Topological Motion Planning

Subhrajit Bhattacharya University of Pennsylvania

Topological Motion Planning?

- Motion planning (*planning a set of actions* that achieves a specific objective) is fundamental to autonomy:
 - An efficient, versatile and effective method in motion planning is graph search based motion planning.
- Topology attempts to re-incorporate those *richer information* that a discrete graph representations (a 1-dimensional entity) fails to capture.
- Many specifications of goal/obective in motion planning can be formally described using the language of topology.
- Locally computed topological quantities can be used (*reliably integrated*) to provide global guarantees.
- Topological methods do not rely on precise metric information (*robust to errors*).

Graph search-based planning [A*: Hart, et al.; D* Stenz et al; RRT: Lavalle]

Simplicial complex [Derenick, et al.; Ghrist et al;]

Topological Trajectory Planning [Bhattacharya, et al.]

"go to the left of an obstacle" vs. "go to the right of an obstacle"

Outline

- Topological Trajectory Planning and its Applications
- Dimensionality Reduction using Topological Abstraction
- Sensor Coverage of Unknown, GPSdenied Environments using Robot Swarms
- Simplicial Search Algorithms

Outline

- Topological Trajectory Planning and its Applications
- Dimensionality Reduction using Topological Abstraction
- Sensor Coverage of Unknown, GPSdenied Environments using Robot Swarms
- Simplicial Search Algorithms

Topological Trajectory Planning: Motivation

Optimal Trajectory Planning for Systems with Cable:

Deep Horizon Oil Spill Cleanup Operation:

Tethered robot:

Tasks requiring Topological Reasoning and Multi-agent exploration:

[Mellinger, Michael, Kumar, IJRR 2012]

Multi-agents search/ exploration in a partially-known environment:

Topological Classes of Trajectories In \mathbb{R}^2 - O:

We would like to be able to:

- 1. Make distinction between the different topological classes of trajectories.
- 2. Exploit that information for optimal trajectory planning in different topological classes.
- 3. Apply that to solving real problems in robotics.

Related Work

• Cell-decomposition (e.g., Voronoi decomposition, Delaunay triangulation) and Semi-algebraic Description of Environments:

[Demyen, Buro, AAAI, 2006; Hershberger, Snoeyink, JCGTA, 1991; Grigoriev, Slissenko, ISSAC, 1998; Schmitzberger, Bouchet, Dufaut, Wolf, Husson, ICIRS, 2002.]

- Often construction is difficult / expensive, especially for a environment presented as an occupancy-grid.
- If not carefully constructed (*e.g.*, arbitrary triangulation), the classification may not be one-to-one.
- While possible to classify given trajectories, the representation is not best suited for search-based optimal path planning.
- Simplicial Complex Representation and Persistence Homology: [Pokorny, Hawasly, Ramamoorthy, RSS, 2014;]
 - Requires only a simplicial description of the free space (without an embedding)
 - Well-suited for classifying given trajectories in different homology classes.
 - Recent developments in computational **cohomology** on simplicial complex allows construction of topological invarants [*Pokorny, et. al, RSS, 2015*].

• Topological Invariant (can be used in conjunction with graph search):

- Simple construction
- Ideal for graph search-based optimal motion planning for finding optimal paths in different homology classes.
- Suitable for both *homology* and *homotopy* path planning.

Homotopy and Homology

(computationally difficult Homotopy: in dim.>2) $p_1 \sim p_2 \not\sim p_3 \not\sim p_4$ Homology: (computationally favorable) $p_1 \sim p_2 \not\sim p_3 \not\sim p_4$

 $\tau_{_1}$ and $\tau_{_2}$ homologous, but not homotopic.

 p_1 and p_2 belong to same homotopy class

 \Rightarrow they belong to same homology class.

Converse is not necessarily true!

Homology invariant, $H(p_i)$:

$$H(\tau) = \int_{\tau} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_1 \end{bmatrix} \quad (e.g., \xi_1 = d\theta)$$

$$F_{T-signature} = \int_{\tau} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_1 \end{bmatrix} \quad [B]_{T-signature} = d\theta$$

Key concept: Find a set of linearly independent closed, non-exact differential 1-forms which forms a basis for the de Rham cohomology group,

 $H^{1}_{dR}(R^{N}-O): \xi_{1}, \xi_{2}$ F.) hattacharya, Likhachev, Kumar. 2012, AURO 3, [Bhattacharya, Lipsky, Ghrist, Kumar. 2013, AMAI 67(3-4)]

 $h(\tau) = "b b^{-1} b a a^{-1}" = "b"$

$$\begin{array}{ccc} & & & \\ & & & \\ 1, & & \\ \xi_2, & & \\ \end{array} \in \operatorname{Ker}(d^1) \\ \begin{array}{c} & & \\ 3(3)] \\ & & \\ 1 & & \\ \end{array} \in \operatorname{Img}(d^0) \end{array}$$

Homotopy invariant, $h(p_i)$, in 2-dimensions:

Key concept: Words constructed by tracing a trajectory and inserting letters based on rays crossed.

[Tovar, Cohen, LaValle, WAFR, 2008] [Narayanan, Vernaza, Likhachev, LaValle, ICRA, 2013] [Bhattacharya, Kim, Heidarsson, Sukhatme, Kumar. IJRR. 2014] [Bhattacharya, Ghrist, IMAMR, 2015.]

Use in Graph Search

Application 1 Topological Exploration

Group of robot splitting based on the available topological classes in the environment:

ROS simulation of topological exploration of an unknown environment using 8 robots.

Single-robot experiment

- Scarab mobile robot platform (differential drive, laser range sensors)
- Visual odometry localization module

[Kim, Bhattacharya, Ghrist, Kumar. IROS, 2013]

Application 2

Human-Robot Collaborative Topological Exploration for Search and Rescue Mission

- Heterogeneous team of humans and robots need to explore an environment for search & rescue missions.
- Human(s) chooses trajectories at their discretion.
- Robots need to adapt and choose complementary topological classes to maximize exploration / clearing.

A decentralized implementation in ROS (simulation):

[Govindarajan, Bhattacharya, Kumar, DARS'14, Best paper award nomination!]

Application 3: Object Separation Using Cable

Problem definition:

Motivation:

Basic idea:

- 1. Mathematically describe a "separating configuration" (identified by its homology class).
- 2. Find optimal trajectories in the right homotopy classes leading to a separating configuration.

Dynamic sim.:

Field experiment in collaboration with USC.:

[Bhattacharya, Kim, Heidarsson, Sukhatme, Kumar. IJRR, 2014]

Application 4: Planning for a Tethered Robot

Problem definition:

Method: Perform search in h-augmented graph

Cable length: 450 disc. units

Dynamic simulation:

[Kim, Bhattacharya, Kumar, ICRA'14]

Other Applications

- Highway Vehicle Navigation (homotopic consideration in changing lanes and passing vehicles). [Park, Karumanchi, Iagnemma, T-RO, 2015.]
- Conflict minimization in multi-robot motion planning. *[Kimmel, Bekris, 2012]*
- Smooth optimal trajectory planning in different topological classes using QP and MIQP frameworks

[Kim, Sreenath, Bhattacharya, Kumar, CDC, 2012; Kim, Sreenath, Bhattacharya, Kumar, ARK, 2012; Sikang Liu, Watterson, Bhattacharya, Kumar (under preparation).]

A Persistent Homology Approach to Topological Path Planning in Uncertainties

How to do path planning given a probability map? - threshold? At what value?

We consider $U^{\epsilon} = \{q \in W \mid P(q) \leq \epsilon\}$ for different value of ϵ , and how the homology classes of trajectories join and split.

[Bhattacharya, Ghrist, Kumar. T-RO, 31(3), 578-590, 2014]

U₃

Recall: Homotopy invariants in 2D h(τ_1) = " b b⁻¹ b a a⁻¹" = " b "

start

[Bhattacharya, Ghrist, IMAMR, 2015]

Trivial loops can have non-empty words: $h(\gamma) = u_1^{-1}u_2 u_3^{-1}$ Need to map these words to identity (empty word) – Quotient group $\pi_1(X) \simeq \pi_1(X_0) * \pi_1(X_1) * \cdots * \pi_1(X_n) / N$

obstacles

Outline

- Topological Trajectory Planning and its Applications
- Dimensionality Reduction using Topological Abstraction
- Sensor Coverage of Unknown, GPSdenied Environments using Robot Swarms
- Simplicial Search Algorithms

Abstraction / Dimensionality Reduction using Topology

Configuration Spaces of Robot

Arms (finite, but high dimensional)

What we have done so far is topological abstraction

- We reduced the infinite dimensional & continuous *path/curve space* into a finitedimensional, searchable space
 - Involved classification of (the highdimensional configuration space) paths based on homotopy/homology classes (topological invariants).

Objectives

- Take end-effector to a desired target location
- Optimization of trajectory of end-effector (*e.g.*, its length)

(We do not care where the rest of the arm is, as long as it does not intersect an obstacle!)

Challenges: (High-dimensional configuration space)

- Randomized search in configuration space gives suboptimal solution.
- Planning trajectory in end-effector space does not guarantee traversability / algorithmic completeness.
- Not sufficient to consider only the homotopy classes of arm configuration in the end-effector space (e.g., 4-bar linkage violating Grashof criterion).

Low-dimensional Sub-sampling of Configuration Space

Schematic:

- Construct the Reeb graph of the FK function (given a fixed end-effector pos. sample a configuration from each connected component of preimage)
- Find path from the start configuration to a preimage of the goal end-effector pos. in the Reeb graph. (*Guarantee:* A path in the Reeb graph exists if and only if a path exists in the configuration space between the start configuration and the pre-image of goal end-effector positions (and there is a natural projection map).)

Approach:

Construct an explicit description of the Reeb graph of the FK function as *k*-tuple of inverse kinematics (IK) functions.

(closed-form solution for planar arm in absence of obstacles)

Base

[Bhattacharya, Pivtoraiko, Acta Applicandae Mathematicae, 139(1):133-166, 2015.]

Topological Abstraction for Motion Planning in Pursuit-Evasion Problems

Contamination state remains the same (maps to the same abstract state)

Topological invariant:

Connected components of the evader space and their contamination state (can be formulated as zero-th (co)homology of a *sheaf*).

Sheaf theory allows us to place/attach additional data on a topological space.

[Ramaithitima (Tee), Srivastava, Bhattacharya, Speranzon, Kumar, (under preparation)]

Outline

- Topological Trajectory Planning and its Applications
- Dimensionality Reduction using Topological Abstraction
- Sensor Coverage of Unknown, GPSdenied Environments using Robot Swarms
- Simplicial Search Algorithms

Topological Representation

An n-simplex for every (n+1)-tuple of sensors that are pair-wise neighbors.

The Rips Complex

[Derenick, Kumar, Jadbabaie, ICRA, 2010] [de Silva, Ghrist, IJRR, 2006]

Rips Complex has been used to detect holes, but little research in controlling mobile sensors to attain coverage.

- Requires only local connectivity data for construction.
 - Sensor model:

22

Local connectivity and noisy bearing measurement

Touch sensor with coarse directionality

- Gives a faithful representation of sensor coverage
 - Can be used to *detect holes* in sensor coverage.
 - Very limited work in literature on actually controlling the mobile sensors.

Overall Algorithm

Step 1: Identify a robot on the frontier subcomplex (closest to source in hop counts) for next deployment.

Step 2: Find a new location outside the frontier (in the local coordinate of the frontier robot), and identify **shortest path** through graph for robot deployment.

Step 3: "Push" robots along the path using bearing-only controller using other robots as landmarks.

Visual Homing (Bearing-only) Control for Robot Navigation

- Control velocity computed using
 - Bearing to landmarks (neighbors),
 - Desired home/goal location in local coordinates,
 - Landmarks can be moving.

[*R.* Tron and *K.* Daniilidis. Technical report on Optimization-Based Bearing-Only Visual Homing with Applications to a 2-D Unicycle Model. ArXiv e-prints, February 2014.]

$$c_i(x) = \beta_{gi}^T \beta_i(x) , \varphi = \sum_{i=1}^N \varphi_i, \ \varphi_i = r_i f(c_i)$$
$$u = -\text{grad}_x \varphi$$

Simulation and Experiment

ROS Simulation:

- ROS + Stage simulation running on a 8-core Intel processor
- Non-holonomic robots
- Single source (at the entrance to the environment), unending supply of robots.

Experiment with Real-Virtual Robots:

- Heterogeneous team of live (green) and virtual (red) robots.
- New paradigm in demonstrating swarm algorithms using limited number of live robots.
- Feedback loop between simulated robots, live robots and simulated version of live robots for coherent working of real & virtual robots.

Sensor Coverage of Unknown Environments By Robots Swarms Using Limited Local Sensing

Rattanachai Ramaithitima, Mickey Whitzer Subhrajit Bhattacharya, and Vijay Kumar

GRASP Lab, University of Pennsylvania

Experiment with Heterogeneous team of Live and Virtual Robots

We used a Scarab robot as a physical platforms and Stage robot simulator for the virsual robots to demonstrate the performance of the proposed algorithm on the real robot experiment.

[Ramaithitima (Tee), Whitzer (Mickey), Bhattacharya, Kumar, ICRA 2015]

Applications

In unknown, GPS-denied environments, with limited sensing:

 Coarse Topological Mapping

- Topological Localization and Capture of Evaders
- Persistent Surveillance
- Establishment of Landmarks for Topological Landmark-based Navigation.

[R. Ghrist, D. Lipsky, J. Derenick, and A. Speranzon, "Topological landmarkbased navigation and mapping", electronic pre-print, 2012.].

Outline

- Topological Trajectory Planning and its Applications
- Dimensionality Reduction using Topological Abstraction
- Sensor Coverage of Unknown, GPSdenied Environments using Robot Swarms
- Simplicial Search Algorithms

Search Algorithm For Simplicial Complexes

Conclusion

Topology helps capture **richer (and meaningful/relevant) information** about a system/configuration space (using topological invariants and representations), while **keeping the problem tractable**. Purely graph-based approaches alone fail to achieve this.

Thank you! Questions?

Acknowledgements

Collaborators

Past and Present Supervisors

Prof. Vijay Kumar (U. Penn) Prof. Robert Ghrist (U. Penn) Prof. Maxim Likhachev (CMU)

Collaborators at USC

Prof. Gaurav Sukhatme Hordur K. Heidarsson

Collaborators at Drexel University

Prof. M. Ani Hsieh Dhanushka Kularatne Graduate/Undergraduate Students and Postdoctoral Collaborators at U. Penn

Dr. David Lipsky Dr. Mihail Pivtoraiko Dr. Koushil Sreenath (*presently at CMU*) Soonkyum Kim Vijay Govindarajan Rattanachai Ramaithitima (Tee) Mickey Whitzer Luis Guerrero Denise Wong Edward Steager

Funding (Past and Present)

ONR:

Antidote MURI grant# N00014-09-1-1031, Grant# N00014-08-1-0696 Grant# N00014-07-1-0829 Grant# N00014-09-1-1052; **Grant# N00014-14-1-0510** **NSF** grant# N00014IIP-0742304. **AFOSR** grant# FA9550-10-1-0567 **ARL** grant# W911NF-10-2-0016