
Design and Implementation of
a Probabilistic Word
Prediction Program

Abstract

Word prediction is the problem of guessing which words are likely to follow a given segment of
text. A computer program performing word prediction can be an important writing aid for
physically or linguistically handicapped people. Using a word predictor ensures correct spelling and
saves keystrokes and effort for the user.

The goal of this project was to design and implement a word predictor for Swedish that would
suggest better words, and thus save more keystrokes, than any other word predictor available on the
market. The constructed program uses a probabilistic language model based on the well-established
ideas of the trigram predictor developed at IBM. By using such a model, the program can be easily
modified to work with languages other than Swedish. In tests, the program has been shown to save
more than 45 percent of the keystrokes for the user. The report focuses on the technical aspects of
designing an efficient algorithm and optimizing it to save as many keystrokes as possible.

Design och implementering av
ett probabilistiskt
ordprediktionsprogram

Sammanfattning

Ordprediktion är att gissa vilket ord som sannolikt följer en given sekvens av ord. Ett program som
utför ordprediktion kan vara ett bra hjälpmedel för motoriskt och språkligt handikappade vid
datorarbete och kommunikation. Användningen av ett ordprediktionsprogram underlättar stavning

och besparar knapptryckningar och därmed ansträngning för användaren.

Målet med projektet var att utforma och implementera ett ordprediktionsprogram för svenska som
föreslår bättre ord, och därmed besparar användaren fler knapp-tryckningar, än något annat
ordprediktionsprogram på marknaden. Det konstruerade programmet använder en probabilistisk
språkmodell baserad på den välkända trigram-prediktorn som utvecklats vid IBM. Detta val av
språkmodell medför att programmet enkelt kan modifieras för att fungera för andra språk än
svenska. Utförda tester visar att programmet kan spara mer än 45 procent av knapptryckningarna
för användaren. I denna rapport har tyngdpunkten lagts på de tekniska aspekterna av att skapa en
effektiv algoritm och optimering av denna.

Acknowledgments

This paper is a report of my master�s project which was done at the Department of Numerical
Analysis and Computing Science (NADA) and at the Department of Speech, Music and Hearing
(TMH) at the Royal Institute of Technology (KTH). First of all I would like to thank my
supervisors associate professors Sheri Hunnicutt at TMH and Viggo Kann at NADA for giving me
the opportunity to do this work, and for all their encouragement and support. I am also truly grateful
to my girlfriend Ellen Wangler and associate professor Rand Waltzman for inspiration and
suggestions.

My thanks also go to my cousin Alice Carlberger, Christina Magnuson, Henrik Wachtmeister,
Gunnar Strömstedt, Anders Holtzberg and Johan Bertenstam who all have been participants in the
project from time to time. Last, but not least, I want to thank everyone else at TMH for all their help
and for making my time at TMH a great and memorable experience.

Contents

Chapter 1 Introduction

Word prediction

Word prediction as a typing aid

Word predictor users

The Prophet word predictor

Design goals for the new predictor

Scope of report

Chapter 2 Language Modeling

Basic approach

Practical considerations of language modeling

Evaluation of word predictors

Markov models

The interpolated trigram formula

Limitations of Markov models

Conclusions

Chapter 3 The Language Model of Predict

The old language model

The new language model

Using part-of-speech tags

Two Markov models

The tag model

The word model

Punctuation marks are treated as words

Finding optimal weights for the equations

The prediction function in practice

Managing unknown words

Tagging unknown words

Alternatives to part-of-speech tagging

Selecting words from the training text

Heuristic improvements of the predictor

Strategy for incorporating modifications to the language model

Recency promotion

Case sensitivity

Repetition of suggestions

Minimal word length for suggestions

The order of words in the suggestion list

Deriving inflected forms of words

Avoiding suggestions of misspelled words

Improvements of the user interface

The context problem

The user should always be able to get suggestions

The prediction function

Lexicon management

Main lexicon design

Making the predictor adaptive

Topic lexicons

Statistical information about topic words

Chapter 4 Implementation of the Language Model

A system for word predictor construction

The extractor

The generator

The predictor

The simulator

The programs are easy to use

Modeling of words and lexicons

The word class and lexicon class hierarchies

Data representation

Representation of the main lexicon

Representation of the tag Lexicon

Efficient representation of data

Implementation of Extract

Time complexity analysis of the prediction function

Speed optimization

The source code

Chapter 5 Evaluation of the new Prophet

Measuring the performance of the predictor in practice

The perceived quality of the predictions

Results of simulations

Keystroke savings of the old versus the new version

Impact of different features

Number of suggestions

Comparisons with word predictors for other languages

Prediction examples

Chapter 6 Future Improvements

Abbreviation expansion

Prophet and dyslexia

Cooperation with spell-checker

Chapter 7 Conclusions

Performance

Limitations

Word prediction for everyone

Bibliography

1.

2.
Introduction
1. Word prediction

Word prediction is the problem of guessing which words are likely to follow a
given segment of text. A computer program performing word prediction is called
a predictor. To construct a good predictor is, indeed, a difficult task, since natural
language is immensely complex and does not lend itself to being described by
simple rules. Even the best predictors are easily outperformed by humans.
Nonetheless, word prediction as an inherent part of natural language processing
has many useful applications in areas such as speech recognition and text
proof-reading.

2. Word prediction as a typing aid

A useful application of word prediction itself is as a typing aid for computer users.
Figures 1a-c show a typical situation in which a word predictor is used together
with a word processor. While the user is typing, the predictor continuously
displays a list of words just under the current cursor position. If the intended word
is found in the list, the user can press the associated function key, and the word is
automatically inserted into the text. The benefits of using a word predictor this
way is that it ensures correct spelling and saves keystrokes and effort for the user.

Figure 1a. A word predictor used with a word processor. The predictor suggests
five words to follow the typed sequence Jag har.

3. Word predictor users

There are two main groups of users who may benefit from using a word predictor.
The first group is composed of physically disabled individuals who have typing

difficulties. They can save effort, type for longer periods of time, and sometimes
speed up their typing by using a word predictor. In many cases, these users have
special input devices or user interfaces to suit their needs. The other group
consists of linguistically handicapped persons who have difficulties in spelling
and composing. Naturally, the levels of difficulties vary within the groups, and
some persons belong to both groups.

Figure 1b. As letters are typed, the suggestions change to match the first letters of
the last word.

Figure 1c. The user selected the word skrivit with the F5 function key. The
predictor automatically inserts the word and a space into the text, and then
presents five new suggestions.

In all forms of communication, the information rate with which a person can
communicate with other people is very important for the quality of a conversation.
A too slow dialog is very stressful and annoying for the participants. Thus, a word

predictor can be an important communication aid when it speeds up typing.
Indeed, word prediction programs have proved successful in assisting persons
from both groups to communicate and to use word processors [Magnuson, 1994].

All people, however, are by necessity subject to an increased cognitive load when
typing with the help of a word predictor, simply because they must inspect the
predictor�s suggestions. For users with little or no typing or spelling difficulties,
the drawback of the increased cognitive load normally outweighs the benefits of
saving keystrokes. Thus, most "normal" computer users will prefer not to use a
word predictor. Nonetheless, since ten percent of the Swedish population can be
classified as dyslexics [von Euler, 1997], the number of possible word predictor
users is very large.

4. The Prophet word predictor

A word prediction program for Swedish called Prophet has been developed at the
Department for Speech, Music and Hearing at KTH [Hunnicutt, 1986], and
revisions of the program have been made continuously for the last ten years. The
program has also been localized into English, Norwegian, Danish and French. In a
recent project funded by the National Labor Market Board, the Swedish Handicap
Institute, and the National Social Insurance Board, the program has been rebuilt
from scratch. However, many of the good solutions of past programs have been
incorporated in this version. In this report, I will refer to these two versions of
Prophet as the old and the new version.

My contribution to this project was to design and implement the platform
independent part, Predict, which manages the language model and performs the
actual word prediction. Predict itself does not contain a user interface; it will work
together with user interfaces for PC and Macintosh, also developed in the project.
It should also be possible to use Predict as a plug-in with other writing-aid
programs.

5. Design goals for the new predictor

The major design goal for the new predictor was that it should suggest better
words than the old predictor did. When given the word sequence Det är en lätt
up..., (It is an easy up...), the old Prophet program suggests upp, uppgift,
uppgifter, uppfattning and Uppsala, (up, task, tasks, apprehension, Uppsala (a
town)), to complete the uncompleted word up. The second word, uppgift, is a good
suggestion because it well matches en lätt. However, when given the similar
sequence Det är ett lätt up..., the old predictor suggests exactly the same five
words. In this case none of the suggestions fit well in the given context.

The reason for giving the same suggestions in these two cases is that the old
Prophet program at each prediction simply suggests the most common words.
Only when no letters of the last word are yet typed, the predictor considers the
previous word, and in this case suggests words which are common successors to
the previous word.

It is clear that the new predictor would need a more powerful language model in
order to suggest more appropriate words in the previous example. Ideally, the new

predictor must be able to discern grammatically "correct" sequences from
"incorrect" ones. Then the predictor should only suggest words which are
syntactically and semantically "correct" in the given context. This is, however, a
very difficult, if not impossible, problem. Even if the predictor could decide which
words are "incorrect" and not suggest these, the user might be deprived of desired
suggestions, because most writers do not write correctly all the time. Thus, a word
predictor which limits the suggestions to only "correct" alternatives is not only
practically unachievable, it is also undesirable. A more preferable and realistic
goal is a word predictor which suggests the best fitting words before the more
unlikely words. Especially words that are in concord with the previous words
should be suggested before words that are not. For example, given the words "I
will ," a predictor suggesting see before saw is to be preferred before one doing the
opposite.

Another important design goal is that the predictor must be dynamic; it should
learn new words the user is typing and it should adapt to the user�s choice of
words. This property is crucial, since the vocabulary and the level of writing skill
of different users vary immensely, and one configuration of the predictor cannot
possibly serve all users optimally.

6. Scope of report

This report will cover the design and implementation of the language model for the new
Prophet program. It will focus on the technical aspects, and will only partly cover the design
of the user interface and other user-oriented issues. This choice of outline does not reflect the
relative importance of these two aspects; it is simply because my work concerns the
platform-independent part, Predict, which is separated from the user interface.

This chapter gave a brief description of the word prediction problem and an informal
description of the requirements of the word predictor we have designed. The next chapter will
cover practical aspects of language modeling for word prediction. Chapter 3 will then
describe the language model and the prediction function developed for the new version of
Prophet. Chapter 4 concerns the implementation of this language model. The resulting
program is then evaluated in Chapter 5, and future improvements are discussed in Chapter 6.
The last chapter contains conclusions drawn from this work.

3.

Language Modeling

In the introduction we concluded that we wanted a probabilistic word predictor capable of
making high-quality predictions. Any word predictor requires a language model to be able to
make predictions. An excellent treatment of language modeling for word prediction in
practice was done by a group at IBM for a speech recognition system [Jelinek, 1989]. Their
models have formed the basis of the language model we have designed for Prophet.

1. Basic approach

The principle of a probabilistic language model is simple: A large training text is
used to extract information about the language in question. This information is
used by the language model in order to predict successive words, given a
sequence of words. The quality of the language model is then evaluated by using
it to predict the words of a small test text. The problem is to decide what
information to extract, and how the information should be used for making
predictions.

2. Practical considerations of language modeling

Suppose we have a language L composed of strings of words w, and that our word
predictor is trying to estimate the probability of the next word, given all previous
words of a text, that is

. (1)

We require that the sum of the probabilities over all words is one:

.

Since the number of possible histories, w1, ..., wi-1, grow exponentially with i,

most histories will never occur, and very few will occur more than once. Thus, the
magnitude and sparseness of the histories make it practically impossible to
extract, or store, the probabilities given by (1), even if L is small.

A solution to this problem is to define a mapping S from the possible histories to a
manageable number M of equivalence classes, and to approximate (1) by

. (2)

The simplest way to obtain such a mapping is to consider all histories ending in
the same m words to be the same. Another way is to use a conventional finite state
grammar based on parts-of-speech classifications. As we will see later, such a
mapping can be ambiguous, and therefore the probability of the next word is
averaged over the possibility that the model was in state J:

. (3)

The probability can be estimated by running the training text
through the grammar and count the number of times the grammar is in state J and
the number of times word w occurs when the grammar is in state J, and use the
relative frequency as an estimate:

. (4)

The choice of the number M of equivalence classes will always be a compromise.
Choosing only a few classes gives a manageable model, but much information
will be lost in the mapping. Employing many classes, on the other hand, preserves
more information from the histories, but the higher resolution demands larger
training texts to give reliable data.

3. Evaluation of word predictors

The concepts of information theory are applicable for evaluating the performance
of word predictors. The performance of a word predictor, given a sequence H of
words, can be measured by quantifying the surprise it experiences when the word
w following the sequence is revealed. The surprise is equal to the amount of
information I that the revelation of the word gives to the predictor:

.

To see that this measure is adequate, consider the case in which the predictor is

certain, beyond any doubt, that the next word will be w. Then , and
thus I = 0, that is, if w in fact followed H, the predictor experienced no surprise at
all. On the other hand, if the predictor is equally certain that the word w will not

follow the sequence, then and . In this case, if w, despite the
predictor�s conviction, follows H, the predictor is said to be "infinitely surprised".

Given a whole text of n words, the average surprise that the predictor will
experience is equal to the average amount of received information

.

Another related performance measure, proposed by Jelinek, is the perplexity of
the predictor with respect to a given text:

,

where

.

Both the perplexity and the average information are functions of the predictor�s
estimation of the probability of the text to occur. The perplexity gives the average
number of words the predictor must choose between at every prediction.

The perplexity is also related to another performance measure, namely the rank of
the predictor. The rank R is defined as the average number of guesses the
predictor needs to correctly guess the following word. The rank turns out to be a
monotone function of the perplexity [Hutchens, 1995]. The rank is computed by

,

where r i is the rank of each word.

A common measure for commercial word predictors is the percentage in
keystroke savings a perfect user would get from using the predictor. The letter
keystroke savings in percent, K, can be computed from the rank r i of each word

by

, (5)

where li is the number of letters of the ith word of the text and F is the number of

suggestions in the suggestion list. The definitions above make it clear that
keystroke savings is a cruder measurement of prediction quality than perplexity,
and keystroke savings cannot be said to be a monotone function of 1/R.
Nonetheless, in general it is true that the lower the perplexity, the higher the
keystroke savings.

The keystroke savings measure K is the letter keystroke savings, because it
concerns letter keystrokes only. The overall keystroke savings considers all
keystrokes, including spaces, punctuation marks, and function keys for selecting
words in the suggestion list, as well as letters. Since the predictor (normally) adds
a space when a selection is inserted into the text, the user gains one (space key)
and loses one (function) keystroke at each selection. Thus the number of saved
keystrokes is the same as the number of saved letter keystrokes. This means that
we only need to increase the denominator of (5) appropriately when computing
the overall keystroke savings.

4. Markov models

A Markov model is an effective way of describing a stochastic chain of events, for
example a string of words. Such a model consists of a set of states and
probabilities of transitions between them. The last m words in a string are
effectively remembered by an mth order Markov model. A simple example of a
second order Markov model is shown in Figure 2.

The transition probabilities represent the conditional probabilities for the next
word given the previous words. For example, the probability of a transition from
state AA to state AB represents the probability that B is written when the two
previous words were AA.

Sequences of words extracted from the training texts are called n-grams. In this
report, 1-, 2-, and 3-grams are named uni-, bi-, and tri -grams, respectively. The
probabilities for the transitions in a second order Markov model can be estimated

simply by counting the number of bigrams and trigrams in the training text, and
by using the relative frequency as an estimate. Thus

, (6)

where C is the count of n-grams. It follows that an mth order Markov model
requires m+1-grams to be extracted from the training texts in order to calculate
(6). In the example above, the probability of a transition from AA to AB can be

estimated by .

Figure 2. A second order Markov Model for the language {A | B}*.

5. The interpolated trigram formula

The trigram formula (6) was used in the language model at IBM, but experiments
showed that many trigrams occurring in test texts did not occur in the training
text. The consequence was that when such trigrams occurred in a test text, the
probability for the third word given by (6) was zero, which is obviously not
desirable. Therefore Jelinek proposed the interpolated trigram formula:

, (7)

where is the straightforward bigram variant of (6) and

,

where C is the total word count. The non-negative weights qi sum up to 1, which

holds for all occurrences of qi in the equations in the rest of this report. Using (7)

instead of (6) gave a significant decrease in perplexity for the language model at
IBM [Jelinek, 1989].

6. Limitations of Markov models

Naturally a longer scope would yield a better model, but the main limitation of
Markov models is that their scope must be very small, otherwise the number of
states and transitions would be unmanageable. For example, if the language
consists of only a thousand words, the number of possible bigrams and trigrams
are one million and one billion respectively, and although most of them will never
occur, the number of n-grams quickly grows out of proportion with n. Even if it
were possible to store all n-grams up to a desired n, the data would be so sparse
that the information would not be useful to compute the corresponding variant of
(6) anyway. This is exactly the problem of deciding a suitable value for M, the
number of mappings of histories into equivalence classes, discussed earlier.

Using short scope Markov models has obvious consequences. Consider the
sentence "The man who lives on the third floor shot himself yesterday." The
eleventh word himself depends on the first two words "The man". This
dependence can only be captured by an eleventh order Markov model, or better.

7. Conclusions

This chapter has made clear that an equivalence classification of the histories of previous
words is necessary to get a manageable language model. One such mapping is simply to
regard all histories ending in the same n words as being equivalent, which enables the use of
Markov model probability estimations for the following word. Another way of achieving a
mapping is to combine this approach with the use of part-of-speech classification of words, as
we will see in the next chapter.

4.

The Language Model of
Predict

Markov models as described in the previous chapter will be the basis of the language model
developed for the new version of Prophet. This chapter will give a detailed description of this
language model. To enable comparisons, the language model of the old version of Prophet
will be briefly described first.

1. The old language model

The old predictor worked by employing a main lexicon containing 7 000 words, ranked
by commonality. At each prediction, the predictor selected the highest ranked words
which matched the initial letters typed, and these words were suggested to the user. The
suggestions were sorted by rank and there could be at most nine suggestions in the list.

To make the suggestions fit better with the previous word, the old version had a lexicon
with 7 300 bigrams. When a word was completed in the text, and before any letters of
the next word were typed, bigram words, if existing, were suggested to the user. As
soon as the user typed a letter of the next word, only words from the main lexicon were
suggested. There was also a special lexicon with the most common words beginning a
sentence, used in the same way as the bigram lexicon.

The predictor learned new words by inserting them into a "subject" lexicon. Then the
predictor could suggest these new words in addition to the main lexicon words. Giving
the new words a rank of 1 000 ensured that these words were suggested at a preferable
rate.

2. The new language model

The old language model gave fairly good suggestions, but often they did not match the
context very well, as in the example given in the introduction. This is obvious; the
predictor considered only the previous word when no letters of the next word were yet
typed. When letters of the next word were typed, the previous word was disregarded
and consequently the predictor simply suggested the most common words.

The new language model will always consider the previous word when predicting the
following, even after letters of the following word have been typed. Even better would
be to consider the two previous words, but if a Markov model is used, it would require
trigrams to be extracted from the training text. As mentioned, the number of trigrams is
enormous, and moreover, it seems that many will be redundant. Consider all sequences
like "en lätt uppgift", "en svår uppgift", "någon svår uppgift" ("an easy task", "a
difficult task", "some difficult task"). After the two first words we want our predictor to
suggest uppgift (task) before uppgifter (tasks), but to do so, it suffices for the predictor
to know that the two previous words were a determiner for singular and an adjective.
This can be accomplished by using a mapping from words to a much smaller number of
part-of-speech classes. The number of part-of-speech trigrams will be manageable, at
the cost of lost information.

1. Using part-of-speech tags

To get part-of-speech information as in the example above we need a training text
where the words are tagged, which means that they are classified according to
their part-of-speech. "This <article> is <verb> a <article> tagged <adjective>
sentence <noun> ." The process of assigning tags to the words of a text is called
tagging, and a computer program tagging a text is consequently called a tagger.
Much research about tagging is currently being done in the field of natural
language processing.

For this project, we have access to a small, tagged corpus (text collection) used to
train a tagger currently being developed at the Universities of Stockholm and

Umeå [Ejerhed, 1992]. The tag set consists of roughly 150 part-of-speech tags.
The level of detail of these tags is illustrated by nouns, which are subdivided
according to gender, plurality, definiteness and case. For example, the word åker
(crop field) is tagged <noun neutre singular indefinite>.

Since many words in natural language have different grammatical functionality
depending on the context, tagging cannot be done unambiguously before a
sentence has come to a full stop, even by a perfect tagger. For example, the word
åker above, can also mean travel, and is in this case tagged <verb present tense>.
Consequently, no tagger can unambiguously tag a sentence starting "En åker"
(One travels / One field) without information about the next words, since both
meanings of the word åker are still possible.

The tagged corpus consists of one million words, but given the large number of
tags, this is an insufficient amount of text to obtain very reliable statistics from.
For example, the average tag trigram count of occurring trigrams is a mere 12.8.
Nonetheless, we have used this corpus for the language model, since presently, it
is the only Swedish tagged corpus available.

2. Two Markov models

The new language model of Predict is based on two Markov models; one for
words and the other for tags. The two models interact, but the separation enables
the predictor to work with lexicons of either tagged or untagged words, without
any changes to the program. This will facilitate future localizing of the new
Prophet into languages other than Swedish, for which no tagged texts may be
available.

We have chosen to employ a second order Markov model for tags and a first order
model for words, simply because they require a reasonable amount of
implementation work and storage space. Furthermore, this choice assures that the
resulting language model will be superior to the one in the old version of Prophet.
Future extensions of the scopes are possible and would probably yield a better
model.

The idea of this scheme is to first obtain a probability estimation for the tag of the
next word, using the tag Markov model, and then use the word Markov model to
get a probability estimation for the next word. In the second step, the tag
probability estimation is taken into account, in order to promote words with have
a likely tag according to the tag Markov model.

3. The tag model

The second order Markov model for tags uses the interpolated trigram formula (7)
to estimate the probabilities of the next tag:

. (8)

Since the tagging performed by the predictor is ambiguous, the state of the
Markov model for tags is also ambiguous, and (8) is therefore averaged over the

probabilities of the current state of the model, using (3).

When a word w is completed and the model makes a transition, there are two
cases: the word w is either a known or an unknown word. In the first case, if w is
known, the estimation from (8) can be modified, since after the revelation of w,
new information is available. Thus a new tag probability estimation for the tag of
w can be computed by:

. (9)

Equation (9) shows that the tag for the completed word w is given by the weighted
sum of the probability for t, given by the tag model, and the conditional
probability that word w will have tag t. This conditional probability is obtained by

, (10)

where is the number of times word w was tagged with tag t in the training
text.

In the other case when w is unknown, the predictor has no information about this
word, and thus no counts C(w, t) are available. This means that the second term of
(9) cannot be computed for this word the first time it occurs. But, the probability
estimation obtained by (8) can be used to get preliminary counts C(w, t) for this
word for future occurrences. A detailed description of how unknown words are
treated follows later in this chapter.

4. The word model

The first order Markov model for words uses the interpolated bigram formula to
estimate probabilities of the next word:

. (11)

The probability distribution for the next tag, computed by (8), is used to get two
additional terms to (11):

, (12)

where

.

Thus is the probability of the next word, given the previous word and
the probability estimation of the tag of the next word. Since this estimation is a

probability distribution over the tag set, the last two terms are averaged over all
tags using (3).

5. Punctuation marks are treated as words

An improvement from the old version of Prophet is that punctuation marks:
periods, commas, colons etc., are treated as words by the model. This
simplification means that punctuation marks may be parts of n-grams, and thus no
special rule for the beginning of a sentence, as the old version had, is needed.
Furthermore, special tags are associated with punctuation marks, which makes
them a natural part of the tag model. This assures that the predictor�s suggestions
after punctuation marks in the text are automatically optimized without extra
work.

6. Finding optimal weights for the equations

The optimal values for the weights qi in equations (8), (9) and (12) can be found

by an iterative, statistical method described in [Jelinek, 1989]. These values will
be optimal with respect to the test text used. Within this project, we have decided
to optimize the weights simply by testing different values in order to maximize the
keystroke savings.

It is worth noting that if a term in these equations does not contribute positively to
the performance of the predictor, the value for the corresponding weight will
approach zero, and the term will not affect the sum. Hence, there is no danger in
introducing additional terms to the equations. The worst that can happen is that
the added terms will have no effect.

7. The prediction function in practice

In this and the following chapters, a prefix of a word will refer to the first n letters
of the word; it can be the empty string and it can be the whole word. For example,
the prefixes of jag are "" , "j" , "ja" and "jag." When the user starts to type a word,
the predictor regards the sequence of letters as a prefix. Not until a prefix is
completed during typing, either by a space or a punctuation mark, the prefix will
be regarded as a word.

The prediction function takes as input the current context, the cursor position, and
an integer n which is the desired number of suggestions wanted by the user. The
output is the n most probable words which match the prefix at the cursor position.

As a prefix is completed during prediction, a new word is encountered, and the
predictor makes a transition to a new state. After the transition, the predictor
computes the probabilities for all words to occur next, using (12), and returns the
best n words for suggestion. Now, if the user types the initial letter of the next
word, the predictor looks up the best n words with matching initial letter and
returns these words. As long as the user types additional letters of the word, the
predictor continues to suggest words matching the prefix. Since the probabilities
of all words are already computed, the selection process will now only involve
finding the best words matching the prefix.

8. Managing unknown words

The words known to the predictor when a session starts have much statistical
information associated with them. There are counts for unigrams and bigrams and
there are counts for how many times each word has been tagged with different
tags in the training text. Obviously, no such information is available for the new
words which are encountered during a prediction session. The predictor must
therefore try to extract this information for new words as they are used, just as
information was once retrieved from the training text. However, the problem is
that we do not want to change the database constructed from the training text,
since it would be very troublesome to keep it consistent. New words will therefore
be stored separately from the pre-known words of the database. This led to the
decision to limit the amount of information associated with new words.

The only information associated with each new word w is the frequency C(w) and
one tag t, which means that C(w, t) = 1 for one t and 0 for all others. Since no new
words are parts of bigrams, the interpolated bigram formula (11) will be reduced
to a unigram formula, and hence the model cannot take into account the previous
word, when the probability for a new word is estimated. However, since a tag is
associated with each new word, the last term of the bigram formula (8) for words
will make sure that the new words match the context when they are suggested.

Another problem with learning unknown words is the estimation ,
which is the only non-zero term of the word bigram formula when w is unknown.

If the count C from the training text is used, will be extremely small until a
word has been typed many times. Another approach is to use another count C
which counts the number of words typed during use, but that would mean that

 will be very large in the beginning of a text and then diminish as more
words are typed. Instead we decided to use a value for C such that

,

where F is a constant. This ensures that the most common word among the new
words is equally probable at all times. By changing F, the influence of the new
words can be monitored. The constant F is chosen to maximize keystroke savings.

9. Tagging unknown words

Our first approach to associate a tag with each unknown word as it occurred was
to take the tag most probable according to equation (8). The selection was
improved by only choosing among tags which are likely for unknown words.
Basically, these tags are nouns, adjectives, verbs and adverbs. Not surprisingly,
the tags selected for new words were not very accurate because only the left-hand
side context of the word is considered.

Of course, the tagging can be improved by looking at the right-hand side context
of the unknown word, as new words are typed. But that would require
modifications of the program, since it is not designed to analyze the right-hand
context of words. Instead, I investigated a method to deduce a likely tag by

statistically analyzing the morphology of words with respect to their tags.
Intuitively, the last few letters of a word reveals much information about its
part-of-speech classification. The problem is how to find a limited set of
word-endings which gives as much information as possible about the probability
distribution of tags associated with words with common endings. An elaborate
algorithm to find a set of suffixes was devised, but unfortunately there was no
available resources within the project to evaluate it. However, keystroke savings
improved slightly using morphological tagging, which indicates that it may
improve the language model.

10. Alternatives to part-of-speech tagging

Part-of-speech tagging is one way of achieving a mapping from the histories of
words to a more manageable number of states, as described in the previous
chapter. However, there are no indications that a conventional set of
part-of-speech tags is an optimal equivalence classification for word prediction
purposes. Indeed, experiments conducted by Jelinek showed that a classification
derived by statistical means outperformed a conventional classification [Jelinek,
1989]. Another interesting approach on how to infer a classification automatically
is described in [Hutchens, 1995].

By using part-of-speech tags for classifying words, some of the syntactic patterns
of the training texts are captured, but none of the semantic patterns. This means
that the predictor given the sentence beginning "I met a talkative old" will
consider man equally probable as stone or flu. Obviously, a classification of
words that capture both syntactic and semantic patterns would be preferable. An
attempt to extend the syntactic tags with semantic categories was performed, but it
did not result in an improvement of the language model.

11. Selecting words from the training text

The extracted data will serve as the base for the language model and thus the quality of
the training text is crucial to the quality of the language model. In addition to the small
tagged corpus we have access to an untagged corpus of 100 million words, mainly taken
from newspapers and fiction. This corpus is large enough, but, as the tagged corpus, it
may not contain texts of the kind a typical Prophet user would produce; short letters and
notes, etc. A careful selection of texts would certainly be useful, but compiling it
requires much work, and is beyond the scope of the project.

In the 100 million word corpus there are hundreds of thousands of unique words. It is
unfeasible to store all of the unique words, so there is a problem in deciding which
words should be selected. The straight-forward approach is simply to select the most
frequent words. However, the most frequent words in the training corpus is not
necessarily the words which will give the best coverage for other texts. Typically,
certain names can occur very frequently in one text, but not at all in other texts.
Therefore, a better approach would be to divide the corpus into a small number of
groups, and to select words which are common in most groups using some criterion for
ranking the words. Such an approach is yet to be implemented, and consequently the
word unigrams and bigrams selected for the database are those with the highest
frequency in the training texts.

3. Heuristic improvements of the predictor

Many easily observed features of natural language are not captured by the simple
language model we have developed so far. Some of these features can be accounted for
by simple heuristic methods described in this section.

1. Strategy for incorporating modifications to the language model

The obvious way of modifying the language model to capture more of the
language is to add weighted terms to the bigram formula (12). This ensures that
the added terms will have optimal effect when the model is optimized. However,
this requires that the additional terms are normalized, which is not always easy to
accomplish. Moreover, when there are many new terms, which sometimes
correspond to user optional features, it gets complicated to handle the weights
vector correctly. For these reasons we decided to give up having a normalized
probability distribution of the words. This means that the perplexity will no longer
be possible to compute, and that we have to resolve other methods of evaluating
the predictor as described in Chapter 5.

2. Recency promotion

One feature of natural language is that an occurrence of a word increases the
probability of that word occurring again, soon, in the same text. This is true
especially for content words, as opposed to function words. To account for
recency promotion equation 12 is given an additional term r(w). This term cannot
be determined without doing a thorough statistical investigation beyond the scope
of the project, so an experimentally derived term was used:

 (13)

In order to implement recency promotion efficiently, each word in the database is
associated with an 8-bit value R ranging from 0 to 255. Initially this value is 0 for
all words, but as a word occurs, its R value is increased by some small value. As a
sentence is completed, the R values for each word is decreased by another small
value. By tuning the increasing and decreasing values, the R value can reflect the
"recency" of each word.

The function F(w) has two different values depending on whether w is a function
word or a content word. This reflects the observation that content words are more
likely to reoccur than function words.

The last factor was introduced to take into account the tag probability estimation
given by the tag Markov model, thereby making the recency promotion sensitive
to the previous words. This means that words with appropriate tags are promoted
to a greater extent than other words.

The implementation of this heuristic modification increased the keystroke savings
by a few percent, which is a significant improvement. The scheme is very simple,
and the introduced overhead is only one byte per word and a constant amount of

time per word to compute r(w).

3. Case sensitivity

Another way to improve the quality of predictions is to monitor the user�s
employment of capital letters. If the user capitalizes the initial letter of a word, the
predictor can promote words that are usually spelled with an initial capital,
typically proper nouns. Conversely, if the user does not capitalize the initial letter,
the predictor can promote words whose initial letter is normally written in lower
case. The promotion is achieved simply by scaling down the probabilities for the
capitalized or non-capitalized words.

Intuitively, altering the probability estimation to get case sensitivity should have a
positive effect on the prediction quality. Indeed, with this enhancement added to
Prophet, the predictions appear to be better, and a slight increase in keystroke
savings was recorded. Thus case sensitivity was included in the new version of
Prophet. However, since less advanced users may not use capitals correctly, they
might be confused by the behavior of the predictor when the suggestions depend
on the case of the initial letter. Therefore, we decided to make case sensitivity
optional.

4. Repetition of suggestions

With the prediction function developed to date, the user may get the same word
suggested repeatedly, while typing the prefix of a word. This happens when the
user types letters which makes the prefix match a word already suggested. For
example, while typing the first letters of the word jagar (hunts) the predictor may
well suggest jag (I) three times, thereby delaying the suggestion of jagar. This
behavior is preferable in the case in which the user misses selecting a correct
suggestion, because he will soon get another opportunity to select the desired
word. On the other hand, multiple occurrences of the same word decreases the
number of different words suggested, and hence, the possible keystroke savings
are not optimized.

Some users may benefit from having suggestions repeated early, whereas others
may not. Therefore, we decided to implement a user option which delays the
repetition of suggestions, until all other matching words have been suggested.
This is accomplished by scaling down the probabilities of words which have
already been suggested within the typing of a word.

5. Minimal word length for suggestions

Just as in the old version of Prophet, the user can set the minimal length required
for words to appear in the suggestion list. Typically, the user does not want to
have very short words such as i (in) suggested.

In the new version, the user can also set the minimum number of letters that
would be saved when a suggestion is selected. For example, if this number is two,
and the user has typed three letters of the current word, each suggested word
would be at least five letters long. This option can be useful for a user without
spelling difficulties, who does not want to have suggestions which save only one

letter, since it would require the same effort to type the last letter as to select the
suggestion. On the other hand, users who do have spelling difficulties may well
want to have suggestions which do not save any letters at all, because the
suggestions can serve as confirmations of correct spelling.

6. The order of words in the suggestion list

In the old version of Prophet, the suggestions were sorted by frequency. This way
of presenting words works well for most users. However, studies show that
sorting the suggestions by increasing length may help the user to find the correct
suggestion faster. Moreover, users who prefer many suggestions may want to have
them sorted alphabetically. We have implemented all three ways of sorting the
suggestions, and the user can select the option he prefers.

7. Deriving inflected forms of words

The main lexicon contains both base forms and inflected forms of words; for
example the base form göra (do), as well as the inflected forms gjorde (did) and
gjort (done) occur. Each word in the lexicon, which is a base form of an adjective,
a verb or a noun, is marked with an inflection rule category number. Given the
rule category number and the suffix of the word, the correct inflection rule for the
word can be found. The rule is used to derive all inflected forms of the base form.
The benefit of using this scheme is that many inflected words need not be stored
explicitly, yet they can be derived when wanted, thus saving storage space. This
scheme was first used in the old version of Prophet.

The inflected forms of words are derived in two different situations. Just as in the
old version, words in the suggestion list which can be inflected are marked, which
enables the user to get another list with the inflected forms, when wanted. In the
new version, inflected words can also be automatically derived when the predictor
gets short of matching words. This feature was found to increase keystroke
savings slightly in simulations. A problem is that many words with strong forms
have a very small prefix in common with their base form, for example göra has
only g in common with its inflections. This makes the procedure of finding all
inflected words with common prefixes very time consuming, since basically all
base forms must be investigated. Another disadvantage is that no statistical
information of the derived forms is stored.

8. Avoiding suggestions of misspelled words

A word predictor which learns new words requires a smaller database and hopefully
makes better predictions. A negative consequence of using an adaptive predictor,
however, is that it will learn misspelled words, which later will be suggested to the user.
Unfortunately, the predictor cannot discern correct new words from meaningless strings
of letters accidentally created due to typing errors, and hence such non-words are also
suggested to the user. When these non-words are suggested, the user is distracted and
desired suggestions are delayed.

Having all new words blindly suggested to the user was a serious problem with the old
version of Prophet, but is remedied in the new version in two different ways. The first
way is by letting the predictor check all unknown words with a spell-checker, and allow

only accepted words to be suggested. The other way is by demanding that a new word is
typed a certain number of times before it is allowed to appear in the suggestion list. This
improvement will certainly be appreciated by the users, but both methods have the
disadvantage that users are deprived of suggestions they might benefit from. This is the
case when a word is correctly spelled, yet not accepted by the spell-checker, or when a
word is, in fact, misspelled, but the user intends to correct all occurrences of the word
later, using the spell-checker. We have implemented both these methods of avoiding
misspelled words as user options.

4. Improvements of the user interface

In this section some of the issues concerning the design of the user interface of the new
version of Prophet will be mentioned, although this was not my main task in the project.

1. The context problem

To be able to make full use of its language model, Predict must continuously get
the context to the left of the current cursor position. Since the user can change the
cursor position arbitrarily, Prophet cannot assume that the text is composed
sequentially, i.e. without cursor movements. The old version of Prophet made this
assumption for practical reasons; it worked with any application and hence it
could not get context information easily. The consequence was that when the user
moved the cursor to another point in the text, the suggestions matched the prefix
at the previous cursor position. Giving useless suggestions is obviously not a
desirable behavior of the predictor.

The new version of Prophet was required to solve the context problem. This is a
difficult task, since Prophet should be able to work with an arbitrary application
and there is no standardized way of getting access to its context. One way of
obtaining information about the context is to let the user type in an intermediate
buffer over which Prophet has complete control. This non-transparent solution is
not always desirable, because of the extra load on the user who must shuffle text
between the buffer and the target application. It may be helpful for dyslectic users,
however, since it limits the working context and provides a simpler user interface.

Another way of solving the context problem is to enable Prophet to work with a
few particular applications, or perhaps to develop versions of Prophet, each
capable of communicating with a different application. This solution would be
transparent to the user, since no intermediate buffer is needed, but the
disadvantage is that it requires an unreasonable amount of implementation work to
cover all applications.

It was decided to construct a Prophet program capable of working optimally with
MS Word. It should also be able to work with other applications than MS Word,
but then the context problem either demands use of an intermediate buffer or leads
to reduced prediction quality. The intermediate buffer will have rudimentary word
processing functionality, but as mentioned, it requires the user to shuffle the text
to the target application.

2. The user should always be able to get suggestions

Perhaps the most significant improvement of the user interface concerns the user�s
possibility to find the intended word while typing. When the user starts to type a word,
he may not be sure of the correct spelling, and thus he may not be able to type enough
of the word to get the correct suggestion. Therefore, unlike the old version, the new
version enables the user to make exhaustive searches for words without typing
additional letters. When the user wants more suggestions, he clicks on a button under
the prediction list or uses a short-cut key, and additional suggestions are displayed. This
puts the user much more in control of his situation, and will always allow him to find
the word he is looking for. Also, for many users, searching in a word list requires less
effort than striking letter keys. This improvement will undoubtedly improve the user�s
appreciation of the program [Heckel, 1991].

Another improvement of the new version is that the list of suggestions, normally
containing about five words, can be resized arbitrarily. The old version�s suggestion list
could contain up to nine words, but there is no reason to limit the number of
suggestions. An extremely slow typist, such as physicist Stephen Hawking, is probably
able to scan a large number of suggestions between each keystroke.

5. The prediction function

The language model and the heuristic modifications above give the pseudo-code of the prediction
algorithm found on the next page. The calls to the procedures in rows 15, 16, 17, 20, and 21
perform the necessary changes to the probabilities of the words as described in this chapter.

1. PredictWords(context, position, n)
2. prefix = FindLastPrefix(context, position)
3. if IsCompleted(prefix)
4. newWord = LookUpWord(all lexicons, prefix)
5. if newWord = Null
6. newWord.tag = FindMostProbableTag()
7. AddWord(appropriate topicLexicon, newWord)
8. else // newWord is known
9. for each tag t of previous position

10. recompute t.prob using (9)
11. for each tag t for next position
12. compute t.prob using (8)
13. for each word w
14. compute w.prob using (12)
15. DoRecencyPromotion()
16. RequireLength()
17. DeriveInflectedWords()
18. else // prefix augmented
19. if Length(prefix) = 1
20. PromoteCorrectlyCapped()
21. DelayRepetition()
22. return the n most probable words

1. Lexicon management

The vocabulary of any natural language is unlimited, so it is obvious that the predictor
only can know a fraction of all words of the language in question. The most common
words from the training texts are put in a database called the main lexicon. This lexicon
is supposed to cover at least 90 percent of the running words in any Swedish text, on
average. Experiments have shown that this requirement can be met for Swedish with a
lexicon containing about 10 000 words. Words which do not qualify for the main
lexicon can be grouped together by topic and stored in topic lexicons, which are
described later in this chapter.

1. Main lexicon design

We have decided to use a static, rather than a dynamic main lexicon which was used in the old
version. Using a static lexicon has many advantages:

No misspelled words can enter the main lexicon and its data are never corrupted.

User-specific data is stored separately, which enables easy updates of Prophet without loosing
information.

More efficient data structures can be used, thereby increasing speed and saving memory.

The predictor need not perform any troublesome updates of the statistical data.

The negative consequence of employing a static main lexicon is that adaptability must be realized
by other means than by changing the main lexicon.

1. Making the predictor adaptive

The predictor should learn new words it encounters during prediction. However,
the new words cannot be placed in the static main lexicon. Instead, they are placed
in topic lexicons from which the predictor also can select words for suggestion.

The remaining problem in making the predictor fully adaptive is that words in the
main lexicon will always have the same frequency, which implies that their
individual ranking will always be the same. This result of static ranking is to some
extent improved by the recency promotion described earlier in this chapter.
Further improvements may be achieved by using some long term recency function
capturing the user�s choice of words, but this approach is yet to be tested.

The need for adaptivity can be significantly reduced by using a more appropriate
main lexicon in the first place, rather than radically changing an inappropriate
one. A set of main lexicons representing different levels of writing skills should
be developed, but this does not lie within the scope of this project.

2. Topic lexicons

There can be many topic lexicons stored on file. When the user is writing about
one or more topics, the corresponding topic lexicons should be activated. Prophet
should then suggest words from these lexicons and enter new words into suitable
lexicons. The ideal situation is that the predictor somehow triggers what topics the
user is writing about and loads the corresponding lexicons, but this is generally

too difficult to achieve [Jelinek, 1989]. Consequently, the user himself must be
responsible for activating the topic lexicons and for deciding which lexicon new
words should be added to.

One problem with using topic lexicons is that it will take an unacceptably long
time for the user to produce sufficient amounts of text for the topic lexicons to
reach adequate sizes [Jelinek, 1989]. Therefore, Prophet was given the ability to
scan the user�s previously composed texts and produce topic lexicons containing
the words unknown to the main lexicon and other topic lexicons.

The old version of Prophet employed only one topic lexicon. The new version is
capable of managing an arbitrary number of topic lexicons. An advantage of using
many topic lexicons simultaneously is that the user can have a "private" topic
lexicon containing non-topic-related words he uses very often: his name and
address, names of friends, etc. This lexicon can be used simultaneously with other
topic lexicons. Moreover, many users can share a common copy of the predictor
without having to duplicate the main lexicon. The topic lexicons are expected to
contain on the order of one thousand words each, but there is no limit on how
many words they can contain.

3. Statistical information about topic words

Ideally, the information about main lexicon words and topic words should be the same. However,
there are some practical problems with this approach. Firstly, if topic words can be parts of
bigrams, then there will be bigrams with one word in the main lexicon and the other word in a topic
lexicon. Secondly, bigrams must be added during prediction, since topic words are not known in
advance. There are many ways to store and manage this type of bigram, but in all cases there is too
much administration needed for it to be worthwhile implementing within this project. Hence no
such bigrams are stored, and this means that the first term of equation (12) is zero, when the
previous word is a topic lexicon word. This is already the case for some main lexicon words, since
far from all bigrams of the main lexicon words are stored.

Limiting the amount of information associated with new words is of course limiting the predictor�s
learning ability, but since the predictor tags unknown words, it still "learns" something about new
words.

1.

Implementation of the
Language Model
This chapter describes the implementation of the language model designed in the previous
chapter. It also describes programs developed in order to extract data from the training texts
and produce a database, as well as a program for optimizing and evaluating the predictor.

1. A system for word predictor construction

The creation of a word predictor requires processing of information from different
sources. The word predictor needs a database containing statistical information about
n-grams, inflection rules, etc. It also needs efficient means of performance evaluation.
For these purposes I have developed an n-gram extractor called Extract, a database
generator called Generate, and a simulator called Simulate. I have also developed a
rudimentary UNIX user interface for Predict, called UNIX-Prophet. The relationships
between these programs and the sources of information are shown schematically in
Figure 3.

1. The extractor

To extract word n-grams, as well as tag n-grams, from large training texts Extract
scans a set of text files and counts occurrences of the n-grams of interest. The
training texts can be either tagged or untagged. The resulting data are stored in
files.

2. The generator

The n-gram files extracted by Extract serve as input to Generate. The Generate
program prunes the sets of n-grams to desired sizes and sorts them. Additional
information, such as inflection rules, is added, and the information is stored on file
as a main lexicon.

3. The predictor

The main lexicon created by Generate can then, without any further processing, be
used by Predict. The predictor can also use an arbitrary number of topic lexicons
previously created by Predict or generated through the scanning of texts.

4. The simulator

The Simulate program is given a text and uses Predict to reproduce the text with as few keystrokes
as possible. The simulator represents a perfect user who does not make any typing errors, and who
does not miss any correct suggestions. When the text is completed, the simulator responds with the
following data:

Text statistics, such as number of letters and words in the text.

Text coverage, i.e. the fraction of the running words that was known to the predictor before
the simulation started.

Figure 3. A system for word predictor construction.

Letter and overall keystroke savings.

The distribution of the positions of the correct suggestions in the suggestion list.

This information is then used to evaluate the performance of different lexicons and different
configurations of Predict on selected test texts. Simulate also contains functionality for finding
optimum weights of the Markov model formulas and the parameters of the heuristic modifications.

1. The programs are easy to use

If too much manual labor is required to generate lexicons and to evaluate the predictor, the chance
that these programs will be used again in the future is small. Therefore, I have put substantial effort
in making these programs do as much work as possible automatically. For example, lexicons from
different training texts and of different sizes can easily be generated with Generate using command
line options. The lexicons can be used by Predict directly. Then, the difference in performance
between the lexicons can be measured by Simulate, without any additional processing.

1. Modeling of words and lexicons
1. The word class and lexicon class hierarchies

Predict uses words with different sets of information. For example, main lexicon words
have bigrams and tags associated with them, as opposed to topic lexicon words which
only have frequency and one tag. For this reason it makes sense to use a class hierarchy
for words and lexicons.

An abstract class Entry represents objects which can be put in lexicons, represented by
an abstract class Lexicon. The Entry class has a subclass, Word, which is in turn a
superclass to the MainWord, TopicWord, and DerivedWord classes. These three classes
represent words from the main lexicon, from topic lexicons, and words derived by
inflection rules, respectively. There is also a hierarchy for lexicons, which mirrors the
word class hierarchy.

There are many benefits of using a class hierarchy for words. Most parts of the program
need not know if the words originate from the main lexicon or from a topic lexicon.
This enables more compact and readable code. Furthermore, changes in the
representation of words will not propagate throughout the whole program.

2. Data representation

As we have seen in the previous chapters, the predictor uses a huge amount of statistical
information and is very computation-intensive. Therefore, which data structures and
algorithms are used is of crucial importance for the performance of the Predict program.
Since the program is likely to run simultaneously with word-processors, such as MS
Word, which tend to use an extensive amount of the computer�s available resources, the
importance of the effectiveness of the program must not be underestimated.

The predictor�s vocabulary must be quite large, in the order of 10 000 words, perhaps
even up to 100 000 words. The predictor must also be able to learn thousands of new
words typed by the user. Furthermore, inflected words of base forms can be derived,
when needed. All these words, at least in principle, must be examined by Predict, at
each transition of the Markov models, in order to calculate probabilities for the next
word. This fact requires a set of different data structures for storing the words
efficiently.

1. Representation of the main lexicon

As mentioned in the previous chapter, the main lexicon is static. Thus, information about words in
the main lexicon can be stored efficiently in a fixed size array, with fixed size elements. However,
since the actual strings of the words have different sizes, all strings are stored in a common string
pool to save space. Further improvement is possible by letting strings with common suffixes share
their storage space.

The number of bigrams of a word is varying, so all word bigrams are also stored in one common
array in order to save space. Each word has an index into the array where the indices of the other
word (and the frequency) of the bigrams are located.

The words in topic lexicons, as well as the main lexicon words, are stored in sorted arrays. The
reasons for choosing this structure are the following:

A word in a lexicon of size n can be accessed with binary search in time.

An interval of words sharing the same prefix can be found in time.

Iteration over an interval of sorted words is straightforward and fast.

A minimal overhead for maintaining the structure is necessary.

The structure and its operators are easy to implement.

The major drawbacks of using arrays are that insertion is performed intime, and that re-sizing
of the arrays may be necessary. However, since the main lexicon is static, insertion is only
performed on topic lexicons, which are considerably smaller than the main lexicon.

1. Representation of the tag Lexicon

The number of tags m is much smaller than the number of words n, typically

. Since the tag bigram matrix is relatively dense, it is stored in a
two-dimensional array enabling fast access. The tag trigram matrix, on the other
hand, is sparse, so trigrams are stored in a more compact form. For each tag there
is an array of elements containing the second and third tag and the frequency of
the trigram. This saves space at the cost of slower access. Access will be
especially slow when iterating over all trigrams with the first and third tags fixed,
or with the second and third tags fixed. The present version of the program,
however, does not access trigrams in this way, so this is not a problem.

2. Efficient representation of data

I have chosen to use data structures which do not require an abundance of pointers
and auxiliary structures. As described above, simple arrays are used for storing
words. In addition to the benefits of using arrays already mentioned, an important
consequence of this choice of representation is that large chunks of memory can
be allocated when the lexicons are loaded into the program. This cannot be done

as easily with structures such as lists or trees, which use pointers. The benefit of
the chunk-wise memory allocation is that the program will load faster, which is a
requirement for the Macintosh version of Prophet. Another benefit is that it saves
space, since when many small segments of memory are allocated, the built-in
memory manager will always use at least a few bits of extra memory for each
allocated piece of memory.

When Prophet is once compiled for one type of machine, the main lexicon, which
is common for all types of machines, is loaded into memory from a file. Then the
lexicon is stored again just by writing the byte sequences of the big chunks of
allocated memory to another file. Now the main lexicon can be loaded much
faster in the future by using this file instead. UNIX-Prophet loads ten times faster
this way. Predict with a 10 000 word lexicon is loaded in less than a second on a
PC.

3. Implementation of Extract

The extractor uses self-resizing hash tables for the storing of n-grams. As
elements are inserted, the hash tables grow if the ratio between the number of
elements and the size of the storage array exceeds a certain limit. This assures that
lookups and insertions are performed in constant time, whatever the size of the
training text.

Since the number of word bigrams can be very large, the texts are scanned twice.
During the first scan all information except word bigrams is extracted. Then the
set of word unigrams is pruned of low-frequency words. During the second scan
only bigrams with both words occurring in the reduced set of unigrams are
considered, thus avoiding unnecessary storing of bigrams.

4. Time complexity analysis of the prediction function

To look up a word in a lexicon of size n and to find intervals of words matching a

prefix both take , since binary search is used. Each time a word is
completed by the user, the probabilities for all words are re-computed, which
takes O(n) for each lexicon. The Markov model for tags makes a transition which
takes O(t2), where t is the number of tags. If the last word was unknown to the
predictor, the word has to be inserted into a topic lexicon of size u, which takes
O(u). Hence the total time is

,

which is O(n), with the assumptions made in this and previous chapters.

It is possible to reduce the number of words for which probabilities are computed
at each transition by only considering the most common ones from the most likely
classes. However, since experiments show that the time spent at each transition is
short enough not to cause any irritating delays for the user, we decided not to
implement such an improvement. Also, it is possible that such an improvement

would debase the prediction quality if neglected words would have been selected
if all words were considered. Moreover, the implementation cost is not negligible,
since the words not considered at the transition will have to be investigated later
on, and this would inevitably require some administration.

5. Speed optimization

It is possible to reduce the time required for prediction by pre-computing parts of
the equations used, or by transforming the equations in order to avoid
time-consuming arithmetic computations, such as divisions. At the cost of using
more memory, the terms of the Markov model equations were pre-computed,
resulting in a 30 percent speed-up of the prediction function.

6. The source code

All programs are written in ANSI C++ to ensure portability. A number of generic classes, such as
hash tables, lists, arrays, and object pools have been developed to handle sets of objects with
varying demands on access to their elements. These classes have been reused extensively in all
parts of the programs.

The programs are modular to enable different types of functionality to be well isolated from each
other. This facilitates easy implementation of future improvements. For example, by changing a
few well isolated parts of the program we can extend the scope of the Markov models.

All programs together comprise 5 600 lines of code. Predict alone comprises 3 800 lines of code.

1.

Evaluation of the new
Prophet

A word predictor should be evaluated in its full context. The benefits of saving keystrokes
and getting correct spelling must be weighed against the drawbacks of searching the
suggestion list for the intended word. The usefulness of the program is also specific to each
user and depends on many different aspects of the program. Such an evaluation of Prophet is
beyond the scope of this project for my part. In this chapter I will only consider keystroke
savings and the quality of the suggestions.

1. Measuring the performance of the predictor in practice

As described in Chapter 2, there are ways of measuring the performance of a word
predictor given by information theory. The best way seems to be to calculate the
perplexity of the predictor with respect to a test text. However, there are two
practical disadvantages using the perplexity as a performance measure.

The first problem concerns unknown words. When an unknown word is

encountered by the predictor, it is infinitely surprised, resulting in an infinite
perplexity which makes comparisons impossible. A solution could be to use a
pre-defined number for the surprise instead of infinity in this case. But what
number should that be? If a small number, such as zero, is used, predictors with a
small vocabulary will score the lowest perplexity, since they will rarely be very
surprised. Conversely, if a very large number is used, predictors with large
vocabularies will score best, since they will rarely be infinitely surprised, thus
collecting the least number of large surprises. Consequently, fair comparisons
between predictors with different lexicons are hard to make using perplexity as a
performance measure.

The other practical problem is that computing perplexity requires the probability
distribution over the words to be normalized. Normalization is a time consuming
operation not affecting the rank among the suggestions, thus not improving the
prediction quality. Moreover, using perplexity requires that the heuristic
complements to the prediction function, such as recency promotion described
earlier, must be used more carefully, since they alter the probability distribution in
a rather unsophisticated way.

Because of these problems with computing the perplexity, we decided to use the
keystrokes savings defined by (5) as a performance measure instead. This
measure, in turn, has advantages and disadvantages as well. The advantages are
that keystroke savings are easy to compute and that commercial word predictors
are evaluated by comparing keystroke savings. Thus, keystroke savings for
comparison purposes must be computed anyway.

Apparently, keystrokes savings are a cruder measurement than perplexity, since a
change in the probability distribution of the words may not change the rank
among the words, and hence minor improvements of the prediction function may
be hard to detect. Another disadvantage is that the number of saved keystrokes
does not say anything about the position of the correct word in the suggestion list.
If the suggestions are sorted by probability, one predictor might score better than
another one when five suggestions are used, but it could be the other way around
when four predictions are used. This is true when the first predictor happens to
have more correct fifth position suggestions, but fewer correct suggestions in the
first four positions than the other predictor.

2. The perceived quality of the predictions

As mentioned, the performance of word prediction programs cannot be measured by
perplexity or keystroke savings alone. The perceived quality of the predictions as
experienced by the user is even more important than keystroke savings. Ill-fitting
suggestions will distract and slow down the user, and he might even stop using the
program, even if it saves many keystrokes. As mentioned in the introduction, it is not
possible to avoid ill-fitting suggestions, but it is important to delay them as much as
possible.

Also, a slight change of the prediction function might not give a significant
improvement of the keystroke savings, yet the change could be valuable if the
suggestions given by the predictor appear to be better in some respect.

1. Results of simulations

This section covers some of the tests we have performed to investigate the impact of
different features and parameters of Prophet. Four independent 10 000 word texts were
used for the experiments � one text for optimizing the parameters and the other three for
simulation and evaluation.

Figure 4. Keystroke savings of old version versus new version of Prophet.

1. Keystroke savings of the old versus the new version

The old version of Prophet used a main lexicon containing 7 014 words and 7 278
word pairs. For the purpose of comparing the two versions, two lexicons of the
same size were generated for the new version. The first of these lexicons
contained exactly the same words as the lexicon of the old version. The second
lexicon contained the 7 014 most common words from the tagged corpus. Because
the keystroke savings evaluation program for the old version was error-prone,
only one text of 200 words could be used successfully for the simulations. The
results are shown in Figure 4.

The new version saved 33.0 percent of the keystrokes compared to 26.1 percent
saved by the old version, when the same words and one suggestion was used. This
represents a 26.4 percent improvement. When the second lexicon was used, 35.4
percent of the keystrokes were saved compared to 26.1 percent which is a 35.6
percent improvement. When five suggestions were used the improvements were
33.2 and 37.6 percent, respectively.

2. Impact of different features

The tag Markov model, adaptivity by using topic lexicons, and the heuristic
modifications of the language model all contribute to improve the predictions. By
comparing the keystroke savings of an optimized Prophet configuration with the
keystroke savings of the same configuration, but with one feature removed, the
impact of that feature is revealed. Table 1 lists the features and the increase in
keystroke savings obtained when each feature is added to an otherwise optimal
configuration.

Table 1. Impact on keystroke savings by different features.

 1 suggestion 5 suggestions

Feature % saved % increase % saved % increase

- 32.9 46.0

learning new words 29.7 10.7 40.9 12.6

tagging 28.7 14.9 43.2 6.4

recency promotion 31.9 3.1 43.9 4.8

repetition delay 29.2 12.9 45.4 1.3

case sensitivity 32.4 1.5 45.8 0.5

auto-inflection 32.8 0.3 45.7 0.7

3. Number of suggestions

The number of words in the suggestion list has of course a big impact on
keystroke savings. Naturally, the keystroke savings increases monotonically with
the number of alternatives. But the more suggestions, the longer time it takes for
the user to inspect them and the greater the chance of missing correct suggestions.
Also, as the number of suggestions grows, the increase in keystroke savings
diminishes. Most users are able to quickly scan five alternatives, which is also the
default setting in Prophet.

Figure 5. Keystroke savings as a function of the number of suggestions.

4. Comparisons with word predictors for other languages

Prophet is the only commercially available word predictor for Swedish, but there are a
number of word predictors for English. Naturally, the keystroke savings measured for
English word predictors cannot be directly compared with the keystroke savings for
Prophet. However, experiments with the old version of Prophet indicate that higher
keystroke savings can be obtained with word predictors for English than for Swedish
when lexicons with equal sizes are used on comparable test texts. One plausible reason
for this is that it is easier to get a high text coverage for English. Many new Swedish
words are composed by concatenating two or more words, which is not the case for

English.

2. Prediction examples

The difference in the quality of the suggestions of the old and new versions is seen in the
following example: When given the sequence Det är en lätt up... (It is an easy...), the old
version suggests uppgifter (tasks) and Uppsala (the name of a town) which does not match
the two last words very well at all. Only uppgift (task) and uppfattning (apprehension) can be
considered acceptable suggestions. The new version on the other hand gives only one less
acceptable suggestion, upp (up).

Det är en lätt up...

upp

uppgift

uppgifter

uppfattning

Uppsala

old version

uppgift

uppfattning

uppmärksamhet

upp

upplevelse

new version

The difference in performance between the versions is even more striking when we change
the example slightly. When given the sequence Det är inte ett lätt up... (It is not an easy...),
the old version suggests exactly the same five words as before, even though there was another
determiner ett instead of en. In this case none of the suggestions can be considered acceptable.
But when the same sequence is given to the new version, the suggestions are all acceptable
except the last suggestion, upp (up). This proves that the new version successfully takes into
account the two previous words when predicting the next word.

Det är inte ett lätt up...

upp

uppgift

uppgifter

uppfattning

Uppsala

old version

uppdrag

uppträdande

uppenbart

uppror

upp

new version

It can also be noted that the old version suggested the word Uppsala, despite the fact that it is
spelled with an initial capital. This is solved by the new version which will (optionally) delay
the word Uppsala until all other words are suggested.

2.
Future Improvements

In the previous chapters the design and implementation of the Prophet word predictor were
discussed and evaluated. Improvements such as extending the scope of the Markov models
and automatic tag classification and other straightforward enhancements have already been
mentioned. In this chapter I will discuss some more elaborate improvements of word
prediction tools in general.

1. Abbreviation expansion

A common feature of word processors and typing aids is "abbreviation expansion"
or "auto correct". For this purpose, the word processor manages a list of string
pairs. When the user types the first string of such a pair, this string is
automatically transformed into the other string of the pair. For example, sth can be
expanded to Stockholm, and ohc auto-corrected to och. This simple feature can
save many keystrokes for a user capable of using it correctly, but we have decided
not to implement it in Prophet, since such a feature does not lie within the scope
of the project. However, it will surely be incorporated in future versions of the
program.

2. Prophet and dyslexia

As stated previously, the two main target groups for Prophet are physically
handicapped persons and people with spelling disabilities such as dyslexia. Since
there are no guarantees that the predictions are semantically or even syntactically
correct, the latter group will have two major problems using word predictors.

The first problem is that the user must be able to decide if a suggested word is the
word he intends to type. In fact, this is not always the case. For example, a
dyslectic user intending to type the word kall (cold) may not be able to select the
right word when given the two similar suggestions kal (bare) and kall.

In Prophet, this problem is solved to some extent by incorporating speech
synthesis in the program. Speech synthesis will enable the user to listen to a
selected word, thereby making it easier for him to decide whether that word is the
intended word or not. Still, mistakes are inevitable due to the many homophones
in natural language. For example kål (cabbage) and kol (coal), are both nouns
with the same pronunciation, but with different meaning. The next step would be
to include a thesaurus to enable explanations of words.

The second problem occurs if the user makes a spelling error at the beginning of a
word. The spelling error causes the intended word never to show up in the
suggestion list. For example, the user might start to type syk when he wants to
type cykel ((bi-)cycle), but this word will never be suggested, because it does not
match the prefix syk.

It is possible to solve this problem by having a spell-checker generate alternate
prefixes to a suspicious prefix (such as syk). These alternate prefixes (maybe suc,
cyk, and psyk) can then be used as input to the predictor, instead of the original
prefix, thereby enabling the generation of suggestions possibly including the
intended word.

3. Cooperation with spell-checker

The spell-checker can help the predictor by generating alternate prefixes, but the predictor can
also assist the spell-checker in finding better alternatives to misspelled words. The predictor
makes probability estimations of tags and words in a text. This information could be used by
the spell-checker to find suggestions which would fit the context better. For example, if I type
"I have a brown shue" my spell-checker in MS Word 7.0 suggests she as the first alternative
to shue. If the spell-checker would have consulted Prophet before it made the suggestions,
maybe a noun such as shoe would have been the first alternative.

Yet a better way to assist spell-checkers could be to let Prophet identify correctly spelled
words which do not seem to fit into the context, and warn the spell-checker about those
words. In this way the spell-checker could detect words which are misspelled, but happen to
form other words that the spell-checker accepts. This is a typical problem with most or all
spell-checkers. The same spell-checker as above gladly accepts the sentence "I have a she."
Prophet would hopefully find the word she improbable given the context. This improvement,
however, is difficult to implement successfully, because Prophet might give too many false
alarms. Also, this type of proof-reading should rather be done using a more powerful
language model which takes into consideration both left and right context of words while

inspecting the text. But if no such program is available, Prophet could easily be modified to
do this kind of proof-reading. If this cooperation is made to work successfully, word
prediction will not be limited to the current target groups. All computer users would benefit
from an improved spell-checker.

3.

4.
Conclusions
1. Performance

It is clear that Prophet, in its current configuration is best suited to help physically
disabled persons without any linguistic problems. Such users can speed up their
typing radically when the program saves almost half of the keystrokes. However,
to make full use of the program, the user must master the language he is using.
The predictor can only partly assist a linguistically handicapped person, since it
cannot give only "correct" suggestions. Furthermore, the program does not aid the
user when he misspells the prefix of a word, since no automatic
"prefix-correction" is implemented yet.

The tests in the previous chapter revealed that the new version of Prophet saves 47
percent compared to 35 percent of the old version, on an average text, which is a
large improvement. When using a larger lexicon the new version achieves
keystroke savings of almost 50 percent.

The new version of Prophet is a sound implementation of well-established
probabilistic methods and a number of heuristic complements. This work has not
come up with any theoretical break-throughs in the field of natural language
processing and the program does not comprise any state-of-the-art language
modeling. Nonetheless, the resulting application will likely outperform all word
predictors on the market, given the features and keystroke savings reported for
these programs.

Reports from test users at the department of Speech, Music, and Hearing indicate
that the new version gives the impression of being more intelligent, and that it
suggests words which fit much better into the context than the old version did.

2. Limitations

The major limitation of the language model is the small scope. Presently, the
predictor considers the previous word and the two previous tags in order to make
predictions. Hence, words outside the scope, which often have an impact on the
next word are not considered at all, and consequently the prediction quality
suffers.

The scopes can be extended by one word and one tag, respectively, but it seems

impractical to extend them further. Thus, to make improvements beyond the
capability of Markov models as used in this project, other methods must be
investigated. Interesting approaches are clustering, proposed by Hutchens
[Hutchens, 1995] and methods described in [Jelinek, 1989].

3. Word prediction for everyone

It is easy to develop versions of Prophet for other languages since the predictor uses mainly
statistical information. The language specific rules are kept to a minimum and are well-isolated
from the language-independent parts. A rudimentary version can be developed for any language
instantly just by extracting a database from a reasonably large corpus.

So it is easy to develop Prophet versions for all languages, but the users are still limited to
physically and linguistically handicapped persons. But there is another potential user group that
would benefit from using Prophet: persons who are learning a new language. The same problems as
with linguistically handicapped persons are likely to concern this group too, but by incorporating a
dictionary for the native language of the user, Prophet might be a very useful tool for this group of
people. A successful implementation could mean a word predictor tool valuable for virtually
everyone, since most of us are learning another language!

Bibliography

Cormen, Leiserson, Rivest (1990) Introduction to Algorithms, MIT Press, McGraw Hill.

Ejerhed E., Källgren G., Wennstedt O., Åström, M. (1992) "The Linguistic Annotation System of
the Stockholm-Umeå Corpus Project", DGL-UUM-R-33, Department of General Linguistics,
University of Umeå, REPORT NO. 33.

Fischer, C. N., LeBlanc, R.J. (1991) Crafting a Compiler with C, Benjamin/Cummings Pub. Co.

Heckel (1991) The Elements of Friendly Software Design, Sybex.

Hunnicutt, S. (1986) Lexical Prediction for a Text-to-Speech System in Communication and
Handicap: Aspects of Psychological Compensation and Technical Aids, E. Hjelmquist & L.-G.
Nilsson, eds., Elsevier Science Publishers.

Hutchens, J (1995) Natural Language Grammatical Inference, University of Western Australia.

Jelinek, F (1989) Self-Organized Language Modeling for Speech Recognition, Readings in Speech
Recognition, Waibel and Lee (Editors). Morgan Kaufmann.

Lippman, S (1991) C++ Primer, Addison-Wesley.

Magnuson, T. (1994). Evaluation of "Predict": An investigation and a follow-up study of a Swedish
word prediction program. STL-QPSR (Speech Transmission Laboratory Quartely Progress and
Status Report) 4/1994, pp. 1-20.

Parsons, T. W. (1992) Introduction to Compiler Construction, Computer Science Press.

Stroustrup, B (1991) The C++ Programming Language, 2nd Edition, Addison-Wesley.

von Euler, C. (1997) Dyslexi - ett allvarligt handikapp på biologisk grund, (A serious handicap
with a biological basis), Socialmedicinsk Tidskrift, vol. 74, nr. 1.

