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Scenario:	Human-Robot	Co-Work	
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How	Do	People	Give	Instruc-ons		
for	Spa-al	Naviga-on?	
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HCRC	Map	Task:	Instruc-on	Giver’s	task	is	to	communicate	a	route	to	a	Follower,		
whose	map	may	differ.	Route	is	Giver’s	goal	which	the	Follower	tries	to	infer.	
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A.	Eshky,	B.	Allison,	S.	Ramamoorthy,	M.	Steedman,	A	genera9ve	model	for	user	simula9on	
in	a	spa9al	naviga9on	domain,	In	Proc.	EACL	2014.			



Example	Data	for	Map	Task	
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Genera-ve	Model:	Behaviour	in	Map	Task	
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[A.	Eshky	et	al.,	EACL	2014]	
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Core	Ques9on:	Can	we	have	mul9-scale	state	es9ma9on	to	deal	with		
evidence	from	mul9ple	such	modali9es,	of	varying	coarseness?	



Representa-ve	Prior	Work	

•  Variable	resolu-on	par-cle	filtering	[Verma,	Thrun,	Simmons	
IJCAI	‘03	]:	clump	states	to	define	‘macrostate’	

•  Hierarchical	subspace	filtering	[e.g.,	Brandao	et	al.	‘06]:	track	
subset	of	variables	separately	and	aggregate	
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Our	Approach	
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[M.	Hawasly,	F.T.	Pokorny,	S.	Ramamoorthy,	Hierarchical	Filtering	with	Spa9al	
Abstrac9ons,	Manuscript	in	prepara-on]			



Hierarchical	Agglomera-ve	Clustering	

•  Iterated	opera-on:	merge	two	clusters	at	lower	level	to	get	a	
single	new	cluster		

•  Yields	a	tree	data	structure	
–  leaves	are	the	individual	data	items	
–  root	node	is	the	cluster	made	by	merging	all	data	points	

•  Order	of	merging	depends	on	distance	between	clusters,	such	
that	the	pair	with	the	smallest	distance	is	merged	first.		

•  Every	new	cluster	can	be	assigned	a	distance	value	at	which	it	
gets	created.	
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Simple	Clustering	Scheme	

•  Collec-on	of	objects	(e.g.,	trajectories):	
•  Distance	matrix:	
	
•  Merge	to	create	new	cluster:	

•  Birth	index,																			,	is	distance	threshold	at	which	class	
starts	to	exist	

•  Death	index,																											,	is	distance	index	when													
ceases	to	exist		
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C = {c1, c2, ..., cM}
D(i, j) = �(ci, cj)

cij =
[

u2argmini,j,i6=j Di,j

cu

cijbij = Di,j

di = dj = Di,j ci(cj)



Output	of	Hierarchical	Clustering	

•  Tree	structure,	

•  If																										
								then	
	
•  Tree	node																	is	alive	

when	
	denote	the	level	by					
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T hC, ⇢i

C : collection of all original/hierarchical classes

⇢ : C 7! C : maps class to its ‘parent’

⇢(ci) = cj

bj = di and ci ⇢ cj

ci 2 C
bi  b < di

Cb



Fréchet	Distance	

•  Distance	between	two	curves	(or	surfaces)	
•  The	discrete	Fréchet	distance	is	defined	as	

																	are	re-parametrisa-ons	that	align	trajectories	to	each	
	other	point-wise		
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�F (⌧1, ⌧2) = inf

↵,�
max

j
�E(⌧1(↵(j)), ⌧2(�(j)))

↵,�



Illustra-ve	Example:	Hierarchical	Clustering		
with	Fréchet	Distance	
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Clustering	by	Topology	
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Recap:	Construc-ng	Filtra-ons	from	Samples	

Observed	trajectories	yield		
samples	in	the	C-Space,	

	
Then,	consider	the	space,	
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Unions	of	Balls	
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Unions	of	Balls	
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If	we	can	transform	a	simplicial	complex	K	into	another	complex	K0	by		
a	sequence	of	elementary	collapses,	then	the	two	complexes	have	the		
same	homotopy	type.			
A	discrete	Morse	func-on	can	encode	such	a	simplicial	collapse,	
which	is	used	to	establish	the	above	result.	
	
U.	Bauer,	H.	Edelsbrunner.	The	Morse	theory	of	Čech	and		Delaunay	filtra9ons.		
In	Proc.	Symp.	Comp.	Geometry,	SOCG’14.	

Delaunay	–	Čech	Complex	
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Homology	Computa-on		
by	Matrix	Reduc-on		
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a	 b	 c	 d	 e	 f	 g	 h	 i	 j	

a	 1	 1	 0	 0	 0	

b	 0	 1	 1	 0	 1	

c	 0	 0	 1	 1	 0	

d	 1	 0	 0	 1	 1	

e	 0	

f	 0	

g	 1	

h	 1	

i	 1	

j	

a	
b	

c	

d	
e	

f	 g	

h	
i	 j	

h+i	=	[0	1	1	0]T	

g+h+i	=	[0	0	0	0]T	

[H.	Edelsbrunner,	J.	Harer,	Contemp.	Math.	453:	257-282,	2008.]	



Trajectory	Classifica-on	in	Simplicial	Complex	

												are not homotopy  
  equivalent in 
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Persistent	Homology	Groups	

For	a	filtra9on	of	simplicial	complexes	

define	the	p-th	persistent	homology	groups:	

,	
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Two	Trajectory	Classes	for	4-link	Arm	

Class	“S”	 Class	“Z”	
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Clustering	End	Effector	Trajectories:		
3-dim,	97	trajectories	

There	exists	a	filtra-on	interval	with	3	classes	
which	later	merge	into	two	classes	
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Two	Discovered	Equivalence	Classes	
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Recap:	Approach	
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Hierarchical	Beliefs	-	Intui-on	

•  Probability	of	nodes	in	the	tree	ó	probabili-es	assigned	to	
regions	in	a	metric	space	

•  Intui-on:	Consider	Voronoi	tessella-on	of	2-dim	space	by	
points	on	discrete	curves	
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Bank	of	Par-cle	Filters	(MPF)	
1.  Sample	n	par-cles	with	equal	weights	from	a	prior,	

2.  Build	tree	probabili-es*	
3.  Sample	new	par-cles	for	parent	nodes:	
	
In	a	loop:	
a.  For	each	par-cle	at	each	level,	compute	new	posi-on:	
	
b.  For	par-cles	at	chosen	level,	update	with	observa-ons*	
c.  Propagate	weights	along	tree	&	resample	(at	lowest	level)*	
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�(C0 ⇥<d) C0 = {c 2 C|bc = b0}



Mo-on	Models	

l  A	mo-on	model	is	learnt	for	every	class	(tree	node)		

l  The	collec-on	of	trajectories	define:	
-  Either	a	global	model,	e.g.,	using	GMM/GMR	
-  Or,	a	localised	model	-	the	average	velocity	of	the	
trajectory	points	in	a	ball	around	the	studied	point	z	
	
	

✓i = P(z0|z, ci), z, z0 2 <d
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Incorpora-ng	Evidence,	Base	Case	

•  At	level	0	(i.e.,	at	the	level	of	the	finest	scale),	compute	
Euclidean	distance	between	observed	posi-on	and	class	
predic-on	

•  Update	weights,	inversely	propor-onal	to	distance	
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�E(z, ⇠
t)

p(zt, c) : w / � log(�E(z, ⇠
t
))



Incorpora-ng	Evidence,		
with	Coarse	Observa-ons	

First	find	all	classes	that	are	alive	at	the	level	of	observa-on,	

For	each	of	these	classes:	

				Compute	distance	based	on	birth	index	of	first	shared	parent	

	

				For	every	par-cle	in	class	c,	update	as	

	

				Rebuild	tree	probabili-es	and	normalise	
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Ĉ = {ci 2 C| bi 
b⇠ + d⇠

2
< di}

�T (c, ⇠
t) = b̂

p(zt, c) : w / � log(�T (c, ⇠
t
))



Rebuilding	Probabili-es	in	the	Tree	

1.  Update	based	on	computed	weights,	w,	&	node	probability,	

2.  Downward	pass:	Recursively	update	childrens’	probabili-es	

	

3.  Upward	pass:	Recursively	update	parents’	probabili-es	
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Recap:	Approach	
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Experiment	1:	Qualita-ve	Behaviour	

•  We	characterise	the	
temporal	behaviour	using	a	
synthe-c	dataset	

•  The	data	mimics	typical	
patern	of	movement	of	
pedestrians	in	built	
environments	

•  We	update	all	probabili-es	
in	the	tree	
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Results:	Beliefs	Over	Time	and	Level	
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Time	Evolu-on	of	Beliefs	
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Experiment	2:	Understanding	Performance	

MPF	vs.	Baseline	PF	
Average	normalised	distance	from	true	trajectory	

	
•  Metric:		distance	between	maximum	a	posteriori	class	of	the	

filter	and	the	true	trajectory,	as	captured	by	the	tree	distance,	
averaged	over	-me	

•  Coarse	observa-ons	are	provided	uniformly	at	random	(50%	
of	the	-me	there	will	also	be	a	coarse	observa-on)	
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MPF	vs.	Baseline	



Experiment	2:	Understanding	Performance	

MPF	vs.	Baseline	PF	
Time	to	convergence	

	
•  Metric:	normalised	-me	taken	(%)	for	es-mate	to	be	within	ε,	

by	similarity	in	tree	distance,	of	true	trajectory.	

•  Both	versions	receive	fine	observa-ons	for	a	small	burn-in	
period	followed	by	only	coarse	observa-ons	(which	baseline	
PF	is	unable	to	use)	
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MPF	vs.	Baseline	



Ongoing	Experiment	with	Uber	Dataset	
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Recap:	Filtra-ons	Arising	from	Sublevel	Sets	
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With	general	models	such	as	Gaussian	Processes,	does	this	approach	offer		
leverage	by	extrac-ng	qualita-ve	structure	to	make	learning	more	tractable?	



Example	Surfaces	of	Interest:		
MDP	Ac-vity	Models	
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[F.	Previtali	et	al.,		
ICRA	2015,	IROS	16	subm]	

Realised	paths	are	actually	determines	by	a	value	func-on,	expensive	computa-on:	
	
	
	
Can	topological	categorisa-on	of	reward	func-ons	yield	faster	computa-on	of	V?	

Inverse	RL	methods	
can	be	used	to		
es-mate	cost	func-ons	



Conclusions	

•  Persistence	as	defined	in	
TDA	provides	a	mul--scale	
representa-on	that	is	ripe	
for	combina-ons	with	
probabili-es	

•  Some	uses:	
–  Var.	noise	sensors/
actuators	

–  Coarse	instruc-ons	

20/05/16	 42	



Acknowledgements	

This	work	was	supported	by	the	EU	projects		
TOMSY	(IST-FP7-270436)	and	TOPOSYS	(ICT-FP7-18493)	

	
	
	
	
	
	
	
	

We	have	benefited	from	the	use	of	equipment	within	the	
EPSRC	Robotarium	Research	Facility	at	the	Edinburgh	Centre	for	Robo-cs.	

20/05/16	 43	


