frontier of visibility of the quadric is the set of the two lines that project onto the silhouette contour.
One of them is the line that passes through points X1 and X2. As a consequence, any other point
situated on the line that they define can be written as

Xn = X1 + λX2 (3.58)

Replacing the expression of the line’s generic point on the truncating planes equation, results in

(X1 + λX2)T Π(X1 + λX2) = 0 (3.59)

By rearranging and grouping the terms in λ it turns out that

λ2XT
2 ΠX2 + 2λXT

1 ΠX2 + XT
1 ΠX1 = 0 (3.60)

As both points X1 and X2 are known, the above expression is a second degree equation in λ, which
can be solved giving two λ values that, once replaced in (3.58), will give the required 3D intersection
points. The same procedure is repeated for the second line, and the projection of these points gives the
end points of each of the line segments that correspond to the projection of the truncated cones.

3.1.1.5 Handling occlusions among hand model parts

The next step is the handling of self-occlusions, achieved by comparing the depths of points in 3D space.
The depth of a point X(λ0) on the contour generator of a quadric Q can be found as described in
equation (3.29). In order to check if this point is visible, the equation of each of the quadrics is solved.
In the general case there are two solutions λi

1 and λi
2, yielding the points where the ray intersects with

the quadric Qi. The point X(λ0) is visible if it is closer to the camera than all the other points.

In order to speed up the computation, it is first checked whether the 2D bounding boxes of the corre-
sponding conic segments overlap in the image. If this is not the case, the calculation of the ray and
conic intersection can be omitted. Figure 3.9 shows an example of the projection of the hand model after
removing the occluded segments.

3.1.1.6 Implementation

Following the previously presented analysis, an implementation was build which is able to manage models
composed of truncated quadrics like cylinders, cones, and ellipsoids. These geometric primitives can be
connected to other ones by rigid links or by the way of articulations.
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Figure 3.10: A screenshot of the developed Matlab GUI that enables the user to modify the 26 DOFs of
the human hand model

The software implementation includes a Matlab GUI (see Figure 3.10), which enables the user to modify
all the degrees of freedom of the 3D hand model. More specifically, the GUI presents two figures, one of
the 3D hand model and another one of the projection of this model on a user selected type of camera.
Furthermore, a set of sliders give to the user the ability to modify all the 26 degrees of freedom of the
hand model. The user can also change the parameters of the camera (intrinsics and extrinsics) and the
parameters of the quadrics representing the human hand.

3.1.2 Hand observation model

A tracker can be described as a process that follows some observable manifestation of the state of a
system, commonly called measure, and infer that state from the observed manifestations. In many cases
the state is composed of some set of physical quantities which are not always directly observable, requiring
therefore an indirect estimation process.

There are often cases, where the observed measures are the result of some combination of the state
components, possibly including nonlinear transformations. In the presence of nonlinearities at the state-
measurement link, the state estimation is frequently performed by an error minimization procedure using
gradient descent based methods. An alternative approach is the maximization of a likelihood function
that encodes the probability of the current measurement to be a manifestation of the hypothetical state
x.

Furthermore, the tracking system must be robust enough to be able to infer the true state of the system
using measurements that are normally corrupted by noise produced by various sources. Another aspect
that must be taken into consideration, is that, for most cases, the system’s state can vary dynamically
and the tracking process must be able to converge to the true state values even if these are continuously
changing.

The success of a tracker depends on the use of an appropriate model for the system dynamics which will
guide correctly the predictions of the system state, on the ability of the tracker to explore the state space
avoiding local minima and on the shape of the error or likelihood function. In fact, even if a tracker shows
some weakness in one of these properties it can still exhibit a good behavior if there is a compensation
effect in the other ones. In the optimal case, this function presents a single minimum on the error function
and the local derivatives of this function exist for every point of the state space. Unfortunately, in many
cases these conditions are not verified and multiple local maxima or minima exist which can attract and
trap the tracker at locations of the state space which are far from the true state.

The interpretation of any 3D scene from 2D images obtained by perspective projection, has the intricate
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ambiguities that result from losing the depth information. In other words, such ambiguities result from
the fact that every 3D point located on a projective ray share the same image point. Although stereo
systems are normally used to try to remove these ambiguities, their use is limited to textured zones of the
scenes, where the usual Lambertian assumption can be used to establish the correspondences between
pixels of the two images.

In the present work, a stereo camera pair was used to track a human hand in 3D. Without the use
of the 3D reconstruction, a model is then mandatory to establish a relationship between the observed
image features and the model configuration. This also requires the use of a robust approximation of
the measure-state likelihood function, to guide the estimation process containing the least ambiguities
possible. An approximation of this likelihood function can be made by building a cost function, which
combines information from different sources. This mixture of measures aims to shape the cost surface so
that it can minimize the effects of false local extrema which exist in each of the individual measures, in a
way that each additional measure intends to remove the false attractors still present on the combination
of the preceding ones.

The construction of such a cost function will be used in an Unscented Kalman Filter (UKF) framework
and in a particle filter framework. At present, only the UKF framework has been implemented. However,
as it can be seen in the future work session a particle filter framework is under development and this is the
reason that we also present a probabilistic view of the observation model. Given the high dimensionality
of the problem, the ill-conditioning that results from the ambiguities in the pose-appearance link and
the unavoidable visual clutter that appears in a real-world application, we pay special attention to the
construction of a robust likelihood function in a way to minimize the effects of these undesirable properties.
This function employs a combination of parameters obtained from various cues extracted from the images
of the input sequences, from values derived from the structure properties, and from the a priori knowledge
about the behavior of some parameters.

3.1.2.1 Edge cues

Image edges provide a strong cue for the human visual system which is often sufficient for scene interpre-
tation [Mar82, KSJ91]. Initially, a simple observation model to be used in the UKF framework will be
presented. Extensions to this model and a probabilistic approach of the observation model will be also
presented.

3.1.2.2 Simple observation model for the UKF tracker

The observation vector Z is obtained by detecting edges in the neighborhood of the projected hand model.
Let Si

v = {Xv,1
i ,Xv,2

i , ...,Xv,Ni

i } be the set of visible (not occluded) points on the contour generator of
Qi as seen from camera P v, and let Cv

i be the projection of quadric Qi on P v. The image of each
point Xv,j is denoted by xv,j

i . The vector nv,j
i normal to Cv

i at xv,j
i can be obtained easily as described

in a previous section. For each point xv,j
i one looks for edges along the normal nv,j

i as proposed in
[SMC01, BI98]. The intensity values in the images are convolved with a derivative of Gaussian kernel
and an edge in assigned to the position ev,j

i with the largest absolute value. The observation vector Z

is constructed by stacking the inner products vv.jT
i ev,j

i to form a single vector. Each component of the
innovation vector will then have the form nT (e − x̃), where x̃ is the average position of the contour
points in a single image, e is the corresponding edge in that image and n is the corresponding normal
vector of the reference contour. Thus, a component of the innovation vector is the projection of the
distance between the average contour point and the corresponding edge onto the direction of the normal.
Therefore, the innovation vector can be interpreted as the error in pixels between the projection of the
hand model on each image and the edges in that image.

An implementation issue of this approach is to find a way to keep the size of the observation vector fixed
for all the sigma points of the UKF tracker. This is a non-trivial problem in general, because the number
of occluded points varies and so does the dimension of the observation vector. The approach adopted
is to keep the distance of the contour points per quadric fixed, having a greater point density in the
fingertips to get a more precise estimate of the hand configuration.
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Figure 3.11: Computation of the distance transform: original image (left), edge map (middle) distance
transformed edge map (right)

3.1.2.3 Approximating distances via shape matching

Performance issues may require that the overall process of computing the set of distances between the
sample points of a hand model projection and the image edges is as fast as possible. In a particle filter
context (UKF included), this measure needs to be computed for the contours generated by every particle.
Consequently, depending on the number of particles involved, it can generate an important computational
effort. Approaches, like the one in the previous section, use the derivative along the edge normals to look
for image edges resulting in a more efficient algorithm than computing edges all over the image. However,
these kind of approaches present a larger sensitivity to image noise, as there is no spatial relationship
between one edge pixel and its neighbors. One can recall that optimal edge detectors like the one proposed
by Canny [Can86] use neighboring information to extract edges.

For the cases that there is a large number of distances to be computed between image locations and the
closest image edges, there is normally a computational advantage of using the so called Distance Transfrom
(DT). These transforms generate a new image where each pixel contains an approximation of the distance
to the closest edge of the input image. By using this kind of approximations, the operation of computing
the distance between a point and an edge, may be reduced to a simple peeking of the corresponding
DT pixel [GGS04]. Thus, although its initial computation represents an additional computing effort,
the subsequent distance measurements are significantly alleviated, resulting in a drastic reduction of the
required computing power for cases where a large number of distance measurements is performed. The
distance transform, also called Chamfer distance transform, tries to approximate the distance between a
pixel and the nearby edges by assuming that its value can be deduced from the distances of its neighbors.

To formalize the idea of Chamfer matching, the shape of an object is represented by a set of points
A = {a}Na

i=1. In our case, this is a set of points on the projected model contour. The image edge map
is represented as a set of feature points B = {bi}Nb

i=1. In order to be tolerant to small variations, any
similarity function between two shapes should vary smoothly when the point locations change by small
amounts. This required is fulfilled by Chamfer distance functions, which are based on a distance transform
(DT) of the edge map. An extended survey on distance transforms can be found in [FBTdFC07]. The
distance transform takes a binary feature image as input and assigns each location the distance to its
nearest feature, see Fig 3.11. If B is the set of edge points in the image, the DT value at location u
contains the value minb∈B ‖u−b‖. A number of cost functions can be defined using the distance transform
[Bro88]. A common choice is the normalized squared distance between each point of A and its closest
point in B:

dcham(A,B) =
1

Na

∑
a∈A

min
b∈B

‖a− b‖2 (3.61)

The distance between a template A and an edge map B can then be computed by adding the squared
DT values at the template point coordinates and dividing by the number of points in Na. The DT
can be computed efficiently using a two-pass algorithm over the image as proposed in [Bro88], making
the operation linear to the number of pixels. Furthermore, the DT should be computed only once
for each input image and it can then be used to match more than one templates. This characteristic
implies large computational savings of this method, compared to others that explicitly search for feature
correspondence between template and image features. From another perspective, DT can be viewed as
a smoothing operation in the feature space. In absence of any smoothing operation, the correlation of a
template A with an edge map B leads to a sharply peaked cost function, which is not robust towards small
perturbations of the contour. On the other hand, the value of the function dcham(A,B) in equation (3.61)
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varies smoothly when the template A is translated away from the global minimum, therefore smoothing
the cost surface. The cost function can be made even more robust to noise by applying an upper bound
threshold on the DT image. This threshold reduces the effect of missing edges and is therefore more
tolerant towards partial occlusions. The matching cost takes the following form in this case:

dcham(A,B, τ) =
1

Na

∑
a∈A

min (min
b∈B

‖a− b‖2, τ) (3.62)

where τ is the upper bound threshold value. We should note that the Chamfer cost function is not a
metric, as it is not a symmetric function. However it can be made symmetric by defining the distance as
the sum dcham(A,B) + dcham(B,A), but in the particular application the term dcham(B,A) indicates
how well the edges in the background match to the model and the term is not computed as very often
the background is cluttered.

In cases where we want to match templates with images that have many background edges, the DT image
contains low values on average and therefore a single DT image is not sufficient to discriminate between
different templates. To remedy this problem, one can make use of the gradient direction as well. The
idea is to use a distance measure, which not only considers distance in translation space, but also in the
gradient orientation space. This approach increases the discriminative power of the matching function,
as has been demonstrated by Olson and Huttenlocher for the Hausdorff distance [Ruc96].

As it has been already mentioned, Chamfer matching avoids the explicit computation of point corre-
spondences. However, the correspondences can easily be obtained during the DT image computation by
storing for each value in the DT image the corresponding location. These can be used to incorporate
higher order constraints within the cost function, such as continuity and curvature between correspond-
ing points. Additionally, the Chamfer function is not invariant towards transformation of the template
points, such as translation, rotation and scaling. Thus, each of thse cases needs to be handled by search-
ing over the parameter space. In order to much a large number of templates efficiently, hierrarchical
search methods have been in suggested in [Bro88, Gav00].

3.1.2.4 Skin color cues

Colors, textures and patterns are also important characteristics of objects. Objects have, frequently,
parts with very distinctive colors or color patterns, which apart from the decorative role may play an
important role for a visual process. In nature, colors also play important role making the identification
of group members a simple task, as in almost every species of animals or plants their members share
the same colors. This is also the case for humans where frequently the head, the hair or the hands
have colors, or color patterns, that differ markedly from those of the work clothes. Consequently, for a
body part, the local color or the local color distribution, can be an important and discriminative source
of information that can be used in a tracking context. If the target we intend to track presents some
distinctive color characteristics, then it may be possible to identify it or parts of it, by simple application of
color segmentation techniques seperating the regions formed by pixels which present some characteristics
from the other ones.

Related Work

Skin color in images has been exploited by systems for tracking or detecting hands or faces [Bir98, IB98,
LF02, Shi01]. Jones and Rehg [JR02] carried out a thorough study of skin color models. A data set
of 13.640 images was used to obtain distributions of skin color and non-skin color values. A Bayesian
classifier, treating each pixel independently, was defined using different representations of the distribution.
It was shown that an RGB-histogram representation, quantized to 322 bins leads to better generalization
performance, compared to other quantizations. Furthermore, it was shown that this scheme outperforms
a classifier based on a Gaussian mixture model.

Color spaces

Many authors have chosen to work in color spaces where the brightness value is seperated from the
hue, such as the HSV and YUV color spaces [Bir98, TvdM01]. The intensity value is then discarded
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or weighted less relative to the hue. Another option is to adopt the intensity normalized (r, g)-space,
where r = R

R+G+B and g = G
R+G+B . Yang et al. [YLW97] suggest modeling the distributions as a

Gaussian in (r, g)-space, being able to easy update when necessary. Adapting color models to changes
in illumination can yield significant improvements over static models, particularly over very long image
sequences [B.02, SS00].

3.1.2.5 Segmentation of skin colored regions

In the present work a Gaussian distribution in normalized (r, g)-space is used. The normalized (r, g)-space
introduces invariance to brightness changes, however, it does not compensate for changes in illumination
color. The distribution parameters were estimated from skin colors in the first frame of a sequence,
obtained by manual segmentation and no adaptation has been performed.

A cost function based on color values can be constructed in a number of ways. One approach is to
color segment the image and subsequently match a silhouette template to this binary feature map. The
alternative approach would be a probabilistic approach by deriving a likelihood function p(zcol|x) based
on the image observation zcol, the color vectors in (r, g)-space in the whole image. Given a state vector
x, corresponding to a particular hand pose, the pixels in the image are partitioned into a set of locations
within the hand silhouette {k : k ∈ S(x)} and outside the hand silhouette {k : k ∈ S̄(x)}. Assuming
pixel-wise independence the likelihood function for the whole image can be factored as follows:

p(zcol|x) =
∏

k∈S(x)

ps(I(k))
pbg(I(k))

∏
k∈S(x)∪S̄(x)

pbg(I(k)) (3.63)

where I(k) is the color vector at location k in the image, and ps and pbg are the skin color and background
color distributions, respectively. When taking the log-likelihood this becomes a sum:

logp(zcol|x) =
∑

k∈S(x)

(logps(I(k))− logpbg(I(k))) +
∑

k∈S(x)∪S̄(x)

logpbg(I(k)) (3.64)

The independence assumption in equation (3.63) does not hold in general, because the color values of
neighboring pixels are not independent. Jedynak et al. [JZD03] suggest using a first order model by
considering a pixel neighborhood. A different way to remedy the problem is to apply filters with local
support at points on a regular grid on the image. The filter outputs are then approximately independent
[IM01, SBR00]. However the pixel-wise independence assumption gives reasonable approximation and
leads to a form of the likelihood function that is efficient to evaluate.

3.1.2.6 Fusion of edge and color cues

In the previous sections similarity measures based on edge and color cues have been described. When
combining the two features, they can be stacked into a single 2D observation vector z = (zedge,zcol)T .
This observation vector can be used in the update step of the tracker module.

3.1.3 3D hand tracking

3.1.3.1 Recursive Bayesian estimation

Tracking a 3D hand model amounts to the estimation of the state of a system that changes over time,
using a sequence of noisy measurements made on some variables that are related to this system. Given
the characteristics of the problem to be solved, a state-space model for the dynamic system written using
a discrete-time formulation seems the most appropriate choice. Thus, the evolution of the system is
modeled using difference equations, and the measurements are assumed to be available at discrete times.
Particular focus is given on the state vector which should contain all the relevant information to describe
the system. In a tracking problem, this information is normally related to the kinematic characteristics
of the target, whereas the measurement vector represents noisy observations that are somehow related to
the state vector.
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Two models are required to analyze and infer the state of dynamic system. The first one, known as the
system model describes the evolution of the state with time and the second one relates to the noisy
measurements of the current state, known as the measurement model. We assume that both of these
models are available in a probabilistic form.

The probabilistic state-space formulation and the requirement for updating the state of the system upon
the reception of each new measurement are well suited to a Bayesian approach. In such an approach, an
attempt is made to construct the posterior probability density function (pdf) of the state given all the
available information, which includes the set of the received measurements. In case that an estimate must
be obtained whenever a measurement is received, a recursive filter is an adequate solution. The filtering
procedure is normally divided in two steps: prediction and update. In the prediction step, the system
model is applied to predict the state pdf at the next time instant, given the previous one. Due to the
presence of noise (which models the unknown disturbances that affect the system) the predicted pdf is
generally translated, deformed and spread. The reception of a new measurement permits the adjustment
of this pdf during the update operation. This is performed, using the Bayes theorem as the mechanism
to update the knowledge about the system state upon the reception of new information.

3.1.3.2 Bayesian tracking

The term tracking is commonly associated with a process of following a signal or some object that moves
in a space. However, it is no more than the estimation of a set of variables that can be used to describe
the behavior of a process accordingly to some model of the same process. The use of an estimator is
justified either by the fact that some of the variables appearing in the model cannot be measured directly,
or because some of the variables form an abstraction to the approximation of the process and thus they
do not exist in the physical sense. It is considered that

xk = fk(xk−1,uk−1) (3.65)

represents the state evolution from time k − 1 to time k, where fk() is a (possibly non-linear) function
that may evolve over time, xk represents the state at time k and {uk−1}, k ∈ N is an independent and
identically-distributed (i.i.d.) process noise sequence. The goal is to estimate the current state xk using
the previous state information and all the input data received so far. Due to the fact that the state is
not directly accessible, the data, which can be used to infer it, is normally composed of measurements of
some physical manifestation of this state. Thus, a model that relates the output of this system and its
internal state is required. The available input data are then related to the state by

zk = hk(xk,nk) (3.66)

where hk() is a function (possibly non-linear) and nk represents the measurement noise.

A tracking process can be also seen from a probabilistic point of view. More specifically, the state can
be represented as a random vector, modeled by a probability density function. In this case, the whole
process is modeled through the use of pdf’s and their evolution in time. The process model is replaced by
the conditional distribution p(zk|xk,z1, ...,zk−1) and the measurement model by p(zk|xk,z1, ...,zk−1).
Denoting z1:k = [z1,z2, ...,zk] for the prediction step and starting from the prior p(xk−1|z1:k−1), we can
use the Chapman-Kolmogorov equation to perform the prediction as

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3.67)

where p(xk|xk−1,z1:k−1) = p(xk|xk−1) represents a first order Markov process.

The state evolution described by the probabilistic model p(xk|xk−1) is defined by the system model
and the noise uk−1 statistics. The update step is performed when the input measurements zk become
available at time k and for this we can use the Bayes rule as

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3.68)

where
p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk (3.69)

36



GRASP 215821 PU

depends on the likelihood function p(zk|xk) and the statistics of nk. The measurement zk is used on the
update stage to compute the likelihood value of the previous state estimate to modify the prior density
and obtain current state posterior density.

Unfortunately, these equations cannot be solved in closed form for the general case. However, for the
restricted case of linear models and Gaussian noise an optimal solution can be obtained using the Kalman
Filter [Kal60]. For the nonlinear cases, the Extended Kalman Filter addresses the nonlinearity by lin-
earizing through a Taylor expansion and using the first term. This method uses the assumption that the
state is a Gaussian random variable which is propagated through the first order linear approximation of
the nonlinear system. This can introduce large errors in the true posterior mean and variance that may
lead to suboptimal performance or even divergence of the filter [WM00].

The Unscented Kalman filter proposed by Julier et al. [JU97] is another extension that addresses this
problem by using a deterministic sampling approach. The state distribution is still modeled by a Gaussian
distribution but this time represented by a covariance matrix propagated through sigma points. These
points are propagated through the true nonlinear system and capture the posterior mean accurately to
the third order (Taylor series expansion) for any nonlinearity. This filter still has the limitation that it
requires the estimated quantities to be well described by Gaussian distributions. Finally, the Particle filter
based algorithms, use a set of samples to approximate the distribution but don’t impose the Gaussian
restriction any longer.

3.1.3.3 Kalman filter

In case that the involved densities are Gaussian, they can be fully described by using solely the respec-
tive means and covariances. As a consequence, the recursive estimation process can be constructed by
predicting the evolution of the mean and covariance of the system state and then correcting them by
integrating the measurement information. The Markovian dynamic systems for which the transition and
observation probability distributions are Gaussian, are linear systems with additive white Gaussian noise.
The system equation is

xk = Axk−1 + uk−1, (3.70)

where xk ∈ Rn is the state vector at time instant k. A ∈ Rn×n is the state transition matrix, describing
the system dynamics. The linear observation equation is given by

zk = Hxk + wk, (3.71)

where H ∈ Rm×n is the measurement matrix.

The Kalman filter estimates the state using the process model, the observation model and a sequence
of observations. The filter equations are often formulated as time-ordered pair of recursive equations,
given by a prediction step and a measurement update step. After the initialization, these two steps are
executed in each time step. In the prediction step, a state estimate x̂ at time step k is determined given
the knowledge of the process prior to time k. Let Zk = (z1,z2, ...,zk) be the sequence of all observation
vectors up to time step k. The prediction of the state at time k is the expected value of the true state
given all observations prior to time k [BS87, RP92]:

x̂k|k−1 = E[xk|Zk−1]. (3.72)

The estimation error e of the state estimate is defined as

ei|j = xi − x̂i|j (3.73)

and the associated error covariance matrix is

P i|j = E[ei|je
T
i|j |Zj ]. (3.74)

In the measurement update step, the state estimate x̂k is obtained by a linear combination of the
predicted state estimate and a correction term incorporating the new observation zk:

x̂k = x̂k|k−1 + Kk(zk − ẑk|k−1). (3.75)

The vector vk is called innovation and is equal to the difference between the actual observation zk at time
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k and the predicted observation ẑk|k−1. The observation prediction is obtained by taking the conditional
mean:

ẑk|k−1 = E[zk|Zk−1]. (3.76)

The matrix K is called Kalman gain matrix. It is chosen to minimize the mean squared error in the
state estimate E[ek|k−1e

T
k|k−1|Zk−1]. This is equivalent to minimizing the trace of P k [Kal60, May79]

and the solution is:
Kk = P ev

k|k−1(P
vv
k|k−1)

−1 (3.77)

where the matrices P ev
k|k−1 and P vv

k|k−1 are the corresponding covariance matrices. P vv
k|k−1 represents the

covariance of the innovation vector with its self and the P ev
k|k−1 represents the covariance between the

innovation vector and the state estimation error vector. The state estimation error is

ek|k = xk − x̂k|k (3.78)

= xk − (x̂k|k−1 + Kkvk) (3.79)

= ek|k−1 −Kkvk. (3.80)

Taking the outer product and expectation gives a recursive formula for P k|k:

P k = P k|k−1 − P ev
k|k−1K

T
k −KkP ev

k|k−1 + KkP vv
k|k−1K

T
k . (3.81)

Substituting the expression for K in equation (3.77) back into equation (3.81) gives the update equation
for the error covariance matrix:

P k = P k|k−1 −KkP vv
k KT

k . (3.82)

An overview of the recursive Kalman filtering algorithm is given in algorithm 1. One can see that

Algorithm 1 Kalman Filtering Algorithm
Initialization

• P 0|0 = R0 and x̂0|0 = E[x̂0]

Prediction Step

• Prediction of state and error covariance matrix

x̂k|k−1 = Ax̂k−1|k−1 (3.83)

P k|k−1 = AP k−1|k−1A
T + Qk (3.84)

• Prediction of observation
ẑk|k−1 = Hx̂k|k−1 (3.85)

Measurement Update Step

• Compute the innovation
vk = zk − ẑk|k−1 (3.86)

P vv
k|k−1 = HP k|k−1H

T + Rk (3.87)

P ev
k|k−1 = P k|k−1H

T (3.88)

• Computation of the Kalman gain matrix

Kk = P k|k−1H
T R−1

k (3.89)

• Update state estimation and error covariance matrix

x̂k = x̂k|k−1 + Kkvk (3.90)

P k = P k|k−1 −KkP vv
k|kKT

k (3.91)
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the Kalman gain is determined by the predicted error covariance matrix, expressing confidence in the
model, and the observation covariance matrix, expressing confidence in the current measurement. If the
confidence in the state prediction is high relative to the measurement, the entries in the Kalman gain
matrix will be small, and more weight will be given to the prediction. On the other hand, if the confidence
in the measurement is relatively high, the innovation, including the new measurement, is weighted more
heavily.

3.1.3.4 Extended Kalman filter

In many practical cases the system equation and the observation equation are nonlinear. The Extended
Kalman Filter (EKF) approach to this situation is to apply the Kalman filter for linear systems by
continuously updating a linearization of the system and observation function. The nonlinear functions are
linearized about the predicted values and the mean values of the noise random variables. The linearization
assumes that the differences between the true values and the estimated values are small enough to justify
a first-order Taylor series expansion. Truncating the series after the first order introduces second and
higher order errors, but by assumption, these are negligible. The system equation can be expanded to

xk = f(xk−1,vk, k − 1) (3.92)

≈ f(x̂k−1, 0, k − 1) +∇xf(xk−1 − x̂k−1) +∇vfvk (3.93)

= x̃k +∇xf(xk−1 − x̂k−1) +∇vfvk (3.94)

where x̃k is the state prediction using the previous estimate x̂k−1 and assuming that the unknown value
of vk is equal to its mean, zero. ∇xf is the Jacobian matrix of f with respect to the state x, and ∇vf
is the Jacobian of f with respect to the process noise vector. Both matrices are evaluated at the point
of linearization.

Similarly, the observation equation can be linearized:

zk = h(xk,wk, k) (3.95)

≈ h(x̃k, 0, k) +∇xh(xk − x̃k) +∇whwk, (3.96)

where ∇xh and ∇wh are the Jacobians of h with respect to the state x, and the observation noise w
respectively.
The predicted state is the conditional mean

x̂k|k−1 = E[xk|Zk−1] (3.97)

≈ E[x̃k +∇xf(xk−1 − x̂k−1) +∇vfvk] (3.98)

= E[x̃k] + E[∇xf(xk−1 − x̂k−1)] + E[∇vfvk] (3.99)

= x̃k (3.100)

where the last equation holds due to the assumption that both the error term (xk−1 − x̂k−1) and the
noise term vk are random variables with zero mean. The prediction error made by this approximation is

ek|k−1 = xk − x̂k|k−1 (3.101)

≈ ∇xf(xk−1 − x̂k−1) +∇vfvk (3.102)

Taking the outer product and expectation yields the recursion for the predicted error covariance:

P k|k−1 = ∇xfP k−1∇xfT +∇vQk∇vfT (3.103)

Similarly, expressions for the observation prediction and other error covariance matrices can be found:

ẑk|k−1 = h(x̂k|k−1, 0, k − 1) (3.104)

P vv
k|k−1 = ∇xhP k|k−1∇xhT +∇whRk∇whT (3.105)

P ev
k|k−1 = P k|k−1∇xhT (3.106)
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When these equations are used in the Kalman filter algorithm 1, the filter is known as Extended Kalman
Filter (EKF), because it extends the filter to nonlinear systems. However, a limitation of this approach
is that the nonlinear system has to be linearizable, and it is not clear in which cases this is possible.
Indeed, the second and higher-order terms may be significant and the introduced errors can lead to the
divergence of the filter. One way to approach this problem is to explicitly include more terms in the Taylor
expansions. However, the implementation of such filters is often impractical due to their computational
complexity.

3.1.3.5 Unscented Kalman filter

When the system and the observation equations are linear, the best state estimate in the minimum mean
squared error (MMSE) sense can be obtained with the Kalman filter algorithm. For nonlinear stochastic
systems the optimal estimator in the sense of minimizing the mean-square error E[(x̂k −xk)2|Zk] is the
mean of the state at time k conditioned on the observation up to time instant k [BS87, Jaz70]:

x̂MMSE
k = E[xk|Zk] =

∫
p(xk|Zk)xkdxk (3.107)

Computing the conditional state distribution p(xk|Zk) is not trivial in general, since the observation
sequence grows with time and an infinite number of parameters (e.g. moments) would be required. Often
the state estimation problem does not have an explicit solution. However, under the assumption of white
and independent noise sequences the optimal estimator may be computed using a recursive formula for
the conditional densities. Bayes’s rule specifies an expression for updating the conditional probability
density of the current state xk:

p(xk|Zk) = c p(zk|xk)p(xk|Zk−1) (3.108)

where the equation follows from the assumption that the measurement noise is white and independent
in time, so that p(zk|xk,Zk−1) = p(zk|xk). c is a normalization constant. The prior state distribution
can be written as:

p(xk|Zk−1) =
∫

p(xk,xk−1|Zk−1)dxk−1 (3.109)

=
∫

p(xk|xk−1,Zk−1)p(xk−1|Zk−1)dxk−1 (3.110)

=
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1, (3.111)

where the last equation is valid under the assumption that the process noise sequence is white and inde-
pendent of the measurement noise. Plugging equation (3.111) into equation (3.108) yields the recursive
formula:

p(xk|Zk) = c p(zk|xk)
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1. (3.112)

It is often convenient to evaluate this expression using a time-ordered pair of recursive equations:

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1 (3.113)

and
p(xk|Zk) = c p(zk|xk)p(xk−1,Zk−1). (3.114)

In the linear Gaussian case, the above equations lead directly to the Kalman filter equations.

Various methods have been suggested for the nonlinear case. The EKF handles nonlinearity by linearizing
the system and observation equations and applying the Kalman filter algorithm as in the linear case.
Instead of approximating the equations by terms in the Taylor series, the problems can also be approached
by approximating the prior distribution of xk directly. For this, a number of discrete samples is drawn
at random, the model is applied to each of these samples, and the statistics of the transformed samples
are computed. This technique forms the principle of Monte-Carlo methods [Han70]. However, the
convergence rate for these methods are slow and a large number of samples is required. If n is the number
of samples, the covariance converges according to

√
n. These problems motivated the development of

a new filter by Julier and Uhlmann [Jul97, JUD95, JU97, WM00]. This filter approximates the state
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distribution, but the samples are chosen in a deterministic way. The resulting algorithm is known as
Unscented Kalman Filter (UKF).

The underlying principle of the UKF is the unscented transformation. The unscented transformation is
a technique for computing the statistics of a random variable after a nonlinear transformation. More
specifically, given an n dimensional random variable xk−1 with mean x̂k−1 and covariance matrix P k−1

the following procedure is undertaken:

• A set of 2n + 1 points with the same mean x̂k−1 and covariance P k−1 is selected.

• The nonlinear function is applied to each of these points.

• The mean and the covariance for the transformed points are computed.

The points are chosen according to the following scheme:

Xi
k−1 =


x̂k−1 i = 0
x̂k−1 − σi

k−1 i = 1, ..., n
x̂k−1 + σi−n

k−1 i = n + 1, ..., 2n
(3.115)

where σi
k−1 is the ith column of the matrix

√
(n + κ)P k−1, κ ∈ R. The square root of

√
A a symmetric

positive definite matrix A is defined as follows: If BBT = A, then B =
√

A. The square root is determined
up to orthonormal transformations (if B is square root of A, so is BU , if UUT = I). A valid square
root of a matrix can efficiently be computed using Cholesky decomposition. Additionally, the points are
weighted according to the following weights:

wi =
{ κ

n+κ i = 0
1

2(n+κ) i = 1, ..., 2n + 1 (3.116)

and
∑

i wi = 1. These weighted points have the same mean, covariance and all higher odd ordered
moments at the Gaussian distribution of xk−1 [Jul97]. Each point is transformed through the process
model:

Xi
k|k−1 = f(Xi

k−1, k), i = 0, ..., 2n (3.117)

and the predicted mean and covariance matrix is computed as:

x̂k|k−1 =
2n∑
i=0

wiXi
k|k−1 (3.118)

P k|k−1 =
2n∑
i=0

wi[Xi
k|k−1 − x̂k|k−1][X

i
k|k−1 − x̂k|k−1]T (3.119)

It can be shown that this prediction of the moments is correct up to the third order [Jul97].

The selection of points can also be extended to include process noise. For doing so, the noise terms are
concatenated to the state vector to yield an augmented state vector of dimension n + q. This method
ensures that the effects of the process noise on the mean and the covariance are introduced with the same
order of accuracy as the uncertainty in the state.

The same principle is followed to predict the state observation ẑk|k−1 and the innovation covariance
matrix P vv

k|k−1, including effects of observation noise.

Zi
k|k−1 = h(Xi

k|k−1, k − 1), i = 0, ..., 2n (3.120)

ẑk|k−1 =
2n∑
i=0

wiZi
k|k−1 (3.121)

P vv
k|k−1 =

2n∑
i=0

wi[Zi
k|k−1 − ẑk|k−1][Z

i
k|k−1 − ẑk|k−1]T + Rk (3.122)
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P ev
k|k−1 =

2n∑
i=0

wi[Xi
k|k−1 − x̂k|k−1][Z

i
k|k−1 − x̂k|k−1]T (3.123)

The parameter κ is weighting the mean relative to the other sample points. This does not affect the

Algorithm 2 Unscented Kalman Filtering Algorithm

• Initialization

Xi
k−1 =


x̂k−1 i = 0
x̂k−1 − σi

k−1 i = 1, ..., n

x̂k−1 + σi−n
k−1 i = n + 1, ..., 2n

(3.124)

wi =
{ κ

n+κ i = 0
1

2(n+κ) i = 1, ..., 2n + 1 (3.125)

• Prediction step:
Xi

k|k−1 = f(Xi
k−1, k), i = 0, ..., 2n (3.126)

x̂k|k−1 =
2n∑
i=0

wiXi
k|k−1 (3.127)

P k|k−1 =
2n∑
i=0

wi[Xi
k|k−1 − x̂k|k−1][X

i
k|k−1 − x̂k|k−1]T (3.128)

Zi
k|k−1 = h(Xi

k|k−1, k − 1), i = 0, ..., 2n (3.129)

ẑk|k−1 =
2n∑
i=0

wiZi
k|k−1 (3.130)

P vv
k|k−1 =

2n∑
i=0

wi[Zi
k|k−1 − ẑk|k−1][Z

i
k|k−1 − ẑk|k−1]T + Rk (3.131)

P ev
k|k−1 =

2n∑
i=0

wi[Xi
k|k−1 − x̂k|k−1][Z

i
k|k−1 − x̂k|k−1]T (3.132)

• Update step:
Kk = P ev

k|k−1(P
vv
k|k−1)

−1 (3.133)

x̂ = x̂k|k−1 + Kkvk (3.134)

P k = P k|k−1 −KkP vv
k|kKT

k (3.135)

mean but scales the distributions of the points, since they are found from
√

(n + κ)P . This scaling can
lead to higher accuracy in the higher order moments of the distribution.

3.1.3.6 Comparison of EKF and UKF

The UKF has several advantages over the EKF. These can be summarized as follows:

• Accuracy: The UKF has a lower expected error for all continuous nonlinear transformations. The
errors in the EKF prediction are of second order, the UKF is accurate up to the third order.

• Applicability: Linearization in the EKF algorithm can produce very unstable filter performance
if the time steps are not sufficiently small. In case of non-differentiable functions, the EKF is not
applicable at all, whereas the UKF can be applied.

• Computational Complexity: The selection of points in the UKF algorithm can be achieved
efficiently using Cholesky decomposition. It is not necessary to evaluate Jacobian matrices in the
UKF, compared to the EKF. For many problems, the derivation of Jacobians is non-trivial and the
computational cost to compute them may be significant.
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• Empirical Results: In the experiments the UKF has been shown to outperform the EKF in a
number of problems such as vehicle control, parameter estimation for neural networks and satellite
navigation [Hay01].

3.1.3.7 Limitations of the UKF

The major limitation of the UKF is the Gaussian assumption. Although performing a better approxi-
mation than the EKF, is still relies on the hypothesis that the prior distribution is Gaussian and that
the posterior is still well approximated by such type of distribution. In fact, even if we accept the prior
Gaussian restriction, after transforming the random variable through a nonlinear function the result will
no longer be Guassian. In order to generalise to arbitrary distributions, the ideas of particle filtering and
the unscented transform have been combined to construct a new filtering algorithm [WDF00].

3.1.4 Experimental results

Real data experiments were designed to test the proposed tracking algorithm. A single-view and a stereo
sequence of 200, 1024× 768 color images of a hand in front of a white background have been acquired as
a first test dataset. The parameters of the hand model were manually set to match the pose of the hand
in the first frame of the sequence. In the experiments six degrees of freedom were given to the motion of
the hand corresponding to x−, y− and z−direction translation and rotation about the x−, y− and z−
axis. The dynamics of the hand were modeled using a second order process, using position, velocity and
acceleration. Therefore the state vector was:

X = [x, y, z, θx, θy, θz, ẋ, ẏ, ż, θ̇x, θ̇y, θ̇z, ẍ, ÿ, z̈, θ̈x, θ̈y, θ̈z]T (3.136)

The results of the tracking algorithm are presented in the Figure 3.12, in which the projection of the 3D
hand model is shown superimposed to the hand images. It can be verified that the system is accurate
enough, given the fact that only 6 degrees of freedom are allowed to move, succeeding in obtaining the
correct pose of the hand.

3.1.5 Conclusions and future work

In the previous sections a 3D model-based hand tracking system was presented. The use of quadrics
to build the 3D model yields a practical and elegant method for generating the contours of the model,
which are then compared with the image data. The results of this comparison are used in an Unscented
Kalman Filter (UKF) framework to estimate the current motion and the configuration parameters of
the hand. The experimental results demonstrate the efficiency of the proposed methods. The system is
generic, in the sense that it can be easily expanded to use multiple views and can be applied without
any modifications to rigid and articulated models. Finally, keeping the computational load at a bearable
level, a real-time implementation is expected to be achieved for an optimized tracker that could exploit
all the processing power of a conventional computer (including CPU and GPU).

Ongoing and future work with respect to 3D hand tracking addresses the following issues:

• Use of different filters The efficiency of the UKF and its superiority over the Extended Kalman
Filter (EKF) have already been demonstrated. However, the UKF assumes a uni-model noise
model, which probably is not appropriate for the hand tracking problem (especially for movements
such as grasping). Particle filters seem to be a solution to this problem, although the introduce
an extensive computational load. There have also been studies that propose the use of particle
filters in a graphical model framework, demonstrating good tracking results, in the presence of self
occlusions. However, the computational load remains too much also in this case, posing problems
to real-time implementations. The fact that the hand tracking system will be assigned to track
specific movements (grasping movements) has also to be taken under serious consideration in the
choice of another tracking system.

• Dimensionality Reduction The hand tracking problem is a high dimensional inference problem
and it would be desirable to reduce the number of dimensions that a system has to track, thus
making the tracking algorithms perform faster and more robustly. One has to consider that a
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Figure 3.12: Hand tracking results for frames 10 (upper left), 40 (upper right), 88 (bottom left) and 185
(bottom right) of the test data set.

number of couplings exist in the motion of the fingers. A number of methods for dimensionality
reduction have been proposed and it has to be made further research to choose one of them as the
most appropriate for this problem.

• Analysis of failure cases. At the moment it is unclear which are the limits of the proposed
contour-based approach. It has been though demonstrated that the handling of self-occlusions
makes the tracking in these situations feasible. Extensive testing of image sequences is desired,
containing out of plane rotations and opening-closing of the hand.

• Improvement of the observation model Many features have been proposed to the hand tracking
problem. These include, edges, skin color and optical flow. Currently edges and skin-clor are used
in the framework described in the corresponding chapter. However, it has been reported that some
slight modifications in the treatment of these features can make the observation model more robust.
Specifically, chamfer distances can be used in different orientations and oriented edges could be used
to improve the performance of the system. Furthermore, an adaptive skin-color model could be
used to improve the performance of the current skin-color model.

• Automatic initialization of the configuration of the hand It is very important to have a
refined shape of the model at the first frame so that a better alignment can be achieved between
the projection of the model and the edges in the image. A good initialization will make possible
the increase of the number of model parameters to be tracked. The initialization of the model is
currently done by hand. However, an optimization framework could be used to estimate the shape
of the model from a set of images as an off-line preprocessing step before the tracking begins.

• Performance and accuracy evaluation The accuracy of the model can be evaluated using
ground truth measurements. This will be done as soon as there are some measurements from the
experiments that take place in LMU, in which sensors are placed in the fingertips of the hand.
Finally, performance evaluation will be obtained as soon as there is an optimized final version of
the tracker.
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3.2 Grasp type classification using binary latent variables

3.2.1 Modeling human motion using Restricted Boltzmann Machines

Boltzmann Machines is a type of stochastic artificial neural network that is considered to be the stochastic
version of a Hopfield network. They are composed of probabilistic binary units symmetrically connected
to each other. Learning in Boltzmann Machines of unrestricted connectivity is slow and renders them
unusable to practical problems. If, however, the connectivity is restricted only among different layers (i.e.
no connections within the same level), learning becomes much more efficient. This type of ANN is called
a Restricted Boltzmann Machine (RBM).

RBMs have been shown to be successful in a number of practical applications, ranging from character
recognition to full motion modeling. Taylor et al [THR06, SH06] have used RBMs to model different
kinds of human motion (running, walking, sitting etc). Their model proved successful in effortlessly
reproducing different kinds of motion and alternating between them.

In a restricted Boltzmann machine there are two layers of nodes: a visible layer that represents the
observables during both learning and generation of motion, and a hidden layer of stochastic binary
nodes. The network (see Fig.3.13) alternates between 2 phases:

• The positive phase, where the hidden states are being updated with the probability of a hidden
unit being dependent on the input that the hidden unit receives:

p(hj = 1|v) = f(bj +
∑

i

viwij)

• The negative phase, where the machine generates the visible data from the hidden state. The visible
nodes in a typical RBM are binary, but, if we are modeling continuous variables, as is the case,
they need to be replaced by linear, real valued units. The probability of visible states is thus:

p(vi|h) = N(ci +
∑

j

hjwij , 1)

where N() is a Gaussian distribution with standard deviation 1.

The learning rule can be approximated accurately by following the gradient of a function called “Con-
trastive Divergence” [Hin02]. The learning rule is:

∆wij ∝< vihj >data − < vihj >recon,

where the < . >recon denotes expectation with respect to the reconstructed data after running the
machine for 1 step.

3.2.2 Conditional RBMs

When modeling human motion, temporal information needs to be incorporated. One way to achieve this
is to treat the visible variables of previous time slices as additional fixed inputs, as suggested by Taylor

Figure 3.13: Restricted Boltzmann Machine (RBM).
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Figure 3.14: Use of cRBMs to model temporal data

et al.[THR06]. Thus, directed connections are added as additional biases from the previous n time slices
to the current visible and hidden layers (see Fig. 3.14). The learning rule for the directed connections
from the previous time slices is:

∆dij
(t−q) ∝ vi

t−q(< hj
t >data − < hj

t >recon)

for the visible-to-hidden biases and

∆aki
(t−q) ∝ vk

t−q(vi
t− < vi

t >recon)

for the visible-to-visible biases.

3.2.3 Modeling the motion of human hands

We can use the methods described above to model the motion of human hands when executing reaching
and grasping actions. Our data comprises of hand movements when the subject executes a variety of
grasping and reaching actions. In preliminary data sets acquired by LMU, a Polhemus tracker has been
used to record the positions of three fingers plus that of the palm of a subject that has been performing
certain reaching and grasping actions. These trajectories were concatenated in a 12 dimension observation
vector for each time frame. Each trajectory is 100 frames long. We trained a cRBM with 150 hidden
units using the observation data for various actions for 200 epochs using a learning rate of 10−3. The
cRBM was 3 levels deep, that is, there were directed connections from the past 3 visible vectors to the
current visible and hidden vectors.

We first used the trained network to reproduce the learned trajectories, learning one trajectory at a
time. Initializing the machine with the 3 first frames of the learned movement, the network is able to
reproduce an action very similar to the learned trajectory (see Fig.3.15). For the generation of subsequent
frames, the machine proceeds as follows: the visible layer is initialized using the previous frame data,
adding Gaussian noise. Then the hidden and visible layers are updated iteratively with alternating Gibbs
sampling using 30 iterations.

The same network can be used to model and reproduce more than one type of actions. The actions are
reproduced successfully by starting the network with the 3 first frames of each action (see Fig. 3.16).

We can examine the robustness of generating an action by initializing the machine with frames away from
the beginning of the action. The generation of action is robust when initialized with frames no further
than 30 frames from the beginning of the action (see Fig. 3.17). Initialization with subsequent frames
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Figure 3.15: Examples of reconstructed finger positions: original trajectories (left) and reconstructed
ones (right)

Figure 3.16: Trajectory reconstruction results
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Figure 3.17: Trajectory reconstruction results

Figure 3.18: Activation of hidden units (top) and classification output (bottom)

seems to generate false trajectories, depending on the kinds of actions learned. The figure below shows
actions generated by initializing the machine at various time points.

3.2.4 Classification of grasping actions

We performed preliminary experiments to investigate the ability of an RBM to classify accurately various
types of grasps. As the cRBM hidden layer nodes model the features of the motion, used the activation
probabilities of the hidden nodes during the course of the action to infer the category of the action that is
provided in the visible layer. We thus trained an RBM network in 3 subsequent actions. The activation
probabilities of the hidden units during the course of all the actions were used as input to a simple
feedforward backpropagation network. The network has a single linear real-valued output unit which
gives the current estimate for the class of action observed. The network was trained to output an integer
(1..3) corresponding to the action being observed. We used the default BP network implementation
of MATLAB with 3 hidden units. The network was trained to recognize the patterns of activation in
different actions as shown if Fig. 3.18.

Using this network, we can attempt to classify actions of the same class that were executed by different
persons. Although the networks seems to discriminate between different actions, it sometimes seems to
be confused among different classes of actions (see Fig. 3.19).
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Figure 3.19: Classification results

3.2.5 Future work

The purpose of this work was to investigate the ability of RBM networks to generate and classify different
kinds of 3D hand trajectories. These RBMs can then be used to model the regularities of complex hand
and finger movements that would be hard to model using a physical model of the hand. This can prove
useful in on-line prediction and guidance of action. The output of the system can also be used to infer
the kind of action being performed. This is useful for the recognition of action by a higher-level process.
Importantly, this recognition mechanism can be used to aid the segmentation of an action to its parts. One
research direction that we plan to investigate is the exploitation of RBMs trained in grasping movements
for dimensionality reduction in the context of the developed framework for 3D hand tracking.
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3.3 Acquisition of grasping sequences

In a collaboration of Ludwig-Maximilians-University (Germany), FORTH (Greece) and UniKarl (Ger-
many) this activity of GRASP studies human grasping behaviour with an interdisciplinary approach. The
rationale is to track the human hand during grasp movements and to simultaneously record high-speed
motion pictures of these operations. The motion pictures will then be used to assist computer algorithms
to detect and recognize the human hand in the scene and to classify from the appearance of the hand pre-
defined posture primitives. This is an essential step in implementing robots that can learn from a human
model. Further, the simultaneously recorded multidimensional information about the actual trajectories
and dynamics of several hand parts will be used to evaluate and optimize the visual detection algorithm.

Two systems are implemented in the setup. An electromagnetic Polhemus Liberty system provides three
dimensional information about the position and orientation of eight sensors which are attached to the
grasping hand (see Figure 3.20).

Figure 3.20: The placement of Polhemus sensors on a human hand.

The system continuously records data with 240 Hz. These recordings can also be used to animate a virtual
3D hand model. The experimental procedure in every trial is controlled by Matlab software (Mathworks)
using psychophysics toolbox. This program also controls Polhemus Liberty recording system and sends
online triggers to the camera system that runs on a different platform.

Figure 3.21: The stereo camera system observing grasping activities.

A binocular camera system (figure 3.21) records the ongoing grasping movements at a rate of 30 frames
per second from an external observation point. This observation point is similar to the viewpoint of a
humanoid robot that observes a human in natural environments. The recorded image sequences (see an
example in figure 3.22) will be used by FORTH to train an algorithm that can recognize and detect the
human hand and extract a sequence of hand postures (posture primitives). The exact synchronization of

50



GRASP 215821 PU

both recordings is very important. Later on, the synchronized hand tracking data will help to validate
the outcome of the hand detection and tracking algorithm.

Figure 3.22: A frame acquired by one of the cameras of the stereo head observing a grasping activity.

In several experimental studies human participants execute grasping movements for various objects of
everyday use. The objects of study are a cup, a cylinder, a box and a small matchbox like item. Each
object will be accessed by different types of grasps (e.g., spherical, cylindrical, pinch etc.). In a typical
experimental trial the hand will start from an open start posture in front of the object with the palm
facing upwards. Upon an acoustical go-signal the human actor is required to grasp the object with a
comfortable, unspeeded and stable grasp. For each object and each grasp type 20 trials will be recorded
in a total of five human participants. The analysis of the recorded hand trajectories will also provide
grand-averaged data about typical trajectories when grasping a certain kind of object (see figure 3.23).
We will extract from these trajectories important via-points (i.e., intermediate goals where the hand path
runs through by default). Another focus in the analysis lies on the spatial and temporal variations within
and between subjects in order to determine factors that make grasping movements unstable or prone to
failure.

Figure 3.23: Example trajectories recorded by the Polhemus system while a person has been reaching
and grasping a cylindrical object.
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Chapter 4

Future work

Deliverable D3 presented the current status and results of GRASP research on human upper body tracking
and 3D hand tracking. With respect to 3D hand tracking, a number of issues have been identified in
section 3.1.5, including:

• Accuracy evaluation and analysis of failure cases

• Use of different filters

• Dimensionality reduction

• Improvement of the observation model

• Automatic initialization of the configuration of the hand

Of particular interest, is the exploitation of the work on RBMs section 3.2) together with probabilistic
inference for developing a 3D hand tracker tailored for grasping. The availability of image sequences of
grasping activities that are annotated with synchronized ground truth data acquired through a Polhemus
tracker (collaboration of LMU, UniKarl and FORTH, section 3.3) is expected to prove very valuable in
this direction.

Finally, the integration of the developed systems for upper body tracking need to be properly integrated
with efforts on 3D hand tracking and the overall system needs to be evaluated in terms of robustness and
with respect to real time performance issues.
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Markerless Human Motion Tracking with a Flexible Model and
Appearance Learning

Florian Hecht, Pedram Azad and Rüdiger Dillmann

Abstract— A new approach to the 3D human motion tracking
problem is proposed, which combines several particle filters
with a physical simulation of a flexible body model. The flexible
body model allows the partitioning of the state space of the hu-
man model into much smaller subsets, while finding a solution
considering all the partial results of the particle filters. The
flexible model also creates the necessary interaction between the
different particle filters and allows effective semi-hierarchical
tracking of the human body. The physical simulation does
not require inverse kinematics calculations and is hence fast
and easy to implement. Furthermore the system also builds an
appearance model on-the-fly which allows it to work without a
foreground segmentation. The system is able to start tracking
automatically with a convenient initialization procedure. The
implementation runs with 10 Hz on a regular PC using a stereo
camera and is hence suitable for Human-Robot Interaction
applications.

I. INTRODUCTION

Finding and tracking the posture of a person over time is
fundamental to several applications. It is used extensively in
the animation industry to capture the performance of actors
for films and computer games. The pose of a person is also
very important in Human-Robot Interaction (HRI). When
humans and robots interact, it is expected that the robots can
understand the human body language, that is, they should be
able to recognize certain actions such as waving or pointing.
Also to teach a robot new actions it would be very helpful,
if the actions could be taught by demonstration, where the
robot learns the specific motions by observing the human
performing them. To do all that the robot needs to have a
notion of the body posture of the persons it is interacting
with.

Motion capture applications in films and games use a large
number of high-speed cameras in a studio environment to
capture the performance of an actor in a tight suit with
carefully placed markers. This expensive and complicated
setup allows very precise measurements of the performed
motions. For the application on a robot we cannot require the
person being tracked to wear special clothing with markers
or sensors. The robot also has only a limited view with a
mono or stereo-camera and not a set of conveniently placed
cameras around the person. With these restrictions it becomes
much harder to track the movements of a person.
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It would be beneficial to have sophisticated camera-based
tracking systems that have only few requirements. Such a
system should work with few regular cameras and should
not require any preparations, neither of the person to be
tracked nor of the environment. Such a system would be a
lot cheaper and would not be restricted to certain locations.
A person could work with such a system without special
preparation or training. Ideally, such systems should have
good performance in the following criteria at the same time:
Robustness, precision and computational effort.

A. Previous Work

There is a plethora of different approaches to human
motion capture that differ in the sensors used (accelerom-
eters, cameras, depth cameras), the number of sensors, the
model that is constructed (2D, 3D, with appearance, etc.)
and the underlying algorithms. Since the proposed method
uses particle filters and a 3D model with a single perspective
view of the person, we will focus on previous work in these
areas.

The use of short-baseline stereo cameras gives some addi-
tional 3D information about the scene [1], [8], [9] compared
to a single camera, but has the same difficulties as monocular
systems [3], [15] as only one fundamental perspective is
available. These systems have to handle occlusions and the
fact that motion in the depth direction is not directly visible.

There are several different approaches to determine the
posture from a given set of images. For monocular 2D-3D
registration, where the actual 3D pose is determined from
a single view, a precise model and optimization algorithms
are use to find the correct pose, as done in [15]. Systems
that use stereo cameras usually extract the 3D location of
key body parts like the head and hands and use other
methods to solve the position of elbows and other body
parts [1], [8]. Algorithms that use more cameras can extract
3D information from the different views and then fit an
articulated model to this 3D data [9], [2], [4], [16], [11]. A
different approach is to project a model into each view and
determine the change of the model from each view either by
optimization [3], [7], [15], filtering or sampling.

Particle filters are used in several algorithms [1], [5], [6],
[8], [12], [14]. The biggest problem with human motion
tracking with particle filters is the exponential growth of the
needed number of particles with the increase in dimensions
of the search space. For most whole body human models in
3D we have about 30 DoF, which is infeasible to solve with
a regular particle filter. One of the tasks to solve when using
particle filtering for human motion capture is to deal with



this high dimensionality. Several different approaches have
been proposed:

One approach is to split the search space into smaller
search spaces in combination with hierarchical search or the
localization of certain body parts by other means, like the
head, hands or the the dominant axis of the torso [12]. One
big criticism of these approaches is that, say the two arms,
are treated independently from each other, where in fact the
position of the one-side influences the position of the other.
In [6], an automatic partitioning scheme is proposed that
reduces the needed number of particles while still creating
the needed interactions.

In [14], a strong motion model is used to predict the state
of the skeleton in the next frame. This learned motion model
reduces the number of needed particles since the particles
will be relatively close to the actual position. This system
is limited to tracking one type of motion at a time (walking
in that paper) and is therefore not universally applicable,
but showed that a good prediction can significantly improve
tracking results.

Another approach to deal with the high dimensional search
space is the annealed particle filter as proposed in [5].
Similar to the optimization technique simulated annealing,
several filtering runs are performed, with increasing detail in
the weighting function. This guides the particle set to coarse
peaks first, and then optimizes the result with finer details.
With this approach the method can find the correct optimum
with a reduced number of particles. The annealed particle
filter is analyzed for application in non-studio-like environ-
ments in [13] and was found to depend on relatively noise
free measurements for reliable results. In [6], extensions to
this method are proposed including decreased noise that is
dependent on the variance of each state space variable. The
purpose of this is to focus attention to variables which are
not yet determined precisely and to prevent losing an already
precise localization of variables due to added noise.

Another algorithm is presented in [15], where covariance
scaled sampling is proposed, which is a generalization of
the variance-based noise extension of the annealed particle
filter. The state space distribution is represented as a mixture
of Gaussians. Samples are generated from each Gaussian,
with a distribution that captures the dimensions with the most
variance computed by eigen decomposition of the covariance
matrix.

None of [14], [5], [15] achieve real-time results and are
thus not applicable for use on a robot.

B. Outline

This paper presents a new method that was developed
for the purpose of HRI. The focus here is on performance
and robustness under certain conditions, like a short-baseline
stereo camera and a frame rate of at least 10 Hz on a regular
PC. The proposed method is not restricted to the application
on a robot, but can be used in multi-camera scenarios with
increased precision. The flexible model that represents the
human pose is introduced in Section II. The integration of the
particle filters into the complete tracking system is described

in Section III, which is followed by experimental results in
Section IV. Concluding remarks and ideas for future work
can be found in Section V.

II. FLEXIBLE MODEL

The flexible model used in this application is a mass-
spring system as illustrated in Fig. 1. Unlike a classical
kinematic model, which uses a hierarchy of joints, we have
a set of point masses, which are connected through springs.
The springs represent abstract bones for the extremities,
but are also used to construct a two-part torso, which is
not completely rigid. The state of the model consists of
the positions of the 16 points, which means the model has
16 · 3 = 48 DoF, which is more than the usual 30 DoF for a
kinematic model, but still less than the 11 · 6 = 66 DoF for
a model consisting of connected individual body parts1.

Another thing to note is that the model does not represent
rotations explicitly. Some rotations can be recovered from
the positions of the mass-points, but the rotations around the
arms’ axes for instance cannot be derived. If the 24 springs
in the system where completely rigid, then the number of
DoF of the complete system would be 48−24 = 24. But the
springs are not 100% rigid and hence give the model more
flexibility. Parametrizing the human model this way seems
a bit of a waste, but enables a locality of change, since
movements in a certain point can be implemented simply
by moving that mass-point and do not require an inverse
kinematics calculation. Note that the 48 DoF are estimated
in a semi-hierarchical way as will be explained in Section
III. Also this model allows splitting of the state space, while
still retaining interaction between the subparts, which enables
a good estimate for one part to fix the bad estimate for
another part, thus greatly improving the robustness of the
whole estimate.

head

neck

left shoulder

left elbow
left waist

left wrist
left hip

left knee

left ankle

Fig. 1. Mass-Spring model of a human showing the mass-points and the
springs.

The model is enhanced with additional constraints to limit
the angular motions of the limbs. Since rotations are not
modeled, several coordinate frames are derived from sets
of the three positions of mass-points. In these frames the

1This assumes two parts per extremity, two for the torso and one for the
head, thus 11 parts, where each part has 6 DoF as a rigid body.



rotational limits are defined. Further constraints prevent the
self-penetration of the arms and the torso (by using an
anisotropically scaled cylinder collision), as well as cross-
over situations through distance constraints between the legs.
This limits the number of states the model can get into
further. The model is suspended in the air with gravity
dangling from the position of the head.

The mass-spring system is solved in a Verlet frame-
work [10], [17], which makes the implementation very
simple and the physics simulation very stable. The system of
constraints is solved by iteratively applying them individually
several times, similar to Gauss-Seidel iterations for linear
systems. The Verlet integration step is

xxxt+1 = 2xxxt − xxxt−1 + aaat∆t2,

where xxxt denotes the position of a point at time t, aaat is
the acceleration which is computed from the accumulated
forces during a frame, and ∆t is the time step. The significant
difference to the regular Euler integration is the absence of
the velocity, which is implicitly calculated by the difference
to the previous position. This implicit velocity makes the
solution stable, since position and velocity cannot get out
of sync. It also simplifies the implementation of various
constraints, since the current position is simply projected to a
valid state without having to calculate a new velocity, which
is implicitly handled by the previous position.

The weights of the mass points are chosen so that the torso
points are heavier and the points of the extremities are lighter.
The head has an infinite weight, which makes it immovable,
i.e it is only moved by assigning the position measured by the
head tracker. The strengths of the springs have been chosen
in a way to reflect the movability of the mass-points with
regard to their corresponding joints in humans, which gives
the shoulder points a certain amount of play. The springs
also allow the model to adapt to a limited amount of size
change of the tracked person.

The state of the mass-spring model is used to calculate the
state of a cylinder model, which consists of two cylinders for
each extremity, two for the torso and one cylinder for the
head. This model is used for projections in the measurement
model of the particle filters, as well as for the occlusion
model, and for visualizations. See also Fig. 2.

The various parameters of this model have been deter-
mined empirically and may not be realistic with regard to
a real human, but the simulation produces quite realistic
results and enables good predictions. This model can be
used for people of a similar stature, but the lengths and
diameters would have to adapted for persons of different
stature (depending on the body height). The constraints and
spring coefficients can stay the same.

III. TRACKING WITH A FLEXIBLE MODEL

The tracking of the body takes place in a two-step semi-
hierarchal way: The head is tracked by a special particle
filter-based face tracker, using skin color segmentation. This
is the only place where the stereo-camera is actually required,
as the rest of the system could be using only one of the

Fig. 2. Overlays of the model over the rectified image. From left to right:
The mass-spring system, the cylinder model and the simplified cylinder
projection.

images. Unfortunately, the 3D estimate of the particle filter is
not precise enough for a robust 3D localization of the head.
Therefore we use stereo correspondences with features on
the face to get a better depth estimate. The head point of the
mass-spring system is moved to the head position and the
rest of the points are moved 80% of the translation that the
head point moved.

When the model is moved with the head, the rest of the
body pose is determined by tracking the extremities with
particle filters and solving the mass-spring system, which
creates an implicit solution for the torso. The approach to
deal with the curse of dimensionality is to split the problem
into smaller sub parts and to integrate the partial solutions
into an overall solution. However, one cannot simply split
the state space into smaller parts without considering the
interactions between the sub-parts. The needed interaction is
achieved by the mass-spring system, which influences and is
influenced by the four particle filters of the extremities, as
shown in Fig. 3. The particle filter for a limb has a formal
state space with 3·3 = 9 dimensions, combining the positions
of the three mass-points that define the state of that limb,
e.g. shoulder, elbow, and wrist position for an arm filter.
However, for the same reason as before, the actual DoF is
lower, since with rigid springs only 4 DoF would be used
for each extremity. So with not completely rigid springs, as
was used here, we have more than 4 DoF but much less than
the formal 9 DoF.

The estimation of the particle filter for each extremity is
put into the mass-spring system by overwriting the position
of the points that are filtered. The mass mi of the i-th point
is changed to reflect the confidence in the estimate of the
particle filter, which is based on the variance σi of the i-
th point in the particle filter. While unrealistic in a physical
simulation sense, it works very well as way to integrate the
4 weighted results into the complete state estimate.

mi = mbase +mvariablee
sσi ,

with mbase being the base mass and a variable part mvariable,
and s < 0. It hence gives more weight to points it is confident
about and less weight to points for which the estimate is not
reliable. The solution of the mass-spring system will then
determine a state which reflects these confidence measures.
The four extremity particle filters are run independently from
each other and use the current state of the mass-spring system



in their motion models. The estimates are put into the mass-
spring system at the same time.

Mass-Spring
System

Head
PF

L. Arm
PF

R. Arm
PF

R. Leg
PF

L. Leg
PF

Fig. 3. The particle filter (PF) of the head influences the mass-spring
system, while there is a two-way coupling of the extremity PFs and the
physics simulation.

A. Motion Model

Each particle of the particle filters consists of three points
(pppt1, ppp

t
2, ppp

t
3), representing an alternative state to the one in

the mass-spring system at time t. The points are first moved
with a constant velocity model

p̄ppt+1
i = pppti + η(pppti − pppt−1

i ),

where η is a factor that determines the trust in this constant
velocity model (empirically set to 50%−80%). The previous
position is stored for all particles and points. After that, noise
is added, which is a mixture of two Gaussian distributions:
a process noise and a “depth” noise that is intended to push
particles into the direction that is not visible in the camera
image to improve the search for the correct state, similar
to the use of covariance scaled sampling in [15]. The new
position of the point is drawn according to the probability
distribution of the new position p(pppt+1

i ), which is modeled
as:

p(pppt+1
i ) = (1− α) N (p̄ppt+1

i , σiI) + α N (p̄ppt+1
i ,Σi),

where p̄ppt+1
i is the prediction from the constant velocity

model, I is the identity matrix and σi the variance of the
first normal distribution N (p̄ppt+1

i , σiI). The second normal
distribution has a covariance matrix instead of a uniform
variance. The mixture weight α determines how many parti-
cles are drawn in average by the second distribution. We use
a value of α = 0.25. The first variance σi, which represents
the unknown motion, consists of three components: a base
noise level, one that depends on the variance of the point
positions2, and one that depends on the motion in the image
at the projected position of the particle. The amount of
motion is sampled from a motion image for each of the three
points of the particle. For this purpose the motion image is
a down-sampled and heavily blurred thresholded difference
image between the previous and current image. If more
computational power is available, this could be improved by
the use of optical flow.

2This is the same variance that is used to determine the mass of the points
in the mass-spring system, that are estimated by the particle filters.

The second part of the noise distribution is the depth
component with the covariance matrix Σi. This matrix is
constructed as follows:

Σi = T R

σx σy
σz

 RT TT

The diagonal covariance matrix that expresses the different
scale factors in a frame where the z-axis is the depth
direction. This covariance matrix is rotated into camera
coordinates by R and then into world coordinates by T.
The transformation into world coordinates T comes from the
camera projection. The rotation matrix R is constructed for
each point, as a coordinate frame which has the z-axis in the
depth direction. The scale factors are chosen σx = σy = ε
to be very small and the σz is chosen differently for each
point of a particle, to give the end of the extremities, wrists
and ankles, more depth noise than the other points3. Since
the noise in the x- and y-directions in the rotated frame
are small and since the construction has to be done three
times for every particle, an approximation to this Gaussian
distribution is used, which is simply Gaussian noise along
the depth direction.

At this point we have combined a constant velocity model
with a model for the assumed and estimated random distri-
bution of the particles. But since we estimate these values
independently for the three points of the particle, the particles
might have reached positions which do not correspond to
physically or anatomically correct states of the extremity.
To force the particles back to valid states as defined by the
constraint system of the body model, the three points are put
into the mass-spring system and the active constraints that
affect these points are applied to them for several iterations.
The other points in the mass-spring system are assigned an
infinite mass and do not move (See Fig. 4). This is the other
direction of the coupling between the mass-spring system
and the particle filters, since the state of the mass-spring
system influences the state the particles can get into.

Fig. 4. Constrains in the particle filter of the right arm — points
from the particle are black, the active constraints are light blue and the
disabled constraints and mass points are gray. Only the spring constraints
are displayed.

3Empirically set to σz = 1.0m/0.5m/0.15m for wrists/elbows/ shoul-
ders. Same for the legs.



B. Measurement Model

The measurement model is using the projection of cylin-
ders into the images to calculate two scores per particle, an
edge score and a surface score. The edge score is calculated
by comparing the projected long edges of the cylinders
against an edge image (like in [5]), which is a blurred version
of the combination of a thresholded difference image and a
thresholded gradient image. This combination has the benefit
of having a higher score for moving edges that are assumed
to belong to the moving person. The second benefit is that
this scheme does not depend on a foreground segmentation.
The drawbacks are that it is not as clean as silhouette edges
from a segmented image and that it also features edges that
do not belong to the person, which is compensated to an
extent through the moving edges.

The surface score is calculated by sampling the surface
of the simplified cylinder projection with a regular grid, as
illustrated in Fig. 5. One possibility for calculating the score
is counting the number of foreground samples, as it is coming
from a foreground segmentation. But this requires a good
segmentation, which is hardly possible with motion segmen-
tation. Therefore we use an appearance model instead, where
each sample on the grid gets a reference color, which is
compared to the actual color in the current image (sum of
absolute differences). The color model for each body part
(left/right upper arm, left/right lower arm, etc.) consists of ten
reference colors along the cylinder for that part and assumes
that the color is constant on a ring around the surface of the
limb. The colors are linearly interpolated to get the reference
color for a sample, by using the normalized distance from
the base of the cylinder as an index.

The color model is learned during the first couple of
frames, with an running average scheme. The color in a
frame is sampled on a regular grid and the points that are
classified as foreground (from the segmented image) are
averaged together per ring of the cylinder and learned over
several frames. Once the learning is complete, a foreground
segmentation is no longer needed and an active head could
start moving again.

The whole measurement model makes use of an occlusion
model, which is based on the current state of the mass-
spring system. The occlusion model consists of the convex
quadrilaterals of the simplified projections of the cylinders.
The quadrilaterals have a minimum and maximum depth
and are indexed through a spatial grid, which makes the
query whether or not a sample point is visible very fast.
All samples, for the edge and the surface score, are tested
and receive special default scores if a sample is occluded or
is outside of the view. These default values have to be chosen
carefully to prevent a preference for occluded or unoccluded
states.

C. Initialization

The system is initialized by taking the first frame as
a background model, which is used for the background
subtraction. The head tracker is looking for a suitable skin
blob to track as the head. When a head is found, the model is

Fig. 5. The left image is showing the sampling grid for the arms displayed
on the mean estimates. The surface samples show the quality of the match
in a red to green scale. Occluded sample points are yellow. Edge samples
are white or black (occluded). The right image shows different backgrounds
and clothes.

moved to the measured position of the head and the physics
simulation starts — but at this time without the particle
filters, which results in a relaxed state of the model with
arms and legs simply dangling. The configuration from the
physical simulation is run through the measurement model
and the edge score is used to determine when a match
between the relaxed state and the image occurs. When a
match is found an initial appearance model is captured
and the tracking with the filters starts. During the next
frames the color model is updated as already explained. The
learning rate depends on the local confidence values, which
are interpolated along the extremities. When the learning
stops, the appearance model is fixed and the foreground
segmentation is no longer needed, allowing the camera to
be moved.

Note that this initialization procedure assumes that the
person will get into a pose that is close to the relaxed state
at the beginning.

IV. EXPERIMENTAL RESULTS

A. System Parameters

The single threaded tracking application runs on a Pen-
tium 4 3.2 GHz CPU with 10 Hz. The calibrated stereo
camera consists of two Dragonfly cameras by Point Grey
Research Inc. Image processing is performed on 640× 480
color images. The used lenses are 4 mm M12 micro lenses,
which have a significant radial distortion, but provide a big
enough field of view, to see the complete human at a distance
of 2–3 m. The software was built using the Integrating
Vision Toolkit4 which offers a clean camera abstraction and
a generic camera model.

The particle filters used 200 particles per extremity and
100 particles for the head. The processing time is ≈35 ms
for the image processing and ≈50 ms for the filtering, where
the motion model is consuming about half the processing
power.

B. Range of Motions

The tracking of the arms is able to follow the motions
of a single arm very robustly, even through complicated

4http://ivt.sourceforge.net



and ambiguous situations. This is achieved through the
combination of the angular constraints, the occlusion model
and the motion model, which guide the estimate through
ambiguous situations. The tracking is even able to detect if
parts of a limb are hidden behind the body or the head, due
to the occlusion model. The interactions of the two arms
are tracked as long as both arms are visible to a certain
extent, cross-over situations are successfully tracked due to
the occlusion model. Fig. 6 shows tracked arms positions.
Furthermore folded arms are captured, but the estimate does
not reflect which one of the arms is visible, since it yields
fluctuating depth estimates. When opening the folded arms,
the tracking can get confused, but usually recovers through
the opening motion.

The legs are tracked individually very well, including
the detection of knee bends and folded up calves, which
works also when standing on one leg. As with the arms the
interaction of the two legs is more complicated to track. As
they are closer to another than the arms, they have a tendency
to both capture the same leg. To compensate that, a plane
separation constraint forces the points from the two legs away
from each other similar to the self penetration constraint,
which improves the tracking, but makes it impossible to
capture natural cross-over situations. When a person turns
side ways, one leg is completely occluding the other, which
can cause significant confusion for the filters.

As the tracking depends strongly on the localization of
the head, more precisely the face, the person cannot turn
away more than 90◦ from the camera. The suspension of
the head together with the simulation of gravity implies
that the person has to be standing. The waist area is also
relatively stiff at the moment, and thus does not model the
flexibility of a human. The constraint framework allows easy
implementation of external constraints, like collisions with
objects or furniture, which should allow the integration of
specific knowledge into sitting and other special motions,
but this has not been explored yet.

C. Precision

To measure the precision of the estimate one needs ground
truth to compare to. Unfortunately, a motion capture system
was not available, so the tracking of an object in the
right hand, which was localized with the stereo camera, is
compared to the estimate of the right wrist point of the
human motion tracking application. This is a substitute for
better ground truth and is not very precise, but confirms that
most of the error – as one would expect – is in the depth
direction and that the correct estimation of bent limbs needs
a certain amount of foreshortening of the limbs before the
model will capture it. Comparing the 3D renderings of the
estimates to images gives enough insight into how good the
estimate is and where the precision deteriorates. See also the
accompanying video. The focus of the proposed system is not
on precision, but on speed and robustness, since the estimated
body posture is used for the recognition of states and gestures
and not the capturing of performances for animations.

Fig. 6. A series of pictures from a tracking session. The left side shows
the simplified cylinder projection, while the right side shows a 3D overlay
over the rectified image. The 3D model is transparent and uses the color
from the appearance model. The head and torso color are derived from the
left arm.

D. Tracking Failures

Unfortunately, the system has problems when the person
is seen from the side, since two limbs are not visible. The
estimate for the parts that are not visible will deteriorate
rapidly which will affect the estimates of the other limbs,
since they are connected through the flexible model. Turning
back to face the camera again, does usually not recover the
correct estimate.

If two limbs are close to each other and one is moving
while the other is still, the moving limb can affect the
estimate of the still limb, by pulling the estimate away,
since moving edges yield a higher score than still gradients.
Particles from the still limb will follow the moving edges.

Naturally, motions which are too fast for the 10 Hz pro-
cessing rate of the system cannot be tracked



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  40  80  120  160

Ab
so

lut
e 

Er
ro

r (
m

)

Frame Number

Abs. Error
Avg. Error

 0

 0.1

 0.2

 0  40  80  120  160

Ab
s. 

X 
Er

ro
r (

m
)

Frame Number

Abs. X Error
Avg. X Error

 0

 0.1

 0.2

 0.3

 0  40  80  120  160

Ab
s. 

Y 
Er

ro
r (

m
)

Frame Number

Abs. Y Error
Avg. Y Error

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  40  80  120  160

Ab
s. 

Z 
Er

ro
r (

m
)

Frame Number

Abs. Z Error
Avg. Z Error

Fig. 7. Plot of the absolute error between the tracked object position and
the wrist estimate of the human motion tracking, showing that the biggest
error is in the depth direction, which also correlates the most with the overall
error. Note the different scales!

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have presented a new way to approach the human
motion tracking problem, by coupling a physical mass-spring
simulation with probabilistic particle filters to get an estimate
for the pose of a human. Due to the reduced dimensionality
of the particle filters achieved by semi-hierarchical decom-
position, the system can run with 10 Hz on a regular PC,
which allows real-time tracking of the motions of a person.
The flexible model enables the tracking system to adapt to
the person being tracked and creates a natural interaction
between different parts of the body model.

A simple appearance model with reference colors is
learned on-the-fly and allows the system to work without
background subtraction, which enables the camera to be
moved after the appearance model has been learned. The
use of a strong motion model, which takes motion cues
from the images and enforces the constraints of the system,
allows tracking through ambiguous situations. Together with
the occlusion model this creates a robust system that is able
to track through complicated situations. All this is done with
a stereo camera, where the stereo is only used for the head
tracking. The filtering is basically monocular5.

B. Future Works

Particle filtering is very well-suited for a parallel imple-
mentation. The speedup from such an implementation should
be substantial and would increase the range of motions that
can be tracked, due to the current speed limit.

The current mass-spring system is flat and has been chosen
because it is the simplest model for the purpose, which
results in few springs. A more elaborate mass-spring skeleton
could enable more realistic deformations for the waist area
and more freedom for the hip.

The current system uses only a stereo-camera and is
therefore suitable for application on a humanoid robot head.

5We actually alternate between the two images, but the benefits are
minimal.

However, we plan to evaluate how a system with several
cameras can benefit from the proposed flexible body model.
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