

Clustering-Based Robot Navigation and Control

Omur Arslan, Dan P. Guralnik and Daniel E. Koditschek University of Pennsylvania

Closing the Gap in Modeling Configuration Spaces

[Choset et al., 2005][LaValle, 2006]

What Does Clustering Offer?

Automated tools to discover coherent groups in configuration spaces

Quotient space of three point robots on a plane

Explicit relations between clustering models

The nearest neighbor interchange (NNI) moves between cluster hierarchies and the NNI graph

Symbolic abstractions relating conf. spaces to the space of clustering models

Locality identification (e.g., collision-free neighborhood)

A multirobot configuration and its cluster hierarchy

Single robot in cluttered environments

Noncolliding Disks

Encoding Collisions via Robot-Centric Voronoi Diagrams

Power Diagram [Aurenhammer, SIAM JC'87]

Local Free Space

Single robot in a cluttered environment

Noncolliding Disks

The "move-to-projected-goal" law

[[]Arslan,Kod, ICRA'16A]

The "move-to-constrained-centroid" law

[Arslan,Kod, ICRA'16B]

Contributions

- The use of clustering for modelling configuration spaces and for design of provably correct motion planners
- Potential applications of clustering to the problem of feedback motion planning and control
 - Coordinated Robot Navigation via Hierarchical Clustering
 - Encoding Collisions via Robot-Centric Voronoi Diagrams
 - Reactive robot navigation in forest-like environment
 - Safe coverage control of heterogeneous disk-shaped robots

References

[1] O. Arslan, Y. Baryshnikov, D. P. Guralnik, and D. E. Koditschek, "Hierarchically clustered navigation of distinct euclidean particles," in *Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on*, 2012, pp. 946–953.

[2] O. Arslan, D. P. Guralnik, and D. E. Koditschek, "Navigation of distinct Euclidean particles via hierarchical clustering," *Algorithmic Foundations of Robotics XI, Springer Tracts in Advanced Robotics*, vol. 107, pp. 19–36, 2015.

[3] O. Arslan, D. P. Guralnik, and D. E. Koditschek, "Discriminative measures for comparison of phylogenetic trees," (accepted to) Discrete Applied Mathematics, 2016.

[4] O. Arslan, D. P. Guralnik, and D. E. Koditschek, "Coordinated robot navigation via hierarchical clustering," *Robotics, IEEE Transactions on*, vol. 32, no. 2, pp. 352–371, 2016.

[5] O. Arslan and D. E. Koditschek, "Exact robot navigation using power diagrams," in *Robotics and Automation*, 2016 IEEE International Conference on (in press), 2016.

[6] O. Arslan and D. E. Koditschek, "Voronoi-based coverage control of heterogeneous disk-shaped robots," in *Robotics and Automation, 2016 IEEE International Conference on (in press),* 2016.

[7] F. Aurenhammer, "Power diagrams: Properties, algorithms and applications," *SIAM Journal on Computing*, vol. 16, no. 1, pp. 78–96, 1987.

[8] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge, MA, 2005.

[9] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-Hall, Inc., 1988.

[10] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, UK, 2006.