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* Topology-based Heuristics

e Multi-Heuristic A* to support the use of Topology-based Heuristics
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* 3D (x,y,0) path planning with full body collision checking
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* 3D (x,y,0) path planning with full body collision checking

can PR2 squeeze through here?
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* 4D (x,),0,v) path planning for a ground vehicle
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* 4D (x,),0,v) path planning for a ground vehicle

is there enough space for a turn within UGV s min. turning radius?
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* 7D (q,95--.,9,) planning for a robotic arm

start configuration
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* 7D (q,95--.,9,) planning for a robotic arm

NREC ﬂﬂ'ngl-p Malksn Lisivarsby J0EE

start configuration

is there enough reach in the arm to go from this side?
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* 3D (x,y,0) path planning with full body collision checking

each hypothesis is a solution to
a low-dimensional projection of the problem:
a shortest path within its own topological class
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* 4D (x,),0,v) path planning for a ground vehicle

each hypothesis is a solution to
a low-dimensional projection of the problem:

a shortest path within its own topological class
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mj Multiple Hypotheses = Multiple Low-D solutions e ROBOTICS.

* 7D (q,95--.,9,) planning for a robotic arm

each hypothesis is a solution to
a low-dimensional projection of the problem:
a shortest path within its own topological class
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* Heuristic values in A*-like searches = estimates of the cost-to-goal

h(S):
Euclidean
distance

7

goal
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m Multiple Hypotheses = Multiple Heuristics ~ TERoBoTiCS INSTITUTE

* Heuristic values in A*-like searches = estimates of the cost-to-goal

h(S): h(S):
Eu.clldean 2D distance accounting
dlstance PR2 for obstacles
}
goal . goal

* Solution costs in lower-dimensional projections are often excellent
estimates of the cost-to-goal (= speed up the search dramatically)
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* Heuristic values in A*-like searches = estimates of the cost-to-goal

h(S):
FEuclidean
PR? distance

goal
* Solution costs in lower-dimensional projections are often excellent
estimates of the cost-to-goal (= speed up the search dramatically)

h(S):
2D distance accounting

PR2 for obstacles
}

such heuristic guides the search along the “best” hypothesis
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W;‘ Multiple Hypotheses = Multiple Heuristics ~ TERoBoTiCS INSTITUTE

* Heuristic values in A*-like searches = estimates of the cost-to-goal

h(S):
FEuclidean
PR?2 distance

goal
* Solution costs in lower-dimensional projections are often excellent
estimates of the cost-to-goal (= speed up the search dramatically)

h(S):
2D distance accounting

PR2 for obstacles
}

But what if the “best” hypothesis is wrong?

such heuristic guides the search along the “best” hypothesis
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W;l Multiple Hypotheses = Multiple Heuristics ~ TERoBoTiCS INSTITUTE

* Heuristic values in A*-like searches = estimates of the cost-to-goal

h(S): h(S):
Euclidean 2D distance accounting
PR?2 dlstance PR2 for obstacles

}

we need the search to explore multiple heurisics
simultaneously!

But what if the “best” hypothesis is wrong?

such heuristic guides the search along the “best” hypothesis
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* Heuristic values in A*-like searches = estimates of the cost-to-goal

h(S): h(S):
Euclidean 2D distance accounting
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}
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More generally: we can often easily generate N arbitrary heuristic functions that estimate costs-to-goal

Can we utilize a bunch of inadmissible heuristics simultaneously,
leveraging their individual strengths while preserving guarantees on
completeness and bounded sub-optimality?
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% Utilizing Multiple Heuristics THE ROBOTICS TRSTITUTE

More generally: we can often easily generate N arbitrary heuristic functions that estimate costs-to-goal

Can we utilize a bunch of inadmissible heuristics simultaneously,
leveraging their individual strengths while preserving guarantees on
completeness and bounded sub-optimality?

Combining multiple heuristics into one (e.g., taking max)
g is often inadequate

; i - information is lost

goal . .
|- creates local minima
PR for b ies

( - requires all heuristics to be admissible
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Multi-Heuristic A* (MHA*) [Aine et al., JRR’15]:

Heuristic search that does support multiple arbitrary heuristics
with guarantees on completeness and bounded sub-optimality
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* We have N inadmissible heuristics
* Werun N independent searches
* Hope one of them reaches goal

Inad. Search 1 Inad. Search 2 Inad. Search 3
priority queue: OPEN; priority queue: OPEN: priority queue: OPEN3
key = g+ wi*h1 key = g + wi*h; key =g + wi*hs
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ml Multi-Heuristics A*: version 1 THE ROBOTICS INSTITUTE

* We have N inadmissible heuristics
* Werun N independent searches
* Hope one of them reaches goal

Problems:

 Each search has its own local minima

* Wedo N times more work

* No completeness guarantees or bounds on solution quality

Inad. Search 1 Inad. Search 2 Inad. Search 3
priority queue: OPEN; priority queue: OPEN> priority queue: OPEN3
key = g+ wi*h1 key = g + wi*h2 key =g + wi*hs
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We have N inadmissible heuristics

We run N independent searches

Hope one of them reaches goal

Key Idea #1: Share information (g-values) between searches!

Benefits:

Searches help each other to circumvent local minima
States are expanded at most once across ALL searches

Remaining Problem:

No completeness guarantees or bounds on solution quality

Inad. Search 1 ) Inad. Search 2 ) Inad. Search 3
found found
paths paths
priority queue: OPEN; priority queue: OPEN: priority queue: OPEN3
key = g+ wi*h1 key = g + wi*h; key =g + wi*hs
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* We have N inadmissible heuristics
* Werun N independent searches

* Hope one of them reaches goal
 Keyldea #1: Share information (g-values) between searches!
 Key ldea #2: Search with admissible heuristics controls expansions

Benefits:

 Algorithm is complete and provides bounds on solution quality
C

Inad. Search 1

found
paths

priority queue: OPEN:
key = g+ wi*h

Multi-Heuristics A™ [Aine et al., JRR’15]

Carnegie Mellon
THE ROBOTICS ’ihST ITUTE

Anchor Search

~
priorit

key = g + wi1™ho, ho-admissible

y queue: OPENo

priority queue: OPEN
key = g + wi*h;
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Inad. Search 2 —) Inad. Search 3
found
0 _/ paths \_ 4

priority queue: OPEN3
key = g + wi*hs
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W;I Multi-Heuristics A* [Aine etal., JRR’15]  ™ER0BOTCS INSTITUTE

* We have N inadmissible heuristics

* Werun N independent searches

* Hope one of them reaches goal

 Keyldea #1: Share information (g-values) between searches!
 Key ldea #2: Search with admissible heuristics controls expansions
Benefits:

 Algorithm is complete and provides bounds on solution quality

Fori=1ton

min. key of OPENi <=
w>*(min. key of OPENg

Expand Anchor (Search 0)

Expand Inad. Search i

Maxim Likhachev Carnegie Mellon University 25



. . . Carnegie Mellon
m Multi-Heuristics A* [Aine etal., UDRR’15] ™ ROBOTICS INSTITUTE

. i L
We have N inadng Theorem 1: min. key of OPEN, <= w, *optimal solution cost

e We run N indepenqe s
* Hope one of them s

Theorem 2. min. key of OPEN,; <= w,™w,*optimal solution cost

e Keyldea #1: Sharc -

° Key ldea #2: Searc i Theorem 3: The algorithm is complete
Benefits: and the cost of the foqnd Solutiqn is no more than
] . w,*w, *optimal solution cost
 Algorithm is complete and
Theorem 4: Each state is expanded at most twice:
at most once by one of the inadmissible searches
and at most once by the Anchor search

Expand Anchor (Search 0)

min. key of OPENi <=
w>*(min. key of OPENg

Expand Inad. Search i
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% Multi-Heuristics A* [Aine etal., JRR’15] ~ ™ER0BOTCS

* We have N inadmissible heuristics

* Werun N independent searches

* Hope one of them reaches goal

 Keyldea #1: Share information (g-values) between searches!
 Key Ildea #2 Search with admissible heuristics controls expansions
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Summary

* Many planning problems in robotics have low-dimensional projects
that can provide excellent estimates on cost-to-goal distances/heuristics

* Multiple topology-based heuristics correspond to different hypotheses
on feasible solutions

* Multi-Heuristic A* (MHA*) can utilize multiple arbitrary heuristics
with rigorous guarantees
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Wil Potential Research Directions =~ ™eresemesiem:

* Applying to different planning domains including humanoid planning,
mission planning, etc.

* Figuring out what topology classes to consider

* Dynamically instantiating new topology-based heuristics (e.g.,
Dynamic MHA* [Islam et al., ICRA’15]
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