Execution Time Analysis and Abstract
Interpretation

Bjorn Lisper
Dept. of Computer Science and Electronics
Malardalen University

bjorn.lisper@mdh.se
http://www.idt.mdh.se/"blr/

October 13, 2005

NADA 2005-10-17

Outline

e Real-Time Systems
e Worst-Case Execution Time (WCET) Analysis
e Abstract Interpretation

e Abstract Interpretation Applied to WCET Analysis

NADA 2005-10-17

Real-Time Systems

Real-Time Systems are systems with timing constraints

Event

Maximal response time

-
-

Y -

Absolute deadlines, maximum response times, bounds on execution time
variation, etc.

Two classes:

e Hard real-time systems: timing constraints must be met (typically
safety-critical systems)

e Soft real-time systems: desirable that timing constraints are met (but not
absolutely necessary)

NADA 2005-10-17

WCET

To guarantee timing constraints, we need to know the Worst-Case Execution
Time (WCET) of pieces of code

BCET Actual execution times here WCET

N

| | -

Safe WCET estimates here

Common practice is to measure, and add a safety margin
But this gives no strict guarantees! Often, exhaustive testing is not feasible

A formal analysis is a safer alternative!

NADA 2005-10-17 3

WCET Analysis

Basic assumptions:

e sequential program

e the program runs in isolation (no interrupts)

WCET analysis must then:

e constrain possible program flows (“high-level”, or “flow” analysis)

e Estimate hardware impact on execution time for program fragments
(“low-level” analysis)

e Use information to produce a safe WCET estimate (calculation)

The object (low-level) code is analyzed, not the source code

NADA 2005-10-17

Structure of WCET analysis

Annotations
Program]
source \
Y Flow
Compiler analysis
Calculation \é\éﬁﬁgte
* Global
low—level o/
Object code [~
] analysis Hardware
/ timing model
Local a
low-level
analysis

NADA 2005-10-17

Problems to Overcome

Exact WCET estimation is undecidable (would solve the halting problem)

Go for methods that give good enough results on many enough interesting programs.
Fortunately, hard RT software tends to have simple structure

Modern CPU:s have very complex performance models

Much research has gone into how to handle this. Also, many embedded processors are
very simple

In principle, the low-level code must be analyzed w.r.t. possible program
flows. This is hard

Use info from higher level representations whenever possible. Also, more can be done with
binary code than seems possible at first sight

NADA 2005-10-17

Calculation

Three major technigues:

e Tree-based calculation
e Path-based calculation

e The Implicit Path Enumeration Technique (IPET)

We’'ll focus on IPET here

NADA 2005-10-17

The Implicit Path Enumeration Technique

A constraint-based approach
Can deal with unstructured programs and nonlocal flow constraints

Based on control-flow graph (CFG) program representation:

no

i:= i+1:| In;n false Stop

ns true

Bl | ph3 B2 | ng

NADA 2005-10-17

For each node n; in the CFG, obtain its computation time ¢; by low-level
analysis

Define execution counter x; for each n;

Flow constraints expressed as constraints on execution counters:

e 1, > 0 for all n; (counters must be non-negative)

e Structural flow constraints: for each node,) input counters = > output
counters

e x; = 1if n; is start or stop node
e Loop iteration bounds: z; < n

o Infeasible paths (mutual exclusivity): z; + z; <1

NADA 2005-10-17

WCET calculation then becomes a maximization problem:

ImMax E I’iti

subject to flow constraints
ILP problem if flow constraints are linear
Can be solved by standard methods

This model also assumes that timing is additive (order of execution does not
matter, only number of executions)

There are methods to compensate for this, when the hardware has a
non-additive timing model

NADA 2005-10-17 10

Example

With structural constraints only (counters z, ..., x5, assume execution times
to =15 = 10, t1 =t = 95, t3 = 50, t4 = 100)

no

x; > 0, ¢=0,...,5 %u—w
o = 1 E”lj i<n

false

n5 true
331 — 'CUO + 3’)5 true Y false
To — T, — 1 v n2 v
Bl |n3 B2 | g
o = X3+ x4

s = X3+ T4 }

Unbound problem, no solution

NADA 2005-10-17 11

Say we know n = 20. Add loop bound constraint z; < 21:

Solution To=1, 21 =21, 9 =20, 23 =0, 24

Zj

Zo

I1

L2

L2

L5

L1

<

0, i=0,
1

o + x5
r1 — 1
T3 + T4
T3 + T4
21

i< (0]
=i+l fal
n5 true
true Y false
Y n2 Y
Bl In3 B2 | n4

= 20, x5 = 20, t = 2415

NADA 2005-10-17

12

Second conditional gives new constraints x3 < 10, x4 < 10:

Ly

Lo

L1

0)

L2

L5

L1

L3

L4

VAN VANREE VANSR | R | |

O, 2=0,...,5
1 no
xo + s
=it | =0 Jalse
r1 — 1 [nt true
n5
true Y false
5 + 4 v (e
Y n2 Y
333 + T4 Bl |n3 B2 n4
21 ?
10
10

New solution ro=1,x1 =21, 9 = 20, x3 = 10, x4 = 10, x5 = 20, t = 1915

NADA 2005-10-17

13

Low-Level Analysis

Use hardware timing model to obtain safe timing estimates for nodes in CFG

Modern hardware can have complex timing models:

e Pipelined instruction execution

e Caches

e Out-of order instruction execution (superscalar)
e Branch prediction

e efc...

Can cause non-additive timing effects (execution time dependent on
complex system state)

NADA 2005-10-17

14

Caches and pipelines are most important to deal with

Pipelined execution starts execution of new instructions before old ones
are completed:

Can give overlap effects between execution of program parts:
T(cy;5¢2) < T(c1)+T(c2)

Local effect, can be estimated from execution model for individual
Instructions

NADA 2005-10-17

15

Caches are fast local memories mirroring parts of the main memory

A replacement strategy determines the contents of the cache from the
history of memory accesses

Memory access time highly dependent on whether a cache hit or a miss

Cache effects are global — a memory access can affect the time of other
accesses in completely different parts of the program

A cache analysis estimates, for each program point, the possible cache
states

State-of-the art methods use abstract interpretation for this

A WCET analysis can then assume worst possible cache state for each
access

NADA 2005-10-17

16

Flow Analysis

Purpose: to automatically discover constraints on execution counters
Most important to find bounds on execution counters in loops

Early methods were syntax-based: match against library of typical loop
patterns, with known iteration count bounds

Current research focuses on abstract interpretation as a means to bound
values of execution counters

Idea: for each execution counter, find an interval enclosing all its possible
values

Current practice not so developed: typically, most flow constraints must be
provided by hand

NADA 2005-10-17 17

Abstract Interpretation

A framework for program analysis (late 70:s, Cousot & Cousot)

It is a theory of systematic approximations to obtain computable program
analyses

ldea: use elements in some abstract domain to represent certain program
properties

For instance, a pair of numbers (a, b) to represent that a certain value is
restricted to the interval [a,]

The abstract domain must be a complete lattice, with monotone operations

Standard fixed-point theory applies

NADA 2005-10-17 18

Program Analysis and Approximations
Program analysis typically aims at deciding a set of possible behaviours, or
configurations, for some given program
To find the exact set ¢(p), for any program p, is typically undecidable
May have a method that yields an approximation ¢’(p), where c(p) C ¢'(p)

Say we want to know that the program never exhibits some forbidden
behaviour from some set B

If ¢'(p) N B =0, then surely c(p) N B =
Can thus detect cases when surely a forbidden behaviour will not appear

But we may get “false alarms”. Due to undecidability, we have to live with this

NADA 2005-10-17 19

Example: Array Bounds Analysis

Consider an array reference a(i)
Sayahasrange0,...,n

We want to know for sure that the access never gets out of bounds (a safety
property)

Maybe we can find an interval (a, b) containing all possible values of i
If 0 < a and b < n, then surely the access will never be out of bounds.

For an Ada program (with array bounds checking), this enables a program
optimization: remove the check

For a C program (without array bounds checking), this is a formal verification
that the access will never get out of bounds

NADA 2005-10-17 20

Representing Properties in Complete Lattices

Complete lattice (A, C, 1,1, L, T)

Let each element in A represent a property (or set). Then,

e [represents — , or C (weakening of information)
e [1approximates A (or N), and LI approximates V (or U)
e | corresponds to contradictory property (alway false), or ()

e T corresponds to trivial property (always true), or universal set

NADA 2005-10-17

21

Example: the Complete Lattice of Integer Intervals

Represents certain properties over the integers (or sets of integers)
A= (ZU{—-00,00})? (= Int)

(a,b) CE (a',b) <= a>d ANDLV

(a,b) U (a’,b") = (min(a, a’), max(b,d"))

(a,b) M (a’,b") = (max(a,a’), min(b, "))

1 =any (a,b) where b < a

T = (—00,)

(a,b) represents p(n) =a <n <b

NADA 2005-10-17

Solutions to Fixed-Point Equations

f:A— Bismonotone ifa C o' = f(a) C f(d') foralla,a’ € A

Let f: A — A. Consider the equation x = f(z). This kind of fixed-point
equation is common in program analysis

If fis monotone, then Tarski’s fixed-point theorem assures that the equation
has a least fixed-point solution Ifp(f): for any other solution s, Ifp(f) C s

Fixed-point equations can sometimes be solved by fixed-point iteration:

° fO:J_
o = f(f)0 >0

If /= f»~!for some n, then f™ = Ifp(f)

NADA 2005-10-17 23

If fixed-point iteration always terminates, then it can be used as a method to
solve fixed-point equations

Termination is guaranteed if the lattice satisfies the ascending chain
condition: every ascending chain w.r.t. = must eventually stabilize

Important special case: when A is finite

If the lattice does not satisfy the ascending chain condition, then fixed-point
iteration may still be possible by an approximation technique called widening

This may, however, yield a solution which is not the least fixed-point solution

NADA 2005-10-17 24

Concrete and Abstract Lattices

Common situation: a concrete lattice, describing exactly some properties of
Interest, and an abstract lattice, with approximate representations of these

|ldea: choose abstract lattice such that fixed-point equations always can be
solved by fixed-point iteration

Then fixed-point equations, describing properties of interest, can be solved
In the abstract lattice rather than in the concrete lattice

Commonly, the concrete lattice is a lattice of sets: (P(S5),<,N,U,0,S)
Each S’ € P(S) then corresponds exactly to a property over S
But if S is infinite, then there are infinite ascending chains w.r.t. C

We then need a well-chosen abstract lattice to solve equations!

NADA 2005-10-17 25

Example: Sets of Integers vs. Intervals

Consider (P(Z),<,N, U, 0,.5)

Describes properties over integers exactly, but cannot be used for analysis
The interval lattice is better for that purpose

How relate integer sets to intervals, and vice versa?

A function a: P(Z) — Int: a(S) = (inf(S), sup.s))

a maps S to the smallest interval enclosing it

A function v: Int — P(Z): v(a,b) ={z|a<2<b}

v maps (a, b) to the exact set of integers represented by (a, b)

NADA 2005-10-17

26

Galois Connections
Galois connections formalize the relation between concrete and abstract
lattice
Let C', A be complete lattices and a: C' — A, v: A — C' monotone functions
« called abstraction function, v concretization function

(C,a,,A) is then a Galois connection iff:

N

v(elc), ceC
a(y(a)),a c A

® C

N

®

Galois connection are at the heart of abstract interpretation!

NADA 2005-10-17

27

Some Important Properties of Galois Connections

Transitivity. Makes possible stepwise construction of Galois connections
Cartesian products of lattices with Galois connections has Galois connection

If Galois connection between C and A, then Galois connection between
X — Cand X — A, for any set X (total function spaces)

If Galois connections ', A; and (5, A,, then Galois connection between
C, — Cyand A; — A, (monotone function spaces)

NADA 2005-10-17 28

An Example

Consider the monotone function space (P(Z),P(Z)) — P(Z)
In particular, addition of sets belongs to this space:
Sl—I—SQZ {21+22 ‘ 21 € 51,2’2 c SQ}

There is a Galois connection to the monotone function space from pairs of
Intervals to intervals. The abstract version of “+” on intervals is given by:

(al, bl) + (CLQ, bz) = (a1 + ag,b1 + bz)
Note that Oé(Sl + Sg) L 04(51) + 05(82)

Operations on concrete lattices can be systematically “lifted” to abstract
lattices in this way

NADA 2005-10-17 29

Induced Operations, and a Theorem about Fixed-Points

Let f:C' — C' be monotone. ao f ovy: A — A is then the function on A
Induced by f

Theorem If o f oy C g, then Ifp(f) C ~(Ifp(g)).

Thus, to solve ¢ = f(c¢) in the concrete domain, we can obtain an upper
approximation by instead solving a = g(a) in the abstract domain!

This result is a cornerstone of abstract interpretation

NADA 2005-10-17

30

Abstract Interpretation for Imperative Programs

The classical model of Cousot & Cousot (first example of abstract
Interpretation). Still useful

Imperative programs modeled by flow graphs (essentially same as control
flow graphs used by compilers)

=0
!\IonS: start, exit, assignment, test, [‘<”tmefa|se stop
junction o
Y Y
Edges ~ program points 51 B2
Y

NADA 2005-10-17 31

Standard Semantics for Flow Graphs

Program states: mappings from variables to values (X = X — V)
Each node in the flow graph has a transfer function ¥ — X (test node has
two)

S f(s)

— " Xi=a =

A standard semantics for a flow graph is then a partial function > — 3,
which for every possible starting state yields its exit state (if terminating)

NADA 2005-10-17 32

Collecting Semantics for Flow Graphs

Yields, for each program point, the set of possible states given that we start
In any possible state

S1 SO

+
| =

Appropriate for program analysis since many interesting properties relate to
possible program states

NADA 2005-10-17 33

For each type of node, transfer function(s) relating set(s) in to set(s) out:

S

l true false S1 S2
=a
l Sand P S and not(P) S1 union &

l 2 If(s)|sin S}

S
X

start f

For each edge out, an equation S,,; = F(§m)

Yields a system of equations S = F(S), where S € P(Z)"
This is a fixed-point equation over the complete lattice P(X)"
Alas, fixed-point iteration will not terminate in general

Find a Galois connection to an abstract lattice where fixed-point iteration
always terminates!

NADA 2005-10-17 34

An example: Abstract Interval States

Choose X — Int as abstract lattice

That is: abstract states, where each variable is assigned an interval rather
than a single integer

Y

Abstract interval states represent “rectangle-like” sets of states

NADA 2005-10-17 35

There is a Galois connection between P(X) and X — Int

The transfer functions for the collecting semantics (sets of states) induce
transfer functions for abstract interval states

We obtain A = G(A), where G is induced from F
This equation can be solved by fixed-point iteration! (Widening required)

This yields a program analysis, where in each program point the set of
possible values for a variable is enclosed in an interval (“interval analysis”)

Can be used for, e.g., array bounds checking

NADA 2005-10-17 36

Abstract Interpretation in WCET Flow Analysis

Task: find upper bounds of execution counters for nodes in the flow graph
Can be done with interval analysis

Idea: introduce a virtual execution counter variable for each node:

e initialized to zero

e Incremented each time the node executes

Find an enclosing interval for each counter variable by interval analysis

Size of interval = upper bound for execution counter

NADA 2005-10-17 37

Abstract Interpretation in Low-Level Analysis

Low-level code can also be analyzed by abstract interpretation

The states are more complex: includes contents of registers, memories,
pipelines, branch predictors, . ..

The collecting interpretation will concern sets of such states

Again, well-chosen abstract lattices can form the basis for program analyses
that find constraints on the possible machine states in different program
points

Example: cache (important for performance). An analysis might want to
classify a memory access into sure hit, sure miss, and don’t know. This can
be done by abstract interpretation of the machine states

NADA 2005-10-17 38

