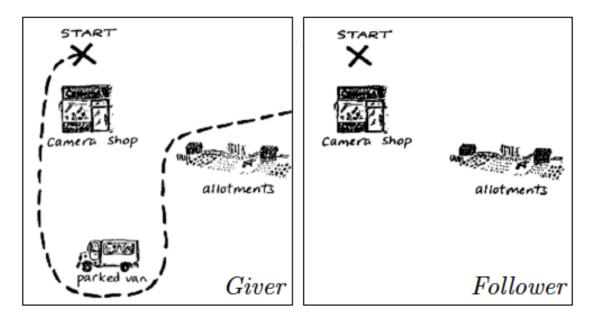
Uses of Persistence for Interpreting Coarse Instructions

ICRA Workshop on Emerging Topological Techniques in Robotics 20th May 2016

Subramanian Ramamoorthy School of Informatics The University of Edinburgh

Scenario: Human-Robot Co-Work

How Do People Give Instructions for Spatial Navigation?



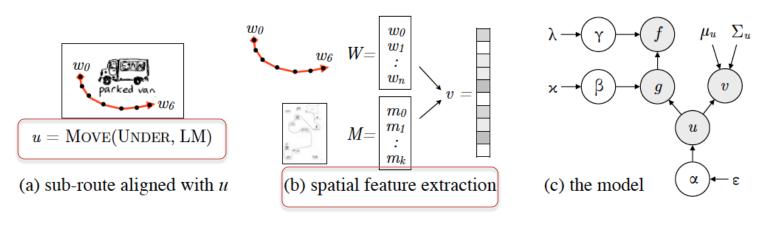
HCRC Map Task: Instruction Giver's task is to communicate a route to a Follower, whose map may differ. Route is Giver's goal which the Follower tries to infer.

A. Eshky, B. Allison, S. Ramamoorthy, M. Steedman, **A generative model for user simulation** 20/05/16 **in a spatial navigation domain**, In Proc. EACL 2014.

Example Data for Map Task

Natural Language	Semantic Representation				
G: you are above the camera shop	Instruct POSITION(ABOVE, LM)				
F: yeah	Acknowledge				
G: go left jus- just to the side of the paper, \star	Instruct MOVE(TO, PAGE_LEFT) *				
then south,	Instruct MOVE(TOWARDS, ABSOLUTE_SOUTH)				
under the parked van \diamond	<i>Instruct</i> MOVE(UNDER, LM) \diamond				
you have a parked van?	Query-yn				
F: a parked van no	Reply-n				
G : you go– you just go west, \star	Clarify MOVE(TOWARDS, ABSOLUTE_WEST) *				
and down,	Clarify MOVE(TOWARDS, ABSOLUTE_SOUTH)				
and then you go along to the– you go east \diamond	<i>Clarify</i> MOVE(TOWARDS, ABSOLUTE_EAST) ◊				
F: south then east	Check				
G: yeah	Reply-y				

Generative Model: Behaviour in Map Task

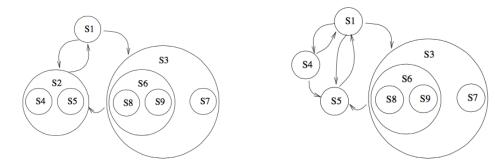


[A. Eshky et al., EACL 2014]

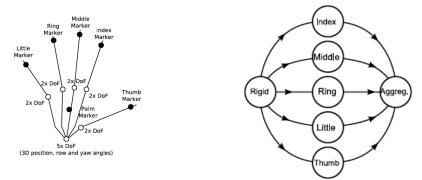
Core Question: Can we have multi-scale state estimation to deal with evidence from multiple such modalities, of varying coarseness?

Representative Prior Work

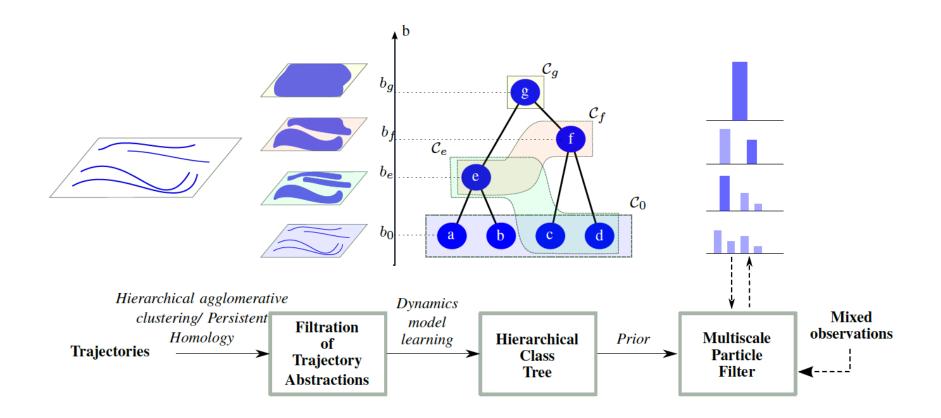
• Variable resolution particle filtering [Verma, Thrun, Simmons IJCAI '03]: clump states to define 'macrostate'



• Hierarchical subspace filtering [e.g., Brandao et al. '06]: track subset of variables separately and aggregate



Our Approach



[M. Hawasly, F.T. Pokorny, S. Ramamoorthy, **Hierarchical Filtering with Spatial Abstractions**, Manuscript in preparation]

20/05/16

Hierarchical Agglomerative Clustering

- Iterated operation: merge two clusters at lower level to get a single new cluster
- Yields a tree data structure
 - leaves are the individual data items
 - root node is the cluster made by merging all data points
- Order of merging depends on distance between clusters, such that the pair with the smallest distance is merged first.
- Every new cluster can be assigned a distance value at which it gets created.

Simple Clustering Scheme

- Collection of objects (e.g., trajectories): $C = \{c_1, c_2, ..., c_M\}$
- Distance matrix: $D(i, j) = \delta(c_i, c_j)$
- Merge to create new cluster: $c_{ij} = \bigcup_{u \in \arg\min_{i,j,i \neq j} D_{i,j}} c_u$

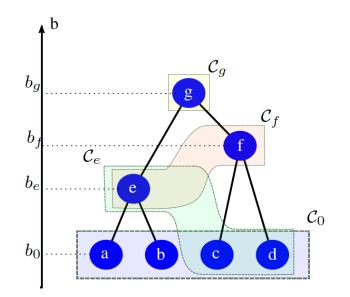
- Birth index, $b_{ij} = D_{i,j}$, is distance threshold at which class c_{ij} starts to exist
- Death index, $d_i = d_j = D_{i,j}$, is distance index when $c_i(c_j)$ ceases to exist

Output of Hierarchical Clustering

• Tree structure, $\mathcal{T} \langle \mathcal{C}, \rho \rangle$

$$\label{eq:constraint} \begin{split} \mathcal{C}: \text{collection of all original/hierarchical classes} \\ \rho: \mathcal{C} \mapsto \mathcal{C}: \text{maps class to its 'parent'} \end{split}$$

- If $\rho(c_i) = c_j$ then $b_j = d_i$ and $c_i \subset c_j$
- Tree node $c_i \in C$ is alive when $b_i \leq b < d_i$ denote the level by C_b

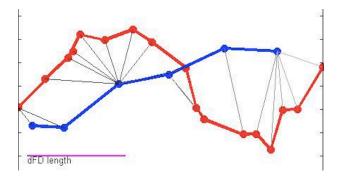


Fréchet Distance

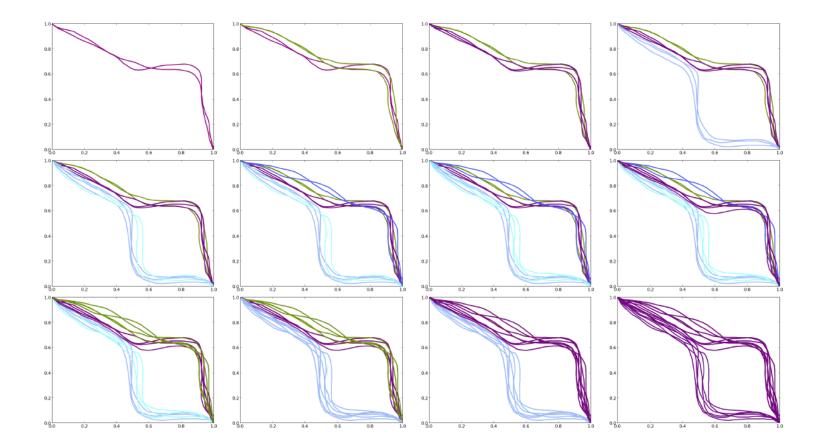
- Distance between two curves (or surfaces)
- The discrete Fréchet distance is defined as

$$\delta_F(\tau_1, \tau_2) = \inf_{\alpha, \beta} \max_j \delta_E(\tau_1(\alpha(j)), \tau_2(\beta(j)))$$

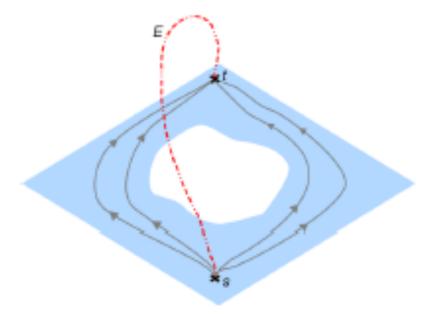
 $\alpha,\beta\,$ are re-parametrisations that align trajectories to each other point-wise



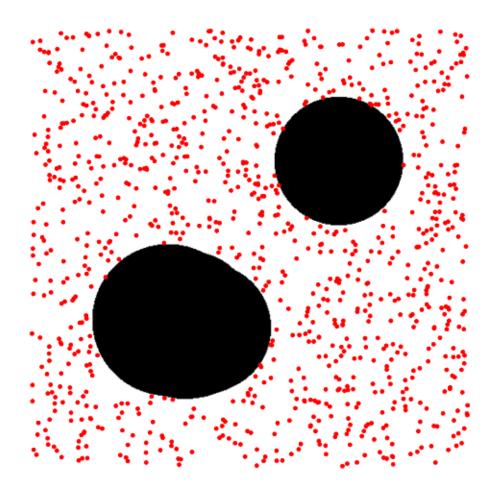
Illustrative Example: Hierarchical Clustering with Fréchet Distance



Clustering by Topology



Recap: Constructing Filtrations from Samples



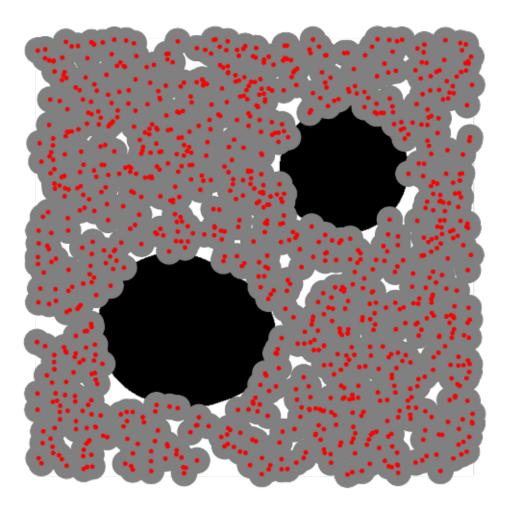
Observed trajectories yield samples in the C-Space,

 $X \subset \mathcal{C}_f \subset \mathbb{R}^d$

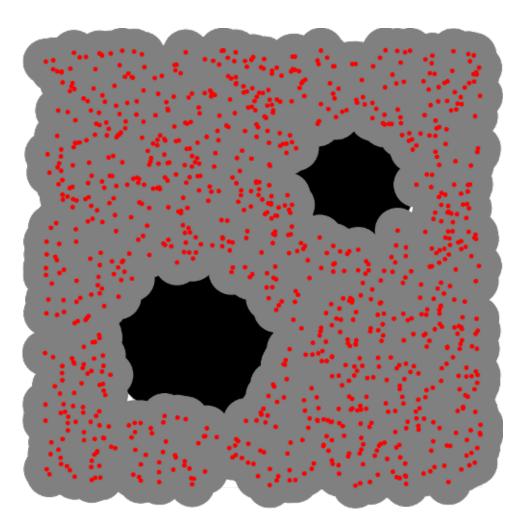
Then, consider the space,

$$X_r = \bigcup_{x \in X} \mathbb{B}_r(x)$$

Unions of Balls



Unions of Balls



Delaunay – Čech Complex

$$D(X) = \{ \sigma \subseteq X : \cap_{x \in \sigma} V_x \neq \emptyset \}$$
$$DC_r(X) = \{ \sigma \in D(X) : \cap_{x \in \sigma} \mathbb{B}_r(x) \neq \emptyset \}$$
$$DC_r(X) \simeq X_r$$

If we can transform a simplicial complex K into another complex K_0 by a sequence of elementary collapses, then the two complexes have the same homotopy type.

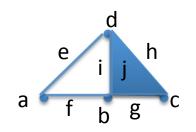
A discrete Morse function can encode such a simplicial collapse, which is used to establish the above result.

U. Bauer, H. Edelsbrunner. **The Morse theory of Čech and Delaunay filtrations**. In Proc. Symp. Comp. Geometry, SOCG'14.

Homology Computation by Matrix Reduction

g+h+i = [0 0 0 0]^T

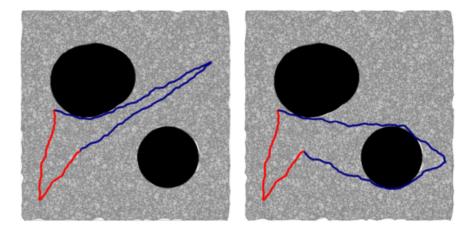
h+i = [0 1 1 0][⊤]



	а	b	С	d	е	f	g	h	i	j
а					1	1	0	0	0	
b					0	1	1	0	1	
С					0	0	1	1	0	
d					1	0	0	1	1	
е										0
f										0
g										1
h										1
i										1
j										

[H. Edelsbrunner, J. Harer, Contemp. Math. 453: 257-282, 2008.]

Trajectory Classification in Simplicial Complex



$\alpha_0, \dots, \alpha_n \in C_1(DC_R(X))$ $c_{\alpha_0}(\alpha_j) = \alpha_0 + \alpha_j \in Z_1(DC_R(X))$ $[c_{\alpha_0}(\alpha_0)], [c_{\alpha_0}(\alpha_1)] \dots, [c_{\alpha_0}(\alpha_n)] \in H_1(DC_R(X))$ $[c_{\alpha_0}(\alpha_i)] \neq [c_{\alpha_0}(\alpha_j)] \implies \alpha_i, \alpha_j \text{ are not homotopy}$ $equivalent in X_R$

Persistent Homology Groups

$$DC_{r_1}(X) \subseteq DC_{r_2}(X) \subseteq \ldots \subseteq DC_{r_n}(X)$$

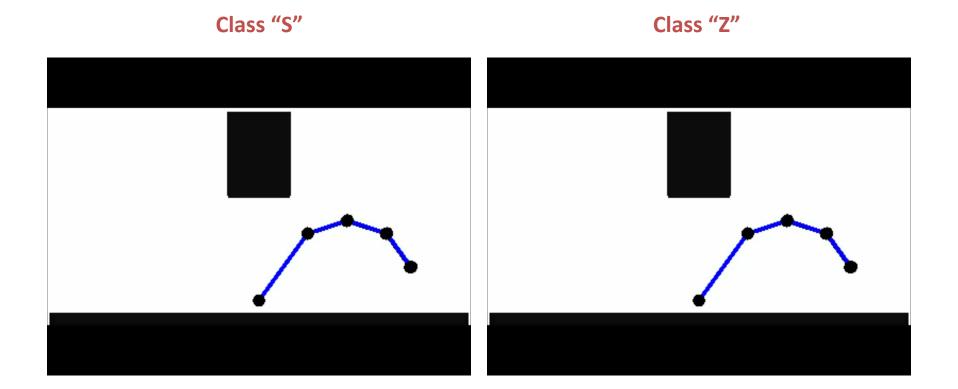
For a filtration of simplicial complexes

$$\mathcal{K}_{r_1} \subseteq \mathcal{K}_{r_2} \subseteq \ldots \subseteq \mathcal{K}_{r_n}$$
 ,

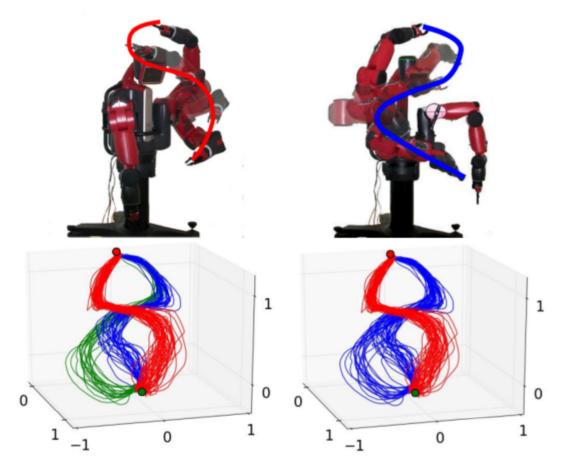
define the **p-th persistent homology** groups:

$$H_p^{i,j} = Z_p(\mathcal{K}_{r_i}) / (B_p(\mathcal{K}_{r_j}) \cap Z_p(\mathcal{K}_{r_i})) \ i \leq j$$

Two Trajectory Classes for 4-link Arm



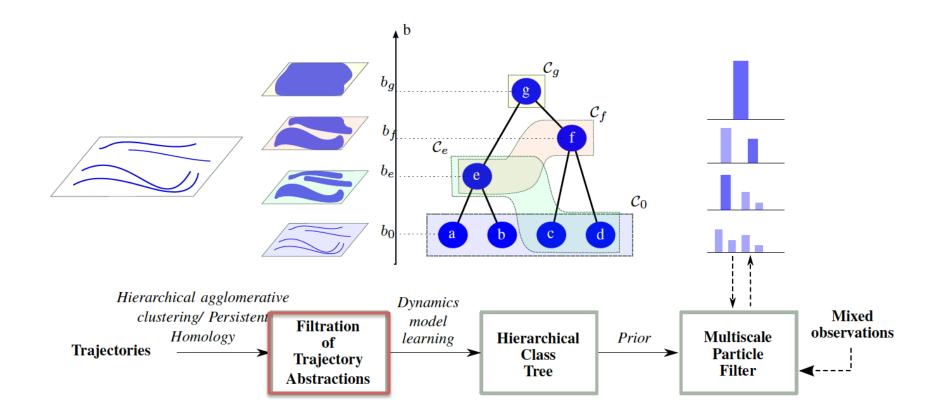
Clustering End Effector Trajectories: 3-dim, 97 trajectories



There exists a filtration interval with 3 classes which later merge into two classes

Two Discovered Equivalence Classes

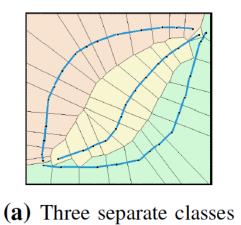
Recap: Approach

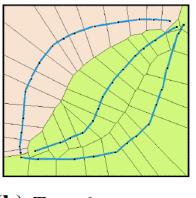


Hierarchical Beliefs - Intuition

- Probability of nodes in the tree <> probabilities assigned to regions in a metric space
- Intuition: Consider Voronoi tessellation of 2-dim space by points on discrete curves

$$\mathbf{P}(c_j) = \sum_{c_i = \rho^{-1}(c_j)} \mathbf{P}(c_i)$$





(b) Two classes merge

Bank of Particle Filters (MPF)

1. Sample *n* particles with equal weights from a prior,

$$\Delta(\mathcal{C}_0 \times \Re^d) \qquad \qquad \mathcal{C}_0 = \{ c \in \mathcal{C} | b_c = b_0 \}$$

- 2. Build tree probabilities*
- 3. Sample new particles for parent nodes: $\bar{n} = \sum_{c_i = \rho^{-1}(\bar{c})} n_i$

In a loop:

- a. For each particle at each level, compute new position: $z^t \sim \mathbf{P}(z|z^{t-1},c)$
- b. For particles at chosen level, update with observations*
- c. Propagate weights along tree & resample (at lowest level)*

Motion Models

• A motion model is learnt for every class (tree node)

$$\theta_i = \mathbf{P}(z'|z, c_i), \ z, z' \in \Re^d$$

- The collection of trajectories define:
 - Either a global model, e.g., using GMM/GMR
 - Or, a localised model the average velocity of the trajectory points in a ball around the studied point z

$$\dot{z} = \sum_{z_i \in \text{ball around } z} 1/\delta_E(z, z_i) \dot{z_i}$$

Incorporating Evidence, Base Case

- At level 0 (i.e., at the level of the finest scale), compute Euclidean distance between observed position and class prediction $\delta_E(z,\xi^t)$
- Update weights, inversely proportional to distance $p(z^t,c): \ w \propto -\log(\delta_E(z,\xi^t))$

Incorporating Evidence, with Coarse Observations

First find all classes that are alive at the level of observation,

$$\hat{\mathcal{C}} = \{ c_i \in \mathcal{C} | \ b_i \le \frac{b_{\xi} + d_{\xi}}{2} < d_i \}$$

For each of these classes:

Compute distance based on birth index of first shared parent

$$\delta_{\mathcal{T}}(c,\xi^t) = \hat{b}$$

For every particle in class c, update as

$$p(z^t, c): w \propto -\log(\delta_{\mathcal{T}}(c, \xi^t))$$



Rebuild tree probabilities and normalise

Rebuilding Probabilities in the Tree

1. Update based on computed weights, w, & node probability,

$$\mathbf{P}^{t}(c_{i}) = \frac{\sum_{c(p)=c_{i}} w^{t}}{\sum_{c(p)\in\hat{\mathcal{C}}} w^{t}}$$

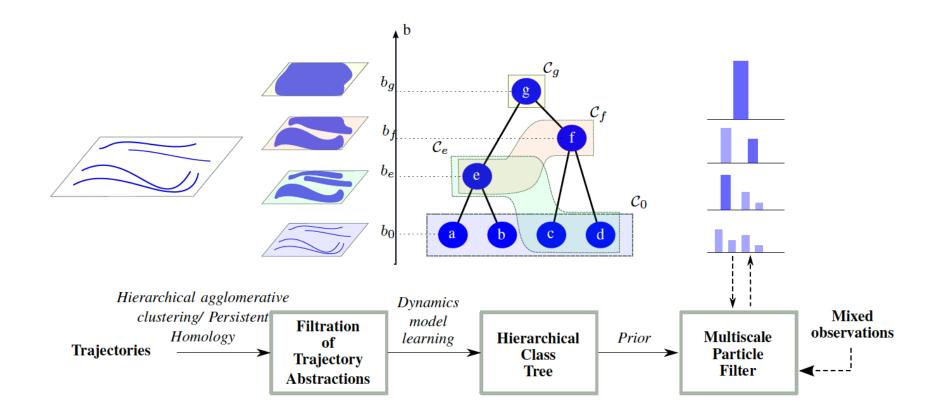
2. Downward pass: Recursively update childrens' probabilities

$$\mathbf{P}^{t}(\underline{c}) = \mathbf{P}^{t-1}(\underline{c}) \frac{\mathbf{P}^{t}(\rho(\underline{c}))}{\mathbf{P}^{t-1}(\rho(\underline{c}))}$$

3. Upward pass: Recursively update parents' probabilities

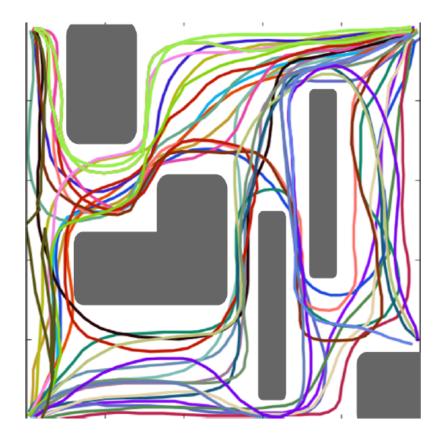
$$\mathbf{P}^{t}(\overline{c}) = \sum_{c=\rho^{-1}(\overline{c})} \mathbf{P}^{t}(c)$$

Recap: Approach

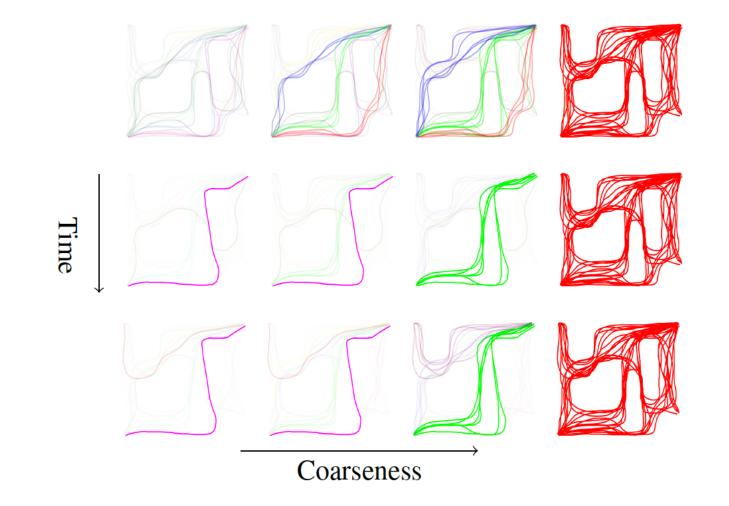


Experiment 1: Qualitative Behaviour

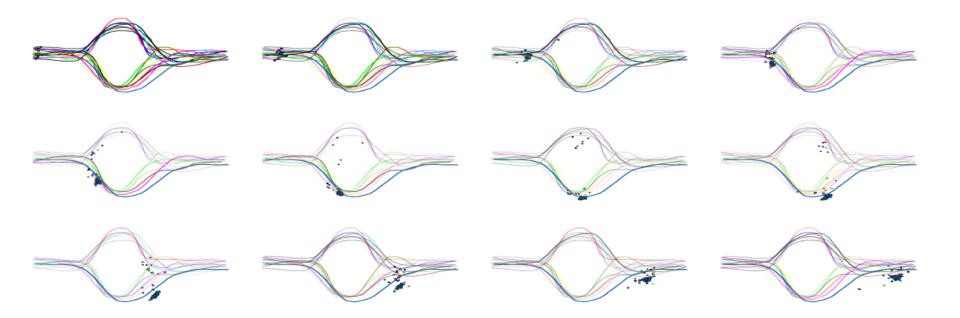
- We characterise the temporal behaviour using a synthetic dataset
- The data mimics typical pattern of movement of pedestrians in built environments
- We update all probabilities in the tree



Results: Beliefs Over Time and Level



Time Evolution of Beliefs



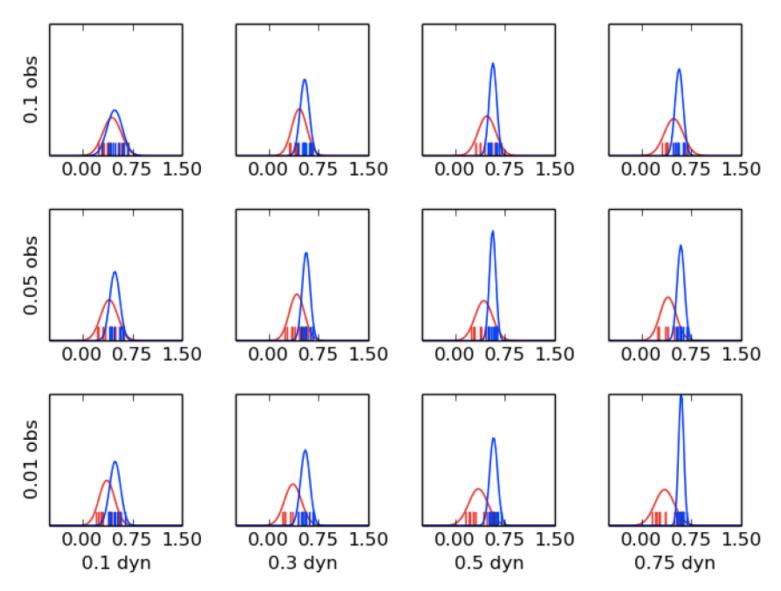
Experiment 2: Understanding Performance

MPF vs. Baseline PF

Average normalised distance from true trajectory

- Metric: distance between maximum a posteriori class of the filter and the true trajectory, as captured by the tree distance, averaged over time
- Coarse observations are provided uniformly at random (50% of the time there will also be a coarse observation)

MPF vs. Baseline

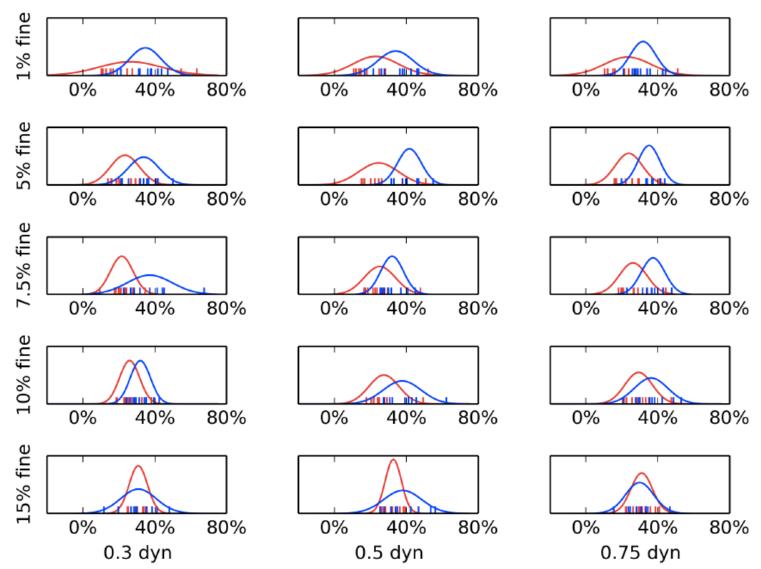


Experiment 2: Understanding Performance

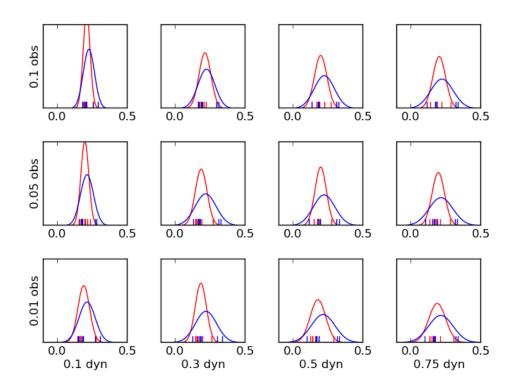
MPF vs. Baseline PF Time to convergence

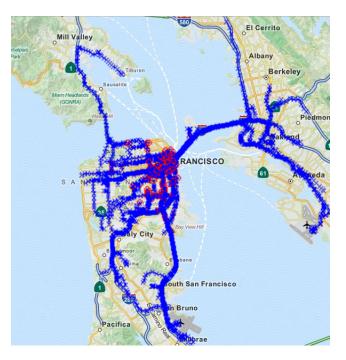
- Metric: normalised time taken (%) for estimate to be within ε, by similarity in tree distance, of true trajectory.
- Both versions receive fine observations for a small burn-in period followed by only coarse observations (which baseline PF is unable to use)

MPF vs. Baseline

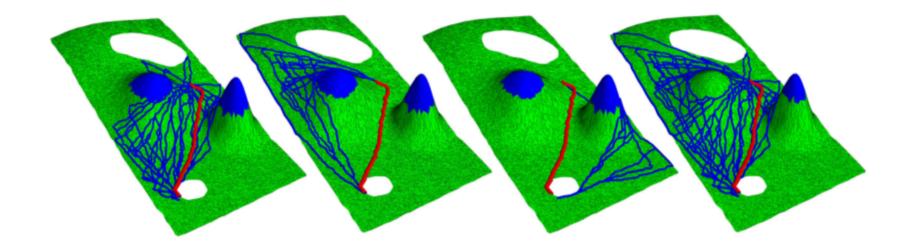


Ongoing Experiment with Uber Dataset



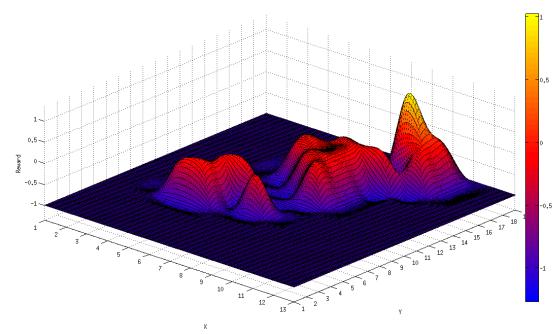


Recap: Filtrations Arising from Sublevel Sets



With general models such as Gaussian Processes, does this approach offer leverage by extracting qualitative structure to make learning more tractable?

Example Surfaces of Interest: MDP Activity Models



[F. Previtali et al., ICRA 2015, IROS 16 subm]

Inverse RL methods can be used to estimate cost functions

Realised paths are actually determines by a value function, expensive computation:

$$V^{\pi}(s) = \sum_{a} \pi(s,a) \sum_{s'} \mathbf{P}^{a}_{ss'} \left[\mathbf{R}^{a}_{ss'} + \gamma \ V^{\pi}(s') \right]$$

Can topological categorisation of reward functions yield faster computation of V?

Conclusions

- Persistence as defined in TDA provides a multi-scale representation that is ripe for combinations with probabilities
- Some uses:
 - Var. noise sensors/ actuators
 - Coarse instructions

Acknowledgements

This work was supported by the EU projects TOMSY (IST-FP7-270436) and TOPOSYS (ICT-FP7-18493)

We have benefited from the use of equipment within the EPSRC *Robotarium* Research Facility at the Edinburgh Centre for Robotics.