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Chapter 1

Executive Summary

This deliverable describes the demonstrations realized on the humanoid platforms ARMAR-IIIa and
ARMAR-IIIb showing the successful integration of components developed within the GRASP project. In
order to enhance the cognitive grasping capabilities of a robotic system operating in human-centered en-
vironments, various modules improving the robot’s sensory capabilities have been integrated. In addition,
systems allowing the extraction and the application of grasping knowledge through human observation
have been evaluated on the humanoid platform. The results of the demonstrations are presented in this
deliverable in the form of publications and videos.

The deliverable consists of the following demonstrations

• SVM-based grasp stability Detection which is adapted and enhanced for usage on the humanoid
robot ARMAR-IIIb, in order to allow the robot to predict whether a grasp is stable or not, based
on sensor data. Tactile sensor data and joint angle data from ARMAR were used to train the
Grasp Stability Detector, the trained detector was then tested on ARMAR-IIIb and enhancements
to the original detector were developed and tested, such as filters for dealing with oscillation in the
detector’s output.

• Blind grasping using the haptic capabilities of the humanoid robot ARMAR-IIIb in order empty a
basket filled with different objects. By exploiting the haptic capabilities of the robot, contacts with
an object are detected and based on the contact positions correction movements are performed.
This groping action is performed recursively until the detected contacts indicate a stable grasp.

• Vision-based grasping of known objects. A 3D point cloud an object is recognized and its pose
is estimated by means of a 3D model matching. Based on the corresponding object model grasp
hypotheses are generated and fitted into the scene. The best grasp hypothesis is executed by the
humanoid robot ARMAR-IIIa.

• Task-based grasp adaptation in which an unknown table scene is explored and the objects within
this scene are segmented and categorized. Based on the determined category and a given task
previously trained systems are used to infer the most suitable, stable grasp which satisfies the
task-specific constraints defined on the object category.

• Robotic grasping system combining the advantages of simulation-based grasp planning with knowl-
edge from human grasping examples. Human grasping data were used to rate grasp hypotheses
from the Medial Axis grasp planner in such a way that the robot could select among the planned
grasps the most human-like grasp for actual execution.

• Grasp recognition system in which the robot imitates the grasp performed by the human in front of
him. A human performs a grasp without any markers on their arms or hands. The robot observes
the arm movement and the grasp type, maps them to his embodiment and performs the grasp on
a similar object situated in front of him.

• Grasp imitation framework using a continuous grasp representation based on virtual springs. Fin-
gertip trajectories of human grasp are observed by using the stereo camera system of a humanoid
robot. From the captured motion data the parameters needed for the instantiation of the grasp
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representation are estimated. The resulting grasp is adapted to the current object of interest and
executed on the humanoid platform ARMAR-IIIb.

• A benchmarking software framework that addresses the problem that algorithms for grasping and
dexterous manipulation cannot be evaluated and/or qualitatively be compared at all sites and under
the same conditions. It, hence, offers an environment for testing and evaluating different grasping
and dexterous manipulation algorithms in pure simulation. Further, it features a library of domestic
everyday objects models and a real-life scenario including a humanoid robot in a virtual kitchen.
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Chapter 2

Integration Activities

2.1 Stability detection

In this work, we show the integration of the grasp stability detection method (LUT) introduced
in [BLJ+11] and [LKK10] on the robot ARMAR-IIIb. The method uses a support vector machine (SVM)
to assess a grasp’s stability based on the output of different sensors on ARMAR’s hand. In order to
train the SVM classifier for data from ARMAR’s hand, we collected sensor data from several hundreds
of sample grasps on a set of different household objects varying in size, shape, and weight (KIT). Sensor
data collection was performed in the following way: A box containing the objects was placed in front of
the robot. ARMAR’s right hand was moved to a pre-pose near the object. We used varying pre-poses,
including grasps from the top with vertical or tilted approach directions, grasps from the side as well as
varying roll angles of the hand around its approach direction for all the cases described above. At the
pre-pose, we started to record the tactile sensor data and the joint angle data. Then we moved the hand
towards the object until the tactile sensors reported contact with the object and closed hand. After the
pressure on the hand’s actuators had stabilized, sensor data recording was stopped and we tried to lift
the object, where we recorded if the grasp was successful or not. For the actual training of the SVM
classifier, joint angle data were directly used, while in case of the tactile sensors, image moments were
computed on the tactile sensor images which are related to the total pressure, the mean and the shape
of the contact area. Further investigations were performed on the behavior of the classifier, where the
effect of a mean filter and an exponential filter on oscillations in the classifier’s output were studied.
By applying these filters, the grasp stability detection can be run continuously during a grasp which is
an improvement over [BLJ+11]. The continuous grasp stability detection enables faster decisions to be
made on the stability of a grasp. Finally, two sorts of experiments were conducted. First, synthetic tests
showed the classifier’s behavior in terms of true positives, false positives, true negatives, false negatives.
Second, validation tests were performed in a real world usage scenario, where the classifier was used to
predict grasp stability on ARMAR-IIIb.

The results show that the integrated approach for grasp stability detection also works on complex robotic
hands like the hand of ARMAR-IIIb.

Involved Partners: LUT. KIT

Leader and responsible: KIT

2.2 Haptic-based blind grasping

In the video ”BlindGrasping.wmv”, we present a grasping method for grasping unknown objects with
the help of the haptic sensors. The robot ARMAR-IIIb is equipped with tactile sensors in the fingertips
and the palm of the hand and a 6 DoF force/torque sensor in the wrist. Furthermore, joint encoders
and pressure sensors are mounted on the pneumatically actuated – hence compliant – hand, which can
be used to detect forces exerted on the hand. The objects are located in a basket which is on a table in
front of the robot. Basic image processing techniques are applied to locate the position of the basket and
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to obtain an initial hypothesis on the position estimate of a single object. Once a hypothesis is found the
following strategy is used for grasping the object:

The robot approaches the position estimated by computer vision from above until contact is detected
which is indicated either by the tactile sensors, by forces measured with the 6 DoF force/torque sensor
or the position encoders of the finger joints. If the contact position is located at one of the fingers, a
correction movement is performed in the direction of the contact point. This is repeated until the hand
is in a pose, which looks promising for a stable grasp. This is the case, when the only contact position
detected lies in the palm of the hand and, hence, the fingers do not have contact with any obstacle. To
grasp the object, the hand is closed and a grasp stability check is performed using the method described
in section 2.1. In case of a stable grasp the robot tries to lift the object, while continuously checking the
grasp stability. If the grasp appears to be unstable, the robot starts over.

After several trials, the robots accomplishes to grasp most of the objects. Due to the grasp stability
detection the system knows if an object has been grasped successfully or if it has to try again.

Involved Partners: KIT

Leader and responsible: KIT

2.3 Vision-based grasping of known objects

In this demo, we present a robot emptying a box or cleaning a table with known objects. Initially, 3D
point clouds of the objects are computed from stereo images using a stereo module (KIT).

Based on these point clouds, we apply an object recognition module which is presented in [CPB12]
(TUM). The objects are recognized and their poses are estimated. The applied algorithm consists of two
phases. The first one — the model preprocessing — is done offine. It is executed only once for each model
and does not depend on the scenes in which the model instances have to be recognized. We assume that
each object to be recognized is represented by a model consisting of a set of points with corresponding
surface normals. The second phase is the online recognition and pose estimation which is executed on
the range scan using the model representation computed in the offine phase.

The result of the recognition is a list of elements, where each element consists of both an ID and pose of the
object. This information is used by the grasping module to generate a number of grasp hypotheses which
are ranked regarding reachability, collision avoidance, and the resulting arm configuration provided by
the inverse kinematics solver (distance to the joint angle boundaries). The most suitable grasp hypothesis
is passed to the humanoid platform ARMAR-IIIa for execution. Using a Visual Servoing approach, the
textured objects within the GRASP object set could be grasped successfully.

Involved Partners: TUM. KIT

Leader and responsible: KIT

2.4 Task-based grasp adaptation

In this work, we show how an object can be grasp under consideration of a given task represented by task-
specific constraints defined on object categories. Given an unknown scene which contains several object
instances of different categories, first, a scene exploration using a growing neural gas approach is performed
to obtain interest points indicating possible objects locations. By applying a segmentation algorithm
based on Markov Random Fields at these interest points, the objects are segmented and the corresponding
point clouds are calculated. For the object categorization, two complementary categorization systems are
used: 1) shape-based categorization using the segmented point clouds as input (TUW) and 2) appearance-
based categorization using segmented images as input (KTH).

As described in [WV11], the shape-based categorization module exploits the similarity between the depth
image given by the object’s point cloud and a 3D model. In order to compare both, synthetic depth images
of the 3D model are generated by sampling from different view points around the model. To determine
the similarity between these depth images a combination of multiple shape descriptors is used consisting
of following:
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• D2 shape distribution descriptor on multiple resolutions which encodes a histogram of distances
between randomly sampled points of the point cloud

• Moment invariants in 3D which inferred from the Hu moments invariants in 2D

• Voxel Based Spherical Harmonics descriptor containing a histogram which is calculated for 32
concentric spheres and frequency bands

The categorization result consists of two confidence measures whereas the first confidence measure is
calculated offline and represents a bias calculated for each descriptor and each category. The second
measure is computed online by comparing the multiple shape descriptors of the point cloud and the
synthetic depth images of the 3D model.

The appearance-based categorization module as introduced in [MSK12] represents an object using a 2D
shape descriptor in the form of a Histogram of Gradient and a SIFT feature map. For each descriptor a
Support Vector Machine is trained with data originating from an object database containing various views
of the object category prototypes. Given a view of a current object instance, the combined classification
result provides the object category. The final category is determined through cue integration of the two
categorization systems mentioned above.

Since an object category is represented by a set of object prototypes, in an offline step grasp candidates
are trained on each prototype using the Medial axis planner in order to generate grasps for a category
(KIT). To grasp a current object instance, once the object category is determined, an object category
prototype matching the scene best is transformed and aligned within the scene to estimate the object’s
pose. The same transformation is applied to the corresponding grasp candidates.

In a further step, task constraints are inferred limiting the selection of grasp candidates which are most
suitable to accomplish a certain task which can be e.g., pouring, hand over or tool use and is given by
the user. To learn these task constraints, as introduced in [SHKK10], for a specific task a correspond-
ing dataset consisting of feature vectors which include object features (size, convexity), action features
(approach vector, grasp configuration), and manually defined constraints (freeo object volume, grasp sta-
bility) which are defined on the object as well as on the action features is generated. In order to encode
the statistical dependencies between object, action and constraints features a Bayesian network is trained
from which the constraints on the grasp action can be determined based on the given task and object
information. Based the grasp constraints each grasp candidate is rated resulting in a ranked set of grasp
candidates which is checked for reachability and collision avoidance (UJI). The best ranked, reachable
grasp candidate is executed on the humanoid platform ARMAR-IIIa.

In order to guarantee a stable grasp execution a Visual Servoing approach using an appearance-based
object tracking method based on textural SIFT features is applied. Before approaching the target object,
the robot looks at the object and a set SIFT reference features is extracted from this initial view. During
the approach phase, these features are tracked to obtain a current update of the object’s position. For
our experiments on the humanoid platform, we evaluated the resulting system on three object categories
(car, bottle, and mugs) and four tasks (playing, pouring, hand over, and dishwashing). The object set
consisted of at least two object instances of each object categories with different measurements. The
results of this work are presented in the video ”TaskBasedGraspAdaptation.wmv”.

Involved Partners: KTH. UJI, TUW, KIT

Leader and responsible: KIT

2.5 Human-inspired grasping

In this work, we demonstrate the human-inspired selection of grasp hypotheses for execution on a hu-
manoid robot. The novelty of this work is the rating of the generated grasp hypotheses according to their
human-likeness and the selection of a grasp for execution which resembles a human grasp the most. This
is achieved by evaluating grasp data recorded by LMU.

In a first step, we generate grasp hypotheses for the test objects using the Medial Axis grasp planner,
which exploits an object’s local symmetry properties for grasp planning (see [PAD11]). Making use of the
Medial Axis Transform shape descriptor, the grasp planner extracts grasp center points, hand approach
directions and hand orientation vectors from the object geometry that have a high probability to result
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in a successful grasp. The grasp hypotheses are tested for force-closure. In a second step, we use human
grasping data for rating the grasp hypotheses generated by the grasp planner. Human grasping data
were collected using a Polhemus Liberty electromagnetic motion tracking system, where the sensors were
attached to the test subjects’ fingernails in order to obtain fingertip trajectories of the grasping process.
The rating procedure works as follows: For each of the grasps generated by the grasp planner, which are
represented by the wrist pose and the hand joint angles, we calculate the grasp points on the object using
the forward kinematics of the hand. For each grasp the sum of absolute differences between grasp point
locations of the planned grasp and the mean of grasp locations of the observed human grasps serves as a
measure of human-likeness. The grasps are now ranked with respect to this measure and the best rated
grasp from the set of reachable grasps is chosen for execution on the robot.

The accompanying video ”Human-inspired-grasping.wmv” shows the rating process and the execu-
tion of the selected grasp for two example objects. First the scene with the robot in front of the object is
shown where the grasp hypotheses from the grasp planner are visualized. Then the results of the rating
process are shown, where the individual ratings for all grasps as well as the average fingertip end posi-
tions from the human grasps are displayed. Finally, the best ranked grasp hypotheses which is actually
reachable is displayed and executed by the robot.

This work resulted in a joint paper of KIT and LMU published at Humanoids 2011 (see [PAD11]).

Involved Partners: LMU, KIT

Leader and responsible: KIT

2.6 Grasp recognition and mapping

The video GraspRecognition.wmv” shows the work presented in [DRK+09] where human teaches a
robot what grasp type is to be applied to grasp a particular object. For this purpose the robot observes
how the human performs the action, paying special attention to how the arm is moved, which grasp type
is performed and which object is grasped. The arm movement is observed with the wideangle stereo pair
in ARMAR, and processed with an upper body tracker (see [AAD08]). Once the human hand is at the
target object, the grasp type is observed with one foveal camera in ARMAR, compared with a database
of hand poses and classified as a particular grasp type (see [RKK10]). For this demo, we restricted the
grasp types to be just one of the following three: power grasp from top, power grasp from the side,
and pinch grasp. Finally, the object recognition is based on comparison with different views generated
from an object database (see [AAD09]). All this information is used to generate an approach movement
with the Master Motor Map interface, and apply a grasp (defined as the correspondent grasp to the one
performed by the human) to the recognized object. The system runs in real time, and the human does
not need to wear any markers or special devices.

Involved Partners: KTH. KIT

Leader and responsible: KIT

2.7 Grasp imitation using a continuous grasp representation

In this work, we evaluated our grasp imitation framework in order to acquire novel grasping skills from hu-
man observation. Based on captured motion data of a human grasp, our goal is to generate a generalized
representation allowing the synthesis of the demonstrated grasping procedure on a humanoid platform
in a continuous manner which involves all three phases of grasping: preshape, approach, and enclose. To
represent a grasp in a continuous way allowing object specific adaptation, we exploited a grasp represen-
tation in task-space based on virtual springs between the fingertips of the grasping hand (see [DAD11b]).
The instantiation of the grasp representation is accomplished by parameterizing the spring constants of
the virtual springs. By means of a central force towards a target configuration consisting of the supposed
contact points, the resulting dynamical system is modulated resulting in a continuous grasping movement
of the fingertips. For the estimation of the spring constants, an estimation procedure combining global
and local optimization algorithms has been implemented which allows the estimation of parameters of a
dynamical system from noisy data. To accomplish the mapping between the hand of the observed human
subject and the robot hand, the estimation is performed using the grasp representation which has been
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adapted to the measurements of the human hand. The adaption is done by equating the virtual spring
lengths with the distances between the fingertips in the initial pose. For the mapping on our robot, a
grasp representation adapted to the robot hand is instantiated using the spring constants which has been
estimated from the human demonstration. The instantiated grasp representation encodes a specific grasp
type for a prototype of an object category such as a cylinder or a box. To grasp a specific object instance
the configuration of contact points determined for the prototype objects has to be scaled to match the
current object instance. To take into account a task-specific adaptation of the grasp, Dynamic Movement
Primitives have been used enabling the robot to approach an object from different start poses towards
variable object target poses. The execution of a grasp is performed by moving the robot’s hand towards
a designated target pose whereas the acceleration during the approach movement is used to modulate
the grasp representation.

In order to generate motion data of human grasp demonstrations, methods for capturing fingertip move-
ments have been implemented (see [DAD11a]). To design the human-machine interface for the user as
intuitive as possible and, therefore, to realize a grasp imitation process in an online fashion, the tracking
of the human fingertips is performed in a markerless manner using the stereo camera system of the hu-
manoid. In order to track circular image features exposed by the fingertips, a method combining particle
filter and mean shift algorithms has been implemented allowing robust fingertip tracking at approximately
25 fps.

As it can be seen in the video ”VirtualSpringRepresentation.wmv”, the resulting framework has
been successfully evaluated on four different grasp types including a power, tripod, pinch, and a lateral
grasp.

Figure 2.1: Grasp representation for a tripod grasp
with three contact points.

Figure 2.2: Left: Hough space visualization. Center:
Contour for the tracking. Right: Result image.

Involved Partners: KIT

Leader and responsible: KIT

2.8 Benchmarking environment

In this work, we present the new benchmarking suite – a software framework that has been developed
at KIT as a part of the OpenGRASP toolkit which has been introduced in [UKA+11]. This software
addresses the problem that algorithms for grasping and dexterous manipulation cannot be evaluated
and/or qualitatively be compared at all sites and under the same conditions if the laboratories have
different (or any) humanoid robots, manipulable and graspable objects, and environments.

This OpenGRASP Benchmark Environment offers an environment for testing and evaluating different
grasping and dexterous manipulation algorithms in pure simulation, which aims at clear and reproducible
qualitative evaluation in any laboratory. It offers all necessary mechanisms for the implementation of
performance metrics and benchmark routines for the different aspects of the topic, which have the chance
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to be accepted by a wide community. By providing a consistent environment, individual benchmarks
can be combined in order to evaluate complete high-level tasks. Therefore, the software framework has
a very extendable structure in order to be able to include a wider range of benchmarks defined by the
community of robotics researchers. The benchmark suite comes with an expendable list of individual
benchmarks that serve as a guidance for the community-driven development.

In addition to the software development framework, the benchmark environment features a great library
of domestic everyday objects models that integrate well into the integrated real-life scenario featuring a
fully employable model of the humanoid ARMAR-III acting in a virtual kitchen (see Fig. 2.4).

An introduction to the OpenGRASP benchmarking environment is given in the video ”Benchmarkin-
gEnvironment.wmv”. This video demonstration provides an introduction to the presented software
framework focusing on the usage of the interface and the already implemented benchmarks. The bench-
marks shown were created using the framework and give an impression on how new algorithms for grasping
and dexterous manipulation are integrated. They cover the topics of collision free motion planning with
Rapidly-exploring Random Trees (RRT) (see Fig. 2.3) and grasp planning with the Medial Axes Planner.

Figure 2.3: Screenshot of the graphical user interface of the motion planing benchmark.

Figure 2.4: The scenario featuring a detailed model of the humanoid robot ARMAR-III in a virtual
kitchen environment.

Involved Partners: KIT

Leader and responsible: KIT
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