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Chapter 1

Executive summary

Deliverable D5.1 - ”Monitoring the Environment for Surprises” - represents an initial implementation of
the cognitive layer in the GRASP project within WP5. The work in this deliverable is strongly interleaved
with the research in the deliverables in WP4 where the low level processing layers for the perception are
defined and with the work in WP2 where initial understanding of the ontology representation in the
GRASP project is defined.

WP5 is responsible to detect novelty in object description and in the actions performed in the scene
through a matching process in the Mismatch-Based Layer. A surprise event in this layer triggers an
object identification process responsible for data abstraction and labeling. This process initiates the
transfer of geometric data structures from the background model into the foreground model representation
that contains mission- or task-relevant objects. WP5 is responsible for the construction of the working
knowledge about the geometry of the environment and for modelling of the typical actions in the local
area. This information is essential to detect mismatches between an expectation of the system and the
actual perception from the sensory input. The mismatch represents more than just a static change in
the geometry or appearance of the environment. We monitor unexpected actions to reduce the number
of mismatch triggers in dynamic envrionments, where objects move and only unexpected actions should
generate a trigger forcing the system to update its knowledge.

The main input originates from the perception developed in WP4 which will be completed by the haptic
information from the Multimodal Grounding in WP3 (Task 3.2) later in the project. WP5 implements
the cognitive aspects of the project distinguishing it from other existing manipulation approaches, where
hard-wired. pre-defined actions are implemented. In GRASP, we put stong emphasis on interaction of
the system with its environment. We aim to develop a system that defines its actions as a response to
the perception under consideration of its knowledge about the current context. A cognitive system is
one that is capable of interacting with humans and other systems in an environment and that is capable
to respond to a surprise. Our system uses the surprise to control the learning about the scene and to
trigger its own actions as responses to the external stimuli in the environment. We use this to allow the
system to deal with a possible high complexity of the scne. Our system observes a human operator who
specifies the mission relevant objects through a direct interaction with them (manipulation). This way,
our system does not need to identify and to learn about all objects in the scene but only about the objects
that were used by the human. These objects define the foreground layer of our representation while the
geometrical model of the entire scene remains as a global three-dimensional structure in the background
layer. Therefore, the results of WP1 are very important to reduce the processing complexity within the
WP5. Only a contact of a human hand with an object followed by a change of its position renders the
action as something that the system should know about.

According to the Technical Annex of the project, the deliverable 5.1 includes activities in the context of
tasks 5.1 and 5.2. The objectives of these tasks are the following:

• Task 5.1 - Implementation of Surprise Event Hierarchy Implementation of the surprise event
hierarchy including a simple mismatch-layer, a passive prediction-based layer, and a implausibility
layer. The work will focus on control of the attention to predict possible events and view planning
strategies based on findings about human behaviors in similar situations in neurosciences. The
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sensor model of the used sensor will be mapped on the requirements of the abstract task definition
to find and optimal strategy suited for a given imaging model.

• Task 5.2 - Evaluation of Efficient Methods to Monitor Changes Evaluation of efficient
methods to monitor changes in the environment that will be insensitive to sensor inaccuracies
and that compensate eigen-motions /actions of the system in the environment. In collaboration
with WP4, an internal representation of the environment will be generated that will define the
expectations of the system. This representation will go beyond a geometric representation of the
world and will define also contextual and dynamic information about the world. This representation
will allow to generate expectations in collaboration with WP6 that will help the system to define a
surprise that can happen at different levels ranging from an unexpected change in the 3D description
to unknown new motion types that need to be learned by the system.

The main focus of our work was on Task 5.2, because it defines the basic representation of the knowledge
that is necessary to predict expectations of the system. This is essential for the mismatch detection in
Task 5.1. The following text is structured as follows:

Chapter 2 describes the goals that were implemented in the first twelve months of the GRASP project.
We present the goals and necessities that need to be considered in the first phase of the project.

Chapter 3 reports on activies that lead to the initial implementation of the knowledge layer. We distin-
guish between the Working Memory that stores the geometric and dynamic representation of the scene
and the actions observed in it. This representation results from analysis of the preceptual input combined
with the knowledge stored in the Atlas Representation, where a-priori knowledge about the environment
is stored. This chapter describes activities related to the Task 5.1.

Chapter 4 reports on activies in the field of the Task 5.1. We present our initial implementation of
the mismatch-based layer in the surprise detection hierarchy. We report the results of evaluation of
various modelling approaches that aim to simplify the monitoring task. Since this processing represents
a continuously running task, a special emphasis was put on finding a light-weight process that will not
create too high load on the manipulation system in the GRASP project.

Chapter 5 concludes with a discussion of the role of the processing accomplished in Deliverable 5.1 in the
context of the processing control of the GRASP system.
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Chapter 2

Objectives

Cognitive systems need to be capable of identifying the mission relevance and of learning the model
description of objects by themselves during joint action with a human operator. Most generally, a model
of context specifies the entities to observe, the properties to measure and the relations to detect [Win].
Dey [Dey01] proposed an operational model for context aware perception. In this model, a situation
is defined as a configuration of entities and relations relative to a task. The task serves to determine
which entities and relations are of interest and should be observed. We transfer these findings into our
foreground/background representations, which allows to decouple complex object recognition loops from
the low level 3D reconstruction. The deliverable discusses the following problems:

Structure of the Mismatch-Based Layer. The reconstructed 3D model of the environment is used to
predict the expectation for a given camera view. This expectation is compared to the actual perception to
detect mismatches (Fig. 2.1). The mismatch-based layer is the lowest level in the Surprise Event Detection
Hierarchy suggested in Technical Annex of the GRASP project (Fig. 3.5). Our goal in this funding period
is to implement an appropriate knowledge representation that will allow to store efficiently the geometric
and dynamic knowledge about the environment and to use this data to detect surprise events in a typical
manipulation scenario. An example of a simple surprise detection is the detection of unexpected glasses
in the table scenario in Fig. 2.1.

Figure 2.1: Mismatch detection in a typical household scenario - glasses were placed on the table.

Segmentation into Foreground/Background Model. The background model represents a geomet-
ric description of the scene that can be extracted from the sensor perception without any additional
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assumptions about the world. The foreground model stores information that can be seperated from the
background model because of human actions that cause motion of geometric scene elements relative to
each other, e.g., human picks up a cup and the cup becomes in this case part of the foreground model.
In parallel, the system can run object recognition algorithms on the background model to identify addi-
tional mission relevant objects similar to the objects moved by the human. The objective of this funding
period is to find efficient representations for these knowledge types that will allow a fast access to the
information and an efficient storage of the data.

Generation of Expectations. There are very good claims and studies in the literature on surprise, like
the idea that it depends on expectations, the claim that its intensity depends on the “unexpectedness”
of the stimulus [OP87, WMS97]. The importance of having a precise characterization and formalization
of expectations is very relevant for modeling cognitive agents [Bra88, RG92]. Different categories of
expectations can be identified depending on the degree of the belief. We let implicit the notion of value
of a goal. We call forecast a belief about a future state of the world and we distinguish it from a
simple hypothesis. We have a prediction when the degree of certainty is close to 100 per cent [MC02].
Expectations in our ontology are not indifferent hypotheses, forecasts or predictions. They imply a
subjective concern in the realization of a given situation.

WP5 defines triggers for the processing in the manipulation system using the ontology defined in WP2
to interact with various components of GRASP. The framework is depicted in Fig. 2.2.

expectation

context/surprise

Attention action

perception

Action request

Figure 2.2: Communication structure of the Surprise/Attention Layer in GRASP.

The cognitive surprise/attention layer to be developed in WP5 interacts with multiple modules of the
GRASP project. It uses the results of the perception layer developed in WP4 to abstract the raw sensor
data to geometric descriptions, human hand models and motions in the scene. This information is
stored within the Attention-Surprise module to trigger processing to add information to the knowledge
base. This requires interaction with the planning modules as well to optimize the knowledge acquisition
by specifying next-best views and hypothesis about the observations. The goal is to map the apriori
knowledge in an Atlas to the current observation and to adjust the parameters to match the sensor
data.as well to optimize the knowledge acquisition by specifying next-best views and hypothesis about
the observations. The goal is to map the apriori knowledge in an Atlas to the current observation and to
adjust the parameters to match the sensor data.
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Chapter 3

Knowledge Representation

Sensation and perception are key components of cognitive systems. Cognition can be defined as “gen-
eration of knowledge on the basis of perception, reasoning, learning and prior-models”. Perception is
the main source of information for reasoning and learning capabilities. Our goal is to understand, how a
nervous system gathers and interprets information from the vast array of sensory stimulation that reaches
us and to map it on physical systems available on our cognitive demonstrators.

Scene classification is an important task in cognitive systems. It helps in sensor-based 3D model generation
to discriminate between objects interesting for missions (foreground) and background objects relevant
merely for localization and obstacle avoidance. It is also used to trigger different behaviors of the robot
depending on the scene type. Exemplary classification results relevant for the GRASP project are: factory
environment, household environment, and table desk. The target selection task is a challenging part of
the system and can be implemented as a manual or automatic process. Examples in 2D image space
are described in [SD98, SMB98] in more detail. Interesting targets like single standing objects in the
scene need to be separated from the supporting planes of the floor and walls that are merely relevant for
collision avoidance.

Single standing objects are categorized as foreground. They need to be separated from the environment
structure (background) first. In an additional step, the remaining foreground objects are classified accord-
ing to their shape, extension and movement relative to the scene. The background structures are used
in a subsequent classification process to classify the scene structure according to the criteria described
above.

We consider the visual and haptic perception as the stimuli generating the input for our cognitive process-
ing. This multi-modal sensor input will allow to extract the initial information about foreground objects
in the scene, to classify them, and to match them to already known representations in the Ontology
(long-term memory).

We use for the knowledge representation in the Ontology in the GRASP project an analogy to the cognitive
capabilities of the human brain and its different strategies, how to store and process the information in
the most efficient way. The brain does not store memories in one unified structure. Instead, different
types of memory are stored in different regions of the brain (Fig. 3.1). Long-term memory is typically
divided up into two major headings: declarative memory and implicit memory (or procedural memory).

1. Declarative memory refers to all memories that are consciously available. These are encoded by the
hippocampus, entorhinal cortex, and perirhinal cortex, but consolidated and stored elsewhere in
the cortex. The precise location of storage is unknown, but the temporal cortex has been proposed
as a likely candidate. Declarative memory also has two major subdivisions:

• Episodic memory refers to memory for specific events in time

• Semantic memory refers to knowledge about the external world, such as the function of a
pencil.

2. Procedural memory refers to the use of objects or movements of the body, such as how exactly
to use a pencil or ride a bicycle. This type of memory is encoded and probably stored by the
cerebellum and the striatum.
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Figure 3.1: Different Types of Long-Term Memory (Source: http://thebrain.mcgill.ca)

There are various other categorizations of memory and types of memory that have captured research
interest. Prospective memory (its complement: retrospective memory) is an example.

Long-term memory in the brain is memory that can last as little as a few days or as long as decades. It
differs structurally and functionally from working memory or short-term memory, which ostensibly stores
items for only a short time. Working memory (also referred to as short-term memory, depending on the
specific theory) is a theoretical construct within cognitive psychology that refers to the structures and
processes used for temporarily storing and manipulating information. There are numerous theories as to
both the theoretical structure of working memory as well as to the specific parts of the brain responsible
for working memory.

There have been numerous models proposed regarding how working memory works, both anatomically
and cognitively. Of those, three have received the distinct notice of wide acceptance:

• The Baddeley and Hitch model[BH74] - Baddeley and Hitch (1974) introduced and made pop-
ular the multicomponent model of working memory. This theory proposes that two ”slave systems”
are responsible for short-term maintenance of information, and a ”central executive” is responsi-
ble for the supervision of information integration and for coordinating the slave systems (Fig. 3.2).
The central executive is, among other things, responsible for directing attention to relevant informa-

Figure 3.2: Schematic of Baddeley’s Model.

tion, suppressing irrelevant information and inappropriate actions, and for coordinating cognitive
processes when more than one task must be done at the same time.

The phonological loop (or ”articulatory loop”) as a whole deals with sound or phonological infor-
mation. It consists of two parts: a short-term phonological store with auditory memory traces that
are subject to rapid decay and an articulatory rehearsal component that can revive the memory
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traces. This auditory example can be matched to a haptic information from the gripper to the
phonological information and segmented primitives of an action.

Any auditory verbal information is assumed to enter automatically into the phonological store.
Visually presented language can be transformed into phonological code by silent articulation and
thereby be encoded into the phonological store. This transformation is facilitated by the articulatory
control process. The phonological store acts as an ’inner ear’, remembering speech sounds in their
temporal order, whilst the articulatory process acts as an ’inner voice’ and repeats the series of
words (or other speech elements) on a loop to prevent them from decaying. The phonological loop
may play a key role in the acquisition of vocabulary, particularly in the early childhood years.

The visuospatial sketchpad (Fig. 3.2) is assumed to hold information about what we see. It is used
in the temporary storage and manipulation of spatial and visual information, such as remembering
shapes and colors, or the location or speed of objects in space. Logie has proposed that the
visuospatial sketchpad can be further subdivided into two components:

1. The visual cache, which stores information about form and color.

2. The inner scribe, which deals with spatial and movement information. It also rehearses infor-
mation in the visual cache and transfers information to the central executive

In 2000 Baddeley added a fourth component to the model, called the ’episodic buffer’. This com-
ponent is a third slave system, dedicated to linking information across domains to form integrated
units of visual, spatial, and verbal information with time sequencing (or chronological ordering),
such as the memory of a story or a movie scene. The episodic buffer is also assumed to have links
to long-term memory and semantic meaning.

• The theory of Cowan - Cowan [Cow05] regards working memory not as a separate system, but as
a part of long-term memory. Representations in working memory are a subset of the representations
in long-term memory. Working memory is organized in two embedded levels. The first level consists
of long-term memory representations that are activated. There can be many of these, there is no
limit to activation of representations in long-term memory. The second level is called the focus
of attention. The focus is regarded as capacity limited and holds up to four of the activated
representations.

• The theory of Ericsson and Kintsch - Ericsson and Kintsch [KPE99] have argued that we use
skilled memory in most everyday tasks. Tasks such as reading, for instance, require to maintain in
memory much more than seven chunks - with a capacity of only seven chunks our working memory
would be full after a few sentences, and we would never be able to understand the complex relations
between thoughts expressed in a novel or a scientific text. We accomplish this by storing most of
what we read in long-term memory, linking them together through retrieval structures. We need to
hold only a few concepts in working memory, which serve as cues to retrieve everything associated
to them by the retrieval structures

In GRASP, we follow the structure suggested by Baddeley with the long-term memory and the short-
term memory maintained by the central executive. Our system consists of two databases storing a-priori
knowledge about the world the Ontology corresponding to the long-term memory and a Working Memory
representing the current visual an spatial representation of the world (visuospatial sketchpad). In this
layer, the episodic buffer is implemented as a system storing the typical actions applied to a mission
relevant object.

The two layers in GRASP (Fig. 3.3) have the following representation:

• Ontology Representation (Experience of the System) - this information represents a-priori
knowledge given to the system from an expert or representations of the environment collected in
previous operations in the same or similar environment. An important difference of the proposed
system to many other systems suggested before is that it is supposed to interact with its environment
in a cognitive way. This means that the system does not operate based on a set of pre-defined rules
but it tries to learn from its own actions and actions of other agents in the environment (human
or other robots). The information stored in the Ontology represents a generic knowledge about a
class of object. In the initial implementation, this can be directly the information of specific objects
in the scene. We try to generalize this information to entire object classes. This way, information
about manipulation capabilities of one object (e.g., specific cup) will be transferred as possible
hypothesis for a similar object type.
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• Working Memory- Working memory is a theoretical construct within cognitive psychology that
refers to the structures and processes used for temporarily storing and manipulating information.
In our system, the experience needs to be grounded to a given environment. A typical environment
of the cognitive system represents a geometric and semantic description of objects and actions in a
given geometric environment. To implement the goals of GRASP, we expect to operate in highly
complex environments, where the system must not try to analyse all elements of the scene as it is
often the case in other current manipulation systems (http://www.smerobot.org/) but it needs to
focus its attention on mission relevant objects whose properties need to be explored for a successful
interaction with the world.

Figure 3.3: Knowledge Layers in GRASP.

Our system reconstructs the 3D information fusing the 3D perception of the stereo camera and possible
additional camera systems in the wrist of the robot. The global view through the binocular system of
the robot does not provide a complete information in the scene due to occlusions in the scene. This fact
needs to be taken into account while fitting objects into the reconstructed 3D information.

The completeness of the model can be increased by active exploration of the environment (see Sec-
tion 3.1.2.2) and by adding additional monocular information from a camera mounted in robot’s wrist.
This type of camera allows the system to look around the object without complex robot motions through
the environment. The corresponding 3D reconstruction algorithms from motion from TUM are presented
in the deliverables of WP4.

3.1 Working Memory - Representation of the Current Scene

The goal of the GRASP project is an operation in complex structured environments with occlusions,
self-occlusions, and a high number of objects. In such environments it is not feasible to label all the
reconstructed information to objects and it is not necessary, because only a very limited number of
them is actually mission relevant. The geometry of the scene is necessary for motion planning and
collision avoidance, therefore, it needs to be reconstructed with high accuracy. This information does not
necessarily need to be labeled for the correct operation of the system.

Fig. 3.4 depicts an exemplary reconstruction of the scene from a stereo system looking at a simple table
setup. Our stereo reconstruction system developed in WP4 reconstructs the corresponding point cloud.
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Figure 3.4: 3D information from a typical table setup.

We see that the input data does not distinguish between the cleaner-bottle on the table and the table
itself. In the first step, the entire information is stored as background in our model. As we already
mentioned before, this information can be used to plan actions and to avoid collisions while moving the
manipulator in the table area.

The information stored in the working memory is used for an additional purpose in the system, which is
novel for the manipulation system currently developed. We use this information not only for path planning
but also to detect changes in the environment. It is theoretically possible to monitor for changes in 3D
space, but a single camera view can cover a significant area in 3D space. Additionally, occlusions in
the current view make it difficult to decide if an absence of an object in the current view is due to a
change in the environment or due to the occlusion by an object closer to the camera. For this decision,
objects from the 3D model need to be reprojected into an expected camera image which later can be
compared with the actual view. Therefore, in addition to the geometric representation some information
about the appearance of the object is necessary. This lead us to implementation of a hybrid structure of
the working memory consisting of both the geometric and appearance information combined in a hybrid
representation of the environment.

3.1.1 Hybrid Representation of the Environment

Essential novelty for simple detection of mismatches in the environment is a hybrid image-based and
geometric representation of the environment that allows planning of actions using the geometry and
the image-based portion to control attention and simplify the prediction directly as expected sensor
images. While the construction of geometric models has been already sufficiently presented in multiple
applications, our focus in this deliverable is on efficient detection of surprise events in the scene and
support for path planning based on geometry of the scene.

Our goal in this reporting period was an implementation of the lower layers in the processing hierarchy
of a surprise event (Fig. 3.5).

The initial trigger for a surprise event is a mismatch between the expectation of the system and the
perception from the sensors on the robot. The hybrid structure of our model representation simplifies the
processing here. The image-based information from our model is used directly to predict an appearance
of the scene from a specific view-point while the geometry part is used for path planning and obstacle
avoidance.

We evaluated two forms of the image-based prediction for their applicability for the GRASP project.
They differ in the way, how the image information is stored in the model.

3.1.1.1 View-Point Based Image-Database

One type of image-based scene representation that recently has become very popular uses view-dependent
geometry and texture. Instead of computing a global geometry model which is valid for any viewpoint
and viewing direction, the geometry of the scene is locally estimated and only holds for a small region
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Figure 3.5: Hierarchical processing of a Surprise event (from the Technical Annex of the GRASP pro-
posal).

in the viewpoint space. It has been shown that this approach is suitable especially when the scene
contains specular and translucent objects. To extract local geometry information, per-pixel depth maps
are calculated for each reference image, i.e., the left image of each captured stereo pair. Loopy belief
propagation [FH04] minimizes a matching cost volume and yields the most probable depth value for
each pixel, assuming that the scene is smooth between depth discontinuities. A triangulated mesh is
reconstructed from each depth map and simplified using the algorithm in [GH98]. While these steps are
done off-line, the view selection and view synthesis, as explained in the following, are performed on-line.

Figure 3.6: Acquisition of a set of images with a stereo camera (work together with DFG CoTeSys project
319).

This system acquires images along the traversed trajectory and saves together with the geometrical
representation of the scene. The idea is to provide a dense set of image information along the trajectory
that will allow a prediction of any additional virtual view from a position not seen in the initial image
set (Fig. 3.7).

Any additional virtual image µML from a direction similar to the already known views xi can be generated
using this approach. The synthesized image contains contributions from other images observing the scene.
The task of the second rendering pass is to find an acceptable estimate for the true color value. The color
values from the reference images are assumed to be samples from a Gaussian distribution whose mean is
the true color value. Surprise detection: If the current observation yields a sample value which is, due
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Figure 3.7: Virtual view synthesis for a virtual camera from existing image set.

to changes in the scene, largely different from the reference samples, a surprise trigger is generated in a
given pixel region.

This approach has an advantage for applications, where the system operates only in a limited space,
where only a limited set of images is necessary in total to predict a new view even from a previously
unknown position. The information is at the level of detail at a given position.

3.1.1.2 Texture Modulation

An alternative approach, which was evaluated for the image-based part of the working memory is texture
mapping on the geometry of the scene. A direct mapping of the texture on the faces of the object in the
scene is a common approach in Computer Graphics. Unfortunately, it requires a detailed modeling of the
filigrance structures in the scene to preserve the correct re-projection depending on the view. To allow
an image differencing between the prediction of an image expectation and the current image requires a
good match of the structural pixel values.

Figure 3.8: Virtual view synthesis for a virtual camera from existing image set.

Fig. 3.8 depicts the problem associated with too coarse geometrical modeling. The texture appears flat
and does not follow correctly the details on the surfaces.
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We chose to evaluate the Dynamic Texture approach [CYJ02] as an alternative for modeling of the
appearance of an object. This approach allows an easy reconstruction of objects from very few images.
In opposite to the approach in Section 3.1.1.1 the system stores texture bases attached directly to the
surfaces and modulates them depending on the viewing angle.

3.1.2 Definition of the Foreground

Ground Plane Obstacle Detection (GPOD) using stereo disparity was first reported by Sandini et
al. [FGM90], and refined by Mayhew et al. [MZC92] and by Brady et al. [SB97]. These approaches use
orthogonal regression techniques to estimate the parameters of the ground plane. Approaches like the
one from Brady et al. [SB97] use line features grouped in a Hough transform to detect obstacles in the
environment. We plan to use in contrast directly the disparity information in the images. We pursue an
approach that fits multiple surfaces into a dense disparity image to allow calibration, localization and
object classification from a single image.

The segmentation of background point clouds into foreground objects is based on a-priori knowledge of
the world and human activities in the scene. Scene, like the one depicted in Fig. 3.4, shows an object on
a supporting plane.

3.1.2.1 Segmentation Strategy

Goal in the project is segmentation based on the motion induced through human action, for now -
segmentation is based on supporting plane subtraction and contact with a human hand (actually skin)
(Fig. 3.9).

Figure 3.9: Object moves to Foreground description through an interaction with the human hand.

3.1.2.2 View-Planning for Efficient Exploration based on Attention

Visual 3-D reconstruction and registration methods are gaining immense importance in many practical
applications in everyday life. Unfortunately, the applicability of such techniques is often limited because
the accuracy requirements of procedures are too high, or if seen the other way around, the reconstruction
quality is too low. One possibility to improve this situation is active planning of camera movements
such that the maximum reconstruction quality is assured. To address this problem, we have developed a
simple, easy to use approach that is directly inspired by geometric considerations.

This Section presents a geometrical approach to define efficient exploration strategies depending on the
perception properties of the underlying sensor in the system. This research is a basic component in
our collaborative sensing approach where the exploration of a local area is performed by several small
cognitive agents in a joint action effort. We plan to map it onto biological exploration strategies of insects
collaborating in exploration tasks, like wasps. Our current research shows, that although it is desirable to
learn from biological systems, it is easier to explain biological behavior by mathematical models known
from robotics and to use the biology to select the appropriate alternatives.

Vision-based technologies are becoming more and more important in everyday life. One of the most
important tasks in that context is the 3-D reconstruction and modeling of objects and scenes. There
are many problems that need to be dealt with in the context of that problem, and the accuracy of the
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reconstruction is one of them. Of course, it is always possible to increase the accuracy by increasing
the resolution of the employed sensors. But that will also lead to an increase of sensor size, cost, and
probably also computation time, because more data needs to be processed. This Section is concerned
with a different approach of improving reconstruction quality, by finding a strategy for sensor placement
such that the accuracy of 3-D reconstruction tasks will be improved.

One possible application of our ideas is in computer-aided surgery, where, e.g., Burschka et al. [BCD+05,
BLT+05] have developed techniques for 3-D reconstruction and active guidance of surgeons. It is clear
that the accuracy of the 3-D reconstruction is of high importance, because a too low accuracy can in
extreme cases mean injuries to the patient. It would be interesting to combine the methods developed
herein with their system.

Another important application of our approach is view planning for flying systems and manipulation pur-
poses, where additional information needs to be acquired from, e.g., camera-in-hand images or interacting
flying agents from as few additional positions as possible.

3.1.2.3 Related Work

In the context of SLAM methods, many different approaches to the accuracy maximization problem have
been examined. Vidal-Celleja et al. [VCDACM06] have developed a scheme for active control of a 6DOF
camera, where possible movement actions are evaluated according to information-theoretic optimality
criterions. It is assumed that the camera movement is chosen from a discrete set of actions at certain
timesteps, and at each timestep the optimal action is determined.

Wenhardt et al. [WDAN07] use a different approach: They try to choose actions such that one of several
characteristics of the covariance matrix are minimized. The minimization procedure is implemented as
an exhaustive search, and the minimization criteria (examined as completely independent strategies) are
the entropy, largest eigenvalue, and trace of the covariance matrix. As opposed to the approach of Vidal-
Celleja et al. [VCDACM06], it is assumed that the camera will directly “jump” to the computed optimal
position.

That it is not advisable to blindly use information maximization schemes has been shown by Sim [Sim05]
in his work on bearings-only SLAM. It is shown that, when the sensor (e.g., a camera) is always driven
to the “optimal” position (considering maximum information gain from the measurement), the update
step for the Extended Kalman Filter becomes numerically unstable, and this in turn adversely affects
the state estimation. The strategy developed in that work therefore aims at maximizing stability of the
Kalman Filter update.

Another interesting method has been discussed by Whaite et al. [WF97]. Their approach is probably
the one that is most similar to our work: A sensor that is constrained to move on a sphere surface is
considered, and the optimal movement direction is computed with respect to the prediction variance.
However, our idea uses a simplified approach to evaluate view points, and we also do not compute
movement directions, but absolute positions instead.

An additional aspect of Active View Planning that is not discussed in this Section is dealing with self-
occlusions of objects and assuring that all parts of an object are seen. Since the problem has been
researched for several years, a lot of different methods have also been proposed [MB93, KD95, CK88]. A
more recent contribution to solving that problem is the paper of Chen and Li [CL04].

3.1.2.4 3-D Reconstruction

Our method can generally be applied for any 3-D reconstruction technique that generates point position
estimates as well as estimates of point position uncertainty in form of a covariance matrix. Typically,
SLAM methods employing the Kalman Filter generate that kind of information, and one such method is
what we have used for testing.

The technique of our reconstruction method is described by Davison et al. [DRMS07]. Their MonoSLAM
algorithm, which is based on the Extended Kalman Filter, allows for simultaneous pose estimation and
map building in an unknown environment. The modification we make to Davison’s system is that we use
two cameras instead of one, so we do not have to deal with complicated feature position initialization.
We will, however, assume that only one of both cameras is able to move, and the movement of that

17



camera will be optimized. Only a very brief summary of the data structures of the reconstruction and
pose estimation system will be given here, for a complete description the reader is referred to Davison’s
original work.

In our specific system, the state vector x̂ contains the camera state estimates x̂1, x̂2 as well as the 3-D
coordinates ŷi of the n points under consideration. The state vector can be partitioned as follows:

x̂ = (x̂1, x̂2, ŷ1, ŷ2, . . . , ŷn)T (3.1)

The camera state vectors x̂i can be further partitioned into a 3-D position vector rW
i , a rotation quaternion

qWR
i describing the camera’s orientation, a translational velocity vector vW

i and a rotational velocity
vector ωW

i :
xi = (rW

i , qWR
i , vW

i , ωR
i )T (3.2)

As the points of the scene are assumed to be static, the state transition for the point coordinates is
the identity. The camera motion is assumed to be affected by constant linear and angular velocity in-
between frames. Changes in the velocities are modeled as noise effects: We assume that unknown linear
and angular accelerations aW

i and αW
i are applied at each time step, which can be seen as process noise.

The corresponding total acceleration vectors n1, n2 are partitioned into linear and angular acceleration
parts as follows:

ni =

(

V W
i

ΩR
i

)

=

(

aW
i ∆t
αR

i ∆t

)

(3.3)

With this notation, the total state update for the a pose of camera i can be expressed through a function
fv as follows:

fv(x
v
i ) =









rW
i + (vW

i + V W
i )∆t

qnorm(qWR
i × q((ωR

i + ΩR
i )∆t))

vW
i + V W

i

ωR
i + ΩR

i









(3.4)

Here, q(·) is a function that maps a angle-axis rotation vector to the corresponding quaternion. The
newly computed rotation quaternion is normalized by use of the qnorm function to assure that it always
has unit length. Otherwise, errors introduced through the quaternion multiplication might add up over
time such that the rotation description becomes unusable.

For the measurement function, we apply the standard pinhole camera model, and assume that the mea-
surement vector consists of stacked 2-D measurements of the points in our model. From a combination
of point coordinates yj and camera parameters xi, we can generate the corresponding expected measure-
ment. First of all, note that the position of point j relative to camera i can be expressed as

hR(xi, yj) = RRW (yW
j − rW

i ), (3.5)

where RRW is the rotation matrix between the world reference coordinate frame W and the camera
coordinate frame R. According to the pinhole model, the measurement then looks like this:

h(xi, yj) =





u0 − fku
hR(xi,yi)x

hR(xi,yi)z

v0 − fkv
hR(xi,yi)y

hR(xi,yi)z



 (3.6)

where fku, fkv, u0, v0 are the usual camera calibration parameters.

The computation of the various Jacobian matrices required for the Extended Kalman Filter is now a
straightforward matter that will not be discussed in detail. For our testing system, we used a Maple-
based code generation system to perform the associated computations.

Because we are mainly concerned with uncertainties of our estimate in this work, we also make use of
the convenient notation for relevant parts of the state covariance matrix, as introduced in Davison’s
[DRMS07] work:

P =















Px1x1
Px1x2

Px1y1
Px1y2

. . .
Px2x1

Px2x2
Px2y1

Px2y2
. . .

Py1x1
Py1x2

Py1y1
Py1y2

. . .
Py2x1

Py2x2
Py2y1

Py2y2
. . .

...
...

...
...

. . .















(3.7)

We will primarily be interested in the sub-matrices Pyiyi
, which provide a direct description of the

uncertainty of the point yi.
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3.1.2.5 View Planning Method

As has been pointed out by, e.g., Sim [Sim05], maximizing the information gain from measurements is
equivalent to moving the camera to a position that is orthogonal to the principal direction of an observed
landmark’s covariance ellipsis. This is also what one would intuitively expect, since by looking at a
point feature from a specific direction, we can determine the feature position pretty well in the directions
parallel to the camera plane, while we are not able to determine the 3-D depth of the feature. Figure
3.10 visualizes the concept.

Inspired by this idea, our approach to finding the optimal camera position can be described informally as
follows: First of all, we compute the covariance axes for all points, establishing the principal axes of the
covariance ellipsoid. If we place the camera on a plane that contains the point and has a normal that is
orthogonal to one of the axes, we will maximally reduce the covariance in the direction of that axis after
a measurement.

Figure 3.10: The left picture shows the following situation: A feature has been measured from the
shown camera position, and the measurement lead to the shown point estimate and covariance. The
dashed line is orthogonal to the major covariance ellipsis axis, and also with dashed lines we indicate
a camera position on that line, which seems like a good choice intuitively. The right image shows how
the situation could look like after a measurement from that position: The worst covariance has been
maximally reduced.

Using this information, we can, for each point and one of its covariance axes, determine a plane on which
the camera should be placed if we wish to minimize the covariance in that direction for that point. This
method alone would lead to ill-conditioned filter updates as shown by Sim [Sim05], but we are not finished
yet.

Based on the information that has been computed so far, we can introduce a penalty function for camera
locations, depending on the location’s distance to the “optimal” planes. A first, simple idea might be
using, e.g., the squared distance to those planes. But that will not do: We would weigh all points
evenly, which would apparently be suboptimal if some of them are localized already with high accuracy,
and others are extremely inaccurate. Intuitively, the directions with high inaccuracy should have higher
“weight” than the other points, so another thing to add to our penalty function are weights that should
depend on the “imprecision” of the corresponding point’s position estimate. This yields, all in all, a nice
quadratic function that we need to optimize with certain side conditions.

These side conditions might be, e.g., visibility of all points, movement constraints due to limited physical
mobility of our camera, etc. In our case, we focus on the point visibility constraint. It can easily
be converted into some inequalities, but unfortunately, we find ourselves confronted with a quadratic
programming problem with non-convex side conditions, which is probably not totally trivial to solve. It
would be a lot nicer if it were possible to formulate the visibility side condition in form of a equality
constraint, because this would allow us to use the concept of Lagrange multipliers.
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Figure 3.11: An illustration of the basic idea of our approach, demonstrated for a 2-D reconstruction
problem. In the left image, we show an example situation, where the camera in the upper left corner has
taken an image of the scene, and the reconstruction process leads to the point positions and covariances
shown. The right image shows the sum of squared distances to the principal covariance planes, with a
logarithmic scale, where light gray levels correspond to high distance, and dark levels to low distance.

3.1.2.5.1 Mathematical Formulation Now that we have given an informal description of our ap-
proach, it is time to move on to the mathematical treatment of the problem. As mentioned above, the
first step is the determination of the covariance ellipsoid axes for each point yi. This is equivalent to
determining the eigenvectors and eigenvalues of the associated 3 × 3 covariance matrix Pyiyi

, which can
conveniently be done by computing the singular value decomposition of that matrix. For each point
yi, we denote the 3 normalized, orthogonal axis vectors by ni,1, ni,2, ni,3, assuming that these vectors
have been sorted according to their associated eigenvalues in descending order. Those eigenvalues will be
denoted by λi,1, λi,2, λi,3. With this information, we can further determine values di,j such that

ni,j · x− di,j = 0 (3.8)

finally describes a plane with normal vector ni,j passing through yi in Hessian Normal Form in 3-D
Euclidean space.

The Hessian Normal Form of a plane has the convenient property that substituting any point x̄ into the
expression ni,j · x− di,j will yield the distance of x̄ to that plane. The value will be positive or negative
indicating which side of the plane x̄ is located on. Using this knowledge, we can already formulate our
penalty function as follows:

f(x) =

n
∑

i=1

3
∑

j=1

wi,j(x
Tni,j − di,j)

2 = xTAx− 2bTx+ c (3.9)

Where A, b, c are defined as follows:

A :=





n
∑

i=1

3
∑

j=1

wi,jni,jn
T
i,j



 , b :=





n
∑

i=1

3
∑

j=1

wi,jdi,jn
T
i,j



 , (3.10)

c :=

n
∑

i=1

3
∑

j=1

wi,j(di,j)
2 (3.11)

It is clear that c can be left out for minimization purposes, so it will be dropped in future references to
f . Here, wi,j is the weight assigned to the axis ni,j , the choice of which will be discussed later.

Specifying the side condition is straightforward: If m is the center point of the sphere that the camera
can move on, and r is the radius of that sphere (which has been determined by whatever means), then
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the simple equation
g(x) = 0 with g(x) = (x−m)T · (x −m) − r2 (3.12)

defines the sphere surface. Applying the principle of Lagrange multipliers, we arrive at the following
equations for finding candidates for extremal points of f(x) on g(x) = 0:

∇f(x) = µ∇g(x) ⇔ Ax− b = µ(x−m) (3.13)

We can simplify this somewhat by looking at functions f ′(x) = f(x+m), g′(x) = g(x+m) that are just
shifted versions of f and g. This will change above equations as follows:

A(x +m) − b = µx⇔ Ax +Am− b = µx (3.14)

Defining b′ = −(Am− b), the equation finally becomes

Ax− b′ = µx (3.15)

Solving this problem is not altogether trivial. Fortunately, the problem of optimization of quadratic
functions on a sphere surface has already been researched thoroughly. It is briefly discussed, e.g., as a
special case in Hager’s paper [Hag01] on quadratic optimization within a sphere. Using the explanation
there, we can devise a simple algorithm that allows us to compute the desired optimum. We explain the
basic idea here.

If we rearrange terms in the last equation, we see that x can be computed depending on µ:

x = (A− µI)−1b′ (3.16)

The problem is then one of finding the right value of µ, such that the constraint |x| = r is satisfied. Let
φi be the eigenvectors of A, and λi the corresponding eigenvalues, sorted ascending. It is known that
(A − µI)−1 has the same eigenvectors φi as A, with eigenvalues 1/(λi − µ). This observation allows us
to express the right side of above equation as

3
∑

i=1

βi

(λi − µ)
φi, (3.17)

where βi = φT
i b. If this representation is combined with the length constraint, we arrive at the following

equation:
3
∑

i=1

β2
i

(λi − µ)2
= r2 (3.18)

This is essentially a polynomial of degree 6, which is in general not possible to solve. However, it can
be shown that µ < λ1 must hold for a solution. We can also see that the left side of above equation is
strongly convex. With this knowledge, it is possible to compute upper and lower bounds of µ, between
which we can search for the solution using a bisection algorithm.

The bounds can be computed as follows: We have

3
∑

i=1

β2
i

(λi − µ)2
≤

3
∑

i=1

β2
i

(λ1 − µ)2
(3.19)

on the one hand, and
3
∑

i=1

β2
i

(λi − µ)2
≥
∑

i∈E1

β2
i

(λ1 − µ)2
(3.20)

on the other hand, where E1 is the set {i | λi = λ1}. Both inequalities can be used to compute the bounds.
One last difficulty are the so-called degenerate cases, where the boundary computation will fail. They
correspond to cases where b′ is orthogonal (or close to orthogonal) to the eigenvectors corresponding to
the eigenvalues from E . Fortunately, it is possible to use a simple alternate computation to compute the
optimum.
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3.1.2.5.2 Choice of Weights One question that remains to be answered is the choice of the weights
wi,j that are assigned to the planes in our scenario. So far, we have only explained that those weights
should somehow be connected to the uncertainty of the point — now we will actually explain how we
choose the weights and why we do so.

The first idea one might come up with is weighing only those planes corresponding to the highest uncer-
tainty direction of a point. Thus, our method would be equal to trying to maximally reduce the worst
uncertainties in the estimation for each point. The rule for choosing weights can be formulated as follows:

wi,j =

{

1 j = 1

0 j 6= 1
(3.21)

One flaw of this idea is obvious: It would weigh all planes evenly. This is, of course, not optimal, because
it might be that some of the points we are looking at are already localized very well, while others are
localized very bad.

This observation leads to the following, slightly modified rule:

wi,j =

{

λi,j j = 1

0 j 6= 1
(3.22)

Instead of choosing the weight 1 for each of the planes corresponding to the highest uncertainty, we choose
as weight the eigenvalue corresponding to that plane. This is justified by the fact that the eigenvalue can
be interpreted directly as measure of uncertainty in the direction of the associated eigenvector.

The last rule for choosing weights is already a clear improvement, but we can still see one problem: What
if the eigenvalues associated with a point are very close together, or even equal? We might, e.g., think of a
case where the uncertainty ellipsoid looks similar to a disc, which would happen when two eigenvalues are
of equal size and very big compared to the last eigenvalue. Another interesting case is when the ellipsoid
is sphere-shaped, meaning that all eigenvalues are equal. The solution to these problems is simple: We
use the rule

wi,j = λi,j . (3.23)

To see why this rule helps with the problems outlined above, let us think about an example: Let λi,1 =
λi,2 = 1, λi,3 = 0. In that case, optimal camera positions are characterized by being contained in the
planes corresponding to ni,1 and ni,2. The best camera positions are on the intersection of those planes,
and thus on a line, which makes sense intuitively: By taking a measurement of the point from some
place on the line, we can achieve maximum reduction of the two worst uncertainties. In the case where
λi,1 = λi,2 = λi,3 = 1, the best camera position would be the intersection of the three planes, thus we
would consider the point itself as optimal position. In our evaluation function, this would mean that we
would simply try to position the camera as close to the point as possible, which is an acceptable strategy.

Note that the last rule for choosing weights means that the computation of the matrix A is specifically
simple, we have

A :=

(

n
∑

i=1

Pyiyi

)

. (3.24)

3.1.2.6 Results

We have tested our approach in a simulated environment, where in each step, an optimal camera position
is computed, and the camera position is set accordingly for the reconstruction step. We have compared
the approach to a randomized viewpoint selection, and found that the results are significantly better.

Especially in the first steps of the reconstruction process, the advantage of using our view planning
approach is striking. Figure 3.12 shows a diagram of our results. As a measure of overall estimation
uncertainty, we have used the trace of the point covariances. This corresponds to the sum of eigenvalues,
and thus seems to be a good measure. To make sure that the results from randomized view planning are
not biased, we have built the average of the results of 10 reconstruction runs.

Also, a comparison of the different weight choosing schemes has been performed. It turns out that the
final method really is the one that works best, as can be seen in the diagrams of Figure 3.13.
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Figure 3.12: Traces of the covariance matrices produced with our view planning method, and with a
randomized view point choice. The left diagram only show the first 15 steps, where the gain from using
our method is most significant. The right diagram shows the covariance trace for steps 180 to 200, where
the difference is smaller, but our strategy still performs better. The data shown for the random viewpoint
selection has been obtained by averaging over 10 runs.

The evaluation has also been tried using other measures of uncertainty. In one case, this lead to an inter-
esting observation: When using the spectral norm, the randomized view point selection still performed
worse than our view planning method in the beginning. But surprisingly, after some time, the norm of
the covariance matrix achieved with the randomized planner becomes smaller than that achieved with
our view planning scheme.

The explanation for that phenomenon is simple: The spectral norm of a symmetric matrix is equal to its
biggest eigenvalue. Consequently, this means that the worst uncertainty after using randomized views
is better than after using view planning. Since the trace of a matrix can be interpreted as the sum
of eigenvalues of that matrix, we can deduce the following conclusion: While the highest uncertainty
produced with our algorithm might be worse, the average uncertainty is better, and also by an significant
amount.

3.2 Discussion

The advantage of our approach versus other methods is that it is computationally very simple, and the
view planning recommendation can be computed very efficiently. Most other approaches that rely on
more complicated optimality measures also have to use expensive exhaustive sampling techniques, which
leads to much higher complexity.

However, we have made some strongly simplifying assumptions. We totally ignore the uncertainty of the
sensor. We ignore visibility problems, and we are only focusing on computing camera positions, while not
considering the camera angle at all. To solve problems of visibility and self-occlusion, we hope to combine
our approach with some other methods of Next Best View planning that have already been developed
and can be used to assure that the object under consideration is explored completely.

We have constrained the sensor to a very simple surface, which is convenient mathematically, but also a
too strong limitation for some applications. It would be interesting to constrain the camera position to
mathematical bodies instead of surfaces. We might, e.g., allow the camera positions to be placed between
an inner and an outer sphere. We could consider “cutting” parts of spheres by specifying a plane, and
requiring that the camera is placed on a specific side of a plane. There are many possibilities to allow
more general side conditions.

The method developed herein is for now constrained to situations where the camera position can be
controlled directly, and the camera is able to “jump” to a recommended position between frames. It
remains to examine how well it performs in settings where only direction indications are given.
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Figure 3.13: The three weight choice strategies in comparison: The weighing using the eigenvalues clearly
performs best.

3.3 Object Ontology Representation - Long-Term Memory (Ex-
perience)

In collaboration with WP2, we implemented an initial version of the ontology (see also D4 chapter 3.2
for more details on the object representation).

Figure 3.14: Ontology Layer in GRASP.

The ontology stores the different representation of a mission relevant object as depicted in Fig. 3.14. The
basic representation of an object is its geometric representation as it is perceived by the sensor system.
We store a complete shape representation of all mission relevant objects in our ontology and we use this
information to improve the accuracy of the reconstructed objects in the environment. The registration is
done together with WP4 and our current implementation is part of the deliverable D6 chapter 6. Since
the sensor provides only noisy and partial information about the object, we use the shape representation
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in the ontology to complete the missing parts of the object and to remove the noise from the sensor
perception. This steps allows an identification of the reconstructed structure and a match to the set of
the known objects in the ontology.

Our goal is to grasp also unknown objects if their shape is similar to already known geometries. An
example can be here a cup of a different diameter, which was not previously handled. The ontology
includes a parametric description of the object in the database. This parametric description is a result
of a segmentation of the object into basic shape primitives. These primitives include also an additional
descriptor indicating the allowed deformation of the basic segment. In case of a cup, a cylindrical
descriptor with varying diameter can be a representation in the ontology. We currently work on a
matching algorithm that will allow us to fit the current observation into this deformable description. A
success in this step will allow us a simple classification of new object based on a segmentation into known
basic parametric shapes in the ontology.

The ontology saves also information about the grasping points that were defined in previous missions or
given as an apriori knowledge to the system. This information is currently not relevant for the surprise
detection but it will provide valuable hints for manipulation of the object.

An important information stored in the ontology are the actions that are known for a specific object.
In the current stage of the project, we store in this part the way how the object is removed from the
supporting surface and how it is placed back on such a surface. Additionally, we detect constrains on the
motion of the object while it is manipulated. It is not feasible and also not necessary to store all currently
known trajectories for an object. We decided to inverse the problem and store which parameters stay
fixed while an object is manipulated. We start with all the 6 DoF frozen at the beginning and allow
motions in parameters that were observed during the human manipulation. A new allowed motion in
currently frozen degree of freedom represents a surprise for the system. An example is a manipulation
of the cup always in an upright position (because it contains liquid) and suddenly the system observes a
free motion in all parameters which is new to it.
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Chapter 4

Mismatch-Based Surprise Detection

According to the Figure 3.5, the first stage of the surprise detection got implemented. We tested an
image-based approach to detect mismatches in the environment

The Maximum-Likelihood (ML) estimates for the mean and the covariance of the Gaussian distribution
are point estimates which give one model which describes the statistical properties of the sample data.
However, the estimates still deviate from their true values and there are other less probable parametriza-
tion for the Gaussian distribution. Unlike ML estimation, Bayesian inference takes into account all
possible models and puts priors over the parameters of the probability distribution of the sample data.
In [IB06], a Bayesian framework was presented for modeling and quantifying human surprise in a mathe-
matical way. Inspired by that, we propose in the following a scheme for Bayesian visual surprise detection
based on the probabilistic concept for view synthesis.

For surprise detection the set of samples consists of seven RGB-tripels from reference images captured
in the past and an additional color value from the current observation. The virtual camera and the real
camera capturing the current image have identical position and orientation. Hence, accurate localization
of the cognitive system’s camera is crucial for robust surprise detection. Similar to the processing of
color information in the human visual system ([EZ97]), we compute from each RGB reference image
a luminance signal and two color opponency signals (red-green and blue-yellow), respectively. Thus,
surprise detection does not have to be performed jointly in RGB-space but can be done independently
in three decoupled pathways. For the luminance of a pixel in the virtual image the following likelihood
function for a univariate Gaussian model results:

p(XI | µI, λI) =

7
∏

k=1

(

λI

2π

)
1

2

exp
{

−λI

2 (xI,k − µI)
2} . (4.1)

XI = [xI,1, . . . , xI,7] is a vector containing the luminance samples from the reference images. µI denotes
the true luminance value at the pixel in the virtual image which is also the mean of the Gaussian
distribution. For the choice of the prior distributions it is more convenient to use the precision λI, which
is defined by the reciprocal of the variance (λI ≡

1
σ2

I

). Assuming that the mean is given by its ML estimate

µI,ML =
∑7

k=1 xI,k, we put a prior over the precision which has the form of a gamma distribution

p(λI) =
1

Γ(a0)
ba0

0 λ
a0−1
I exp

{

−b0λI

}

. (4.2)

Here Γ(a0) =
∫∞

0 ta0−1 exp
{

−t
}

dt denotes the gamma function which serves as a normalization constant.
The shape of the distribution thus depends on the two hyperparameters a0 and b0.

With Bayes’ formula the posterior distribution of the precision given the sample data is calculated from
the likelihood function and the prior up to a scaling factor by

p(λI | XI) ∝ p(XI | µI,ML, λI) · p(λI) (4.3)

Note that the posterior is again a gamma distribution with the hyperparameters a = a0 + 7
2 and b =

b0 + 1
2

∑7
k=1 (xI,k − µI,ML)2 which depend on the sample data. The kind of prior whose posterior has
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the same functional form is called a conjugate prior. The advantage of conjugate priors is that their
posteriors can again be used as priors for further analysis.

Now we augment our set of luminance samples by the luminance value which the current observation of
the cognitive technical system provides (X′

I = [xI,1, . . . , xI,7, xI,ob]). The posterior distribution over λI is
then calculated by

p(λI | X
′
I) ∝ p(xI,ob | µI,ML, λI) · p(λI | XI) (4.4)

which results in a gamma distribution with the hyperparamters a′ = a+ 1
2 and b′ = b+ 1

2 (xI,ob − µI,ML)2.

In [IB05], the Kullback-Leibler divergence (KLD) as the difference between the posterior distribution over
the model parameters given a new observation and the prior distribution is proposed as a quantitative
measure for surprise

KLD (p(λI | X
′
I); p(λI | XI)) =

=

∫

λI

p(λI | X
′
I) log

(

p(λI | X
′
I)

p(λI | XI)

)

dλI. (4.5)

It can be shown that the KLD between two gamma distributions is a function of their hyperparameters

KLD (p(λI | X
′
I); p(λI | XI)) =

= a · log

(

b′

b

)

+ log

(

Γ(a)

Γ(a′)

)

+ b ·
a′

b′

+ (a′ − a) · ψ(a′) (4.6)

where ψ(a′) =
d

dx
Γ(x)|

x=a′

Γ(a′) is the digamma function. We evaluate (4.6) for each pixel in the virtual image

and as a result get a pixel-wise surprise trigger.

For fast and parallel calculation of pixel-wise surprise triggers, modern graphics hardware can be used.
Since common graphics APIs like Direct3D and OpenGL do not allow for the direct calculation of gamma
and digamma functions, (4.6) has to be modified. In our pixel shader implementation, we approximate
the gamma function using the Stirling series

Γ(z) ≈

√

2π

z
·
(z

e

)z

· exp

(

1

12z
−

1

360z3
+

1

1260z5

)

(4.7)

where e = 2.71828 . . . is the Euler’s number.

The digamma function is approximated by

ψ(z) ≈ −
1

z
− γ +

5
∑

n=1

(

1

n
−

1

z + n

)

(4.8)

where γ = 0.57721 . . . denotes the Euler’s constant. With the approximations in (4.7) and (4.8), we
obtained the surprise trigger in Fig. 4.1 which was calculated on the graphics hardware by a pixel shader
implemented in Direct3D. For better visualization the surprise trigger was amplified by a factor of 10.
For a static observation, we measured an average frame rate of 14 frames per second (at a resolution
of 320×240 pixels). Since the pose is not that accurate in case of automatic localization, the surprise
trigger is higher in regions where indeed no changes occurred compared to Fig. 4.1. However, there is
still a pronounced region around the missing glasses with high surprise trigger compared to the rest of
the surprise map.

4.1 Self-Localization in the Environment

The surprise detection in the Mismatch-Based Layer of the GRASP project requires a highly accurate
registration of the current perception to the coordinate frame from the knowledge base of the system. We
developed a localization system in collaboration with CoTeSys project (German DFG funded) for highly
accurate real-time localization.
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Figure 4.1: (a) Surprise trigger obtained from the pixel-wise calculation of the KLD between prior and
posterior distribution over the precision of the color samples. (b) Approximated surprise trigger computed
on the graphics hardware.

Our localization method provides acceptable results with respect to position and orientation as long as
the tracker finds enough matches between the images. However, it fails as soon as there are too few
tracked landmarks for pose estimation. This may happen if the torsional moment of the camera is too
high, so that all references leave its field of view or just the tracker’s search range. After a simple
reboot, the relation to the prior run can also be lost. Even if all detected features were saved on a hard
drive, the cameras could not be registered within the prior world coordinate frame, as soon as the robot
moves outside the known trajectory. We need to register the new sequence with respect to the reference
coordinate system in order to establish a relationship to the previously acquired data. Since we do not
use external markers as reference, which could be used to determine the origin of the reference frame,
we need to initially specify an arbitrary origin. All the information which is necessary t o refer to this
origin, whenever required, has to be stored – a so called “snapshot” has to be taken. In this chapter, we
present two different approaches to solve this problem.

4.1.1 Homing based on three images

In our first homing approach (further on Homing1) we use RVGPS for extrinsic parameter estimation.
RVGPS is now used to estimate the rotation and translation between the current and the reference frame.
We only need I1.1 and its initialized points of interest (POIs), provided by SURF. This 3D structure forms
the so called snapshot of the origin. SURF and KLT use different detectors, hence the stereo-registration
method used by the visual localization scheme cannot be used between I1.1 and I2.1. Instead the POIs
are initialized by a so called structure from motion approach: The distance of the camera between I1.1

and I1.2, which is estimated by our visual localization routine, is used as baseline for stereo triangulation.
Once the SURF-features are initialized, we only need at least 3 SURF correspondences between I1.1 and
I2.1 to apply RVGPS in order to estimate the six degrees of freedom (DOFs). Of course, the robustness
and accuracy rapidly increases if more matching features are available. Thus, big parts of the same scene
should be seen by these three images to ensure that enough matches are found. Otherwise one can also
use more than one image in S1 to initialize more POIs in I1.1. The more points are available, the higher
is the probability that correspondences in I2.1 are found and the higher is also the accuracy of the motion
estimation. Fig. 4.1.2 illustrates the principle of the Homing1 algorithm, which needs only 3 images.
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4.1.2 Homing based on four images

The Homing1 variant has shown that its results strongly depend on the accuracy of the POIs’ structure.
Our second approach has been developed with the aim of avoiding that inconvenience by not using
RVGPS for localizing I2.1 with respect to I1.1. Instead we are looking for an optimal matching of two 3D
structures in the different coordinate frames of S1 and S2 in order to estimate the six DOFs. To calculate
two corresponding structures for our second homing algorithm (Homing2) we need for each sequence
S1 and S2 two images, their extrinsic parameters and the SURF correspondences in all 4 images. The
extrinsic parameters for structure initialization in I1.1 resp. I2.1 are estimated in the same way as in the
Homing1 method - by the visual localization routine and subsequent stereo triangulation. Using Arun’s
algorithm ([AHB87]) we can calculate the transformation matrix between the two frames of S1 and S2.
The result of this method is obviously more robust, because we do not estimate the transformation matrix
and the structure of the point set at the same time, like in Homing1. On the other hand we need to find
SURF matches in 4 images, which is more problematic than with 3 images due to the smaller common
feature intersection. Fig. 4.1.2 depicts the principle of the Homing2 algorithm based on 4 images.

Figure 4.2: Fig. 4.1.2: The transformation between sequence 1 and 2 is estimated using the RVGPS
algorithm. Thus, only one image of run 2 is necessary. Fig. 4.1.2: The point structure in run 2 is
initialized independently of the reference sequence (run 1), so that a higher accuracy is provided at the
cost of the robustness (usually fewer common features are found).

Which algorithm to use therefore strongly depends on the application and the scene. Since the errors do
not vary much, the more robust but less accurate Homing1 algorithm is preferable in most cases.

4.2 Synthesis of the Expectation (Mismatch-Based Surprise)

In this section, we show some test results of our visual navigation algorithm and the visual output
obtained from our image-based modeling technique applied to a household scene. We further tested our
methods for visual homing and surprise detection. Fig. 3.6 shows the acquisition of an image sequence S1
with a stereo camera head (640x480 pixels) mounted on a Pioneer 3-DX robot. The robot went along an
approximately circular trajectory around a table set with household objects like glasses, plates etc. The
stereo camera was looking towards the objects and captured 213 pairs of images. The visual localization
of image sequence S1 in a world coordinate frame is illustrated in Fig. 4.3.

In order to test our algorithm for surprise detection we captured another image sequence S2 on a trajectory
which was close to the first one but not identical. We changed the scene before by removing the two
glasses. The task of the cognitive system is to detect these changes. This is usually quite challenging for
an artificial cognitive system due to the difficulties involved with building up an internal representation
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Figure 4.3: 3D plot of localization results.

of the glasses. One image from S2, which is the current observation of the cognitive system, was localized
with respect to the world coordinate system of S1.

Figure 4.4: (left) Observation of the cognitive system. (right) Virtual image rendered from a set of
reference images from S1 at the current position of the observing camera.

The observation is depicted in Fig. 4.4left ) together with a photo-realistic virtual image rendered from
reference images which were selected only from S1 (Fig. 4.4right ). The virtual image was rendered with
our method described in Section IV. Note that there is no real camera image from S1 which was acquired
exactly at the position of the observation. Applying our algorithm from Section V on the luminance
signals of the two images, we obtained the surprise trigger shown in Fig. 4.5. The surprise trigger was
calculated in MATLAB using (7). The figure clearly shows a region of high KLD values around the
missing glasses.

Figure 4.5: Surprise trigger obtained from the pixel-wise calculation of the KLD between prior and
posterior distribution over the precision of the color samples
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Chapter 5

Conclusions and Future Work

The initial representation developed in the current workpackage is the first testbed how to represent
the knowledge in the GRASP project and how to define action representations that are necessary for a
successful surprise detection. We focused on the implementation of the parts of the ontology that are
necessary for a successful surprise detection and on implementation of low-level algorithms that provided
the required information about the position of the system in the world this information is essential for a
successful prediction of expectation. In our definition actions are part of the object description and we
observe the changes induced by the human or other agents in the world. We try to predict them in our
to be developed surprise detection framework and important part of the task is the estimation of the ego
position in the world and the segmentation of mission relevant objects. We provided an initial framework
to solve this tasks that allows us to detect changes in the environment and to segment out structures
that need to be manipulated.

Our next goal is to focus more on the representation of actions in the local environment and to include
them in the predictions of the system. We started already the work on registration of generic shape
descriptions that will allow a classification of objects to a global category, e.g., a cup. This will allow to
provide a-priori suggestion about the manipulation capabilities of an object which may still be unknown
to the system but where the ontology will help to generate suggestions how to handle it based on the
similarities to know objects in the object ontology. A fusion of information about human gestures from
WP1 will further enhance the knowledge acquisition in our framework.
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