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Scenario: Human-Robot Co-Work
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How Do People Give Instructions
for Spatial Navigation?
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HCRC Map Task: Instruction Giver’s task is to communicate a route to a Follower,
whose map may differ. Route is Giver’s goal which the Follower tries to infer.

A. Eshky, B. Allison, S. Ramamoorthy, M. Steedman, A generative model for user simulation

20/05/16 in a spatial navigation domain, In Proc. EACL 2014.



Example Data for Map Task

Natural Language

Semantic Representation

G: you are above the camera shop

Instruct POSITION(ABOVE, LM)

F: yeah

Acknowledge

G go left jus— just to the side of the paper, x

then south,
under the parked van ¢
you have a parked van?

Instruct MOVE(TO, PAGE_LEFT) x
Instruct MOVE(TOWARDS, ABSOLUTE_SOUTH)
Instruct MOVE(UNDER, LM) ¢
Query-yn

F': a parked van no

Reply-n

G: you go— you just go west,
and down,

and then you go along to the— you go east ¢

Clarify MOVE(TOWARDS, ABSOLUTE_WEST) *
Clarify MOVE(TOWARDS, ABSOLUTE_SOUTH)
Clarify MOVE(TOWARDS, ABSOLUTE_EAST) ¢

F: south then east

Check

G yeah

Reply-y
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Generative Model: Behaviour in Map Task
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(a) sub-route aligned with « (b) spatial feature extraction] (¢) the model

[A. Eshky et al., EACL 2014]

Core Question: Can we have multi-scale state estimation to deal with
evidence from multiple such modalities, of varying coarseness?
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Representative Prior Work

Variable resolution particle filtering [Verma, Thrun, Simmons
IJCAI ‘03 ]: clump states to define ‘macrostate’
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Hierarchical subspace filtering [e.g., Brandao et al. ‘06]: track
subset of variables separately and aggregate
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Hierarchical agglomerative Dynamics vy !
clustering/ Persistent Filtration model Mixed
. . Homology of learning Hierarchical Prior Multiscale observations
Trajectories @ ———— > Trajectory —_— Class — PI?-IittLCIe i
Abstractions Tree tier <«

[M. Hawasly, F.T. Pokorny, S. Ramamoorthy, Hierarchical Filtering with Spatial
20/05/16 Abstractions, Manuscript in preparation] 7



Hierarchical Agglomerative Clustering

* |terated operation: merge two clusters at lower level to get a
single new cluster

* Yields a tree data structure
— leaves are the individual data items
— root node is the cluster made by merging all data points

* Order of merging depends on distance between clusters, such
that the pair with the smallest distance is merged first.

* Every new cluster can be assigned a distance value at which it
gets created.
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Simple Clustering Scheme

Collection of objects (e.g., trajectories): C = {c1,ca, ..., car}
Distance matrix: D(i,j) = d(c;, ¢;)

Merge to create new cluster: Cij = U Cu

u€arg min; j,iz; Di j

Birth index, b;; = D; ;, is distance threshold at which class ¢;;
starts to exist

Death index, d; =d; = D
ceases to exist

is distance index when Ci(cj)

057
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Output of Hierarchical Clustering

* Tree structure, 7(C,p)

C : collection of all original /hierarchical classes

p: C +— C : maps class to its ‘parent’

. 1f plci) = ¢
then bj = d; and ¢; C Cj

e Treenode Ci € C is alive
when bz < b < dz

denote the level by Cy

20/05/16
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Fréechet Distance

* Distance between two curves (or surfaces)
 The discrete Fréchet distance is defined as
5F(7_17 7_2) — Ln}; m?X 5E(7_1 (O‘(J))a T2 (6(])))

o, B are re-parametrisations that align trajectories to each
other point-wise

| dFD Tength
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Illustrative Example: Hierarchical Cl
with Fréchet Distance

ustering
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Clustering by Topology
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Recap: Constructing Filtrations from Samples

Observed trajectories yield
samples in the C-Space,

X cC; CR?

Then, consider the space,

X, = | B.(x)

reX
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Unions of Balls
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Unions of Balls
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Delaunay — Cech Complex

D(X)={0C X : NgeoVo # 0}
DC.(X)={0 € D(X) : NyeoB,(x) # 0}

DC,(X) ~ X,

If we can transform a simplicial complex K into another complex K, by
a sequence of elementary collapses, then the two complexes have the
same homotopy type.

A discrete Morse function can encode such a simplicial collapse,
which is used to establish the above result.

U. Bauer, H. Edelsbrunner. The Morse theory of Cech and Delaunay filtrations.
In Proc. Symp. Comp. Geometry, SOCG’14.
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Homology Computation g+h+i=[0000]"

by Matrix Reduction =011 07
S %e 1o Je Ja Je 1t le (nl L
d 1 1 0 0 0
A 0 1 1 0 1
a g e 0 0 1 1 0
1 0 0 1 1

R R R O O

[H. Edelsbrunner, J. Harer, Contemp. Math. 453: 257-282, 2008.]
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Trajectory Classification in Simplicial Complex

Cao(j) = o+ € Z1(DCR(X))
[Can (@0)]; [Cag(@1)] -+, [Cap(an)] € Hi(DCR(X))

[Cao (Ozz)] 75 [Cao (aj)] — (¢, (/5 are not homotopy
equivalentin X
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Persistent Homology Groups

DC,,(X) C DC,,(X)C ...C DC, (X)

For a filtration of simplicial complexes
’CTl g}CTg g °"glc7’n ’

define the p-th persistent homology groups:
Hy? = Zy(Kr,) [ (Bp(Kry) N Zp(Kry)) i <
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Two Trajectory Classes for 4-link Arm

Class “S” Class “2”




Clustering End Effector Trajectories:
3-dim, 97 trajectories

There exists a filtration interval with 3 classes
which later merge into two classes
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Two Discovered Equivalence Classes
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Recap: Approach

---------------------------
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Hierarchical Beliefs - Intuition

* Probability of nodes in the tree <> probabilities assigned to
regions in a metric space

* Intuition: Consider Voronoi tessellation of 2-dim space by
points on discrete curves

(a) Three separate classes (b) Two classes merge
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Bank of Particle Filters (MPF)

1. Sample n particles with equal weights from a prior,

A(Cy x RY) Co = {c € C|b. = by}
2. Build tree probabilities™
3. Sample new particles for parent nodes: n = Z N
ci=p~1(c)
In a loop:

a. For each particle at each level, compute new position:
2t~ P22 e)

b. For particles at chosen level, update with observations*
c. Propagate weights along tree & resample (at lowest level)*

20/05/16
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Motion Models

o A motion model is learnt for every class (tree node)

0, = P(¢|2,¢), 2,2 € R

o The collection of trajectories define:
- Either a global model, e.g., using GMM/GMR

- Or, a localised model - the average velocity of the
trajectory points in a ball around the studied point z

z = Zz,z;eball around z 1/5E(Z’ ZZ) ZZ

20/05/16
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Incorporating Evidence, Base Case

 Atlevel O (i.e., at the level of the finest scale), compute
Euclidean distance between observed position and class
prediction dg(z, &)

* Update weights, inversely proportional to distance

p(ztc): wo —log(dg(z, £Y))

20/05/16
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Incorporating Evidence,
with Coarse Observations

First find all classes that are alive at the level of observation,

. be + d
C:{CZEC‘sz ¢t £<di}

For each of these classes:

Compute distance based on birth index of first shared parent
] n
57’(075 ) — b b
For every particle in class ¢, update as

p(z',c) 1 w o —log(d7(c, &Y))

Rebuild tree probabilities and normalise

20/05/16 29



Rebuilding Probabilities in the Tree

1. Update based on computed weights, w, & node probability,

D e(p)=c; W'
ZC(p)Gé w'

Pt (Cz) —

2. Downward pass: Recursively update childrens’ probabilities

P'(c) = P (0 gy

3. Upward pass: Recursively update parents’ probabilities

Po= Y Pl

c=p~1(c)

20/05/16
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Recap: Approach
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Experiment 1: Qualitative Behaviour

 We characterise the
temporal behaviour using a
synthetic dataset

 The data mimics typical
pattern of movement of
pedestrians in built
environments

 We update all probabilities
in the tree

20/05/16
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Results: Beliefs Over Time and Level

wiy,

Coarseness
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Time Evolution of Beliefs
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Experiment 2: Understanding Performance

MPF vs. Baseline PF
Average normalised distance from true trajectory

 Metric: distance between maximum a posteriori class of the
filter and the true trajectory, as captured by the tree distance,
averaged over time

* Coarse observations are provided uniformly at random (50%
of the time there will also be a coarse observation)

20/05/16 35



0.05 obs 0.1 obs

0.01 obs
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Experiment 2: Understanding Performance

MPF vs. Baseline PF
Time to convergence

 Metric: normalised time taken (%) for estimate to be within ¢,
by similarity in tree distance, of true trajectory.

* Both versions receive fine observations for a small burn-in
period followed by only coarse observations (which baseline
PF is unable to use)
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0.05 obs 0.1 obs
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Ongoing Experiment with Uber Dataset
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Recap: Filtrations Arising from Sublevel Sets

Laar 4

With general models such as Gaussian Processes, does this approach offer
leverage by extracting qualitative structure to make learning more tractable?
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Example Surfaces of Interest:
MDP Activity Models

[F. Previtali et al.,
ICRA 2015, IROS 16 subm]

Inverse RL methods
can be used to
estimate cost functions

Realised paths are actually determines by a value function, expensive computation:

V7 (s) = Zn'(s,a) ZPS‘;,[RZS, +y V" (s')]

Can topological categorisation of reward functions yield faster computation of V?

04/06/16 41



Conclusions

* Persistence as defined in
TDA provides a multi-scale
representation that is ripe
for combinations with
probabilities

e Some uses:

— Var. noise sensors/
actuators

— Coarse instructions

20/05/16
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