
The π-calculus

Formalising the π-calculus in Isabelle

Jesper Bengtson

Department of Computer Systems
University of Uppsala, Sweden

30th May 2006

The π-calculus

Overview

This talk will cover the following

Motivation – Why are we doing this?

The π-calculus – A rundown on what the π-calculus actually
is with a focus on the operational semantics.

Nominal logic – A description of the nominal package we use
to deal with binders.

Formalisation in Isabelle – How do we create induction rules
for nominal types?

Formalisation in Isabelle – The proof strategies used to do
proofs in Isabelle regarding simulation and bisimulation.

Conclusions and future work – what have we learnt and what
remains to be done.

The π-calculus

Motivation

Why formalise the π-calculus? Has this not been done before?

The π-calculus has been formalised in Isabelle and Coq.

Binders have been dealt with either by using HOAS or
de-Bruijn indices.

The formalisations to date have flaws which make them
cumbersome to work with.

There are automatic tools available to reason about actual
processes, like the Mobility Workbench - it can only reason
about agents with finite state space, however. It is not
verified.

We want to create a library of lemmas and tactics to reason
about process calculi in Isabelle. The amount of work for the
end user is, to date, far too much.

The π-calculus

A simple distributed system

The π-calculus

A simple distributed system

Printer request

The π-calculus

A simple distributed system

Printer address

The π-calculus

A simple distributed system

Print job

The π-calculus

A simple distributed system

The π-calculus

The π-calculus - a calculus of mobile processes

The π-calculus was created by Robin Milner, Joachim Parrow
and David Walker.

It is used to model communication between processes
(agents).

Since its conception, the pi-calculus has had many spin-offs –
The Spi-calculus, the Fusion calculus, typed and higher order
π-calculus just to name a few.

The π-calculus

Notation

The following notation will be used throughout this talk.

Processes, often called agents will be denoted P, Q, R.

Actions that the agents perform are denoted α, β, γ.

free names will be denoted a, b, c

bound names will be denoted x , y , z .

The state of a process after an action is called a derivative

and is denoted P ′, Q ′, R ′.

A process P doing an action α to the derivative P ′ will be
denoted P

α
−→ P ′.P ′ is also said to be an α-derivative of P.

Substitution is denoted P{a/b} which can be read “b for a” –
all free occurrances of b in P are replaced by a.

The free names of a process can be obtained through the
function fn – fn(P) represents the free names of the process P.

The π-calculus

Syntax

The following is the syntax of the pi-calculus.

Prefixes

πp = a(x)
| āb

| τ

Processes

π = 0
| πp.π
| [a = b]π
| π + π
| π | π
| (νx)π
| !π

The π-calculus

Prefixes

There are three types of prefixes in the π-calculus.

Input

a(x).P
a(x)
−→ P

The process a(x).P can receive a name x over the channel a.

Output

āb.P
āb
−→ P

The process āb.P can output the name b over the channel a.

Silent action

τ.P
τ

−→ P

The process τ.P can perform a τ -action, often called a silent
action.

The π-calculus

Actions

The actions of a process are closely linked to the prefixes. They
appear over the transition arrows. The actions available are:

Actions

Input: a(x)

Output: āb

Tau: τ

Input and output have some similarities to the actions and
co-actions of CCS.

The π-calculus

Actions cont. - Free and bound names

The names in an action can be grouped into free and bound names
according to the following scheme:

fn bn n

a(x) {a} {x} {a, x}
āb {a, b} {} {a, b}
τ {} {} {}

There is one more type of action which will be covered later.

The π-calculus

Match

An equality test can be added as a guard for a transition.

Match

P
α

−→ P ′

[a = a]P
α

−→ P ′

Intuitively, [a = b]P can only do α and end up in P ′ only if a = b.

The π-calculus

Nondeterministic choice

The +-operator can be used to encode nondeterministic choice.

Sum

P
α

−→ P ′

P + Q
α

−→ P ′

Q
α

−→ Q ′

P + Q
α

−→ Q ′

The π-calculus

Parallel composition

Processes running in parallel can be encoded with the |-operator.

Par

P
α

−→ P ′

P | Q
α

−→ P ′ | Q
∀x ∈ bn(α). x /∈ fn(Q)

Q
α

−→ Q ′

P | Q
α

−→ P | Q ′
∀x ∈ bn(α). x /∈ fn(P)

Comm

P
a(x)
−→ P ′ Q

āb
−→ Q ′

P | Q
τ

−→ P ′{b/x} | Q ′

P
āb
−→ P ′ Q

a(x)
−→ Q ′

P | Q
τ

−→ P ′ | Q ′{b/x}

The π-calculus

Restriction

The ν-operator can be used to bind a name to a specific process.
This name will be unique for this process and may not occur free
in any other.

Res

P
α

−→ P
′

(νx)P
α

−→ (νx)P ′
x /∈ n(α)

The π-calculus

The Bang-operator

The !-operator is used to model a process running in parallel with
itself infinitely many times.

Bang

P | !P
α

−→ P
′

!P
α

−→ P
′

The π-calculus

Scope extrusion

So far we have omitted one type of action – the bound output.
When restricting a name, that name is considered local to that
process only. What happens if we output this name?

Open

P
āx
−→ P ′

(νx)P
āνx
−→ P ′

a 6= x

Close

P
a(x)
−→ P ′ Q

āνy
−→ Q ′

P | Q
τ

−→ (νy)(P ′{y/x} | Q ′)
y /∈ fn(P)

P
āνy
−→ P ′ Q

a(x)
−→ Q ′

P | Q
τ

−→ (νy)(P ′ | Q ′{y/x})
y /∈ fn(Q)

The π-calculus

Actions again - Free and bound names

We can now complete the table we had earlier.

fn bn n

a(x) {a} {x} {a, x}
āb {a, b} {} {a, b}

āνx {a} {x} {a, x}
τ {} {} {}

The π-calculus

Structural congruence

There are structural congruence rules for the π-calculus. These are
equivalences which we intuitively know to be true.

Rules for the +-operator

P + 0 ≡ P

P + Q ≡ Q + P

P + (Q + R) ≡ (P + Q) + R

Corresponding rules for the |-operator

P | 0 ≡ P

P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R

The π-calculus

Structural congruence cont. – scope extrusion

The more complex structural congruence rules revolve around
restriction.

(νx)P ≡ P if x /∈ fnP

(νx)(P + Q) ≡ P + (νx)Q if x /∈ fnP

(νx)(P | Q) ≡ P | (νx)Q if x /∈ fnP

The π-calculus

Recall our system

The π-calculus

Modeling our system

We need to model the the printer, the printer server and the clients
in order to model the complete system.

The printer

P ≡ a(x).print x .P

The π-calculus

Modeling our system

We need to model the the printer, the printer server and the clients
in order to model the complete system.

The printer

P ≡ a(x).print x .P

The printer server

S ≡ b(y).ȳ a.S

The π-calculus

Modeling our system

We need to model the the printer, the printer server and the clients
in order to model the complete system.

The printer

P ≡ a(x).print x .P

The printer server

S ≡ b(y).ȳ a.S

The client

C ≡ (νz)b̄z .z(q).q̄ job.C

The π-calculus

Modeling our system

We need to model the the printer, the printer server and the clients
in order to model the complete system.

The printer

P ≡ a(x).print x .P

The printer server

S ≡ b(y).ȳ a.S

The client

C ≡ (νz)b̄z .z(q).q̄ job.C

The system

Sys ≡ C | C | C | S | P

The π-calculus

Modeling our system

We need to model the the printer, the printer server and the clients
in order to model the complete system.

The printer

P ≡ a(x).print x .P

The printer server

S ≡ b(y).ȳ a.S

The client

C ≡ (νz)b̄z .z(q).q̄ job.C

The system

Sys ≡ C | C | C | (νa)(S | P)

The π-calculus

A sample run

P ≡ a(x).print x .P S ≡ b(y).ȳ a.S C ≡ (νz)b̄z .z(q).q(job).C

Sys ≡ C | C | C | (νa)(S | P)

The π-calculus

A sample run

P ≡ a(x).print x .P S ≡ b(y).ȳ a.S C ≡ (νz)b̄z .z(q).q(job).C

Sys ≡ C | C | C | (νa)(S | P)
τ

−→

C | C | (νz)(z(q).q̄ job.C | (νa)(z̄a.S | P))

The π-calculus

A sample run

P ≡ a(x).print x .P S ≡ b(y).ȳ a.S C ≡ (νz)b̄z .z(q).q(job).C

Sys ≡ C | C | C | (νa)(S | P)
τ

−→

C | C | (νz)(z(q).q̄ job.C | (νa)(z̄a.S | P))
τ

−→

C | C | (νz)(νa)(ā job.C | S | P)

The π-calculus

A sample run

P ≡ a(x).print x .P S ≡ b(y).ȳ a.S C ≡ (νz)b̄z .z(q).q(job).C

Sys ≡ C | C | C | (νa)(S | P)
τ

−→

C | C | (νz)(z(q).q̄ job.C | (νa)(z̄a.S | P))
τ

−→

C | C | (νz)(νa)(ā job.C | S | P)
τ

−→

C | C | (νz)(νa)(C | S | print job.P)

The π-calculus

A sample run

P ≡ a(x).print x .P S ≡ b(y).ȳ a.S C ≡ (νz)b̄z .z(q).q(job).C

Sys ≡ C | C | C | (νa)(S | P)
τ

−→

C | C | (νz)(z(q).q̄ job.C | (νa)(z̄a.S | P))
τ

−→

C | C | (νz)(νa)(ā job.C | S | P)
τ

−→

C | C | (νz)(νa)(C | S | print job.P)
print job
−→

C | C | (νz)(νa)(C | S | P)

The π-calculus

A sample run

P ≡ a(x).print x .P S ≡ b(y).ȳ a.S C ≡ (νz)b̄z .z(q).q(job).C

Sys ≡ C | C | C | (νa)(S | P)
τ

−→

C | C | (νz)(z(q).q̄ job.C | (νa)(z̄a.S | P))
τ

−→

C | C | (νz)(νa)(ā job.C | S | P)
τ

−→

C | C | (νz)(νa)(C | S | print job.P)
print job
−→

C | C | (νz)(νa)(C | S | P) ≡

C | C | (νa)(C | S | P)

The π-calculus

A sample run

P ≡ a(x).print x .P S ≡ b(y).ȳ a.S C ≡ (νz)b̄z .z(q).q(job).C

Sys ≡ C | C | C | (νa)(S | P)
τ

−→

C | C | (νz)(z(q).q̄ job.C | (νa)(z̄a.S | P))
τ

−→

C | C | (νz)(νa)(ā job.C | S | P)
τ

−→

C | C | (νz)(νa)(C | S | print job.P)
print job
−→

C | C | (νz)(νa)(C | S | P) ≡

C | C | (νa)(C | S | P) ≡ C | C | C | (νa)(S | P)

The π-calculus

A sample run

P ≡ a(x).print x .P S ≡ b(y).ȳ a.S C ≡ (νz)b̄z .z(q).q(job).C

Sys ≡ C | C | C | (νa)(S | P)
τ

−→

C | C | (νz)(z(q).q̄ job.C | (νa)(z̄a.S | P))
τ

−→

C | C | (νz)(νa)(ā job.C | S | P)
τ

−→

C | C | (νz)(νa)(C | S | print job.P)
print job
−→

C | C | (νz)(νa)(C | S | P) ≡

C | C | (νa)(C | S | P) ≡ C | C | C | (νa)(S | P) ≡ Sys

The π-calculus

A recapitulation

So far we have covered:

What is the π-calculus?

Operational semantics

A relatively simple example

The next part of this talk will cover:

How do we incorporate this into a theorem prover?

What technical difficulties are there?

Why choose Isabelle out of all the available theorem provers?

The π-calculus

Isabelle

Isabelle is an interactive theorem prover.

It has support for first order logic (FOL), higher order logic
(HOL) and Zermaelo Fraenkel (ZF) set theory.

It uses classical logic.

It is extensively used in the formalisation of large real life

problems.

It has support for writing proofs which are readable by
humans!

The π-calculus

α-equivalence

α-equivalence is a key concept in process calculi. Intuitively, the
names of the bound variables are unimportant.

Two α-equivalent processes

a(x).x̄b.0 =α a(y).ȳb.0

Since y does not occur free in a(x).x̄a.0, all occurrances of x can
be substituted for y and the resulting processes are α-equivalent.

The π-calculus

α-equivalence

α-equivalence is a key concept in process calculi. Intuitively, the
names of the bound variables are unimportant.

Two α-equivalent processes

a(x).x̄b.0 =α a(y).ȳb.0

Since y does not occur free in a(x).x̄a.0, all occurrances of x can
be substituted for y and the resulting processes are α-equivalent.

The following two processes, however, are not α-equivalent.

Two non α-equivalent processes

a(x).x̄b.0 6=α a(b).b̄b.0

The π-calculus

α-equivalence

α-equivalence is a key concept in process calculi. Intuitively, the
names of the bound variables are unimportant.

Two α-equivalent processes

a(x).x̄b.0 =α a(y).ȳb.0

Since y does not occur free in a(x).x̄a.0, all occurrances of x can
be substituted for y and the resulting processes are α-equivalent.

The following two processes, however, are not α-equivalent.

Two non α-equivalent processes

a(x).x̄b.0 6=α a(b).b̄b.0

Any process has infinitely many α-equivalent processes!

The π-calculus

α-equivalence in literature

When doing non-formal proofs there is usually a lot of hand-waving
regarding α-equivalence.

The π-calculus, Sangiorgi and Walker

In any discussion, we assume tha the bound names of any
processes or actions under consideration are chosen to be different
from the names free in any other entities under consideration, such
as processes, actions, substitutions and sets of names.

An introduction to the π-calculus, Parrow

... we will use the phrase “bn(α) is fresh” in a definition to mean
that the name in bn(α), if any, is different from any free name
occurring in any of the agents in the definition.

The π-calculus

α-equivalence in theorem provers

This type of hand waving does not work well with theorem provers
and methods for dealing with binders in formalisations have been
proposed – most notably de-Bruijn indices and HOAS.

We have adopted a new approach using nominal logic and the new
package which has been incorporated into Isabelle.

The π-calculus

Nominal logic

Nominal logic was designed in Cambridge by Andy Pitts, Jamie
Gabbay and Christian Urban.

Alpha equivalence is dealt with using permutations of names.

Nominal logic has some very nice mathematical properties,
which will be covered later.

A nominal package is being implemented in Isabelle which
provides extensive support for working with nominal logic.

So far, the nominal package has been used to formalise the
λ-calculus (Urban), SystemF (Urban) and the pi-calculus
(Bengtson).

The π-calculus

Permutations

Permutation is denoted p •P where p is a permutation and P is an
agent.

A single permutation is written (a b) • P where a and b are the
names that are to be permuted in P.

Equivariance

A relation R is said to be equivariant if it is closed under
permutations. More formally:

∀a b p. (a, b) ∈ R −→ (p • a, p • b) ∈ R

We will find that all of our relations are equivariant, which is
crucial.

The π-calculus

Permutations on π-calculus agents

Permutations on names

(a b) • a = b

(a b) • b = a

(a b) • c = c iff c ♯ (a, b)

Permutations on π-calculus agents

p • τ.P = τ.(p • P)
p • a(x).P = p • a(p • x).(p • P)
p • āb.P = p • a(p • b).(p • P)
p • [a = b]P = [(p • a) = (p • b)](p • P)
p • P + Q = (p • P) + (p • Q)
p • P | Q = (p • P) | (p • Q)
p • (νx)P = (ν(p • x))(p • P)
p•!P =!(p • P)

The π-calculus

Support and freshness

The support of an agent is the free names of the agent. More
formally:

Support

supp P = {a | inf {b | (a b) • P 6= P}}

The definition for freshness then becomes trivial.

Freshness

a ♯ P = a /∈ supp P

The π-calculus

Permutations and α-equivalence

α-equivalence can be defined using permutations. In the
pi-calculus, we have two cases where binders occur in the syntax –
Input and Restriction.

α-equivalence on restriction

(νx)P =α (νy)Q iff either x = y ∧ P = Q or

x 6= y ∧ P = (x y) •Q ∧ x ♯ Q

α-equivalence on input-actions

a(x)P =α b(y)Q iff a = b and either x = y ∧ P = Q or

x 6= y ∧ P = (x y) • Q∧
x ♯ Q

From now on = on agents will denote α-equivalence.

The π-calculus

Defining the π-calculus using the nominal package

The datatype for the π-calculus is defined in Isabelle as follows.

The π-datatype

atom decl name

nominal datatype pi = PiNil

| Tau pi

| Input name ‘‘<<name>> pi’’

| Output name name pi

| Match name name pi

| Sum pi pi

| Par pi pi

| Res ‘‘<<name>> pi’’

| Bang pi

The π-calculus

Creating the operational semantics

Creating operational semantics in Isabelle is best done using
inductively defined sets. Intuitively, if the tuple (P, α,P ′) is in the
set, then P

α
−→ P ′ is a valid transition.

This causes problems, however as the action is split from the
derivatives along with any bound names they share.

Consider the transition a(x).P
a(x)
−→ P. The x needs to be bound in

P until a communication is done. If we split them up, as in the
example above, we lose the ability to α-convert.

The π-calculus

The residual datatype

We create the notion of a residual. A residual is the result of the
transition, but with the action still bound to the derivative. The
action P

α
−→ P ′, is written P 7−→ α ≺ P ′.

When looking at rules for the operational semantics, the old
notation will be used. However, the residual notation will appear in
Isabelle code.

The operational semantics is thus a set of type (pi × residual) set.

The π-calculus

Defining the residual datatype

The subject datatype

datatype subject = InputS name

| BoundOutputS name

The freeRes datatype

datatype freeRes = OutputR name name

| TauR

The residual datatype

nominal datatype residual = BoundR subject ‘‘<<name>>

pi’’

| FreeR freeRes pi

The π-calculus

Structural induction

When defining the operational semantics of a calculus, Isabelle
automatically creates the rules for induction and structural
induction.

These automated rules, however, assume equivalence to be
syntactic equivalence and not α-equivalence, and this makes them
tedious to work with.

The π-calculus

Structural induction – a simple example

Recall the rules for the +-operator:

Nondeterministic choice

P
α

−→ P ′

P + Q
α

−→ P ′

Q
α

−→ Q ′

P + Q
α

−→ Q ′

Isabelle will from these create the following rule:

Isabelle’s rule for structural induction

P + Q 7−→ Rs

∀P ′ Q ′ . P ′ 7−→ Rs ∧ P + Q = P ′ + Q ′ −→ Pred

∀P ′ Q ′ . Q ′ 7−→ Rs ∧ Q + Q = P ′ + Q ′ −→ Pred

Pred

The π-calculus

Improving structural induction on the +-operator.

Isabelle’s rule for structural induction

P + Q 7−→ Rs

∀P ′ Q ′ . P ′ 7−→ Rs ∧ P + Q = P ′ + Q ′ −→ Pred

∀P ′ Q ′ . Q ′ 7−→ Rs ∧ Q + Q = P ′ + Q ′ −→ Pred

Pred

This rule is about as simple as it can get. We can, however, polish
it a bit.

The π-calculus

Improving structural induction on the +-operator.

Isabelle’s rule for structural induction

P + Q 7−→ Rs

∀P ′ Q ′ . P ′ 7−→ Rs ∧ P + Q = P ′ + Q ′ −→ Pred

∀P ′ Q ′ . Q ′ 7−→ Rs ∧ Q + Q = P ′ + Q ′ −→ Pred

Pred

This rule is about as simple as it can get. We can, however, polish
it a bit.

Derived structural induction rule

P + Q 7−→ Rs ∧
P 7−→ Rs −→ Pred

Q 7−→ Rs −→ Pred

Pred

The π-calculus

Structural induction – Parallel composition

We concentrate on communication.

Comm

P
a(x)
−→ P ′ Q

āb
−→ Q ′

P | Q
τ

−→ P ′{b/x} | Q ′

This rule is mapped to the following induction rule:

Isabelle’s rule for structural induction

P | Q 7−→ α ≺ PQ ′

∀P ′ Q ′ P ′′ Q ′′ a b x . P ′ 7−→ a(x) ≺ P ′′ ∧ Q ′ 7−→ āb ≺ Q ′′ ∧
P | Q = P ′ | Q ′∧
α ≺ PQ ′ = τ ≺ P ′′{b/x} | Q ′′

−→ Pred

Pred

The π-calculus

Improving structural induction on the |-operator.

Isabelle’s rule for structural induction

P | Q 7−→ α ≺ PQ ′

∀P ′ Q ′ P ′′ Q ′′ a b x . P ′ 7−→ a(x) ≺ P ′′ ∧ Q ′ 7−→ āb ≺ Q ′′ ∧
P | Q = P ′ | Q ′∧
α ≺ PQ ′ = τ ≺ P ′′{b/x} | Q ′′

−→ Pred

Pred

We know nothing of the bound name generated by this rule. It
could appear free anywhere and force us to do manual α-conversions.

The π-calculus

Improving structural induction on the |-operator.

Isabelle’s rule for structural induction

P | Q 7−→ α ≺ PQ ′

∀P ′ Q ′ P ′′ Q ′′ a b x . P ′ 7−→ a(x) ≺ P ′′ ∧ Q ′ 7−→ āb ≺ Q ′′ ∧
P | Q = P ′ | Q ′∧
α ≺ PQ ′ = τ ≺ P ′′{b/x} | Q ′′

−→ Pred

Pred

Derived rule for structural induction

P | Q 7−→ α ≺ PQ ′

∀P ′ Q ′ a b x . P 7−→ a(x) ≺ P ′ ∧ Q 7−→ āb ≺ Q ′ ∧
α = τ ∧ PQ ′ = P ′{b/x} | Q ′ ∧ x ♯ C
−→ Pred

Pred

The π-calculus

Structural induction – Restriction

We will concentrate on the transitions with no bound actions.

Res

P
α

−→ P ′

(νx)P
α

−→ (νx)P ′
x /∈ n(α)

From this rule Isabelle derives the following induction rule:

Isabelle’s rule for structural induction

(νx)P 7−→ α ≺ xP ′

∀P ′ P ′′ β y . P ′ 7−→ β ≺ P ′′ ∧ y ♯ β ∧ (νx)P = (νy)P ′ ∧
α ≺ xP ′ = β ≺ (νy)P ′′ −→ Pred

Pred

The π-calculus

Improving structural induction on restriction

Isabelle’s rule for structural induction

(νx)P 7−→ α ≺ xP ′

∀P ′ P ′′ β y . P ′ 7−→ β ≺ P ′′ ∧ y ♯ β ∧ (νx)P = (νy)P ′ ∧
α ≺ xP ′ = β ≺ (νy)P ′′ −→ Pred

Pred

Now things start to get hairy. The assumption (νx)P = (νy)P ′

forces us to show the same goal twice for different permutations of
names. If the action contains bound names, the same goal would
have to be proven 2 × 2 = 4 times!!!

The π-calculus

Improving structural induction on restriction

Isabelle’s rule for structural induction

(νx)P 7−→ α ≺ xP ′

∀P ′ P ′′ β y . P ′ 7−→ β ≺ P ′′ ∧ y ♯ β ∧ (νx)P = (νy)P ′ ∧
α ≺ xP ′ = β ≺ (νy)P ′′ −→ Pred

Pred

Fortunately, we can derive the following rule:

Derived rule for structural induction

(νx)P 7−→ α ≺ xP ′

∀P ′. P 7−→ α ≺ P ′ ∧ x ♯ α ∧ xP ′ = (νx)P ′ −→ Pred

Pred

The π-calculus

The !-operator

Recall the operational semantics for the !-operator.

Bang

P | !P
α

−→ P ′

!P
α

−→ P ′

This rule causes a few problems:

The operator appears in the premise hence structural
induction cannot be used – we must do induction on the
depth of inference.

Doing inductive proofs of this kind in theorem provers is tricky
and care has to be taken when constructing the inductive
rules.

The π-calculus

Simulation

A process P is said to simulate a process Q if for every action Q

can do, P can mimic and their derivative are simulations. More
formally, a relation R is said to be a simulation iff:

Simulation

P R Q ≡ ∀Q ′ α. (∀x ∈ bn(α). x ♯ P) ∧

Q
α

−→ Q ′ −→ ∃P ′.P
α

−→ P ′ ∧ D(P ′, Q ′, α, R)

The requirements of the derivatives depend on the action used.

D

D(P ′, Q ′, α,R) ≡ case α of a(x) → ∀u.P ′{u/x} R Q ′{u/x}
| → P ′ R Q ′

P R Q can be read “P simulates Q preserving R”

The π-calculus

Restricting the bound names

In the definition for simulation we had the following restriction of
bound names: ∀x ∈ bn(α). x ♯ P. Consider the following two
processes.

P = a(u).0
Q = a(x).(νv)v̄u.0

These two processes simulate each other as they both can do an
Input-action and then nothing more. However, P can do the action
a(u) whereas Q cannot since u is not free in Q. We don’t want to
distinguish between these two processes, however.

The π-calculus

Proofs on simulations

Typically, proofs made on simulations have the following form:

Proving simulations

P R Q R ⊆ R′ Φ(R′)

P ′
 R′ Q ′

where Φ is a condition which must
be met for the proof to hold.

The proof that simulation is preserved by the +-operator has the
following form.

Simulation is preserved by the +-operator

P R Q R ⊆ R′ Id ⊆ R′

P + R R′ Q + R

The reason for not having the same relation in the assumption and
the conclusion will become apparent when we discuss bisimulation.

The π-calculus

Problems with this approach

Recall the definition for simulation

Simulation

P R Q ≡ ∀Q ′ α. (∀x ∈ bn(α). x ♯ P) ∧ Q
α

−→ Q ′ −→

∃P ′.P
α

−→ P ′ ∧ D(P ′, Q ′, α, R)

Again we face the problem that we know nothing of any bound
names that might emerge in a transition.

The π-calculus

Problems with this approach

Recall the definition for simulation

Simulation

P R Q ≡ ∀Q ′ α. (∀x ∈ bn(α). x ♯ P) ∧ Q
α

−→ Q ′ −→

∃P ′.P
α

−→ P ′ ∧ D(P ′, Q ′, α, R)

Fortunately, the following introduction rule can be derived from the
definition.

Simulation introduction

eqvt R

∀Q ′ α. (∀x ∈ bn(α). x ♯ C) ∧ Q
α

−→ Q ′ −→

∃P ′. P
α

−→ P ′ ∧ D(P ′, Q ′, α, R)

P R Q

The π-calculus

Bisimulation

A relation R is said to be a bisimulation if both R and R− are
simulations. In Isabelle, bisimulation is formalised using
coinduction.

Bisimulation

P ∼ Q ≡ P ∼ Q ∧ Q ∼ P

The π-calculus

Proofs on bisimulation

When doing coinductive proofs you pick a subset X of your
definition which captures what you want to prove. To prove that
bisimulation is preserved by the +-operator, the following
technique can be used:

Bisimulation is preserved by the +-operator.

P ∼ Q

P + R ∼ Q + R
X = {x .∃P Q R. P ∼ Q ∧ x = (P + R, Q + R)}

When applying the coinduct-tactic in Isabelle, you will need to
prove the following:

Symmetric step (we have to prove both directions)

P ∼ Q

P + R ({x .∃P Q R. P∼Q∧x=(P+R,Q+R)}∪∼) Q + R

We can then use the congruence rule for simulation where R =∼

The π-calculus

Advantages with this approach

There are many advantages with this approach.

The core of all proofs is done on simulation- and not
bisimulation level.

Most proofs need only be proven one way – Isabelle will
automatically infer the symmetric versions.

We can extend the coinductive package of Isabelle so that our
work is greatly simplified.

The π-calculus

Strong equivalence

Strong bisimulation is not a congruence. It is not preserved by the
Input-prefix. The largest bisimulation relation which also is a
congruence needs to be closed under substitutions.

Closure under substiutions

substClosed R ≡ {(P, Q). ∀σ. Pσ R Qσ}

The π-calculus

Strong equivalence

Strong bisimulation is not a congruence. It is not preserved by the
Input-prefix. The largest bisimulation relation which also is a
congruence needs to be closed under substitutions.

Closure under substiutions

substClosed R ≡ {(P, Q). ∀σ. Pσ R Qσ}

We can now define strong equivalence:

Strong equivalence

≃ ≡ substClosed ∼

The π-calculus

Proofs with strong equivalence

Proving properties for strongly equivalent processes is usually
trivial once you have the corresponding proof for strong
bisimulation. The tricky cases are the processes with restrictions as
manual α-conversions have to be done when the substitution
clashes with the bound name.

This is unavoidable even when doing paper proofs.

The π-calculus

What have we accomplished

So far our results are very encouraging:

We have successfully incorporated the hand waving regarding
α-equivalence into a theorem prover.

We have proven that strong bisimulation is preserved by all
operators except the Input-prefix.

We have proven that strong equivalence is a congruence.

We have proven all of the structural congruence law – i.e. if
two processes are structurally congruent, then they are
strongly equivalent (and strongly bisimilar).

The π-calculus

What have we accomplished

So far our results are very encouraging:

We have successfully incorporated the hand waving regarding
α-equivalence into a theorem prover.

We have proven that strong bisimulation is preserved by all
operators except the Input-prefix.

We have proven that strong equivalence is a congruence.

We have proven all of the structural congruence law – i.e. if
two processes are structurally congruent, then they are
strongly equivalent (and strongly bisimilar).

Some manual α-conversions still have to be done, but only where
they would have to be done in a solid paper proof as well.

The π-calculus

Conclusions

The road has been long. What have we learnt?

The hand waving which is done in literature regarding
α-equivalence is not easily formalised in a theorem prover (old
news).

it is essential to create rules for structural induction which
work up to α-equivalence and not only syntactic equivalence.

The nominal package has very nice logical properties on the
other hand and its further incorporation into Isabelle,
especially with tactics regarding substitutions and
permutations, is eagerly anticipated.

The π-calculus

Future work

There is plenty of work left to do. There is the imminent.

Finish the proofs for weak bisimulation.

Polish all the theories and publish a paper.

... and the more distant

Create support for reasoning about recursively defined
processes in Isabelle.

Create a tactic to do automatic bisimulation checking of finite
processes.

Increase the library of lemmas to include structural
congruence.

... and maybe... possibly if we feel so inclined

create an external user interface to allow for the framework to
be used by other tools.

The π-calculus

Thank you

Thank you for your attention.

