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Chapter 1

Executive summary

Deliverable D5 presents parts of developments within workpackage WP3 “Self-experience of Grasping
and Multimodal Grounding” of GRASP for the first twelve months of the project.

WP3 is responsible for the instantiation of motion with the current configuration of a robot as well as
symbol grounding linking the agent’s sensor experience with symbols, concepts, and attributes during a
manipulation attempt to allow learning. As such, it addresses the problems of how a robot i) applies
uncertain world knowledge to optimise grasping on-line, ii) adapts the grasp experience using sensor
feedback to cope with uncertainty and new situations, and iii) grounds the grasp experience to given
symbolic grasp models.

The relationships of WP3 with other WPs can be described as follows: WP2 produces the basis for
modelling of actions with primitives, thus generating the primitive sequences for WP3 while WP4 provides
the position of the manipulation target. These allow WP3 to make a manipulation attempt. WP6 provides
a prior guess of sensor image during a manipulation attempt. This allows WP3 to detect surprise events
as incoherence between expected and measured readings. WP3 informs WP4 about the actual experience
of the world such that the world description can be updated. In addition, WP3 grounds the information
to the symbols used in WP4. WP3 informs WP5 that something surprising happened, together with
the description of what did happen. This allows WP5 to learn from the surprise. WP7 integrates the
subsystems from all other WPs, such that WP3 provides the on-line manipulation controller subsystem.

According to the Technical Annex of the project, D5 presents activities connected to Tasks 3.1, 3.2, and
3.3. The objectives of these tasks are defined as

• [Task 3.1] - Control Architecture. Initially, a hierarchical control architecture will be defined
and developed such that it allows relating the concepts of the grasping ontology defined in WP2
to the immediate control. After the architecture has been defined, this task will continue with
the definition and development of the general control architecture components, mainly a Cartesian
controller and high-level supervisory and visual controllers.

• [Task 3.2] - Multimodal Grounding. The task aims for the definition and development of a
grounding mechanism connecting action primitives and attributes with uncertain sensor informa-
tion, including modelling of the uncertainties involved. Initially, the modelling of uncertainties of
the three sensor types (visual, tactile, proprioceptive) is studied considering the context of the at-
tributes of the grasping ontology. Later, the task will continue by studying the temporal grounding
problem as a state estimation problem with uncertain information, as the concepts and therefore
the symbol set are defined by the grasping ontology.

• [Task 3.3] - Robust action primitives. The task aims for the definition and evaluation of
adaptive and robust control approaches for individual action primitives. The main focus will be on
studying the possible grasp primitives for different hand kinematics (parallel jaw, three-fingered, five
fingered) and to identify robust parameterisable primitives through evaluation. Parameterisation
of the primitives allows self-experience to be used for improving the performance during future
attempts.

Chapter 2 describes results of work done related to Task 3.1, “Control architecture”. To understand the
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decisions made on the design of the control architecture, existing manipulator control architectures are
first reviewed in Sec. 2.1. During the twelve first months of the GRASP project, a control architecture has
been designed. Section 2.2 describes both the design of the control architecture and the current progress
of the actual implementation of the control architecture, and how the control architecture compares to
the reviewed architectures from the point of view of the GRASP project to enable intelligent and adaptive
robotic manipulation with hardware independency.

Chapter 3 describes results related to Task 3.3, “Robust action primitives”. The chapter introduces the
design of a grasping primitive that uses sensor-based feedback to deal robustly with uncertainty in the
conditions of grasping in Sec. 3.3. In order to validate and test the developed primitive, a simple grasp
planning system has been implemented, which principles are described in section 3.4. Early experimental
results are also presented. The work is still at an early stage having started in September 2008.

Chapter 4 describes early work related to Task 3.2, “Multimodal grounding”. This task will begin
properly during the second year of the project, but the work has started with a literature review of sensor
uncertainty modeling for grasping and manipulation. Section 4.1 outlines the role of uncertainty in control
of manipulation, especially in grasping. Then, Sec. 4.2 reviews different types of models applicable for
modeling sensor uncertainty. Finally, in Sec. 4.3, the phenomenon is examined from the point of view of
different sensors applicable in grasping tasks.

6



Chapter 2

Control Architectures

Control architectures have well defined levels of hierarchy in literature [KS08]. The architectures range
from planning several actions to low-level control. Planning resides at the highest level in the control
architecture hierarchy and it is responsible for planning the actions, e.g. pick-and-place actions. The
action level, or executive level, is one step below the planning level. The executive level is responsible
for taking the action and divide it to smaller subactions, or motion primitives, which can be executed
by logically simple low-level controllers. These low-level controllers are the most bottom level in the
architecture hierarchy which is called the behavioral level.

The architecture discussed in Section 2.2, is focused on the two lower levels in the control architecture
hierarchy, the executive and behavioral levels. The aim of the architecture is to provide means to input
an action and split the action into suitable low-level controllers that can be executed to form the given
action. Thus, the controller’s goal as considered in this section is to perform a single motor action. In
the system also other types of actions, such as perceptual actions, can exist as described in D4, but those
do not relate to the on-line control and are not discussed here.

Sections 2.2.3 and 2.2.4 will present the current progress of the control architecture planned for use
in the GRASP project. To understand the decisions made on the design of the control architecture,
existing manipulator control architectures are reviewed in Section 2.1 to give an overview of the existing
architectures in general.

The section 2.2 describes both the design of the control architecture and the current progress of the actual
implementation of the control architecture, and how the control architecture compares to the reviewed
architectures from the point of view of the GRASP project which is to provide intelligent and adaptive
service robotics manipulator platform which is independent of the hardware.

7
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2.1 Manipulator Control Architectures

As discussed above, control architectures can be divided into multiple levels, the same applies when the
control architecture is used in conjunction with a manipulator, in this case a robotic arm and a hand.
The planning level decides the sequence of actions, e.g picking up a set of objects, the executive level
then divides the action into appropriate motion primitives, such as approach, grasp and transport, and
the behavioral level actually implements these motion primitives. Figure 2.1 shows how the hierarchy
relates to the concepts of task, action and primitive.

Figure 2.1: Hierarchy of control

Although a number of manipulator architectures have been presented previously, most of them do not
focus on hardware independency, which is a one of the key factors in GRASP. However the concept of
motion primitives is widespread and used successfully in many of the reviewed manipulation architectures.

Milighetti et al. [MKF+05] presented an architecture which uses the concept of primitive skills, that
combine to form a skill, which in turn form a complete task. Each primitive skill is selected by heuristic
selection out of many possible primitive skills, based on the sensor signals. A neural network is used to
detect the change between the skills. A complete task can then be seen as a chain of primitive skills.
Each primitive skill is based on a separate controller.

Haidacher et al. [HBF+03] demonstrated an architecture for the DLR Hand II. The architecture is based
on different levels of complexity, which handle different aspects of the control. Again, the concept of
hierarchical decomposition is central, but the architecture is limited to a single hand and the adaptiveness
of the architecture has to be implemented at the highest level as the lower levels are statically defined.

Han et al. [HLT+00] present a control architecture for multi-fingered manipulation. As previously, the
architecture is based on different levels that handle control from planning to actual joint control. The
problem with the architecture is the lack of adaptation as the architecture shows that only predeter-
mined architectural components, such as the low level controllers, are available to use. In addition, the
architecture does not consider the robotic arm, only the hand.

Hybrid discrete-continuous control architectures for manipulation, such as [PEC99] and [SB99], differenti-
ate the control phases according to the state of the manipulator. This is achieved by using discrete events
to classify the manipulation configuration and using continuous states to control the dynamic behavior
in different configurations. This type of architecture is suitable for both low-level control [SB99] and
for complete control architecture [PEC99]. Petersson et al. [PEC99] demonstrate a control architecture
(Mobile Manipulation Control Architecture, MMCA) for a mobile manipulator based on behaviors. The
actual manipulator behavior is modelled as a sequence of configurable primitive actions. These primi-
tives can be chained together using an hybrid automata to form an action. Another mobile manipulator
architecture (Wheeled Mobile Manipulator, WMM) by Chang and Fu [CF06] is also based on a hybrid
automata, which has discrete states and each state has its own continuous control. Problem with the
WMM architecture is that the automata performing the action can not be changed, that is, the structure
of the hybrid automata is static, although the states and transitions can be configured in a limited way.
Compared to the MMCA, the WMM is limited in capability, as the MMCA is capable of supporting an
arbitrary automata. Also MMCA is designed to be hardware agnostic, that is, MMCA can support many
hardware platforms.

Aramaki et al. [ASK02] developed an architecture for humanoid robot. The architecture is based on
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human action framework of conscious and unconsious tasks. In addition to these tasks, also a control
task is defined as the lowest level of control. This architecture corresponds to the general definition
of hierarchical control as described in Chapter 2. The conscious task is the planning level and the
unconscious level is the executive level. The unconscious tasks are based on a state machine which
controls the control tasks at the lowest level.

Prats et al. [PdPS06] present a control architecture based on the concept of task frame formalism [Mas81].
The architecture is divided into three parts: perceptions, actions and abilities. Perceptions are the sensors
of the robot platform which produce information in the architecture. The actions are comparable to the
behavioral level in the general control architecture hierarchy as they are the actual controllers controlling
the hardware. Abilities form the planning and executive layer of the architecture. Abilities are formed
as an automata, much like in [PEC99] and [SB99]. However, the automata can run multiple actions in
parallel. Each node of the ability automata can be a primitive or another ability. This recursion can
create complex actions from simpler actions which facilitates learning of abilities.

In general it seems that a control architecture based on some kind of a state machine or automata, is the
most popular one for controlling the executive and behavioral level in the architecture hierarchy. The
state machine structure allows to have well defined transitions and the states of the state machine can
be separate from each other giving more freedom to define the state’s continuous control. The structure
provided by the state machine is ideal when considering the human manipulation, especially grasping, as
it has been observed that human grasp is performed in multiple phases [Cas05], each with its own goal.
Using the state machine, we can map the required phases to multiple states, each state having its own
continuous control and transitions to next states.
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2.2 Control architecture for GRASP

2.2.1 High Level Design of the Control Architecture

The high level control architecture design is based on the requirements set by the GRASP project.
One of the most important requirements were hardware independency, as the architecture must work
with minimal changes on multiple hardware or simulated platforms. Second important requirement was
that the control should be based on a sequence of adaptive motion primitives, to mimic the human
manipulation as described in Section 2.1. Also by sequencing the action, the action is easier to analyze
and adapt for learning purposes. Comparing the requirements to the reviewed architectures, the most
promising is the MMCA [PEC99], but it is focused on mobile manipulation and the architecture has not
been used to demonstrate any manipulation tasks which makes the MMCA unsuitable as the control
architecture for GRASP. For this reason, a new design for the control architecture was conceived for
GRASP.

The whole control architecture is based on a high level design which illustrates the complete picture of the
control architecture by defining the input and output interfaces and the inner logic of the architecture. By
defining these elements it is possible to produce a concrete version of the control architecture in multiple
ways using different software components. The high level design of the control architecture is presented
in Figure 2.2.

Figure 2.2: Control architecture design

The overall design has been divided into two blocks, the control block and the hardware block. The
purpose of this division was to encapsulate the hardware dependent components away from the actual
control to the hardware block, so that the control architecture can be implemented on multiple hardware
or simulation platforms with minimal work. This encapsulation is the result of the hardware independency
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requirement placed on the control architecture. The sensor and hardware control interfaces have been
placed in the hardware block as they are completely dependent of the actual hardware.

The control block has two interfaces, the on-line and off-line interfaces. These interfaces are separated
by their purpose. The off-line interface handles information which is not required to be processed in real-
time. This information includes configuration information such as the abstract state machine, discussed
in Section 2.2.2. Off-line information can also be transmitted to components outside the control block
through this interface. The on-line interface provides real-time interface to the control process when the
control is active. The hardware block communicates through this interface so that the sensor information
can be accessed in real-time and that the control signals can be sent to the hardware at suitable intervals.
The control process can be activated or deactivated through this interface and the on-line interface can
be used to query the status of the control process from the high level controller.

The actual control block contains multiple components. The most important of these is the high level
controller, which can be thought as the main component in the architecture. The high level controller is
responsible for the internal state of the control process, that is, which primitive controllers are executed
and at what time, and it also controls the control arbitrator. The high level controller can also process
the information given from sensors through the on-line interface for state estimation for example.

Primitive controllers are actual controllers in the sense that they generate the control signals for the
manipulator. The primitive controllers are somewhat dependent of the hardware, especially if some form
of control method is required that needs information about the actual hardware capabilities. Multiple
primitive controllers can be run at the same time.

Control arbitrator handles the output from the primitive controllers. The control arbitrator is used, if
more than one primitive controller is running at the same time, to produce a single control signal for the
hardware. The high level controller can give, for example, weights that adjust the relative strenght of
the control signals when arbitrating them.

The primitive controllers and the control arbitrator are designed to be flexible so that the actual control
scheme can be chosen freely. This design decision allows the control to adjust to different situations, and
more importantly the different phases of manipulation can be implemented with different controllers.

2.2.2 Abstract and Concrete State Machine

The first step towards implementing the high level design of the control architecture, was to decide how the
primitive controllers and the transitions between them could be represented. A hybrid discrete-continuous
control architecture in the form of a state machine was decided on after reviewing the literature on control
architectures. To adhere to the general requirements of the control architecture, the state machine must
be divided into two parts, which are the abstract state machine and the concrete state machine. The
abstract state machine is hardware independent and describes what motions are required to complete an
action. The concerete state machine is the hardware dependent or embodiment specific version of the
abstract state machine and the concrete state machine includes the actual controller or controllers that
will produce the desired motions.

The abstract state machine is defined through XML (eXtensible Markup Language). XML provided a
standard way to define a hierarchy, which in this case represents a state machine. Also, by choosing
XML, a number of tools were available to read and write the state machine representation.

The structure of the abstract state machine is shown in Table 2.1. The state machine is divided into
a hierarchy with three levels. The first level is the state machine level which contains the object, envi-
ronment, state and transition definitions. The second level contains the individual properties for each
of the definitions. The third level is the definition of the trajectory, or via points, for each state. The
hierarchy is divided into columns in the table, for example the state machine definition encompasses all
other definitions. Table 2.1 also presents all the possible properties in the abstract state machine for
object, environment, state and transition definitions. A short description for each of these properties is
written in italic font. An example of the abstract state machine is presented further in the section.

In addition to the individial properties, transition and state have their own attributes. The state definition
has name and type attributes. The type attribute can have the following values:

• success: The success end state of the state machine.
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Table 2.1: Abstract state machine structure

statemachine
object environment state transition

pose obstacle movement success
object pose 3D position free or guarded motion controller target reached

weight trajectory grasp lost
object weight pose grasp is lost

inertia via point pose grasp stable
inertia matrix point grasp is stable

shape via point finger contact
3D model a finger contact

friction hand shape finger contact lost
friction coefficient shape of the hand a finger contact is lost
class timeout
class of the object a defined time limit

collision
collision with environment
hardware failure

a failure in hardware

• failure: The failure end state of the state machine.

• move: Moving the manipulator without an object.

• transport: Moving the manipulator with an object.

• grasp: Grasp the object.

• release: Release the object.

The type attribute will have a great impact on the concrete state machine as the type will define what
kind of primitive controllers will be used at each state. The transition has also two attributes, origin
and destination. These attributes inform where the transition is placed in the state machine, by defining
the names of the origin and destination states. An example of a simple abstract state machine with just
three states:

<statemachine>
<object>
<pose>1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1</pose>
<weight>0.5</weight>
<inertia>0 1 0 1 0 0 0 0 1</inertia>
<shape>cup.mdl</shape>
<friction>0.2</friction>
<class>cylinder</class>

</object>
<state name="moving" type="move">
<movement>free</movement>
<hand_shape>open</hand_shape>
<trajectory>
<position>0 0 4</position>
<position>0 5 3</position>

</trajectory>
</state>
<state name="success_end" type="success">
</state>
<state name="failure_end" type="failure">
</state>

12
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<transition origin="moving" destination="success_end">
<success/>

</transition>
<transition origin="moving" destination="failure_end">
<hardware_failure/>

</transition>
<transition origin="moving" destination="failure_end">
<timeout>10</timeout>

</transition>
</statemachine>

The example XML state machine describes a simple movement by the manipulator. As can be seen
from the example, there can be multiple transitions between two states, and each transition can hold
one or more transition conditions. Noteworthy mention is that the hand shape property accepts only
predetermined values, which are currently:

• open: Fully open the manipulator’s hand.

• closed: Fully close the manipulator’s hand.

• extend: Extends all finger of the manipulator’s hand.

• extend finger: Extends one finger of the manipulator’s hand.

• power grasp preshape: Preshape for power grasp.

• power grasp: Power grasp.

• pinch grasp preshape: Preshape for pinch grasp.

• pinch grasp: Pinch grasp.

• cylindrical grasp preshape: Preshape for cylindrical grasp.

• cylindrical grasp: Cylindrical grasp.

• spherical grasp preshape: Spherical grasp preshape.

• spherical grasp: Spherical grasp.

• hook grasp preshape: Hook grasp preshape.

• hook grasp: Hook grasp.

These values are used to determine the hand shape during each state. However, some hardware can
only implement a subset of the hand shapes, for example, a parallel jaw has a very limited set of grasps.
Chapter 3 describes the grasp types in detail.

The abstract state machine is able to represent most manipulation tasks, most importantly grasping,
without any knowledge of the underlaying hardware which is the main objective of the abstract state
machine. Because of this, the abstract state machine can not be used directly in controlling the hardware.
Instead of the abstract state machine, a concrete or embodiment specific state machine must be used. The
concrete state machine describes the action for a specific hardware platform completely and “perfectly”,
in the sense that concrete state machine can be used from the beginning of an action to the end of the
action to control the manipulator at all times.

The concrete state machine must conform to the abstract state machine, so that the structure of the state
machine stays unchanged. However, the abstract definitions, e.g. “grasp stable”, have to be translated
for each hardware platform. This translation process is one of the key factors in providing the hardware
independency of the control architecture.

The translation process will create a concrete state machine, which can be executed in target platform.
The translation will produce the primitive controllers, as discussed in Section 2.2.1, and the transitions
between the states that hold the primitive controllers. A translation of the example XML abstract state
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machine to a concrete state machine is shown in Figure 2.3. The circles represent the states, and the
arrows represent the transitions. As can be seen from the figure, the translation can add new transition
conditions, for example, the hardware failure is translated to failure in either the manipulator’s hand or
the arm. Also the primitive controllers have been defined as joint controllers for the arm and the hand,
as the example XML state machine did not constrain the trajectory.

Figure 2.3: Translation of the example abstract state machine

2.2.3 OpenRAVE and Hardware Integration

OpenRAVE [DK08] is a planning architecture for autonomous robots. OpenRAVE provides simulator
functionality and a possibility to use hardware components through the OpenRAVE system. OpenRAVE
is a plugin based architecture which means that adding more functionality, such as new sensors, to the
underlaying architecture is possible. OpenRAVE is also designed to be accessed by scripting languages,
which can be used to read the states of the components or to modify the components during execution.

The control architecture is fully integrated to the OpenRAVE architecture. Components of the Open-
RAVE architecture relevant to the control architecture are shown in Figure 2.4 as an unified modeling
language (UML) [BRJ98] class diagram. Currently the control architecture relies on two OpenRAVE
components, the controller plugin and sensor plugin, these are shown as SensorBase and ControllerBase
classes in the class diagram. The controller plugin contains the whole control architecture implemen-
tation. The controller plugin can access the sensor plugins which are used to represent the hardware
sensors. HighLevelController class represents the implemented controller architecture, which is discussed
in Section 2.2.4. The Server class is used to gain access to the various components in the architecture
and this access will be used as the off-line interface described in the high level design.

According to the high level design, real-time access to sensors and the manipulator hardware must
exist. While the OpenRAVE sensor plugin can be used for the sensor hardware, OpenRAVE has no
separate plugin for controlling hardware manipulators. Instead, the controller plugin must implement
the connection to manipulator. For this purpose, a C++-interface was defined, which can be implemented
for each hardware or simulated manipulator. The interface has a default method, velocity control, for
controlling the manipulator arm. In addition to the velocity control, custom control methods, such as
force control, can be implemented for both the arm and the hand of the manipulator. The interface also
allows to activate or disable the hardware control. It is also possible to define separate arm and hand in
the interface.

2.2.4 Implementation of the Control Architecture

The control architecture is implemented using C++-language which is common to all hardware platforms
used in the project. Also, the OpenRAVE architecture is implemented in C++-language. The imple-
mented architecture is shown in Figure 2.5 as an UML class diagram, showing only the relevant classes
and the information that is communicated between the objects.
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Figure 2.4: OpenRAVE structure

Figure 2.5: The design of the implemented controller architecture
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Figure 2.5 contains the main classes of the control architecture and shows how the classes are related. As
discussed in Section 2.2.3, the control architecture is integrated into OpenRAVE. The main class in the
system is the HighLevelController class which implements the high level controller from the high level
design. The HighLevelController class acts as a mediator between the classes to communicate the control
output from the primitive controllers to the control arbitrator and from the arbitrator to the hardware
interface, shown in Figure 2.5 as IArmAndHand class.

As the high level controller also had the responsibility to keep track of the state of the control process,
the HighLevelController has the StateMachine class, which realizes the concrete state machine described
in Section 2.2.2. The StateMachine class implements a similar hybrid automata with discrete transitions
and continuous control as in some of the reviewed architectures [CF06] [PEC99].

Each state of the state machine implements the continuous control through the PrimitiveController class
assigned to the State class. The PrimitiveController class implements the primitive controller of the high
level design. The PrimitiveController class is an interface class which can be implemented to provide
desired control method. Each state can have more than one primitive controller.

The transitions between states are handled by the Transition and TransitionCondition classes. The state
can have more than one transitions, and each transition can can contain multiple transition conditions.
The transitions work in the same manner as in the abstract state machine, informing the state if the
transition is true or false depending on the transition conditions. TransitionCondition class is also an
interface class, leaving the functionality free for implementation.

Each primitive controller outputs its result in the form of ControlData object. The ControlData class
has information whether the controller controls the arm or the hand of the manipulator, which joints or
degrees of freedoms (DOF) the controller controls, and which type of control is applied to each DOF,
and finally the actual control output to the hardware for each DOF. This kind of structure allows, for
example, single controller to control one DOF of the manipulator using some control method, while
another controller can control the rest of the DOFs using some other control method. Each controller’s
output is given to the control arbitrator. Control arbitrator’s task is to take all of the control data and
give out one ControlData-object which can be communicated to the manipulator hardware interface.

One of the key elements of the architecture is also the possibility to use parameters or attributes for
the primitive controllers and transition conditions which is not considered in many of the architectures
reviewed in Section 2.1. The interface for both the primitive controllers and transitions conditions include
a default way of modifying the parameters. This functionality can be used, for example, to adapt the
primitives during the manipulation tasks. It is also possible to add new states to the state machine during
the execution of the state machine which can be useful if a probabilistic approach, such as Markov chains,
is used.

To investigate the design, a proof-of-concept version was first implemented in Matlab and interfaced with
the GraspIt! grasping simulator. This version has been used in WP2 to do Bayesian reasoning as descibed
in Deliverable 4.

2.2.5 Future Work

Future work on the control architecture will be focused on the abstract state machine and how to translate
the state machine into concrete state machine. Currently, this is not possible to do automatically, although
it possible to create the concrete state machine manually. Also a set of primitive controllers and transition
conditions will be developed so that manipulation tasks will be possible to perform.

The problem of translating abstract definitions to a set of hardware specific entities, such as controllers
and transitions, is not well defined in literature. Petersson et al. [PEC99] specifically mentions that the
developed mobile manipulation control architecture is able to function in multiple hardware platforms,
but the process of translating the given action abstraction to multiple platforms is not described nor
demonstrated.
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Chapter 3

Robust grasping primitives

3.1 Introduction

The architecture presented in previous chapter implements the two lower levels, executive and behavioral,
of the hierarchy of levels (see Sec. 2.1 and Fig. 2.1). Their practical components are actions and
primitives, respectively. In practical terms a primitive is composed of a single controller that realizes a
indivisible and specific movement or interaction. In the upper executive level, actions represent plans that
combine several primitives in order to realize more complex actions. In our case these plans are represented
through finite state machines, and are composed of several primitives, transitions and conditions. The
proposed architecture provides a framework to synchronise a pool of control primitives and to generalise
their implementation with no regard of the underlying hardware setup.

In this chapter we focus in the design of a set of such controller primitives. In particular we focus on the
realm of grasp execution. Grasping occurs when a robot hand makes a first contact with an object and
immobilises it securely with the purpose of lifting and transporting it (or any other purpose). Grasping
primitives are only a part of the primitives necessary to complete even the simplest manipulation action.
On a complete system approaching, preshaping, lifting, transporting, and releasing primitives would be
necessary to perform a pick-and-place action.

A successful grasp allows a secure completion of the whole manipulation action. This success can be
achieved relatively easily if all the constraints of the grasping task are known in advance, however if there
exist uncertainties in these constraints the problem is much more difficult.

This chapter describes a set of grasping primitives that uses sensor-based feedback to deal robustly with
uncertainty in the conditions of grasping.

3.1.1 Grasping in the presence of uncertainty

Traditionally, most works on robot grasp planning, analysis and control have assumed to know in advance
the layout of the workspace, to have a model of the object to manipulate and of the robot hand. In these
conditions the problem of grasping becomes an analytical planning problem, and many theoretical and
computational solutions have been proposed for the different stages of grasping [BK00].

The above assumptions are reasonable in industrial and controlled environments. However, in unstruc-
tured scenarios this is not the case, and often, theoretical solutions are not directly applicable. The main
sources of uncertainty come from the attempt of manipulating objects for which models are previously
unknown, or whose pose and physical characteristics are variable and not known in advance.

A common approach to overcome these difficulties has been the use of sensors to acquire information
about the environment and hence reduce uncertainty. Within the field of grasp planning and execution,
the use of sensors focus on three main stages; first, on object model acquisition, allowing a most traditional
grasp planning after a model is built; second, on the approaching phase; and third, on the control loop
of the grasp execution phase, with the purpose of obtaining a stable grasp.

Vision has been the most widely used modality in the two first stages. Many approaches to reconstruct
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the shape of the object from visual input have been developed [JMLH05, WJL+05]. The reconstruction
approach has been used successful with certain limitations with 2D objects [DB98, MSdF06], but no
completely satisfactory solutions have been provided for the 3D case. Vision is often employed also when
approaching the target objects, by using techniques of visual servoing and active vision[CH08].

However, when the moment comes to touch the object, vision leaves its leading role, and other type of
sensory modalities are applied, mostly contact based sensors. They are employed mainly as feedback for
the grasp control execution loop [PFG02] and in object exploration strategies [TM00], and both of these
are often bundled together. From these works an interesting conclusion can be drawn: robust and stable
grasps can be obtained even though a detailed model of the object is not available.

Another important problem with traditional grasp planning approaches is that grasps are described as
sets of contact points on the object surface where forces/torques are exerted. But, as stated above, most
of these works assume to have a perfect model of the object or to be able to obtain them from sensor
data (e.g. vision, 3D laser scans). The difficulty arises from the fact that the sensor-based reconstruction
of the object can be dramatically different from the real shape. Under these conditions it does not make
sense to talk about pre-computed accurate contact locations any more.

An additional drawback of analytical approaches is that often the geometry and the kinematic constraints
of the robot hand are not taken into account. As a result many general solutions are not applicable because
they do not fit the particular characteristics of the robot hand.

The two former problems considered above lead us to conclude that grasp planning based on a set of
contact points is not appropriate for manipulation tasks with a certain degree of uncertainty.

The rest of the chapter introduces the design of a grasping primitive able to robustly grasp objects whose
shape and location is unknown in advance. No exact shape models of objects are assumed, but only a
“common sense” knowledge of object classes is applied. The chapter focuses on those parts related with
the goals of GRASP, that is, the characterisation and definition of grasping primitives (Section 3.2), and
the implementation of particular primitive (Section 3.3.3). In order to validate and test the developed
primitive, a simple grasp planning system has been implemented. The principles of the grasp planning
are described in section 3.3. In addition, a recently submitted paper extending the approach presented
in this chapter is included as Appendix A.
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3.2 Grasping Primitives

Here we propose an approach, that describes grasps in a qualitative and knowledge-based fashion. Grasps
are represented as primitives that define the control strategy and the sensory feedback to use in the
execution.

A grasping primitive determines several key aspects of the grasp execution. First, it defines the hand
preshape, that is, the posture of the hand when approaching the target. Second, it describes the control
strategy to be used for executing the primitive. This also includes which sensor information is used an
how it is interpreted. It also determines the metrics that evaluate the degree of accomplishment of the
primitive.

Our definition of a grasp primitive presents a two sided perspective. From a practical point of view a
grasp primitive is a single controller that performs a specific task on a particular embodiment. From an
abstract point of view primitives are the simplest pieces of a vocabulary to elaborate plans or “actions”
(see Sec. 2.1). Hence, they are well suited to be the basic pieces of a reasoning and learning procedure.

Here, we must refer to the hardware-independence issue. A grasp primitive, and in general, any controller
primitive is likely to be hardware dependent. On the other side actions and state machines defined in
Section 2.2 are hardware independent. Then, the controller primitives are the frontier or interface between
specific hardware and general levels. For this reason, Sec. 2.2 defines both abstract primitives, which are
hardware independent, and concrete primitives, which depend on the embodiment. This chapter focuses
only on concrete, hardware dependent primitives.

The set of grasping primitives to be developed depends on the capabilities and particular features of the
robot hand, and the different tasks (pulling objects, opening/closing doors, etc) to be performed by this
hand. In any case a detailed study of the hand constraints, objects, and tasks is necessary. An example
of a study for an anthropomorphic five-fingered hand is presented in [MAA+06].

In the case of the Barrett Hand, Miller et al. [MKCA03] presented a study on the possible hand preshapes
that can be obtained with it. We use them to illustrate a subset of hand primitives for the Barrett Hand
(see Fig.: 3.1). Our taxonomy of concrete grasping primitives for the Barrett Hand is the following:

• Cylindrical grasp: All fingers close around a cylindrical object. The thumb finger opposes the
other two.

• Spherical grasp: All fingers close around a ball-shaped object.

• Pinch grasp: The grasp is characterised by the opposition of the two mobile fingers The thumb
does not participate. This is appropriate to grasp small objects.

• Hook grasp: In this grasp the hand opposes the gravity. All fingers, form a hook that would
enclose a cylindrical shaped object. The palm might exert force opposing the fingers.

In the first stage of the work we have only fully implemented the cylindrical preshape primitive.
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(a) Spherical (b) Cylindrical (c) Hook (d) Pinch

Figure 3.1: Barrett Hand preshapes for the different grasp types.

3.2.1 Primitive parameters

In order to execute a grasp primitive in a particular scenario, several parameters must be determined
(see Fig. 3.2):

• Distance and approaching direction: once the hand is positioned in the vicinity of the object
it reaches toward it following the estimated direction for the necessary distance. The approaching
line is the path followed by the robot hand when it approaches the object.

• Hand orientation: the hand can rotate around the approaching direction. The rotation angle is
a relevant parameter to define the primitive initial configuration.

• Object size: the estimated size and proportion of the object affects the practical execution of the
primitive, and is included as an input parameter to the execution controllers.

• Force limits: Depending on the estimated weight and solidness of the object, maximum and
minimum force limits can be established for the controller.

Figure 3.2: Schema with some components of a manipulation primitive

The generation of the values of these parameters and, in a higher level, the election of a particular grasp
primitive and the generation of plans depends on specific planning modules, which principles and design
are out of the scope of this report. A simple example of how this can be addressed is presented in section
3.4.
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3.3 Implementation of a grasp primitive: the cylindrical case

The implementation of a primitive consists in the design of the control and execution strategies to be
applied for the execution using the particular parameters of the primitive. In this section we describe the
specific strategies applied for the implementation of a particular case: the cylindrical grasp.

But before describing the primitive algorithms it is important to describe the hardware that this primitives
controls. It was stated before that grasp primitives are dependent on the structure and characteristics of
the robot hand, and on the sensors available.

The robot hand is a three-fingered Barrett Hand and a JR3 force/torque and acceleration sensor mounted
at the wrist, between the hand and the end-effector. The hand (Fig 3.4, on the right) has been improved
by adding arrays of pressure sensors of the fingertips, which initiates roughly the tactile sensing. More
details of these system are given later in Section 3.4.1.

3.3.1 Stages of the execution

In the first stage of the execution, the robot arm reaches toward the object and moves down until the
fingertips are at level with the estimated object centroid. The hand is set in the preshape configuration
and orientation. The second stage is the hand closing, the tactile sensors are used to determine when
the fingertips first contact the object. Once this happens, the finger movement stops. This second stage
finishes when all fingertips have contacted the object. In case that a finger misses the object, it stops as
a security measure when it reaches a previously defined extension threshold. During the third and last
stage the grasp is assessed to verify whether it is stable to lift the object. A grasp stability criterion is
used to measure this aspect. If the grasp is not stable, correction movements are performed until a stable
grasp is produced. The procedure described for these two last stages is an example of what we called
reactive controller.

3.3.2 Grasp stability criterion

For assessing the reliability of a grasp in 2D, we previously defined several stability criteria [CMFP05].
For the purpose of this work we selected and adapted to the 3D case the finger extension criterion. The
finger extension is defined as the distance of the contact fingertip to the center of the hand. In Fig. 3.3
the finger extensions of the two parallel fingers e1 and e2 and that of the thumb e3 are depicted. Following
the assumption that fingers with the same extensions are supposed to act more uniformly on the object,
finger extensions are compared. The quality value Q according to this criterion is computed as the sum
of the square differences between the three finger extensions:

Q = (e1 − e2)2 + (e2 − e3)2 + (e3 − e1)2 (3.1)

The criterion is set so that lower values are assigned to more stable grasps. In the situation where all
three extensions are equal the best value (i.e. 0) is achieved. The worst value is obtained when some
finger are at their maximum or minimum possible extensions. The experiments we performed showed
that a grasp can be considered as stable in our setup when Q < 0.01.

3.3.3 Grasp execution

When the fingers close on the object, they stop at the moment of contacting the object surface. At
that point, the above criterion is computed and the executed grasp assessed. A divergence between the
estimated and the real values of distance, pose and size of the object can result in an unstable planned
grasp. In these cases, the finger extension criterion will provide a high value, characteristic of an unstable
configuration (see Fig. 3.6). A proper response for adapting the hand pose to the new situation has to
be carried out, through a number of suitable correction movements. The implemented movements are:

1. Orientation correction: it is performed when the slant of the object is different from expected.
This situation is identified using the extensions of the two parallel fingers e1 and e2 and the inter-
finger distance i:
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e3

Z

e2
e1

α

Figure 3.3: Graphical interpretation of the finger extensions, e1, e2, and e3, and correction movements
(α and Z).

α = arctan(e2 − e1)/i (3.2)

The computed correction angle α will bring the hand in the situation in which the parallel fingers
have the same extension, and the hand is rotated accordingly (see fig. 3.3). The threshold we chose
for executing the correction movement is α = 0.01rad, and smaller deviations are not considered.

2. Position correction: this is performed when the position of the object is different from the
estimation. In this case, either the thumb or the parallel fingers will contact the object much
earlier, and thus show a much smaller extension. When one of the finger extensions is smaller than
an assumed threshold value (54mm in our case), the correction is calculated and the arm is moved
accordingly.

The required displacement for position correction is computed with the following expression, which
uses again the notation of Fig. 3.3.:

Z =
1
2

(
e1 + e2

2
− e3) (3.3)

After the correction movements have been applied, grasp stability is checked again. If the grasp is still
considered unstable the correction process is repeated, otherwise the grasp is executed and the object
lifted.
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Figure 3.4: From left to right: robot arm, hand and stereoscopic camera; and a detail of the tactile
sensors on the fingers.

3.4 A complete grasping system

A simple but complete grasping system that has been implemented with the purpose of testing the
controller primitives. It does not make use of the GRASP architecture yet, but we plan to install the
architecture in our experimental demonstrator in the next few months.

The design of this system consists of two main components. The first component is a vision system that
estimates pose, location and size of a target object. It must be noticed that within GRASP consortium
alternative visual approaches are being developed to provide these information.

The second component is the grasp execution that uses the grasp primitive controller described in section
3.3 to complete the grasping task.

3.4.1 Experimental setup

This grasping system has been implemented on the UJI service robot. This is a prototype of a mobile
manipulator designed to assist in every day tasks [PSdP+07].

Within this application we have considered the use of tactile sensors jointly with vision and force, aiming
at improving the manipulation skills of the robot.

The robotic setup, depicted on the left of Fig. 3.4, consists of a Mitsubishi PA-10 7 d.o.f. arm mounted
on an ActivMedia PowerBot mobile robot. The manipulator is endowed with a three-fingered Barrett
Hand and a JR3 force/torque and acceleration sensor mounted at the wrist, between the hand and the
end-effector. This sensor not only provides a six dimensions force/torque data, but also measures the
compensated linear and angular accelerations, which are six dimensions more.

The hand (Fig. 3.4, on the right) has been improved by adding on the fingertips arrays of pressure sensors
designed and implemented by Weiss Robotics. The sensors consist of three 8 x 5 cell matrices, that cover
the inner parts of the distal phalanxes of each of the three fingers (see Fig 3.4). Each cell is a square of
2.3 mm side. The sensor is based on resistivity. It is able to detect a complete two dimensional pressure
profile by the use of a homogeneous sensor material which is connected to an adequate electrode matrix
[WW04].

The application presented in this paper assumes that objects to be grasped are lying on a flat surface
inside the workspace of the manipulator. In order to reduce the complexity of the visual processing,
the robot world is a black environment in which simple, clear shapes are placed on a table at variable
positions and orientations (see Fig. 3.5). The range of possible positions are those that allow to view
the object and also keep it at a reaching distance for the hand. There is no previous assumption about
the size, position and weight of the object. Nevertheless, the system knows that the object can be of
a reduced number of different class (for the moment, only box-like and roughly cylindrical shapes are
considered), and uses this information to perform an ad-hoc estimate of its size and position (see next
section).
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Figure 3.5: Workspace with possible target objects.

3.4.2 Visual analysis and planning

Visual analysis produces an estimation of the pose, distance and size of the object, as well as an iden-
tification of its shape type. In our particular case this is achieved through the integration of binocular
(stereoptic) and monocular (perspective) visual cues in algorithms based on a computational model of
primate visual mechanisms [CdP07, CGP08]. Initially the camera, attached to the wrist of the manipu-
lator, is placed laterally with respect to the workspace, in order to have a perspective view of the target
object, and then several images from different views are captured and used.

These results are then used to plan the initial parameters of grasp primitive controller (see Sec. 3.2.1).
The target object is approached from top, and then, depending of the object estimated shape, only one
grasp will be planned. In the case of box shaped objects, a cylindrical preshape along the shortest side
of the box is produced; the same happens for cylindrical shapes. The estimated distance and size of the
object are used to set the initial hand position at a convenient distance above the object. The orientation
of the hand corresponds to the estimated slant of the object. Size and centroid of the object are also
available, and affect both the transport and the preshape component.

At this point the grasp controller is started.

3.4.3 Early experimental results

For what concerns grasp execution and the work of the tactile system, we tested our robotic system in two
different conditions, i.e., without or with small environmental changes. The first condition, corresponding
to a normal working situation, usually ends with a successful grasp without performing any correction
movement. In fact, in almost all cases the input provided by the visual system is good enough to allow
the execution of the grasp without the need of correcting hand position or orientation.

While testing the system performance in the second condition, we were introducing on purpose some
changes in the object position and/or orientation, to check if the system was able to deal with unexpected
and suddenly changing situations. The changes were made after the visual system analysis had been
finished so that the real pose of the object was much different from the estimated one, like in the example
of Fig. 3.6. In this situations the robot may not be able to grasp the object without the support of
the tactile feedback. Using the information about the finger extension and the hand contact with the
surface of the object, the orientation of the hand, as well as its position, are corrected in a closed-loop
manner. When the difference between the real and estimated object pose is big, more than one correction
movement might be required. As a limit, the correction of the grasp can not be performed when the
displacement of the object is so large that, after its reaching movement, the hand does not have any
contact with the object surface.
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Figure 3.6: Example of grasp in which, after the approaching phase, the hand-object contact is unstable.
A correction movement is necessary

3.5 Future work

The work presented in this report regarding the development of grasp primitives is still in an early
development stage. Only one grasp primitive has been completed up to the moment. The next im-
mediate goal is to extend the set of implemented primitives to the cylindrical and specially the hook,
and pushing/pulling primitives. This would provide a wider and flexible set of options to the controller
architecture.

But, a more important task is to embed the developed grasp primitives within the the GRASP control
architecture. Several steps have been taken in this direction. The actuator and sensors interfaces of our
hardware setup has been implemented using the architecture specifications. But the most important task
to be realized in the next few most is to prepare our experimental setup as a demonstrator of the control
architecture. This implies to install and run the control architecture, to embed the grasp primitives, and
to develop the complementary primitives which are necessary to realize a full pick-and-place action.
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Chapter 4

Approaches to modeling sensor
uncertainty in grasping

The aim of this chapter is to look into ways how sensor uncertainty can be modeled in grasping, and how
this modeling can be used in order to improve control of grasping. As such, there are few publications
addressing the issue directly and therefore the topic is approached from several points of view. As a
limitation to the focus, we will concentrate in sensors that are used as a feedback during the control, and
thus the discussion of modeling static (constant) uncertainties such as calibration errors is only briefly
mentioned.

First, the role of uncertainty in control of manipulation, especially in grasping, is outlined, with the
traditional approaches emphasized. Then, different types of models applicable for modeling sensor un-
certainty are considered. Finally, the phenomenon is examined from the point of view of different sensors
applicable in grasping tasks, including proprioceptive, tactile, force/torque, and visual sensors. Most of
the work in this chapter is a collection of literature, but the analysis of visual control uncertainty contains
some new results developed within the GRASP project.

4.1 Role of uncertainty in robotic grasping

There are several sources of uncertainty in robotic manipulation, including 1) uncertainty in embodiment
knowledge, 2) uncertainty in environment (world) knowledge, and 3) uncertainty in sensor measurements.
A typical example of uncertainty in embodiment knowledge are robot calibration errors. These errors
should be mainly taken into account by performing accurate calibration of the robot, while the remaining
small errors can be coped with through the use of different kinds of sensor feedback. The uncertainty of
environment knowledge relates to measurements of the environment attributes made outside the control
loop, for example, uncertainties in locations of workpieces or uncertainties in the friction coefficients of
surfaces. Finally, we use the term sensor uncertainty for uncertainties of measurements which are used in
the closed-loop control of the robot. These sensors can be proprioceptive, tactile, force/torque or visual.

The robot grasping research has traditionally concentrated into analysing the stability of grasps through
form and force closure analysis. Then, with the help of understanding the form and force closure, the work
has concentrated on grasp planning. The grasp planning is performed off-line and thus does not relate
directly to the sensor uncertainty. However, we will briefly overview literature related to uncertainty
modeling in grasp planning. Already in 1988, Brost proposed a 2-D grasp planning strategy for which
if the maximum uncertainties for object and gripper orientations and friction coefficient are known, it
is possible to make guaranteed grasp plans, i.e., all grasping moves are guaranteed to succeed even in
the case of worst-case modeled uncertainties [Bro85]. The effect of uncertainties in friction and contact
position to the closure properties of grasps has been analyzed in [ZQ05].

As we stated earlier, the consideration of uncertainty with respect to on-line closed loop control has
received little attention. In a more general context outside grasping, Bruyninckx [Bru95] considers on-
line identification of uncertainties in instantaneous geometric parameters, i.e., the position of contact
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points, the direction of contact normal, and the local curvature parameters in force controlled compliant
motion.

Son and Howe use tactile sensing for stiffness control in the presence of uncertainty [SH96]. The orientation
uncertainty of an object grasped by two fingers in a two-dimensional case is considered. More precisely,
the orientation of a grasped object is estimated through tactile sensing. However, the paper concentrates
on developing a stiffness controller responding to errors in grasped object location and does not address
the modeling of the uncertainties.

4.2 Uncertainty models

There are two main approaches for modeling uncertainty in robotics, probabilistic approaches which
describe the uncertainty as a probability distribution, and interval models, which describe the bounds for
uncertainty.

4.2.1 Probabilistic models

Here, we briefly review the main probabilistic models used in robotics. For a more complete discussion,
the reader is asked to refer for example to [TBF05], which discusses probabilistic robotics especially from
the mobile robotics perspective of navigation, localization, and mapping.

Probabilistic models of uncertainty model both the world knowledge and sensors with probability density
functions. Thus, let xt be the uncertain state of the world at time t. Then, the evolution of the state
is described with the (probabilistic) system model p(xt+1|xt,ut), describing the time evolution of the
state given the previous state and the system input u. Perception of the system is then modeled by an
observation model p(yt|xt) relating the observations to the state.

Possible models to the distributions above include simple parametric density models, mixture distribu-
tions, and sequential Monte Carlo models, better known in robotics as particle filtering.

The most common family of models is parametric Gaussian models, in which the uncertainty in state,
system evolution, and measurement is modeled with a normal (Gaussian) distribution. With linear system
and observation models this leads to Kalman filtering as an optimal solution for state estimation. With
non-linear system models, extended Kalman filtering (EKF) or unscented Kalman filtering (UKF) can
be used to linearize the model. Iterated extended Kalman filter (IEKF) can be used to decrease the error
with a non-linear measurement model. However, the true posterior distributions with non-linear models
are not anymore Gaussians, and thus the model does not correspond to the true distribution, and EKF
and UKF are suboptimal approaches.

Mixture distributions, such as mixtures of Gaussians can also be used to model the uncertainties. Ap-
proaches similar to EKF and UKF can be then used for state estimation, sometimes called Gaussian sum
filtering [KD03], or multiple model estimators [BSLK01]. With mixture models, more complex uncer-
tainty distributions can be modelled, as a mixture model can also be used to approximate any probability
density function. However, the use of mixture models typically introduces a problem with the compu-
tational complexity of state estimation, as typically the number of mixture components required grows
exponentially over time [BSLK01]. Because this is not tractable, the number of components is kept fixed,
by using a fixed number of mixture components to approximate the posterior state.

Particle filtering has become a popular method in robotics for modeling complex probabilistic phenomena,
as it allows the modeling of arbitrary probability density functions [TBF05]. However, the particle
filtering is also prone to be not tractable for computational reasons as complex distributions require a
great number of particles. Even with non-linear system and measurement models, particle filtering is
optimal in mean, that is, the mean of several particle ensembles approaches the true density function.
Thus, particle filtering performs better with non-linear system and measurement models compared to
linearization approaches based on Kalman filtering, if the number of particles is sufficient. For example,
non-linear sensor models with several different failure modes have been used in mobile robot navigation
for sensors such as sonars (e.g. [TBF05]) and wireless network signal strength [LK08].
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4.2.2 Interval models

Interval analysis is an approach where uncertainties are modeled as allowed ranges (or boundaries) instead
of statistical distributions [JKDW01]. Thus, estimates can sought within restricted uncertainty bounds.
While the use of interval analysis in intelligent robotics is currently rare compared to statistical methods,
it provides a useful alternative approach with many possible applications from kinematics to mobile robot
navigation [JKDW01].

An advantage of interval analysis compared to statistical approaches is the possibility to perform bounded
error parameter estimation 1. Thus, interval analysis can be thought to take into account the worst-case
behavior of a system.

4.3 Sensor types in grasping

When discussing the uncertainty of real-world sensors, it is important to remember to consider the
concepts of precision and accuracy separately. Accuracy, that is the measurement bias, can be improved
through calibration, but only up to the precision. Thus calibration errors affect the accuracy significantly.
In the following we will concentrate on errors caused by factors other than calibration.

4.3.1 Proprioception

By proprioception we mean here the sensors used for sensing the joint angles of a robot. In mobile robotics
there is a significant amount of work on modeling the uncertainty of proprioception, see for example
[TBF05]. However, most of these are based on either modelling the errors with a Gaussian distribution
on a higher-level concept such as angular velocity, or modelling the low-level sensor uncertainty (e.g.,
wheel encoder error) with a Gaussian distribution.

Another line of study relevant to proprioception errors is the study of uncertain kinematics (e.g.,
[CHKA03, DDZ00]). While typically the modeling is based on uncertainty in the kinematic parameters
(calibration) instead of the proprioceptive measurements, similar analysis could be performed to consider
the sensor errors.

4.3.2 Tactile sensors

One challenge in modeling tactile sensors is the number of different tactile sensor types [LN99], includ-
ing magnetic [Now91], miniaturized force/torque sensors [LMH95], resistive sensor matrices [SWMF01,
JWR97, KWW03] and PVDF (polyvinylidene fluoride) sensors [JWR97]. Each type has different char-
acteristics, and the uncertainty analysis of the sensors is seldom presented. An exception to this is
[OTKI06], presenting an experimental analysis of uncertainty for a tactile sensor consisting of twelve
three-axis force sensors.

Currently, the partners in the GRASP project are using tactile sensors from Weiss Robotics, technically
similar to [KWW03]. Resistance changes are measured and mapped to local pressure. The mapping is
strongly non-linear, and is linearized using analog electronics [KWW03]. A model describing the depen-
dence of resistance versus load is presented in [WW05]. Due to the non-linearity of the dependence, the
sensor uncertainty distribution is very likely to be skewed, such that an assumption of Gaussian errors will
not be very accurate. Considering the GRASP project, it is suggested that the sensor uncertainty would
be measured experimentally such that in addition to the bias and the variance, the whole distribution of
errors is considered.

4.3.3 Force/torque sensors

After joint encoders, force/torque sensors are the most common of the sensor types, and therefore sensors
are readily available from several vendors, such as ATI and JR3. For industrial sensors, the resolution is

1Interval analysis can also be thought equivalent to statistical estimation where uncertainties are modelled as uniform
distributions.
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often specified, but the absolute accuracy is unknown. The modeling of measurement uncertainties needs
then to be performed experimentally, as the internal operation of the sensor is not known.

Dynamic behavior of force/torque sensors has been analyzed in order to understand the behavior and
speed up the dynamic response in [LC98, XLZ07]. The approach could be used also in considering the
uncertainty estimation.

4.3.4 Vision

The direct use of visual feedback for closed loop control, visual servoing, has great promises for integrating
vision tightly in the control of a robotic system. Some of the possibilities include decreasing the adverse
effects of calibration and measurement errors as well as uncertainties in the world model by closed loop
control, and decreasing latency, especially useful for acting in dynamic settings with moving targets. In
grasping, visual servoing is most often used to track and grasp moving objects (e.g., [ATYM93, NN00]),
or increase robustness (e.g., [HDE98, KC03]). To grasp objects with high velocity special high-speed
vision hardware has been proposed [NNII99].

Many of the key research problems with visual servoing are related to the performance of visual servoing
methods in the presence of measurement and system modeling errors. For example, the effect of camera
calibration errors has been studied in [Esp93]. Also, the convergence properties of the control part of the
systems have been evaluated extensively, for example in [Cha98, MC02].

It has recently been demonstrated that the effect of measurement errors on the open loop trajectory in
visual servoing can be estimated using linear propagation of errors [KKC06]. In a soon to be published
paper, the earlier work is extended to image-based visual servoing and it is shown how the analysis of
open loop uncertainty can be extended to the case of closed loop control for both position-based and
image-based visual servoing [Kyr09].
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Appendix A

Submitted scientific article

A submitted scientific article is included to complete the contents of the deliverable. It extends the
contents of Chapter 3 by implementing a more robust primitive to execute power grasps.

Javier Felip and Antonio Morales. Robust sensor-baser grasp primitive for a three-figner grasp. In
IEEE/RSJ International. Conference on Intelligent Robots and Systems, October 2009. Submitted. Re-
view notification by June 2009
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Robust sensor-based grasp primitive for a three-finger robot hand

Javier Felip and Antonio Morales

Abstract— This paper addresses the problem of robot grasp-
ing in conditions of uncertainty. We propose a grasp controller
that deals robustly with this uncertainty using feedback from
different contact-based sensors. This controller assumes a
description of grasp consisting of an instance of primitive that
only determines the initial configuration of the hand and the
control law to be used.

We exhaustively validate the controller by carrying out a
large number of tests with different degrees of inaccuracy in
the pose of the target objects and by comparing it with results
of a naive grasp controller.

I. INTRODUCTION

Management of uncertainty is one of the big problem
to address when developing applications for unstructured
scenarios. In the case of robot grasping, uncertainty can
arise from several sources: the shape and physical properties
of the target objects are completely or partially unknown,
the pose of the object can not be determined accurately, the
configuration of the robot (i.e.: position of mobile robot) is
not accurate enough, and many others.

Analytical solutions to the grasp planning problem has
been provided for structured scenarios [1]. However these
solutions often depend on the assumption that the contact
locations obtained as solutions are reachable by actuators
with enough precision. For common robots scenarios this is
not realistic even in the case that the shape of the object
is perfectly known. Several attempts to design analytical
grasp planning algorithms that take into account a certain
degree of inacuracy has been made. In an early work Brost
[2] proposed a grasp planning algorithm that was able to
compute stable grasps if knowing the error limits of gripper
orientation and friction coefficient. More recently Zheng and
Qian [3] analysed the impact of variations in the friction
coefficient and in the contact location on the force-closure
condition. Both works focus exclusively on the 2D case.

A common approach to reduce uncertainty is the use of
sensor information in the planning and execution phases
of grasping. Vision has been used to obtain the shape of
unknown target objects [4], [5], or to determine the location
and pose of them [6]. In both cases, visual input is used
to plan feasible grasps. Visual feedback is also used when
the arm tries to reach the object. Murphy et al. uses visual
techniques to correct the orientation of four-finger hand while
approaching an object to allow better contact locations [7].
Namiki et al. uses a fast control schema in combination with
tactile feedback to cage an object[8]. Infrared sensors has
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Fig. 1. PA-10 7 d.o.f with Barrett Hand and a JR3 force/torque and
acceleration sensor. The hand has Weiss Robotics pressure sensors on its
fingertips.

been also used to correct the approaching orientation of the
gripper [9]. In innovative design Hsiao et al. use IR sensors
to estimate the normal direction of closer object surfaces to
search a suitable contact location[10].

Once the object is contacted with the robot gripper tactile
and force sensors can be applied. Contact force measurement
it is used to estimate the quality of the grasps [11], [12] or
the shape of the object [13] with the purpose of reach better
contact locations through a sequence of grasping/regrasping
actions. Contact information can also be used to program
complex dexterous manipulation operations like finger repo-
sitioning while holding the object[14]. Several works have
combined the use of several sensors to complete the whole
process of grasp planning and execution [15], [16].

Robustness in grasp execution is not only achieved by
designing sensor-based controllers but also by combining
several controllers with different optimisation goals. These
combinations has been based on hierarchical schemes based
on reflex programming [17], [12] or complementary con-
trollers [11], [10].

A. Grasp primitives

In this paper we follow a sensor-based approach that is
based on an alternative paradigm of describing grasps. Most
of the above papers assume that grasps are described as
set of contact points on the object surface. In fact, most
of the problems arise as a consequence of the impossibility
of reaching those points. Our paper is developed under
a different assumption. Grasps are describes as instances
of basic primitives [16]. A grasp primitive is a specific
controller designed to perform a particular indivisible action,
in our case a grasp. In practical terms it is defined by
a initial hand preshape, a sensor-based controller, and a
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set of ending conditions. Its behaviour can be determined
by several parameters like initial position and orientation,
maximum force allowed, and others. An instance of a grasp
primitive are the set of values of the parameters. Hence, a
grasp is an instance of a primitive that determines the initial
configuration of the robot hand and the control policy that
is going to be applied to execute the grasp.

This definition of grasp primitive presents two perspec-
tives. From a practical point of view a grasp primitive is a
single controller that performs a specific task on a particular
embodiment. From an abstract point of view, primitives are
the simplest pieces of a vocabulary to elaborate plans. Hence,
they are well suited to be the basic piece of a reasoning and
learning procedures.

The concept of grasp primitive is not new and has been
used in many other robot-related works. Actually the term
“motor primitive” is borrowed from neuroscience literature
[18], and has also been widely used in robot learning [19],
[20]. Nagatani and Yuta implemented and combined several
action primitives to perform a complex behaviour: a mobile
robot behaviour capable of opening and going through a
door [21]. Aarno et al. implement visual analysis to program
“Elementary Grasping Actions (EGA)”, a kind of grasp
primitives, for a parallel gripper [5]. Finally Finite State
Machines has been proposed to combine primitive actions
in the execution of complete manipulation tasks [22].

Paper outline

This papers presents the implementation and validation of
a robust grasp primitive for a three-finger Barrett hand that
uses sensor feedback form force/torques sensors and tactile
sensors. Section II describes the design principles of the
grasp primitive. This primitive is tested through a exhaustive
series of experiments (Sec. III), which results are described
and discussed in sections IV and V.

II. METHODOLOGY

A. System description and Assumptions

We implemented our primitive for a robotic setup con-
sisting of a Mitsubishi PA-10 7 d.o.f. (Degrees of freedom)

Alignment

Y axis Z axis

Parallel face detection

Get grasp 

width

Open hand 

move back

Grasp 

compare 

widths

Force adaptation

Increase 

finger 

force

Not equal

EqualGrasp 

centering

Lift

object

Y torque

not Y torque

Fig. 3. Algorithm execution diagram.

mounted on an Active Media PowerBot mobile robot. The
manipulator is endowed with a three-fingered Barrett Hand
and a JR3 force/torque and acceleration sensor mounted
at the wrist, between the hand and the end-effector. The
hand has been improved by adding on the fingertips arrays
of pressure sensors designed and implemented by Weiss
Robotics.

The Barrett hand is a 4 d.o.f. three-fingered hand. Each
finger has one degree of freedom thus phalanxes are not
independent. F1 and F2 can rotate around the palm and
move next to F3 (Thumb) or oppose to it, this d.o.f. is called
adduction. The reference frame of the hand and the adduction
d.o.f. are depicted in Fig. 2. Each finger of the hand has built-
in strain sensor. The JR3 is a 12 d.o.f. sensor that measures
force, torque and acceleration in each direction of the space.

Out experimetnal workspace consists of horizontal surface
where the targets objects are lying. The objects that can
be manipulated are those that can fit inside the hand, at
least 25mm height and 70mm long, the minimum width
is 10mm. Big objects that can be held by the hand should
have a maximum width of 200mm. The objects used for the
development of the controller are box-like and cylinder-like
(see Figs. 6, 7 and 8).

The input of the primitive controller is the starting position
and orientation of the hand and the maximun finger force.
In optimal conditions the hand will perfectly oriented in
the direction of the object, and rotated perpendicularly with
respect the main axis of the object bounding box. These input
parameters are provided from an external module based on
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Fig. 4. Correction of alignment errors. a) The hand touches the object. The
contact is not perpendicular and a normal force (Fn) appears at a distance
from the center creating the torque Ty. b) The hand Z error is calculated
using Index and Middle finger extensions. c) The grasp center is displaced.
d) Y translation error correction, result of grasp center correction.

visual information.
The designed controller is able to deal with errors in

determination of the parameters. The estimitation is decom-
posed in translation error and rotation error (see Fig. 9). The
former is defined by the cartesian distance on each frame
axis between the center of the object and its estimation.
The latter is calculated from the difference between each
estimated object axis and its true orientation.

This controller tries to grasp the object aproaching from
above following and orientation close to the vertical one. In
order to allow lateral approaching directions several changes
in the desing of the contorller should be necessary. Basically
an estimation of the distance to the object should be knoen in
advance. During the grasp execution the robot can inadvertly
move the object but the controller is designed to take into
account most of these cases.

This algorithm starts with a cylindrical preshape. That is
F1 and F2 compltely oppose thumb finger F3. In some cases
the hand preshape is switched to a spherical configuration
where the fingers are arranged in an equilateral triangle.

B. Algorithm

The controller tries to obtain grasp stability on the basis
of the following criteria (ordered by relevance):

• Hand-object alignment
• Parallelism of grasped faces
• Maximization of contact surface
• Finger position symmetry
• Finger force symmetry

Hand and object are aligned when all their axis are parallel
and the projection of the Z axis of the hand intersects the
object bounding box on its center. The alignment avoids
torque forces from appearing when lifting the object.

12mm

a) b)

c) d)

22mm 16mm

e) f)

16m
m 12m

m

12mm

Fig. 5. Determining parallelism of grasped faces: a) First contact. b) Grasp
width is constant, the faces grasped are parallel. c) Inner phanlanxes contact
the object. d) Grasp width is not the same, the faces are not parallel.

The starting position and orientation of the hand is a criti-
cal parameter for the algorithm. This pose sets the approach
vector to the object which is along the positive Z axis of the
hand (see Fig. 2). The aim of the algorithm is to perform
a stable grasp of the object allowing a considerable error in
starting position. Thus the importance of the object feature
estimation decreases and the possibility of grasping an object
is less dependent from the accuracy of the estimations.

The execution of the grasp is divided into three main
phases (see Fig. 3).

1) Alignment: This phase tries to align hand and object
using force and tactile feedback. First of all the hand moves
forward until the force/torque sensor on the wrist detects
contact with the object. If this contact causes a torque force
around Y axis it means that the object and the hand are not
aligned (see Fig. 4.a). To correct this error the hand moves
back and rotates an angle of two degrees, then continues
touching the object until the torque disappears or it changes
the sign. If the torque changes the sign, the hand rotates one
degree in the opposite direction and the Y alignment ends.

At this point the hand closes. The difference in the
extension of the F1 and F2 fingers, determine the rotation
around Z axis (see Fig. 4.b) needed to align with the object.
Both must have the same extension to have an stable grasp.
This correction is not applied if the spherical pregrasp shape
is set.

2) Parallel face detection: In the second stage the con-
troller tries to determine if the grasped surfaces are parallel
and stable, the differente width of two consecutive grasps
is used to determine the grasp stability: The width of the



Fig. 6. Cylinder-like objects. Properties (radius x height, weight) from
left to right and top to bottom: Cylinder1(110x80, light) Cylinder2(65x215,
light) Cylinder3(105x75, heavy) Cylinder4(115x50, light)

current grasp is measured (see Fig. 5.a and c), then the hand
opens a little and moves 5mm backwards. After that the hand
closes and the width of the grasp is measured again. If there
is a big difference between the two samples it means that the
grasped faces are not parallel (see Fig. 5.d) and the process
starts again. This phase of the algorithm repeats until the
difference is close to zero or the object is lost. If the object
is lost a reflex that will try to recover it is triggered, this
reaction is explained at the end of this section.

When the grasp is stable, the fingers move the object
aligning it with the palm center and keeping the extension of
the fingers (see Fig. 4.c and d) in order to improve contact
surface, finger position symmetry, and finger force symmetry.

3) Force adaptation: Using the fingertip integrated force
sensors of the Barrett hand, the force of each fingertip is
increased until it reaches the predefined limit. Then, the hand
lifts the object and evaluates if the grasp has benn successful.

C. Security reflexes

During the execution of the primitive, the algorithm is
attentive for some important events in order to inform the
user, adapt to the environment conditions and perform a
successful grasp. The first event is the loss of the object.
This happens when the three finger close completely without
making contact with the object. In this case the hand opens
and moves a little bit down then closes again trying to recover
object contact.

Another event is the adduction of the fingers, when con-
tacting the object the adduction degree is set free. Depending
on the shape of the object the opposite fingers can adduct.
If this happens it is assumed that an spherical preshape is
more appropriate for the the object.

The last event is the miss of the object by only one finger.
The reaction is to open the hand and to move laterally 5cm
(inter finger distance).

D. Additional parameters

Other parameters as distance, size, weight and shape could
be used to improve the accuracy and execution of the grasp.
The distance could be used avoid blind first contact with the

Fig. 7. Box-like objects. Properties (base x height, weight) from left to
right and top to bottom: Box1(270x53x95, light) Box2(236x35x35, light)
Box3(127x116x92, heavy) Box4(100x87x45, light)

object; the size could be used to set the starting opening of
the fingers; the weight to determine the force to be applied
by the fingers; and the shape to set the pregrasp shape
reducing the time consumed by the pregasp shape detection
and switching.

III. VALIDATION

A test bench has been designed in order to validate the
grasping controller. This test bench consists of a set of
objects and a set of starting positions to be tried with each
object.

To have a comparison reference for outr controller, we
have designed an alternative naive grasp controller without
corrections. This controller needs 4 input parameters: starting
position, distance to the object, pregrasp size and finger
force. The fingers moves to the pregrasp size and the hand
moves forward along its Z axis the distance specified. The
hand closes and lifts the object. If the object is lifted and
does not fall for 10 seconds, the execution is successful.

A. Objects and test bench

The objects selected are classified according to their shape
(cylinders in Fig. 6, boxes in Fig. 7 and others in Fig. 8),
their size (thin, normal, thick) or their weight (light, heavy).
All the objects are solid. Following the shape classification,
we have selected thin, normal and thick objects for each
shape in order to test as many different combinations of
object features as possible. The optimal conditions have been
tested in all the objects. We have selected a subset of 2

Fig. 8. Other objects. Properties (base x height, weight) from left to right:
Other1(180x90x90, heavy) Other2(90x90x163, light)
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box-like objects and 2 cylinder-like objects to test rotation
and translation error conditions. This selected objects are the
biggest and the smallest from each category.

Translation error is the deviation from the center of the
object to the center of the hand and it is measured in mm.
Rotation error is the deviation between hand and object main
axis and is measured in degrees (see Fig. 9).

This test bench evaluates robustness against translation and
rotation errors. The behaviour of each algorithm has been
also evaluated in optimal conditions which can present a
rotation error of 5 degrees and 10% of translation error.

To evaluate the effect of rotation errors the following
conditions have been taken into consideration:

• 15 degrees on X, Y, Z, XY, XZ, YZ and XYZ.
• 20 degrees on X, Y, Z

The combined rotation error is applied first in X next in
Y and later in Z. A rotation error of 15 degrees in XYZ is a
rotation of 15 degree on X, then 15 degree on Y and finally
15 degree on Z. The results of the rotation tests are shown
in Table III for the robust controller and in Table IV for the
simple controller. The cylinder-like objects are invariant to
rotation in Z axis. The Z rotation error is not applicable to
cylinder-like objects.

The amount of translation error is relative to the size of
the object because usually this two variables (size and error)
are related. To evaluate the effect of translation errors the
following conditions have been taken into consideration:

• 20% on X, Y, Z, XY, XZ, YZ and XYZ
• 40% on X, Y, Z

IV. RESULTS

The global results are presented in Table I and Table II,
the first column shows the results for the optimal case, the
second and third columns present the summary of the rotation
and translation error. The last column shows the averaged
results for each object.

Details about experiments with error conditions can be
found in Table III and Table IV for rotation error and in
Table V and Table VI for translation error.

V. DISCUSSION

Summary tables I and II show clearly the better per-
formance obtained by our robust controller in comparison

Optimal Rotation Translation Total
Box 1 100% 100% 54% 85%
Box 2 100% 73% 92% 88%

Cylinder 2 100% 58% 80% 79%
Cylinder 4 100% 100% 95% 98%

TABLE I

ROBUST ALGORITHM GLOBAL RESULTS

Optimal Rotation Translation Total
Box 1 100% 50% 40% 63%
Box 2 100% 52% 100% 84%

Cylinder 2 100% 92% 88% 93%
Cylinder 4 100% 96% 70% 89%

TABLE II

SIMPLE ALGORITHM GLOBAL RESULTS

Error Box 1 Box 2 Cylinder 2 Cylinder 4
15 X Axis 2/2(100%) 2/2(100%) 2/2(100%) 2/2(100%)
20 X Axis 2/2(100%) 2/2(100%) 2/2(100%) 2/2(100%)
15 Y Axis 3/3(100%) 2/2(100%) 1/2(50%) 3/3(100%)
20 Y Axis 3/3(100%) 2/2(100%) 1/4(25%) 2/2(100%)
15 Z Axis 3/3(100%) 2/2(100%) N/A N/A
20 Z Axis 3/3(100%) 2/2(100%) N/A N/A

15 XY Axis 2/2(100%) 1/2(50%) 2/2(100%) 2/2(100%)
15 XZ Axis 2/2(100%) 1/2(50%) N/A N/A
15 YZ Axis 2/2(100%) 1/2(50%) N/A N/A

15 XYZ Axis 2/2(100%) 1/4(25%) N/A N/A

TABLE III

RESULTS WITH ROTATION ERROR FOR THE ROBUST ALGORITHM

Error Box 1 Box 2 Cylinder 2 Cylinder 4
15 X Axis 5/5(100%) 5/5(100%) 5/5(100%) 5/5(100%)
20 X Axis 5/5(100%) 5/5(100%) 5/5(100%) 5/5(100%)
15 Y Axis 4/5(80%) 2/5(20%) 3/5(20%) 4/5(80%)
20 Y Axis 2/5(20%) 0/5(0%) 5/5(100%) 5/5(100%)
15 Z Axis 4/5(80%) 5/5(100%) N/A N/A
20 Z Axis 4/5(80%) 5/5(100%) N/A N/A

15 XY Axis 0/5(0%) 0/5(0%) 5/5(100%) 5/5(100%)
15 XZ Axis 0/5(0%) 4/5(80%) N/A N/A
15 YZ Axis 1/5(20%) 0/5(0%) N/A N/A

15 XYZ Axis 0/5(0%) 0/5(0%) N/A N/A

TABLE IV

RESULTS WITH ROTATION ERROR FOR THE SIMPLE ALGORITHM

Error Box 1 Box 2 Cylinder 2 Cylinder 4
20% X Axis 2/2(100%) 2/2(100%) 2/2(100%) 2/2(100%)
40% X Axis 1/2(50%) 2/2(100%) 2/2(100%) 2/2(100%)
20% Y Axis 1/2(50%) 2/2(100%) 1/2(50%) 2/2(100%)
40% Y Axis 0/2(0%) 2/2(100%) 0/2(0%) 1/2(50%)
20% Z Axis 2/2(100%) 2/2(100%) 2/2(100%) 2/2(100%)
40% Z Axis 2/2(100%) 2/2(100%) 2/2(100%) 2/2(100%)

20% XY Axis 1/4(25%) 3/4(75%) 2/2(100%) 2/2(100%)
20% XZ Axis 2/2(100%) 1/2(50%) 2/2(100%) 2/2(100%)
20% YZ Axis 1/2(50%) 1/2(50%) 1/2(50%) 2/2(100%)

20% XYZ Axis 1/4(25%) 3/4(75%) 2/2(100%) 2/2(100%)

TABLE V

RESULTS WITH TRANSLATION ERROR FOR THE ROBUST ALGORITHM



Error Box 1 Box 2 Cylinder 2 Cylinder 4
20% X Axis 0/4(0%) 4/4(100%) 4/4(100%) 4/4(100%)
40% X Axis 0/4(0%) 4/4(100%) 3/4(75%) 4/4(100%)
20% Y Axis 4/4(100%) 4/4(100%) 4/4(100%) 4/4(100%)
40% Y Axis 0/4(0%) 4/4(100%) 4/4(100%) 0/4(0%)
20% Z Axis 3/4(75%) 4/4(100%) 4/4(100%) 2/4(50%)
40% Z Axis 2/4(50%) 4/4(100%) 2/4(50%) 2/4(50%)

20% XY Axis 0/4(0%) 4/4(100%) 4/4(100%) 4/4(100%)
20% XZ Axis 2/4(50%) 4/4(100%) 4/4(100%) 2/4(50%)
20% YZ Axis 4/4(100%) 4/4(100%) 2/4(50%) 4/4(100%)

20% XYZ Axis 1/4(25%) 4/4(100%) 4/4(100%) 2/4(50%)

TABLE VI

RESULTS WITH TRANSLATION ERROR FOR THE SIMPLE ALGORITHM

with the naive one. It not only successes in a 100% of
the experiments in optimal conditions but also outperforms
the naive one when rotational and translational errors are
introduced.

The only exemption to this rule is the case of Cylinder 2
(object on the top-left corner on fig 6). This object is too light
and when touched while lying on a surface moves easily.
We observed that the successive contacts that our controller
produce causes that the object variates its position making
not possible to grasp it.

This case shows one of the drawbacks of our approach.
Our controller is touching the objects several times before
finally closing the finger to catch them. In case of light
or unstable objects this can be a problem. This difficulty
could be surpassed by the use of more sensitive sensors or
proximity sensors in a similar fashion as [10].

One of the advantages of our approach is the little previous
information it needs about the object. No exact model of the
object is necessary, and the only input is the maximum force
to be applied by the fingers. It is supposed that the hand is
appropriately oriented and preshaped. More information, like
estimated size or the distance to them, would be definitively
help to improve the controller robustness and the time
necessary to complete a grasp.

Currently all the grasp tried approach from above. That is,
the objects are lying on a surface and the hand approaches
vertically. This simplifies our controller since the movements
of the objects are limited. Improvements are necessary if
grasps from a side are going to be executed, since the
stability of the objects could be compromised if they are
touch. In this case an estimation of the distance to the object
would be necessary.

At the moment the average time to execute a grasp is
about 40 seconds, though this time depends on the object
and the initial position error. It could be reduced providing
more information about the location and characteristics of
the objects.

Finally, an attached video shows pose correction phases,
event adaptation and grasp force increasing. It is also shown
that the stability of the grasps performed by the robust
algorithm are better than the ones performed by the simple
controller.

VI. CONCLUSION

In previous section three are indications of how to im-
prove the grasp primitive controller implemented. The most
immediate future is to develop complementary primitives
that allow the execution of a complete pick-and-place task,
i.e.: approaching and preshaping, lifting, transportation and
landing primitives. The development of these primitives
would provide a vocabulary of basic skills that will allow
planning, and learning in future stages.

To conclude, we remark that we have developed a robust
sensor-based grasp primitive that need little information to
execute its task and that is able the correct and adapt to
variations and inaccuracies in the expected conditions of the
scenario.
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