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Chapter 1

Executive Summary

This Deliverable deals with system and integration aspects within the GRASP project. This includes the
coordination and alignment of representations necessary for the integration of functional and software
components as well as the definition of an infrastructure that allows for efficient exchange of software
modules of different partners in order to minimize the overhead in the overall system development. One of
the goals of the project is the implementation, demonstration and evaluation of the application scenario
on different platforms available in the project. Therefore, efforts in the first year were devoted to the
definition of clear interfaces between perception, action, learning and reasoning components at all system
levels for the humanoid platform at UniKarl. In this context, the integration of the aimed-at GRASP
simulator and the transferability of representations of objects, actions, and human grasping developed
within the project received special attention.

Integration in an Integrated Project like GRASP is a very challenging task, which requires a careful
consideration of the interactions between different system components. In the first year, the work was
concentrated on the one hand on providing interfaces for perception, action, reasoning and planning by
extending the currently implemented software control architecture and the robot application programming
interface (API) of the humanoid robot ARMAR-III. On the other hand, additional components have
been developed to meet the requirements of the project and in particular the integration of the GRASP
simulator in a holistic cognitive control architecture.

According to the Technical Annex, Deliverable D8 presents the activities performed in the first year of
the project in the context of the tasks 7.2, 7.3, 7.4 and 7.6. The objectives of these tasks are:

Task 7.1 Development and implementation of a cognitive control architecture for grasping and dexterous
manipulation necessary to bootstrap the system integration and the evaluation of methods and
algorithms in different scenarios on different robot platforms as it is the long-term goals of this
work package, in particular of task 7.5.

Task 7.2 Software infrastructure that allows for smooth and efficient exchange of modules in the project
in order to minimize the overhead in the overall system integration.

Task 7.3 Specification of interfaces for knowledge and control flows between perception, action, learning
and reasoning modules.

Task 7.4 Definition of the first year scenario, which is necessary for evaluating the developed algorithms
in the fist year of the project.

Task 7.6 Benchmarking environment for grasping and dexterous manipulation including software robot
control frameworks, data sets of objects, robot and human hand models as well as grasp related
algorithms.

In addition, initial work has been also performed in close cooperation with all partners, in particular within
WP2 and WP7 on task 7.1, which deals with the identification of key components of the architecture and
the conceptual design as well as the implementation of this architecture.

The document is organized as follows. In Chapter 2, we briefly present the manipulation and grasping
system on the humanoid robot ARMAR-III at UniKarl, underlying software framework and the robot
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interface, which offers an API for convenient access to the robot’s sensors and actors and provides three
abstraction levels: skills, tasks, scenarios for integration of higher level components. We further describe
the currently implemented grasping system, which incorporates a vision system for the localization and
recognition of objects, a path planner for the generation of collision-free trajectories, and an offline grasp
analyzer that provides the most feasible grasp configurations for each object using the grasping simulation
environment GraspIt!.

In Chapter 3, the software interfaces established in the first year are described. These are interfaces
to existing, widely used and publicly available simulation environments and software frameworks in the
robotics community and in particular in the context of grasping as well as interfaces for perception (vision
and haptics) and action. In addition, an initial specification of the interfaces to the GRASP simulator is
given.

Chapter 4 deals with the scene and object models. For the scene representation, a scene graph is used
to store the information about objects and environment. In particular, we describe the initial object set,
the different object representations, the used object database as well the acquisition of 3D object models.

Chapter 5 describes the current state of the development of the Robot Editor, a standardized tool which
allows the creation of geometric, kinematic and dynamic robot models as well as their convenient conver-
sion from a variety of CAD formats. This is necessary to allow the integration of different robot platforms
used in the project in the GRASP simulator.

Chapter 6 provides a summary on further integration activities in the project, which are related to
software infrastructure and databases established and already used in the project. Chapter 6 concludes
the Deliverable with a view on future work.
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Chapter 2

Grasping on the Humanoid Robot
ARMAR-III

2.1 The Humanoid Robots ARMAR-IIIa and ARMAR-IIIb

The humanoid robots ARMAR-IIIa and ARMAR-IIIb (see Fig. 2.1) which are used as platforms in
GRASP have been developed within the Collaborative Research Center (SFB 588)1 under a comprehensive
view so that a wide range of tasks can be performed. From the kinematics control point of view, each of the
robots consists of seven subsystems: head, left arm, right arm, left hand, right hand, torso, and a mobile
platform. In the following, the subsystems of the robot are briefly described. For detailed information
the reader is referred to [AAV+08] and [ARA+06]. For a detailed description of the mechanics, the reader
is referred to [ABB04].

The head has seven DoF and is equipped with two eyes. The eyes have a common tilt and can pan
independently. Each eye is equipped with two color cameras, one with a wide-angle lens for peripheral
vision and one with a narrow-angle lens for foveal vision. This combination allows simple visuo-motor
behaviors such as tracking and saccadic motions toward salient regions, as well as more complex visual
tasks such as hand-eye coordination. The visual system is mounted on a four DoF neck (lower pitch, roll,
yaw, upper pitch). For the acoustic localization, the head is equipped with a microphone array consisting
of six microphones (two in the ears, two in the front and two in back of the head). Furthermore, an
inertial sensor is installed in the head for stabilization control of the camera images.

The upper body of the robot provides 33 DoF: 14 DoF for the arms, 16 DoF for the hands and three
DoF for the torso. The arms are designed in an anthropomorphic way: three DoF in the shoulder,
two DoF in the elbow and two DoF in the wrist. Each arm is equipped with a five-fingered hand with
eight DoF (see [SPK+04, KAP+05, GSK+08]). The goal of performing manipulation tasks in human-
centered environments generates a number of requirements for the sensor system, especially for that of
the manipulation system. Each joint of the arms is equipped with motor encoder, axis sensor and joint
torque sensor to allow position, velocity and torque control. In the wrists 6D force/torque sensors are
used for hybrid position and force control. Four planar skin pads (see [GWBW06]) are mounted on
the front and back side of each shoulder, thus also serving as a protective cover for the shoulder joints.
Similarly, cylindrical skin pads are mounted to the upper and lower arms respectively.

The locomotion of the robot is realized using a wheel-based holonomic platform, where the wheels are
equipped with passive rolls at the circumference (Mecanum wheels or Omniwheels). The sensor system of
the platform consists of a combination of three Laser-range-finders (Laser-scanner) and optical encoders
to localize the platform. The platform hosts the power supply of the robot and the main part of the
robot computer system.

1http://www.sfb588.uni-karslruhe.de
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Figure 2.1: The humanoid robots ARMAR-IIIa (blue) and ARMAR-IIIb (red) in the kitchen. Each
robot has an active head with foveated vision, two arms, two five-fingered hands and a holonomic mobile
platform.

2.2 The Software Framework MCA (Modular Controller Archi-
tecture)

The basic control software is implemented in the Modular Controller Architecture framework MCA2.
MCA is an open source modular, network transparent and real-time capable C/C++ framework for
controlling robots and other kinds of hardware. In MCA, all methods are implemented by C++ modules
with standardized interfaces and thus allow an easy integration of software components. The control
parts can be extended under Linux, RTAI/LXRT-Linux, Windows, or Mac OS, and communicate beyond
operating system borders. A graphical debugging tool (mcabrowser), which can be connected via TCP/IP
to the MCA processes, can visualize the connection structure of the control modules and their current
values at run-time. The tool mcagui can create graphical user interfaces at runtime with various input
and output entities. Both interfaces provide full access to the control parameters at runtime.

2.3 Robot Interface: Robot Programming Interface (API)

Although MCA offers a very clean and transparent mechanism for developing and integrating relatively
low-level software components related to control, kinematics, and dynamics, it is not suitable for the
convenient implementation of higher-level modules. Thus, we have built a so-called ”Robot Interface” on
top of MCA, building an abstraction level for the access to the robot’s sensors and actuators. By using
the robot interface, the user is not aware in which way the information is communicated to and from the
relevant component of the robot. Scenarios can be implemented by different partners by simply inheriting
and implementing the scenario interface. In this way, the incoming messages, which result from sensory
data processing are passed by calling the corresponding callback method of the interface. On the action
side, from within a scenario, commands can be passed to the robot by simple method calls, such as:

• MoveHead: This method has different modes including forward kinematics, inverse kinematics with
absolute positions, and two different tracking modes.

• MoveArm: This method has different modes including forward kinematics and different types of
inverse kinematics.

• MovePlatform: This method has different modes including velocity-based control, point to point
navigation, and navigation on graphs.

On the perception side, a scenario has access to the following:
2http://www.mca2.org
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• All current joint angle values for the head and the arms.

• Current position of the robot platform.

• Other sensor values, such as sensors integrated in the hands.

• Higher-level perceptive modules such as vision components accomplishing a specific task for the
visual analysis of the environment. In general, two classes can be distinguished: Modules recognizing
and localizing known entities and modules exploring unknown scenes.

From the integrative point of view, it is important that all modules share the same interface in order to
guarantee that vision components from the partners can be built in and replaced with minimum effort.
Especially, the step from analyzing scenes containing known entities, which have been learned, to the
autonomous exploration of unknown scenes can be prepared very elegantly. Our perception modules
produce output as 3D rotations and translation in terms of 3D object models or 3D primitives (given
in the Open Inventor format), such as planes, spheres, or cylinders. These are at the same time used
as input of the robot’s grasp planning and execution system. By sharing the same data structures and
output formats, we will be able to replace our currently used object recognition and localization systems
by a vision system being developed in the project.

To allow effective and efficient programming of the robot, in addition to direct access to the robots sensors
and actors, three abstraction levels are defined: scenarios, tasks and skills (see Fig.2.2). While skills are
implemented capabilities of the robot that can be regarded as atomic, tasks have been been implemented
so far manually by combination of several skills for a specific purpose. Scenarios are combinations of
several tasks and skills which are necessary to perform a specified goal. Currently, on ARMAR-III the
following skills are available:

• SearchForObjectSkill: Searching for known objects using the active head. This skill scans the
space in front of the robot by moving the head and performing a full scene analysis at each target
position. The skill can be parameterized to either search for a specific object or include all object
representations currently available in the database.

• VisualGraspSkill: Grasping of objects. This skill makes use of a visual servoing approach includ-
ing one arm and the hip to grasp an object that has been previously recognized and localized. It
controls the position closed-loop while continuously updating the position of the robots hand and
the target object. The hand is tracked by using a marker.

• PlaceSkill: Placing objects on even surfaces. With this skill, it is possible to place a previously
grasped object on an even surface, such as a table. Force information acquired from a 6D force

Scenario 1 Scenario k…

Task 1 Task 2 Task m…

Skill 1  Skill 2  Skill n…

b d

Robot Interface

Robot Hardware

Figure 2.2: Software control architecture. In addition to the robot interface (API), three abstraction
levels are defined: skills, tasks and scenarios. Skills are implemented as atomic capabilities of the robots.
Tasks are combinations of skills and scenarios are combinations of skills and tasks to achieve a specified
goal.
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sensor in the wrist is evaluated to determine the contact forces with the surface while placing the
object.

• HandOverSkill: Handing over objects to or from the robot. With this skill, objects can be either
handed over to the robot or received from the robot. In both cases, information acquired from a
6D force sensor is evaluated to determine when to close (open) the hand.

• OpenDoorSkill: Opening various doors. This skill can be regarded as a more complex respectively
higher-level skill compared to the previously introduced ones, since it makes use of other skills. It
first uses a module that can recognize and localize handles of doors, which are then grasped making
use of the VisualGraspSkill. Once the handle has been grasped, this skill opens the door using a
force-control approach.

• CloseDoorSkill: Closing various doors. Using this skill, open doors can be closed, given an initial
target position for touching the door of interest. Again, a force-control approach is used to perform
the action.

All skills have in common a continuously called run method, in which they perform their action and
sensing. The return value of this method signalizes its state, i.e. whether the skill is still operating,
finished with success, or finished with failure. After success or failure, a skill switches to the state
waiting. Each skill can be parameterized and has its own specific configuration data structure for this
purpose. In the same way, the result of a skill is communicated.

2.4 Grasping and Manipulation System

The central idea of our approach for the programming and execution of manipulation tasks is the existence
of a database with 3D models of all the objects encountered in the robot workspace and a 3D model of the
robot hand. This allows for an extensive offline analysis of the different possibilities to grasp an object,
instead of focusing on tuned online approaches. From this central fact, we have developed an integrated
grasp planning system, which incorporates a vision system for the localization and recognition of objects
(see [AAD06, AAD07a]), a path planner for the generation of collision-free trajectories (see [VAD07,
VSA+08]), and an offline grasp analyzer that provides the most feasible grasp configurations for each
object using the grasping simulation environment GraspIt! [MA04]. The results provided by these modules
are stored and used by the control system of the robot for the execution of a grasp of a particular object.
The functional description of the grasp planning system is depicted in Fig. 2.3. We emphasize that our
approach describes a first step toward a complete humanoid grasping and dexterous manipulation system.
The integrated grasp planning system, which has been presented in [MAA+06], will be explained briefly
in the following.

The system consists of the following parts:

• The global model database. It contains not only the CAD models of all the objects, but also stores
a set of feasible grasps for each object. Moreover, this database builds the interface between the
different modules of the system.

• The offline grasp analyzer that uses a model of the object to be grasped together with a model of
the hand to compute a set of stable grasps in a simulation environment. The results of this analysis
are stored in the grasp database and can be used by the other modules.

• A online visual procedure to identify objects in stereo images by matching the features of a pair
of images with the 3D pre-built models of such objects. After recognizing the target object it
determines its location and pose.

• Once an object has been localized in the workspace of the robot, a grasp type for this object is then
selected from the set of pre-computed stable grasps. This is instantiated to a particular arm/hand
configuration that takes into account the particular pose and reachability conditions of the object.
This results in an approaching position and orientation. The path planner generates collision-free
trajectories to reach the specified grasp position and orientation.

10
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Offline analysis ExecutionGlobal model database
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Grasp set 
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Figure 2.3: Functional description of the integrated grasp planning system.

Offline grasp analysis: In most of the works devoted to grasp synthesis, grasps are described as sets
of contact points on the object surface where forces/torques are exerted. However, this representation
of grasps suffers from several disadvantages when considering the grasp execution in human-centered
environments. These problems arise from the inaccuracy and uncertainty about the information of the
object. Since we are using models of the objects, this uncertainty comes mainly from the localization of
the object. Usually, the contact-based grasp description requires the system to be able to reach precisely
the contact points and exert precise forces. In our approach, grasps are described in a qualitative and
knowledge-based fashion. Given an object, a grasp of that object will be described by the following
features (see Fig. 2.4):

• Grasp type: A qualitative description of the grasp to be performed. The grasp type has practical
consequences since it determines the grasp execution control, i.e. the hand preshape posture, the
control strategy of the hand, the fingers that are used in the grasp, the way the hand approaches
the objects and how the contact information of the tactile sensors is interpreted.

• Grasp starting point (GSP): For approaching the object, the hand is positioned at a distant point
near it.

• Approaching direction: Once the hand is positioned in the GSP it approaches the object following
this direction. The approaching line is defined by the GSP and the approaching direction.

• Hand orientation: the hand can rotate around the approaching direction. The rotation angle is a
relevant parameter to define the grasp configuration.

It is important to note that all directions are given with respect to an object centered coordinate system.
The approach directions result from matching of this relative description with the localized object pose
in the workspace of the robot. An important aspect when considering an anthropomorphic hand is how
to relate the hand with respect to the grasp starting point (GSP) and the approaching direction. For this
purpose we define the grasp center point (GCP) of the hand. It is a virtual point that has to be defined
for every hand and that is used as reference for the execution of a given grasp (see Fig. 2.4). The GCP
is aligned with the GSP of the grasp. Then, the hand is oriented and pre-shaped according to the grasp
descriptors and finally moves along the approaching line.

The main advantage of this grasp representation lies in its practical application since the grasp can be
executed based on the information given by the grasp definition. In addition, this representation is more
robust to inaccuracies since it only describes starting conditions and not final conditions like a description
based on contact points.

We perform an extensive offline grasp analysis for each object by testing a wide variety of hand pre-
shapes and approach directions. The analysis is carried out in a simulation environment, where every
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Figure 2.4: Schematics with the grasp descriptors

tested grasp is evaluated according to a quality criterion. The resulting best grasps for each object are
stored in order to be used during online execution on the robot. As grasping simulation environment we
use GraspIt! [MA04], which has convenient properties for our purposes such as the inclusion of contact
models and collision detection algorithms, as well as the ability to import, use and define object and
robot models. Due to the mechanical limitations of the robot hand, we have made a selection of the
most representative grasps that can be executed by the robot hand. Fig. 2.5 shows the grasp patterns
we have considered in our analysis. These are three power grasps (hook, cylindrical and spherical) and
two precision grasps (pinch and tripod).

Figure 2.5: Hand preshapes for the five representative grasp types.

On the humanoid robot ARMAR III, implementations of the approaches mentioned above are successfully
applied for manipulation and grasping tasks in a kitchen environment using visual servoing, as shown in
[AAV+08, VWA+08].

12



Chapter 3

Software Interfaces

In this chapter, we describe extensions of the software interfaces on ARMAR-III to meet the requirements
for the integration software components developed in other work packages. This includes interfaces to
existing grasp simulators and robot control frameworks, interfaces to the aimed-at GRASP simulator as
well as interfaces for perception and action components.

3.1 Software Interfaces to Existing Simulators and Frameworks

3.1.1 Software Interfaces between ARMAR-III and GraspIt!

Similar to the grasp planning system introduced in Section 2.4, other project partners have developed
systems that also incorporate the simulator GraspIt!. Therefore, providing an interface between GraspIt!
and the ARMAR-III API, which we call robot interface (see Section 2.3), is essential for the integration
of these systems. For a case study, the box decomposition grasping system presented in [HRK08, HK08]
has been integrated on the humanoid robot ARMAR-III. For this purpose, a communication framework
has been created, which provides GraspIt! with essential information for grasp planning and sends the
resulting grasp hypotheses to ARMAR-III.

ARMAR‐III
GraspIt! 
simulatorVision

Camera 
images

Object ID 
&  pose

Object shape 
primitives

simulatorVision g p

BoxGrasping
F k

ARMAR‐API
& 

GraspRanked graspSelected Grasp

FrameworkMCA

Execution
Grasp

hypotheses
Ranked grasp
hypotheses

Selected  Grasp 
hypothesis

Figure 3.1: Connecting ARMAR-III and GraspIt!. Communication was established using the TCP
protocol to exchange the object ID and poses as well as the resulting grasp hypotheses.

The focus of this section is on communication interface; details of the box decomposition grasping method
are described in Section 6.4. The framework consists of the following components:

• GraspIt!: A robotic grasp planning simulation environment (see Section 2.4).

• BoxGrasping system: implementation of the box decomposition grasping method presented in
[HRK08, HK08]. The system computes a course geometric approximation of an object model using
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minimum volume bounding boxes. The resulting simplified box-based representation is then sent
to GraspIt! for grasp planning.

• ARMAR-III: ARMAR-III is the humanoid robot that is used as platform for experimental eval-
uation of the developed concepts and systems.

• Robot Interface: The robot programming API for ARMAR-III (see Section 2.3). It provides a
high-level application interface which allows for easy access to the robot’s sensors and actuators.

• Box Grasping scenario: A scenario is the highest abstraction level of the robot interface. The
box grasping scenario implements the communication on the robot side with the box grasping
framework and executes the grasps on the robot.

As depicted in Fig. 3.1, the interface connects the humanoid robot ARMAR-III to GraspIt! via TCP/IP
communication. To enable grasp planning on objects in the robot’s environment, information acquired
by the robot’s perception system about object size, shape, and pose has to be sent to GraspIt!. For this
purpose, the box grasping scenario has been implemented, which has access to the sensory information
of the robot and sends the relevant information for grasp planning to GraspIt!. Based on the object
information, GraspIt! performs a grasp planning procedure, which results in a number of grasp hypotheses
including approach directions. To perform a grasp, these hypotheses are sent back to the box grasping
scenario, which evaluates and ranks the hypotheses according to their quality and feasibility. The best
candidate is then executed. An experimental evaluation involving grasp planning and grasp execution
with different kinds of objects has proved the operability of this integrating framework.

3.1.2 Software Interfaces between ARMAR-III and OpenRAVE

Since OpenRave was accepted by the project partners as the basis of the new robot simulator being
developed in WP6, communication between the humanoid robot ARMAR-III and the robot simulation
software OpenRAVE [DK08]1 was established. The communication setup was quite similar to the interface
that is described in Section 3.1.1. OpenRave already offers an input/output interface that is mainly
intended to communicate with MATLAB. This interface allows a user to define and execute actions in a
simulator. However, the original interface is not well suited for communication between the actual robot
and the simulator. As OpenRAVE is extendible via plugins, an actuator plugin representing the robot
was created. All joint movement commands passed to the plugin during simulation are packaged and
transmitted to a handler listening in the robot’s control loop. The handler on his part reports the actual
position of its joints and end effectors back to the simulation. The protocol used in this communication
again consists of the plain transmission of command objects over a TCP/IP connection (see Fig. 3.3).
This exemplary setup can be seen as a proof of concept using OpenRAVE as a simulator in conjunction
with a real robot platform.

Recently, the developers of OpenRAVE have established compatibility to the Robot Operating System
(ROS)2 and consequently suggest to use its functionality as a standard communication protocol for
distributed robot applications. As a matter of fact, this system seems to meet all desired capabilities on
top of being freely available under an open source license. The features are:

• Multiple language support: Currently, C++, Python, Lisp and MATLAB are supported. Most
robot controllers are implemented in C++ while MATLAB and Python can be used to directly
address commands to the robot and simulator. Moreover, support of the Python language can be
useful for building up a visualization client with the same tools as the Robot Editor. The Robot
Editor will be discussed in the Sections 5.1 and 5.2.

• Distributed Communication: Clients communicate directly with each other over a network. A
master node is only needed to build up communication.

1OpenRAVE was founded by Rosen Diankov at the Planning And Autonomy Lab of the Carnegie Mellon University
Robotics Institute. It was inspired by the RAVE simulator James Kuffner had started developing in 1995 and used for his
experiments ever since. The OpenRAVE project was started in 2006 and is a complete rewrite of RAVE. The main goal
with OpenRAVE is to create a planning architecture that would give robotics researchers an easy open source interface to
control their robots both in simulation and in the real-world without having to worry about the small details.

2http://pr.willowgarage.com/wiki/ros
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Figure 3.2: The OpenRAVE architecture is divided into several layers: the scripting layer, the GUI
layer, the core OpenRAVE layer, and the plugin layer that can be used to interact with other robot
architectures.
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Figure 3.3: Connecting ARMAR-III to OpenRAVE. Communication was established using a TCP based
bidirectional protocol for exchanging control commands and perceived joint and end-effector positions.

15



GRASP 215821 PU

At the time of writing, this architecture is discussed of been chosen as the standard protocol for simulator
interfaces.

3.2 Software Interfaces for the GRASP Simulator

The idea of using the simulator, which is being developed in WP6, as a tool to predict the consequences
of an action and to evaluate the performance after their execution requires a thorough and comprehensive
specification of the simulator’s interfaces. Fig.3.4 shows the simulator’s interfaces at different levels of
abstraction. On the Inter-Process Communication (IPC) level there are three interfaces, which must be
defined:

• Update the current scene state (input): Changes in the real world recognized by the platforms
perception have to be transmitted to the simulator. Then the internal world state representation in
the simulator will be synchronized with the perceived real world state which increases the accuracy
of the predicted simulation outcome.

• Actions execution (input) Whenever an action is applied to the real world, the simulator can
be used to predict its outcome. Hence, the simulator needs to supply its clients with an interface
that allows the definition and execution of actions.

• Prediction of action outcomes (output). After each simulation cycle the clients will expect a
change of state in the simulated world model for further analysis and processing. This interface is
very similar to the input of the scene state.

A common standard for these interfaces has yet to be defined during the process of development of
the simulator. A candidate for the common communication is currently a subject of discussion (see
Section 3.1.2). With the definition of a common IPC it is possible to remove the visualization from
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Figure 3.4: The simulator in the center of the architecture: Interfaces at different levels of abstraction
are shown in a schematic way. The scene state provieded by the perception component and the actions
required to perform a task required as input to the simulator. The expected outcome on an action is
output of the simulator.
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the simulator and incorporate it in a client on its own. This aspect is discussed in greater detail in
Section 5.2.3.

In addition to the three presented runtime interfaces, a fourth interface used for both input and output
is necessary as the state of the world and the robot models should be separated from their geometric and
functional (semantic) descriptions. A consensus regarding the definition of this interface based on the
standardized file format COLLADA (see Section 5.3) has been achieved through intensive discussion and
in collaboration between UniKarl and UJI.

3.3 Interfaces for Vision on ARMAR

To achieve successful integration of vision modules on the humanoid robot ARMAR-III, an interface is
needed that does not only grant access to the vision system of the humanoid, but also includes image
processing capabilities in order to simplify and standardize the development of new vision software com-
ponents. Based on the Integrating Vision Toolkit (IVT)3, UniKarl defined such an interface, which is
provided to all project partners.

The IVT is a computer vision library that was developed at UniKarl, allowing to start the development
of vision components within minimum time. We have experienced that even though in theory many
problems in computer vision have been solved for many years, in practice there is no library implementing
the corresponding algorithms in a complete toolkit. Thus, usually each partner starts to develop their
own library, offering the functionality they need. In addition to the enormous additional implementation
effort, this approach would lead to crucial problems when wanting to put the modules from the partners
together into an integrated system. Among the problems solved and functions implemented by the IVT
are:

• Integration of various cameras and other image sources via a clean interface.

• Providing a generic and convenient application for calibrating single cameras and stereo camera
systems.

• Undistortion and rectification.

• Various filters and segmentation methods.

• Efficient mathematical routines, especially for 3-D computations

• Stereo reconstruction.

• Particle filtering framework.

• Platform-independent multithreading

• Convenient visualization of images and the integration of a library for the development of Graphical
User Interfaces for which Qt was chosen.

• Full support for the operating systems Windows, Linux, and Mac OS X.

Using IVT for the implementation of vision components allows us to develop vision components that
are platform- and camera-independent. This is crucial for a successful integration on the demonstration
platform.

3.4 Interfaces for Haptics on ARMAR

The latest revision of the anthropomorphic five-fingered hand of ARMAR-III has been extended with a
multimodal haptic sensor system and an increased number of individually controlled joints. In detail,
this comprises:

• Position sensors at all active and passive joints.
3http://ivt.sourceforge.net
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• Eight actively actuated DoF, partially conducted as coupled joint actuators.

• Pressure sensors for all DoF of the hand.

• Leakage estimation for each DoF as part of in-system diagnostics.

• Model-based force estimation for each DoF from pressure and position sensor measurements.

• Interface to I2C-based tactile sensor modules.

The software interface is implemented as part of the MCA (see Section 2.2). Due to the availability of new
sensors, the interface supports hybrid force-position control for the eight DoF of the hand. Furthermore,
the current configuration of the hand and the actuator force measurement values are available from the
sensor readings. Contact force readings are also available in the MCA interface coming from I2C tactile
sensor modules, which are installed on the hand. A kinematic model of the hand is integrated in the
MCA module, which provides the complete forward kinematics of the hand. Therefore, it is possible to
query the location of parts of the hand or distance between parts, e.g. phalanges. Besides direct joint
angle trajectory control the hand may be controlled via Virtual Model Control (VMC) [BRAD08] using
a physical model, which allows direct setting of target locations for the fingertips.

3.5 Interfaces for Actions

Due to the variety of action representations, which arise from the use of different methods and systems,
the definition of a common interface in order to enhance action data exchange is inevitable. The need
for a standard interface emerges clearly, when transferring data from various motion perception modules
to different robot and action recognition systems. Each module produces data in terms of its own
specific model and format, respectively. Hence, one has to deal with a variation of different data formats.
Likewise, for reproduction of movements, each robot system requires data in terms of its own kinematics.

Therefore, a standardized interface is established by using the Master Motor Map (MMM) [AAD07b],
which features a high level of flexibility and combability. The MMM provides a reference kinematic
model by defining the maximum number of DoF that can be used by a perception module and a robot.
The arrangement of the joints and the orientation of their axes is based on the H-Anim4 version 1.1
specification. A depiction of the MMM model is illustrated in Fig. 3.5. In order to represent grasping
and manipulation activities, for each hand, the MMM has been extended by 3 DoF for finger and thumb
control as well as the tool center point position and the measurements of the manipulator. Based on the
MMM, movements can be described as trajectories in joint space consisting of 58-dimensional vectors,
each vector describing a joint angle configuration with a floating point number for every single DoF as
well as trajectories in Cartesian space. The description of the DoF implemented in the MMM and the
equivalent joint descriptions for a humanoid robot are given in Table 3.1.

Due to differences in the Euler conventions, the availability of joints, and the differing order of the joint
angle values, a conversion module has to be implemented for each system in order to provide a proper
connection to the MMM. This conversion module transforms the module specific data into the MMM
file format or vice versa. By implementing a conversion module from the MMM to the humanoid robot
ARMAR-III, an interface has been established which enables the reproduction of actions in the MMM
format. Furthermore, conversion modules for the connection of the marker-based human motion capture
system by VICON5 and the markerless human motion tracking system [AAD08] developed at UniKarl
have been implemented. The framework that connects these two different motion capture systems to
ARMAR-III is depicted in Fig. 3.5.

4http://www.h-anim.org
5http://www.vicon.com
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Figure 3.5: Left: The MMM kinematic model including the joint axis of each DoF. Right: MMM
interface connecting a marker-based and a markerless human motion capture system to the humanoid
robot ARMAR-III.
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DoF Euler angles DoF description

HumanoidRoot
Translation 3

Rotation 3 RX′Z′Y ′(α, β, γ)

Neck skullbase 3 RX′Z′Y ′(α, β, γ)
nod (SBN)
tilt (SBT)
rotation (SBR)

Torso

vc7 3 RX′Z′Y ′(α, β, γ)
flexion/extension (VCFE)
adduction/abduction (VCAA)
rotation (VCR)

vt6 3 RX′Z′Y ′(α, β, γ)
flexion/extension (VTFE)
adduction/abduction (VTAA)
rotation (VHR)

pelvis 3 RX′Z′Y ′(α, β, γ)
flexion/extension (PFE)
adduction/abduction (PAA)
rotation (PR)

Hip

l hip
r hip

3 + 3 RX′Z′Y ′(α, β, γ)
flexion/extension (HFE)
adduction/abduction (HAA)
rotation (HR)

l knee
r knee

1 + 1 RX′Z′Y ′(α, 0, 0) flexion/extension (KFE)

l ankle
r ankle

3 + 3 RX′Z′Y ′(α, β, γ)
flexion/extension (AFE)
adduction/abduction (AAA)
rotation (AR)

Shoulder+Arm

l sternoclavicular
r sternoclavicular

3 + 3 RX′Z′Y ′(α, β, γ)
flexion/extension (SCFE)
adduction/abduction (SCAA)
rotation (SCR)

l shoulder
r shoulder

3 + 3 RX′Z′Y ′(α, β, γ)
flexion/extension (SFE)
adduction/abduction (SAA)
humeral rotation (SHR)

l elbow
r elbow

1 + 1 RX′Z′Y ′(α, β, 0) flexion/extension (EFE)

l wrist
r wrist

3 + 3 RX′Z′Y ′(α, 0, γ)
flexion/extension (WFE)
adduction/abduction (WAA)
rotation (WR)

Hand

l finger
r finger

1 + 1 RX′Z′Y ′(α, 0, 0) flexion/extension (FFE)

l thumb
r thumb

2 + 2 RX′Z′Y ′(0, β, γ) adduction/abduction (TAA)
rotation (TR)

Table 3.1: First column: Name of body part. Second column: Joints related to the body part. Third
column: Number of degrees of freedom. Fourth column: Euler angle conventions for the joints of the
MMM. Fifth column: Equivalent joint description for a humanoid robot.
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Chapter 4

Scene Representation and Object
Models

4.1 Scene Representation

To deal with object manipulation and grasping, a robot needs knowledge about both the objects and the
environment in which the objects are located. When manipulating one object, other objects in the scene
are relevant, too, and have to be taken into account for the execution of a manipulation task. The robot
therefore needs a representation of the scene, which describes not only fixed parts of the environment like
furniture and room geometry, but also the poses of objects.

For the humanoid robot ARMAR-III, a light-weight scene graph module which can be used to store
the kind of information necessary for the execution of complex manipulation tasks was developed. The
module is light-weight in the sense that it was specifically designed for the task of storing environment
information for a robot, compared to full-fledged scene graph libraries usually intended for visualization
purposes. The scene graph module allows fast queries against geometry properties of nodes in the scene,
like collision and proximity queries, accelerated through hierarchical bounding volumes (axis aligned and
non-axis aligned bounding boxes). Queries can be made for properties of objects in the scene, like a
search for certain objects or classes of objects.

Viewer Application (Master) Application

MCA-ApplicationMCAGUI MCA-Application

Computer 1 Computer 2 Computer 3

 command
blackboard

full update
blackboard

SceneGraphInterface

SceneGraphFacade

Scene
Graph

   MCA
sg modul

SceneGraphInterface

SceneGraphFacade

Scene
Graph

   MCA
sg modul

SceneGraphInterface

SceneGraphFacade

Scene
Graph

MCAGUI
   plugin

Figure 4.1: Left: The connection of several scene graph modules through MCA using two MCA-
blackboards for communication. The scene graph facade hides the synchronization mechanisms and
offers a simple interface. Right: Visualization of the scene graph of the kitchen through the mcagui
application, showing several objects with their bounding boxes. The support surfaces within the fridge
are marked in yellow.

The scene graph is integrated into MCA, which enables the scene graph to be distributed over several
computers (see Fig. 4.1). A scene graph module automatically synchronizes its state with the other scene
graph modules connected through MCA, similar to a cache coherency protocol, which ensures that the
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local version represents the current state of the environment. The synchronization is only triggered if the
scene state is changed, for instance through new percepts. Therefore, queries on the scene graph are very
fast, since they are executed locally.

The scene graph can provide abstractions of the objects in the scene as axis aligned and non-axis aligned
bounding boxes, which is usually enough for approximate motion planning for grasp execution. The
actual geometry of the objects is not stored in the scene graph. Only a reference to the actual geometry
is stored, which is used for high-quality visualization and precise grasp planning. The scene graph module
can generate and maintain an OpenInventor scene graph, which is used for visualization and export to
other geometry formats. The state of the scene graph is completely accessible at runtime through a C++
API.

The scene graph module is used by ARMAR-III in a kitchen scenario for representing the kitchen envi-
ronment with drawers and doors, as well as the objects that have been detected by the vision system.
The module can be used in offline simulations as well; for this purpose, the pose of non-environment
objects has to be supplied through a simulated vision process or by the simulation parameters. Motion
planning experiments using Rapidly-exploring Random Trees (RRTs) [LaV06, KL00] have been executed
using the above-mentioned scene representation, as presented in [VAD07].

4.2 GRASP Object Database

4.2.1 Initial Object Set

To enhance interchangeability of implemented methods and interaction between different systems, all
project partners were asked to work with the same identical object set. Hence, a common object set
has been defined consisting of items that can be found in an ordinary household. Regarding size and
weight the selected objects should have adequate measurements allowing the available manipulators in
the project to grasp and lift the objects. However, since one of the main goals of the project is the
exploration of different grasp types, the set should contain complex-shaped objects and objects that can
have different states (e.g. for a cup: filled or empty). UniKarl has purchased and distributed at least
one object set to every project partner. The initial object set is described in Table 4.1 and shown in
Fig. 4.2.

Object name ID See Fig. 4.2
Detergent bottle with handle 27 b)
White cup with handle 28 c)
Green cup with handle 29 d)
Spray bottle 30 a)
Chocolate box 31 f)
Bread box 32 i)
Zylindric salt box 3 h)
Rectangular salt box 33 g)
Measure cup 44 e)

Table 4.1: Initial object set. Left column: Object name. Center column: Object ID in the database.
Right column: Reference to the figure illustrating the object.

4.2.2 Acquisition of Object Models

In addition to the object set, UniKarl has provided all project partners with images and 3D models
of the objects, which were acquired with the object modeling center that has been established within
the Collaborative Research Center 5881 (see also [KBSD07, BSZD06]). Models of objects with a simple
geometric shape, like boxes or hexagonal shapes, have been created by hand to achieve maximum accuracy.
For the modeling of complex objects in the GRASP object set, a high accuracy laser scanner and a stereo
camera were used. To ensure optimal and consistent measurements of different views several light sources

1www.sfb588.uni-karlsruhe.de
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a. b. c. d. e.

f. g. h. i.

Figure 4.2: Object views from the left camera of the Marlin stereo camera system: a) Spray bottle, b)
detergent bottle with handle, c) white cup with handle, d) green cup with handle, e) measure cup, f)
chocolate box, g) rectangular salt box, h) cylindric salt box, and i) bread box.

and a rotation plate are installed within the modeling center. During an object modeling process, the
specific settings of each frame are stored as depicted in Table 4.2. The object modeling center is shown
in Fig. 4.3.

The modeling center uses two main capture devices:

Laser Scanner A high-accuracy laser scanner Minolta VI-900 was used for the acquisition of 3D point
clouds. The objects are put on the rotation plate and turned in front of the laser scanner, and a
point cloud is taken from different angles. The point cloud of the scene consists of 307,200 points,
whereas depending on the object size approx. 30,000-70,000 points are relevant to reconstruct
the surface of the object. The acquired 3D data is then post-processed, by means of registration,
triangulation, cleanup, and reduction. This ensures the generation of high quality meshes with
different resolutions. In order to provide compability, the point clouds and meshes are provided in
different formats:

• OpenInventor V2.1 ASCII format (.iv)

Figure 4.3: Modeling center using the Minolta VI-900 laser scanner and the Marlin stereo camera system.
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Setting Option Description
Scanner yes=1/no=0 Laser scanner used in this frame
Picture yes=1/no=0 Stereo cameras used in this frame
IselTurntable 0-353 Current angle of the turntable in degree

Lightsource x 0-5 Current brightness of light source x (x = one of the four
available light sources)

Powercube -25-75 Current angle of the camera arm in degrees
Right picture filename Filename of the image captured by the right camera

Silhouette filename Name of the silhoutte file describing the automatically
generated silhouette of the object

CameraPosition t ∈ R3,
R ∈ R3×3

Describes the camera position in the 3D coordinate system
via a translation t and a rotation matrix R

Preview Picture filename Lower quality jpeg version of the left camera image for
preview purposes

Left picture filename Filename of the image captured by the left camera
Pointcloud filename Point cloud file taken during scan
Resolution 0=high/1=low Resolution of the scan
Reduction yes=1/no=0 Level of automatic noise reduction
NumberOfPoints 0-307200 Number of vertices of the point cloud/mesh

Mesh filename
Triangulated mesh file, OBJ=Wavefront obj /
OIV=VRML, NumberOfPolygons describes the number
of triangles/quads

Table 4.2: Settings of the measurements valid during a single object modeling frame.

• VRML V1.0 format (.wrl)

• Wavefront OBJ format (.obj)

In Fig. 4.4 examples of rendered objects are shown. For the registered and triangulated meshes a
texture is generated from the stereo camera views of the object. This is provided along with the
.obj-files, which contain a matching texture mapping.

Color Stereo Cameras In order to provide visual data corresponding to the generated object models,
color stereo camera images are taken from different angles. The different views are generated by
rotating the object on a turn table and moving the camera system which is mounted to a rotating
bracket which can turn up and down (between about -25 and +75 degrees). This allows us to
acquire a broad range of views, e.g. into a cup from above. The object views were retrieved with
the following rotation ranges and step widths:

• 360 degree horizontal rotation range, 10 degree stepwidth (of the rotation plate)

• 100 degree vertical rotation range, from minimum -25 degrees to maximum +75 degrees, with
10 degree step width (of the rotation bracket with the stereo camera system)

a. b. c. d.

Figure 4.4: Rendered 3D models for complex-shaped objects: a) Spray bottle, b) detergent bottle with
handle, c) white cup with handle, and d) green cup with handle.
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The images are captured with a Marlin stereo camera in a RGB8 data format at a resolution of
1392 x 1038 pixels. Intrinsic and stereo calibration data files are provided to all project partners.

4.2.3 XML Representation

Along with the 3D and image data additional information about the object and the model acquisition
process is provided by an XML file. It contains the filenames of the scans and images along with camera
positions for each image. This file format will be extended to contain other information such as material
and weight.

At this point, the XML file contains a specification of the object model acquisition process. The system
provides the possibility to acquire 3D data in form of scans and image data through the cameras. Each
scan or image capture is a single job for the system. Hence, the digitization of a whole object requires
several jobs. Each job is represented as an XML file and the data gathered during the job is described
therein. The following description of the tags is used:

• ObjectModel: encapsulates a whole object consisting of several jobs.

• Filename: the filename of the XML job file.

• Measurement: the settings during the modeling process as listed in Table 4.2.

For convenience of the other project partners, a sample implementation for parsing the XML job files
using the tinyXML parser2 is provided by UniKarl.

The XML files and the corresponding 3D and image data contain a lot of information about the shape
and appearance of the objects. Currently the simplified textured models are used for visualization and
the high resolution point clouds are used for box decomposition. The additional information is provided
to enable the development of new methods for object detection and localization and object grasping.
Currently, we transfer the information from the modeling center to the scene graph manually and add
known attributes, but we are working towards the completion of this pipeline to directly use the data from
the modeling center and to derive object attributes through cognition, reasoning and instruction. We
have elected COLLADA as the carrier format for all this information, as will be described in Section 5.

4.3 Object Representations

Depending on the specific application, an object can be represented as a 3D model consisting of point
clouds and meshes as well as in form of camera views of the object. In Table 4.3, different object
representations including are given.

Representation Source Usage
Point cloud Object Modeling Center Grasping based on box decomposition
Triangle mesh Point cloud, simplified Collision detection and visualization
Textured mesh Additional textures Visualization (vision simulation possible)
Vision data Real images, synth. views Object detection and localization

Table 4.3: Different object representations, their source and usages.

Object models are currently generated offline, either by hand or in an object modeling center with stereo
cameras and a depth imaging device (see Section 4.2.2). This results in high resolution point clouds
and meshes (400,000 triangles), which are turned into meshes of smaller size for collision detection and
visualization (800 - 30,000 triangles). The point clouds are directly used by the box decomposition method
(see Section 6.4). Textures have been created for the textured objects, based on the stereo images from
the object modeling center. Fig. 4.5 shows a sequence of different models of the same object.

Independently, SIFT features are extracted from real images for textured objects to allow detection and
localization of these objects. For objects that can be segmented by color, PCA-compressed synthetic

2http://sourceforge.net/projects/tinyxml
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Figure 4.5: Left: Shows the partial mesh as generated from a single scan with the object modeling center.
Center: The fusion of all partial scans creates a high resolution mesh. Right: A reduced textured mesh.

views are generated with the mesh representation. Since the pose computed by the vision system is
expressed in terms of its own object representation, the constant rigid transformation between the two
object representation has to be calibrated. With an interactive tool, which visualizes the objects’ 3D
model in the stereo images, this transformation is calibrated manually. A screenshot of the GUI of
the tool is shown in Fig. 4.6. The used object recognition and pose estimation system as well as the
interactive tool are described in D6.

Figure 4.6: The matching tool uses manual controls to determine the transformation from the model
coordinate frame (lying wireframe model) to the object recognition frame (the correct standing model).

4.3.1 Object Attributes

When an object is placed in the scene a new node is added to the scene graph. This node has further
attributes besides their geometric properties, such as pose, bounding box size and a precise geometric
model (external reference). The attributes that are currently implemented are:
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• name – human readable name of the object, e.g. red cup

• type – category that describes the use of the object, e.g. food, detergent

• common location – where to find/place the object usually

• handling strategy – known grasping strategies for the object

• support surface – whether something can be placed on the object (used for environment objects
like work surfaces)

These attributes represent the subset of attributes that are needed for regular manipulation tasks. How-
ever, this list is extensible and new attributes will be added as the capabilities of the robot emerge. We
store the attributes of known objects and load these at runtime as a-priori knowledge. All attributes
can be modified at runtime through perception, reasoning or interaction with an instructor. An ’apple
juice’ object would be described as in Fig. 4.7 with further attributes as described in Section 2.3 from
D4. The pose of the object in the scene is described through a relative rigid transformation and a parent
coordinate frame in the scene graph.

name = applejuice
class = food
bbox = (-35.50 -119.00 -31.50)-(35.50 119.00 31.50)
weight = not_implemented
inertia_tensor = not_implemented
texture = not_implemented
inventor_file = applejuice.iv
common_location = fridge
handling_strategy = regular_grasp
grasp_points = not_implemented

Figure 4.7: Example object attributes as stored in a file for the scene graph.

A simple form of geometric reasoning is used, when searching for a position to place an object: The
common location attribute of the current object is examined, which is a reference to another node in the
scene graph. The nodes within the bounding box of the common location are checked for the support
surface flag, which classifies the top surface of such a node as a potential position to place the object.
This reasoning is enabled through storing the necessary information in the scene graph and using simple
geometric queries.
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Chapter 5

GRASP Robot Editor

5.1 Concept and Features

The main goal of the GRASP Robot Editor is to allow the convenient integration of all the various
robots used in the project in the simulator. Therefore, a standardized tool called Robot Editor has been
developed, which allows the creation of geometrical, kinematic and dynamic robot models as well as their
convenient conversion from a variety of CAD formats has been developed. The design principles of the
Robot Editor are:

• Conversion: Robot models – if available – are usually given in a variety of different file formats
that need to be converted to the format used in the simulator.

• GraspIt! compatibility: Being an already widely used standard with many conform models
available, robot models used in GraspIt! should be convertible into the format used by the simulator.

• Geometric modeling: With the integration of new robots also the need for a tool arises that can
be used for modeling of the geometrical components (meshes) in a convenient way.

• Semantic modeling: More important than the geometric modeling is the ability to describe
semantic properties of the robot manipulator, i.e. definition of kinematic chains, sensors, actuators,
etc. or even specify algorithms.

• Dynamics modeling: Another important aspect is the ability to define physical attribute of the
robot’s elements and the objects of the scene. At the moment, however, the focus lies solely on the
dynamics of rigid bodies.

To our knowledge, there is no existing solution that could meet all these requirements. This is why we
decided to develope the Robot Editor based on available open source software. The conceptual design of
the Robot Editor hence relies on two technologies that will be presented in the following sections.

5.2 The Blender Project

5.2.1 Framework for the Robot Editor

Being a very powerful and extensible 3D editor, the Blender project1 was chosen among several candidates
to serve as the framework of the new Robot Editor because of

• built-in support for many commonly used CAD formats as well as basic support for kinematic
structures,

• convenient 3D modeling,
1http://www.blender.org
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• the capability of ray-tracing allows the production of high quality images and sequences that may
be used later on, e.g. for generation of hand poses for recognition (see Fig. 5.2-c).

• easy extensibility via the Python scripting language.

However, Blender on its own cannot be used to generate the input for the simulator. This is due to the
fact that the creation of a robot model from scratch or even the connection of existing parts becomes a
cumbersome and unintuitive task (from a robotics point of view) that requires the user to undergo a long
initial adaption period. The key points lacking in blender are:

• There does not exist any way for defining axes by means of established conventions such as Denavit-
Hartenberg parameters. Usually, axes are placed manually decreasing the overall accuracy of the
model.

• There is no support for the required custom meta information, i.e. sensors, actuators and algorithms.

• Highly sophisticated dynamics information can not be augmented to the robot.

• Conversions between certain file formats need to be improved or implemented, namely the import
of GraspIt! robot models and their underlying geometrical representations, which require manual
adjustments and the file format used for the editor itself (see Section 5.3.2).

On the other hand, Blender has been chosen because it comes with the advantage of being easily extend-
able via the Python scripting language, which allows to overcome the shortcomings mentioned above.
Using the scripting language, one has access to all relevant data structures in Blender. The main task
of transforming Blender into a powerful Robot Editor hence requires at first the creation of an intuitive
and user- friendly user interface with a focus on robotics applications.

The Robot Editor will contain and provide interfaces for essential robotics algorithms, e.g. the com-
putation of dynamics characteristics from the geometric meshes and conversions between kinematics
representations. Adjacency information of joints and the impact of joint movements to the robot are
additional computational information, which is useful for developers planning algorithms.

A screenshot of the ongoing development of the editor and a rendered image of the Karlsruhe hand
performing a precision grip can be seen in Fig. 5.1-a. Although it is still work in progress, the editor
already significantly simplifies the task of creating functional robot models.

a. b.

Figure 5.1: a) Screenshot depicting the creation of a model of the Karlsruhe hand showing the initial
user interface of the GRASP Robot Editor. b) Rendered image of the functional model of the Karlsruhe
hand with eight active degrees of freedom (see Section 2.1).

5.2.2 Robot Models in Blender

In order to explore the requirements of the Robot Editor, the development is linked to the creation of an
initial set of robot manipulators. For this purpose, UniKarl received hand models from project partners.
Models for the following hands are being created during the development of the editor:
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a. b. c.

Figure 5.2: Rendered image of the hand produced with the GRASP Robot Editor and showing geometrical
robot models used in GRASP: a) the Otto-Bock hand, b) the Schunk hand, and c) a human hand model
used for hand pose estimation at KTH.

• the Karlsruhe hand (Fig. 5.1-b),

• the hand prothesis from Otto Bock (Fig. 5.2-a),

• the Schunk hand used at KTH (Fig. 5.2-b), and

• the model of a human hand, which is currently used for hand pose recognition at KTH (Fig. 5.2-c).

All these models will be available in the early stages of the simulator.

5.2.3 Client for Visualization

Finally, the extensibility of Blender includes the creation of graphical runtime applications using the so-
called Game–Blender engine. This framework will be used in the future for the creation of a visualization
tool for both robot simulation and execution. A separation of simulator and the visual representation
brings a lot of advantages such as multiple views broadcasted over the network and saving computational
resources when the simulator runs directly on the robot. Blender’s framework already possesses impressive
graphical abilities and can – due to scripting capabilities – be extended by interactive elements and then
be natively connected to the software interface proposed in Section 3.1.

5.3 COLLADA

5.3.1 Scene and Robot Models in COLLADA

The COLLADA [Bar06]2 file format in order to exchange both robot and scene models between the Robot
Editor and the simulator. COLLADA was chosen for the following reasons:

• Standardization: COLLADA is already an accepted standard by the Khronos consortium3 that
is actively developed and finds wide acceptance and support in CAD, game design and industrial
applications.

• Open source: COLLADA is completely open and royalty free.

• XML-based: Being a XML based file format facilitates the handling and processing in applications.

• Kinematics support: Since version 1.5 the definition of kinematics is officially supported by the
standard.

2http://www.collada.org
3The Khronos Group was founded in January 2000 by a number of leading media-centric companies, including 3Dlabs,

ATI, Discreet, Evans & Sutherland, Intel, NVIDIA, SGI and Sun Microsystems, dedicated to creating open standard APIs
to enable the authoring and playback of rich media on a wide variety of platforms and devices, http://www.khronos.org.
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• Availability: There are many tools and visualization frameworks already available including open
source projects.

• Extensibility: The file format can be extended to serve the needs of different applications.

The integration of the standard into the Robot Editor including the definition of extensions to the
standard are presented in the following section.

5.3.2 Compatibilty and GRASP-specific extensions

As already mentioned, the COLLADA industry standard was elected by UniKarl and UJI as the only
file format to be accepted by the simulator. The acceptance as an industry standard and the wide
acceptance in addition to a clear and extensible design lead to this decision. With the introduction of
version 1.5 in August 2008 the standard was officially augmented by useful language constructs dedicated
to kinematic chains that can be used directly for robot descriptions. The COLLADA import and export
script available with the main Blender distribution (see Section 5.2), however, was designed to accept
only COLLADA documents of version 1.4 and does not allow the inclusion or modification of the user-
definable descriptions needed by the simulator. This leads to the initiation of the development of enhanced
COLLADA compatibility that eventually will flow back to the open source community.

In close collaboration with the original developers of OpenRAVE the integration of COLLADA as the
standard file format has been accepted and the various aspects of the file format definition are discussed
and clarified in an ongoing discussion. COLLADA is an XML-based file format and enables and en-
courages developers to extend the specifications to their needs without having to violate the underlying
schema definition. Every file entry can hereby be enriched by additional data that is specified with respect
to a certain application. The only restriction to this data is to be a valid XML document itself that can
be validated according to an appropriate schema definition together with the complete document.

There is a clear tendency to include specific existing parts of the former OpenRAVE file definitions into
the format definition, however within a separate name space, see the listing in Fig. 5.3.

Hence, all simulator specific entries will be hidden to applications other than the simulator without
reducing the validity of the file, i.e. it can still be processed and viewed by any application compatible
to COLLADA.

A second aspect being actively discussed is to support the representation of semantic information (al-
gorithms, actuator types) and functional data (geometry, dynamics and kinematics). With the Robot
Editor also being a powerful candidate for a front-end to combine also semantic information, our propo-
sition is to accept composed files by default and create modular representations when demanded by the
user without abandoning valid COLLADA output.
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<?xml version="1.0" encoding="utf-8" ?>
<COLLADA xmlns="http://www.collada.org/2008/03/COLLADASchema" version="1.5.0">
    ...
    <library_joints id="libjoints">
        <joint id="joint_1" name="Revolute">
            <revolute sid="axis0">
                <axis>-1 -0 -0</axis>
                <limits>
                    <min>-90</min>
                    <max>90</max>
                </limits>
            </revolute>
            <extra type="Sensor">
                <technique profile="OpenRAVE">
                    <OpenRAVE:AttachedSensor name="MyFirstLaser">
                        <OpenRAVE:translation>0 0.2 0.4</OpenRAVE:translation>
                        <OpenRAVE:rotationaxis>1 0 0 45</OpenRAVE:rotationaxis>
                        <OpenRAVE:sensor type="BaseLaser2D" args="">
                            <OpenRAVE:minangle>-135</OpenRAVE:minangle>
                            <OpenRAVE:maxangle>135</OpenRAVE:maxangle>
                            <OpenRAVE:resolution>0.35</OpenRAVE:resolution>
                            <OpenRAVE:maxrange>5</OpenRAVE:maxrange>
                        </OpenRAVE:sensor>
                    </OpenRAVE:AttachedSensor>
                </technique>
            </extra>
            <test/>
        </joint>
        ...
    </library_joints>
    ...
</COLLADA>

Figure 5.3: Example for how the COLLADA specification can be enhanced by information specific to
OpenRAVE via the extra and technique elements. In this example, a joint element is defined and
augmented by a laser scanner sensor. Its definition uses the former OpenRAVE syntax and is declared
within an associated name space. Due to this mechanism, the file can still be opened and used by different
applications.
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Chapter 6

Further Integration Activities

6.1 GRASP Software Subversion Repository (UniKarl, UIJ)

For a smooth and effective development of software components in the project and in particular the
development of the GRASP simulator in which several partners are involved (UJI, UniKarl and LUT),
a software repository for the software development in the project has been created at UniKarl. For this
purpose, the free/open source version control system Subversion1 is used to operate across networks, and
provide access to people on different computers. UniKarl took the leader role in this activity due to the
existing experience in administrating and maintaining huge robot software projects.

The long-term goal with GRASP is to have an open source repository which includes all developed
algorithms for grasping, manipulation, visualization, and simulation as well as databases for objects,
robot arm and hand models and human grasping. The entire software including the simulator software
and the above-mentioned tools will be accessible through this repository.

6.2 Administration of GRASP Wiki Online Content (UniKarl)

UniKarl established the internal infrastructure of the GRASP project necessary for

• the discussion of concepts,

• the presentation of results and

• the administration of collectively used information in general.

For this purpose, the GRASP Wiki been created using the open source Wiki engine MoinMoin2 which
allows all editors to easily create and modify, upload content or initiate related discussions in a very
convenient way. It is hosted on the web space of UniKarl.

6.3 Visual Data Recording of Human Grasping (UniKarl, LMU)

As part of the integration work, UniKarl installed the stereo camera system at LMU in order to provide
WP1 with a multi-sensorial observation of human grasping trajectories. The system consists of two Point
Grey Research3 Dragonfly IEEE-1394 cameras, which are identical to the cameras used in the vision
system of ARMAR-III. Successful installation of the camera setup and the electromagnetic Polhemus
Liberty system used at LMU was accomplished by taking the following steps:

• Hardware installation of the vision system on a rack.
1http://subversion.tigris.org
2http://moinmo.in/
3http://www.ptgrey.com
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• Software installation of needed software components, namely the Integrating Vision Toolkit (IVT)
and the Point Grey Research software, in order to get the system running and to provide interfaces
to the cameras.

• Implementation of a customized image capture application in order to synchronize the visual data
with the recorded grasping trajectories. Based on a TCP/IP communication channel between both
systems, trigger signals are sent from the Polhemus tracking system to initiate the image capture
process

• Extension of the image capture application to provide access and control of the camera settings.
Since color images are produced in order to provide FORTH with skin color information of the
hand, the camera parameters of the vision setup at LMU had to be adjusted according to the
environmental conditions, which are mainly influenced by poor lighting. Concerning the camera
settings, the implemented application has been extended to allow easy access to the parameters, so
that these can be changed and modified by LMU according to their needs.

6.4 Grasping based on Box Decomposition on ARMAR (UniKarl,
KTH)

We have integrated the box decomposition approach proposed in [HRK08, HK08] in a model-based
scenario, based on a-priori known objects from the Karlsruhe object models database4. On ARMAR,
texture-based object recognition and pose estimation were implemented using information from that
database. If an object is detected, its identification and pose are communicated to a remotely integrated
BoxGrasping server. While box constellations of each object in the database are computed beforehand,
a selection and ranking of the generated grasps is done dynamically on each request, dependent on the
object pose, but also on heuristics and simulated grasp-quality learning described in [HK08]. The final set
of ranked hypotheses is sent back to ARMAR and checked for kinematic reachability before a selection
is done. If no hypothesis was sent, the object is assumed to be non-graspable.

6.5 Integration of Controller Architecture of LUT at UJI

The low-level control architecture, developed at WP3 (see Deliverable 5), has been integrated through the
OpenRAVE architecture (Sec. 3.1.2). In addition to providing high-level interface through OpenRAVE,
the architecture includes common low-level interfaces to hardware. Through these standard interfaces,
the controller architecture is an attempt to provide a cross-platform implementation. More details about
the integration of the controller architecture and the OpenRAVE framework are given in Deliverable 5.

The first version of the controller architecture has been installed and tested on two hardware platforms,
the UJI robot platform consisting of PA-10 Mitsubishi arm and a Barrett hand with tactile sensors, and
the LUT platform consisting of a MELFA RV-3SB arm with a Schunk PG-70 gripper. In addition to
the general framework, also the interfaces between the robot controllers and the hardware independent
controllers have been implemented to allow the control of the two separate robot platforms using the
standard interfaces defined by the controller architecture.

6.6 Object Database (UniKarl)

As mentioned in Section 4.2.2, in addition to the distributed initial object set, UniKarl proveded 3D
models and color stereo images of the objects to enhance and support the development and the evaluation
of vision methods for grasping in the project. For this purpose, a database has been established, which
can be accessed from a website4. The object database is updated regularly and will be extended in the
future.

4Karlsruhe Object Models Database http://wwwiaim.ira.uka.de/ObjectModels, developed within the Collaborative
Research Center 588 (SFB588)
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6.7 Grasp Taxonomy and Human Grasping Database (Otto-
Bock, LMU, KTH, FORTH, UniKarl)

A grasp taxonomy has been established in a cooperation between OttoBock and KTH. For this purpose,
existing grasp taxonomies have been analyzed in order to derive a human grasping taxonomy for daily
objects. The results of this study are published under the projects web page (www.grasp-project.eu)
under ”‘Resources”’.

In addition, a human grasping database has been established in cooperation between LMU, FORTH and
UniKarl. For this purpose, human hand is tracked during grasping movements using two sensor systems:
An electromagnetic Polhemus Liberty system which record data at 240 Hz and a stereo camera system
running at 30 Hz. A dataset of human hand movement performing graping under different conditions has
been established and published under the projects web page (www.grasp-project.eu) und ”‘Resources”’.
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Chapter 7

Conclusions and Future Work

This Deliverable presented the work in the first year in WP7 towards the implementation of a cognitive
control architecture for grasping and manipulation. The main results are:

• Software interfaces to existing grasp simulators (GraspIt!) and robot software control frameworks
(MCA, OpenRAVE) as well as to the GRASP simulator.

• Software interfaces for vision, haptics and action.

• Object database with an initial set of objects for experiments in the project’s first year and adequate
object representations.

• Robot Editor to allow the creation of geometrical, kinematic and dynamic robot models as well as
the convenient conversion of a variety of CAD formats.

In the second year we will continue our work on the extension and improvement of the defined interfaces
and developed tools and on their transfer to other robotics platforms in the project. The main focus of
WP7 will be identifying the requirements for an implementable cognitive architecture for grasping and
dexterous manipulation and fundamental aspects of the transferability of the used representations within
this architecture to different robot platforms.
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