Design and | mplementation of
a Probabilistic Word
Prediction Program

Abstract

Word prediction is the problem of guessing which words are likely to follow a given segmer
text. A computer program performing word prediction can be an important writing aid for
physically or linguistically handicapped people. Using a word predictor ensures correct spe
saves keystrokes and effort for the user.

The goal of this project was to design and implement a word predictor for Swedish that wot
suggest better words, and thus save more keystrokes, than any other word predictor availa
market. The constructed program uses a probabilistic language model based on the well-et
ideas of the trigram predictor developed at IBM. By using such a model, the program can b
modified to work with languages other than Swedish. In tests, the program has been showr
more than 45 percent of the keystrokes for the user. The report focuses on the technical as
designing an efficient algorithm and optimizing it to save as many keystrokes as possible.

Design och implementering av
ett probabilistiskt
ordprediktionsprogram

Sammanfattning

Ordprediktion ar att gissa vilket ord som sannolikt féljer en given sekvens av ord. Ett progre
utfor ordprediktion kan vara ett bra hjalpmedel for motoriskt och sprakligt handikappade vid
datorarbete och kommunikation. Anvandningen av ett ordprediktionsprogram underlattar st

och besparar knapptryckningar och darmed anstrangning for anvandaren.

Malet med projektet var att utforma och implementera ett ordprediktionsprogram for svensk
foreslar battre ord, och darmed besparar anvandaren fler knapp-tryckningar, &n nagot annz
ordprediktionsprogram pa marknaden. Det konstruerade programmet anvander en probabi
sprakmodell baserad pa den valkanda trigram-prediktorn som utvecklats vid IBM. Detta val
sprakmodell medfor att programmet enkelt kan modifieras for att fungera fér andra sprak ai
svenska. Utforda tester visar att programmet kan spara mer an 45 procent av knapptryckni
for anvandaren. | denna rapport har tyngdpunkten lagts pa de tekniska aspekterna av att sl
effektiv algoritm och optimering av denna.

Acknowledgments

This paper is a report of my master s project which was done at the Department of Numeric
Analysis and Computing Science (NADA) and at the Department of Speech, Music and He
(TMH) at the Royal Institute of Technology (KTH). First of all | would like to thank my
supervisors associate professors Sheri Hunnicutt at TMH and Viggo Kann at NADA for givi
the opportunity to do this work, and for all their encouragement and support. | am also truly
to my girlfriend Ellen Wangler and associate professor Rand Waltzman for inspiration and
suggestions.

My thanks also go to my cousin Alice Carlberger, Christina Magnuson, Henrik Wachtmeiste
Gunnar Stromstedt, Anders Holtzberg and Johan Bertenstam who all have been participan

project from time to time. Last, but not least, | want to thank everyone else at TMH for all th
and for making my time at TMH a great and memorable experience.

contents

Chapter 1 Introduction

Word prediction

Word prediction as a typing aid
Word predictor users

The Prophet word predictor
Design goalsfor the new predictor
Scope of report

Chapter 2 Language Modeling

Basic approach
Practical considerations of language modeling
Evaluation of word predictors
Markov models
The interpolated trigram formula
Limitations of Markov models
Conclusions

Chapter 3 The Language Modél of Predict
The old language model
The new language model
Using part-of-speech tags
Two Markov models
The tag model
The word model
Punctuation marks are treated as words
Finding optimal weights for the equations
The prediction function in practice
Managing unknown words
Tagging unknown words
Alternatives to part-of-speech tagging
Selecting words from the training text
Heuristic improvements of the predictor
Strategy for incorporating modifications to the language model
Recency promotion

Case senditivity

Repetition of suggestions

Minimal word length for suggestions

The order of wordsin the suggestion list

Deriving inflected forms of words

Avoiding suggestions of misspelled words

I mprovements of the user interface

The context problem

The user should always be able to get suggestions

The prediction function

L exicon management

Main lexicon design

Making the predictor adaptive

Topic lexicons

Statistical information about topic words
Chapter 4 Implementation of the L anguage M odel

A system for word predictor construction

The extractor

The generator

The predictor

The simulator

The programs are easy to use

Modeling of words and lexicons

The word class and lexicon class hierarchies

Data representation

Representation of the main lexicon

Representation of the tag Lexicon
Efficient representation of data
I mplementation of Extract
Time complexity analysis of the prediction function
Speed optimization
The source code
Chapter 5 Evaluation of the new Prophet
Measuring the performance of the predictor in practice
The perceived quality of the predictions
Results of simulations
Keystroke savings of the old versus the new version
Impact of different features
Number of suggestions
Comparisons with word predictors for other languages
Prediction examples
Chapter 6 Future Improvements
Abbreviation expansion
Prophet and dyslexia
Cooperation with spell-checker
Chapter 7 Conclusions
Performance
Limitations
Word prediction for everyone
Bibliography

1.

2

| ntroduction

1.

Word prediction

Word prediction is the problem of guessing which words are likely to follow
given segment of text. A computer program performing word prediction is ¢
a predictor. To construct a good predictor is, indeed, a difficult task, since ni
language is immensely complex and does not lend itself to being described
simple rules. Even the best predictors are easily outperformed by humans.
Nonetheless, word prediction as an inherent part of natural language proce
has many useful applications in areas such as speech recognition and text
proof-reading.

. Word prediction asatyping aid

A useful application of word prediction itself is@as$yping aid for computer use
Figures 1a-c show a typical situation in which a word predictor is used toge
with a word processor. While the user is typing, the predictor continuously

displays a list of words just under the current cursor position. If the intendec
is found in the list, the user can press the associated function key, and the "
automatically inserted into the text. The benefits of using a word predictor tl
way is that it ensures correct spelling and saves keystrokes and effort for tt

® Sknv =] E3
Arkiv Bedigera Yiza Format “Werklvg Fonster Hijalp
Jag har |
1 - varit
2 - fat
3 - inte
d-en
3 - blivit
X|@E
1] | 2y

Figure la. A word predictor used with a word processor. The predictor suge
five words to follow the typed sequedag har.

3. Word predictor users

There are two main groups of users who may benefit from using a word pre
The first group is composed of physically disabled individuals who have typ

difficulties. They can save effort, type for longer periods of time, and somet
speed up their typing by using a word predictor. In many cases, these user:
special input devices or user interfaces to suit their needs. The other group
consists of linguistically handicapped persons who have difficulties in spelli
and composing. Naturally, the levels of difficulties vary within the groups, ai
some persons belong to both groups.

® Skny =] E3
Arkiv Bedigera Wiza Fomat “Werklvg Fonster Hijalp
Jag har =

1-zett

2-zh |

3 - shett

4 - zagt

3 - skt

L

Figure 1b. As letters are typed, the suggestions change to match the first le
the last word.

® Skny M=l E3

Arkiv RBedigera “iza Fommat Werklyg Fonster Hjalp

Tag har skrivit |

-

1] | v

Figure 1c. The user selected the wekdivit with the F5 function key. The
predictor automatically inserts the word and a space into the text, and then
presents five new suggestions.

In all forms of communication, the information rate with which a person can
communicate with other people is very important for the quality of a conver:
A too slow dialog is very stressful and annoying for the participants. Thus, ¢

predictor can be an important communication aid when it speeds up typing.
Indeed, word prediction programs have proved successful in assisting pers
from both groups to communicate and to use word processors [Magnuson,

All people, however, are by necessity subject to an increased cognitive loac
typing with the help of a word predictor, simply because they must inspect 1
predictor s suggestions. For users with little or no typing or spelling difficulti
the drawback of the increased cognitive load normally outweighs the benef
saving keystrokes. Thus, most "normal” computer users will prefer not to us
word predictor. Nonetheless, since ten percent of the Swedish population c
classified as dyslexics [von Euler, 1997], the number of possible word pred
users is very large.

. The Prophet word predictor

A word prediction program for Swedish calletbphethas been developed at t
Department for Speech, Music and HearatdTH [Hunnicutt, 1986], and
revisions of the program have been made continuously for the last ten year
program has also been localized into English, Norwegian, Danish and Fren
recent project funded by the National Labor Market Board, the Swedish Ha
Institute, and the National Social Insurance Board, the program has been rt
from scratch. However, many of the good solutions of past programs have
incorporated in this version. In this report, | will refer to these two versions (
Prophet as theld and thenewversion.

My contribution to this project was to design and implement the platform
independent parBredict which manages the language model and performs
actual word prediction. Predict itself does not contain a user interface; it wil
together with user interfaces for PC and Macintosh, also developed in the
It should also be possible to use Predict as a plug-in with other writing-aid
programs.

. Design goalsfor the new predictor

The major design goal for the new predictor was that it should suggest bett
words than the old predictor did. When given the word sequ2etar en latt
up.., (Itis an easy up).. the old Prophet program suggeasgte, uppgift,
uppagifter, uppfattninggndUppsala (up, task, tasks, apprehension, Uppdala
town)), to complete the uncompleted ward The second wordippgift is a goo
suggestion because it well matcleeslatt However, when given the similar
sequenc®et ar ett latt up.,.the old predictor suggests exactly the same five
words. In this case none of the suggestions fit well in the given context.

The reason for giving the same suggestions in these two cases is that the ¢
Prophet program at each prediction simply suggests the most common wor
Only when no letters of the last word are yet typed, the predictor considers
previous word, and in this case suggests words which are common succes
the previous word.

It is clear that the new predictor would need a more powerful language moc
order to suggest more appropriate words in the previous example. Ideally, 1

predictor must be able to discern grammatically "correct” sequences from
“"incorrect” ones. Then the predictor should only suggest words which are
syntactically and semantically "correct” in the given context. This is, howew
very difficult, if not impossible, problem. Even if the predictor could decide v
words are "incorrect" and not suggest these, the user might be deprived of
suggestions, because most writers do not write correctly all the time. Thus,
predictor which limits the suggestions to only "correct" alternatives is not or
practically unachievable, it is also undesirable. A more preferable and reali
goal is a word predictor which suggests the best fitting words before the mc
unlikely words. Especially words that are in concord with the previous word
should be suggested before words that are not. For example, given thelwol
will," a predictor suggestirgpebeforesawis to be preferred before one doing
opposite.

Another important design goal is that the predictor must be dynamic; it shol
learn new words the user is typing and it should adapt to the user s choice
words. This property is crucial, since the vocabulary and the level of writing
of different users vary immensely, and one configuration of the predictor ca
possiblyserve all users optimally.

6. Scope of report

This report will cover the design and implementation of the language model for the ne
Prophet program. It will focus on the technical aspects, and will only partly cover the ¢
of the user interface and other user-oriented issues. This choice of outline does not re
relative importance of these two aspects; it is simply because my work concerns the
platform-independent part, Predict, which is separated from the user interface.

This chapter gave a brief description of the word prediction problem and an informal
description of the requirements of the word predictor we have designed. The next cha
cover practical aspects of language modeling for word prediction. Chapter 3 will then
describe the language model and the prediction function developed for the new versic
Prophet. Chapter 4 concerns the implementation of this language model. The resultin
program is then evaluated in Chapter 5, and future improvements are discussed in Ct
The last chapter contains conclusions drawn from this work.

L anguage M odeling

In the introduction we concluded that we wanted a probabilistic word predictor capabls
making high-quality predictions. Any word predictor requires a language model to be ¢
make predictions. An excellent treatment of language modeling for word prediction in
practice was done by a group at IBM for a speech recognition system [Jelinek, 1989].
models have formed the basis of the language model we have designed for Prophet.

1. Basic approach

The principle of a probabilistic language model is simple: A large training te
used to extract information about the language in question. This informatior
used by the language model in order to predict successive words, given a
sequence of words. The quality of the language model is then evaluated by
it to predict the words of a small test text. The problem is to decide what
information to extract, and how the information should be used for making
predictions.

. Practical considerations of language modeling

Suppose we have a langudgeomposed of strings of woreg and that our wor
predictor is trying to estimate the probability of the next word, given all prev
words of a text, that is

P(wi |w1,w2,...,wi_1) (1)
We require that the sum of the probabilities over all words is one:

ZP[W] =1

Since the number of possible histories, ...,w. ;, grow exponentially with,

most histories will never occur, and very few will occur more than once. Thi
magnitude and sparseness of the histories make it practically impossible to
extract, or store, the probabilities given by (1), evenig small.

A solution to this problem is to define a mapp®ifyom the possible histories tc
manageable numbét of equivalence classes, and to approximate (1) by

P(w!- |S[w1,w2,...,wi_1D. @)

The simplest way to obtain such a mapping is to consider all histories endir
the samen words to be the same. Another way is to use a conventional finit
grammar based on parts-of-speech classifications. As we will see later, suc
mapping can be ambiguous, and therefore the probability of the next word |
averaged over the possibility that the model was in 3tate

if’(JSes =)2(S[w,wi] =)

()

The probabilit‘,P(W" i1 =) can be estimated by running the training text
through the grammar and count the number of times the grammar is i aiat
the number of times wond occurs when the grammar is in stdtand use the
relative frequency as an estimate:

Clowy J
P(Wi|gi—1 = J) = (C"[J))

- (4)

The choice of the numb#t of equivalence classes will always be a compron
Choosing only a few classes gives a manageable model, but much informa
will be lost in the mapping. Employing many classes, on the other hand, pre
more information from the histories, but the higher resolution demands larg
training texts to give reliable data.

. Evaluation of word predictors

The concepts of information theory are applicable for evaluating the perforr
of word predictors. The performance of a word predictor, given a segdeoice
words, can be measured by quantifyingghgpriseit experiences when the wo
w following the sequence is revealed. The surprise is equal to the amount ¢
informationl that the revelation of the word gives to the predictor:

I'=-log, PlwlH)

To see that this measure is adequate, consider the case in which the predic

certain, beyond any doubt, that the next word wilhb&hen AwlH) =1 , and
thusl =0, that is, ifw in fact followedH, the predictor experienced no surprist
all. On the other hand, if the predictor is equally certain that the wendl not

follow the sequence, the) =0 and 7 - o In this case, ifv, despite the
predictor s conviction, follows, the predictor is said to be "infinitely surprisec

Given a whole text afl words, the average surprise that the predictor will
experience is equal to the average amount of received information

= —%ilogg P(W5|W1=---’W='—1)
F

Another related performance measure, proposed by Jelinek,psrblexityof
the predictor with respect to a given text:

PP =27 = p[wl,...,wx)_m

where

pl[wl,...,wle =]j P(wihavl,...,wi_l).

Both the perplexity and the average information are functions of the predict
estimation of the probability of the text to occur. The perplexity gives the av
number of words the predictor must choose between at every prediction.

The perplexity is also related to another performance measure, namelgkioé
the predictor. The ranR is defined as the average number of guesses the

predictor needs to correctly guess the following word. The rank turns out to
monotone function of the perplexity [Hutchens, 1995]. The rank is compute

1 X
R= ;;ri
Whereri is the rank of each word.

A common measure for commercial word predictors is the percentage in
keystroke savings a perfect user would get from using the predictoletidre
keystroke savings in perceit, can be computed from the rarqlof each word

by

Semas(0.1 - (s - 1)/7

K =100 -
p;
i=l

, ()

whereli is the number of letters of thi word of the text ané is the number of

suggestions in the suggestion list. The definitions above make it clear that
keystroke savings is a cruder measurement of prediction quality than perpl
and keystroke savings cannot be said to be a monotone functid® of 1/
Nonetheless, in general it is true that the lower the perplexity, the higher the
keystroke savings.

The keystroke savings measités theletter keystroke savings, because it
concerns letter keystrokes only. Towerall keystroke savings considers all
keystrokes, including spaces, punctuation marks, and function keys for sele
words in the suggestion list, as well as letters. Since the predictor (normally
a space when a selection is inserted into the text, the user gains one (spac
and loses one (function) keystroke at each selection. Thus the number of s
keystrokes is the same as the number of saved letter keystrokes. This mea
we only need to increase the denominator of (5) appropriately when compu
the overall keystroke savings.

. Markov models

A Markov model is an effective way of describing a stochastic chain of ever
example a string of words. Such a model consists of a set of states and
probabilities of transitions between them. The tastords in a string are

effectively remembered by art" order Markov model. A simple example of a
second order Markov model is shown in Figure 2.

The transition probabilities represent the conditional probabilities for the ne
word given the previous words. For example, the probability of a transition f
state AA to state AB represents the probability that B is written when the tw
previous words were AA.

Sequences of words extracted from the training texts are cadjesins. In this
report, 1-, 2-, and 3-grams are nanu@d, bi-, andtri-grams, respectively. The
probabilities for the transitions in a second order Markov model can be estil

simply by counting the number of bigrams and trigrams in the training text,
by using the relative frequency as an estimate. Thus

C'[Wz‘-z W1 My)

C(Wi -2 =Wz'-1) , (6)

£ (Wz' |Wi—2=wi—1) = (Wi |W='-3’W="1) -

whereC is the count oh-grams. It follows that am™ order Markov model
requiresmt+1-grams to be extracted from the training texts in order to calcule
(6). In the example above, the probability of a transition from AA to AB can

estimated bLC[“iﬂq’B)Cl4,4) .

Figure 2. A second order Markov Model for the language {A | B}*.

. Theinterpolated trigram formula

The trigram formula (6) was used in the language model at IBM, but experii
showed that many trigrams occurring in test texts did not occur in the trainii
text. The consequence was that when such trigrams occurred in a test text,

probability for the third word given by (6) was zero, which is obviously not
desirable. Therefore Jelinek proposed the interpolated trigram formula:

P(Wz |W1=W:4) =G‘uf(W3|W1=W2)+G'1f(W3|Wz) +fi‘2f('”’3), 7)

where” (W3 pva) is the straightforward bigram variant of (6) and

whereC is the total word count. The non-negative weightsum up to 1, which
holds for all occurrences df in the equations in the rest of this report. Using

instead of (6) gave a significant decrease in perplexity for the language mo
IBM [Jelinek, 1989].

6. Limitations of Markov models

Naturally a longer scope would yield a better model, but the main limitation
Markov models is that their scope must be very small, otherwise the numbe
states and transitions would be unmanageable. For example, if the languac
consists of only a thousand words, the number of possible bigrams and trig
are onamillion and onebillion respectively, and although most of them will ne
occur, the number af-grams quickly grows out of proportion with Even if it
were possible to store agrams up to a desirayl the data would be so sparse
that the information would not be useful to compute the corresponding variz
(6) anyway. This is exactly the problem of deciding a suitable valud ftie
number of mappings of histories into equivalence classes, discussed earlie

Using short scope Markov models has obvious consequences. Consider th
sentenceThe man who lives on the third floor shot himself yestetdde
eleventh wordhimself depends on the first two wordsHe mat. This
dependence can only be captured by an eleventh order Markov model, or t

7. Conclusions

This chapter has made clear that an equivalence classification of the histories of previ
words is necessary to get a manageable language model. One such mapping is simpl
regard all histories ending in the sameords as being equivalent, which enables the us
Markov model probability estimations for the following word. Another way of achieving
mapping is to combine this approach with the use of part-of-speech classification of w
we will see in the next chapter.

The L anguage M odel of
Predict

Markov models as described in the previous chapter will be the basis of the language
developed for the new version of Prophet. This chapter will give a detailed description
language model. To enable comparisons, the language model of the old version of Pr
will be briefly described first.

1. The old language model

The old predictor worked by employing a main lexicon containing 7 000 words, ri
by commonality. At each prediction, the predictor selected the highest ranked wc
which matched the initial letters typed, and these words were suggested to the u
suggestions were sorted by rank and there could be at most nine suggestions in

To make the suggestions fit better with the previous word, the old version had a
with 7 300 bigrams. When a word was completed in the text, and before any lettt
the next word were typed, bigram words, if existing, were suggested to the user.
soon as the user typed a letter of the next word, only words from the main lexico
suggested. There was also a special lexicon with the most common words begin
sentence, used in the same way as the bigram lexicon.

The predictor learned new words by inserting them into a "subject” lexicon. Ther
predictor could suggest these new words in addition to the main lexicon words. (
the new words a rank of 1 000 ensured that these words were suggested at a pr
rate.

. The new language model

The old language model gave fairly good suggestions, but often they did not mai
context very well, as in the example given in the introduction. This is obvious; the
predictor considered only the previous word when no letters of the next word we
typed. When letters of the next word were typed, the previous word was disregai
and consequently the predictor simply suggested the most common words.

The new language model will always consider the previous word when predicting
following, even after letters of the following word have been typed. Even better w
be to consider the two previous words, but if a Markov model is used, it would re
trigrams to be extracted from the training text. As mentioned, the number of trigr
enormous, and moreover, it seems that many will be redundant. Consider all sec
like "en latt uppgift, "en svar uppgift "nagon svar uppgift("an easy task "a
difficult task', "some difficult tasR. After the two first words we want our predictor
suggestuppgift (task beforeuppgifter(taskg, but to do so, it suffices for the predictc
to know that the two previous words were a determiner for singular and an adjec
This can be accomplished by using a mapping from words to a much smaller nui
part-of-speech classes. The number of part-of-speech trigrams will be manageal
the cost of lost information.

1. Using part-of-speech tags

To get part-of-speech information as in the example above we need a train
where the words atagged which means that they are classified according tc
their part-of-speechThis <article> is <verb> a <article> tagged <adjective
sentence gourp." The process of assigning tags to the words of a text is ca
tagging and a computer program tagging a text is consequently cabgdex.
Much research about tagging is currently being done in the field of natural
language processing.

For this project, we have access to a small, tagged corpus (text collection)
train a tagger currently being developed at the Universities of Stockholm ar

Umea [Ejerhed, 1992]. The tag set consists of roughly 150 part-of-speech t
The level of detail of these tags is illustrated by nouns, which are subdivide
according to gender, plurality, definiteness and case. For example, thékeor
(crop field) is tagged ®oun neutre singular indefinite

Since many words in natural language have different grammatical functione
depending on the context, tagging cannot be done unambiguously before a
sentence has come to a full stop, even by a perfect tagger. For example, th
aker above, can also me#navel, and is in this case taggeudetb present tense:
Consequently, no tagger can unambiguously tag a sentence startiager"
(One travels / One fie)dvithout information about the next words, since both
meanings of the worélker are still possible.

The tagged corpus consists of one million words, but given the large numb:
tags, this is an insufficient amount of text to obtain very reliable statistics frc
For example, the average tag trigram count of occurring trigrams is a mere
Nonetheless, we have used this corpus for the language model, since pres
is the only Swedish tagged corpus available.

. Two Markov models

The new language model of Predict is based on two Markov models; one fc
words and the other for tags. The two models interact, but the separation e
the predictor to work with lexicons of either tagged or untagged words, with
any changes to the program. This will facilitate future localizing of the new
Prophet into languages other than Swedish, for which no tagged texts may
available.

We have chosen to employ a second order Markov model for tags and a fir
model for words, simply because they require a reasonable amount of
implementation work and storage space. Furthermore, this choice assures
resulting language model will be superior to the one in the old version of Pr
Future extensions of the scopes are possible and would probably yield a be
model.

The idea of this scheme is to first obtain a probability estimation for the tag
next word, using the tag Markov model, and then use the word Markov moc
get a probability estimation for the next word. In the second step, the tag
probability estimation is taken into account, in order to promote words with
a likely tag according to the tag Markov model.

. Thetag model

The second order Markov model for tags uses the interpolated trigram form
to estimate the probabilities of the next tag:

P(53|31=32J = ‘i'uf(f'zkhfz) +‘i’1f(53‘52) +fi’2f(53) . (8)

Since the tagging performed by the predictor is ambiguous, the state of the
Markov model for tags is also ambiguous, and (8) is therefore averaged ov

probabilities of the current state of the model, using (3).

When a wordv is completed and the model makes a transition, there are tw
cases: the wordl is either a known or an unknown word. In the first case,i$f
known, the estimation from (8) can be modified, since after the revelatwn o
new information is available. Thus a new tag probability estimation for the t
w can be computed by:

Plt,) - gDP(:3|zl ,:2) +q, Ftslw))
Equation (9) shows that the tag for the completed woiigiven by the weighte
sum of the probability fot, given by the tag model, and the conditional

probability that wordv will have tagt. This conditional probability is obtained

Clw,2)

Plt [w) =
where Clw,2) is the number of times wordwas tagged with tagin the training
text.

In the other case whemis unknown, the predictor has no information about t
word, and thus no coun®w, t) are available. This means that the second tel
(9) cannot be computed for this word the first time it occurs. But, the probat
estimation obtained by (8) can be used to get preliminary cQ@wig) for this
word for future occurrences. A detailed description of how unknown words
treated follows later in this chapter.

. Theword modd

The first order Markov model for words uses the interpolated bigram formul
estimate probabilities of the next word:

Pl o) = a0 (wabon) + @07 () (11)

The probability distribution for the next tag, computed by (8), is used to get
additional terms to (11):

E(Wz ‘Wl) = Q'nf(wz |W1) +fi’1f(Wz) "'fz":;f(wz |W1)P:(Wz) "'ﬁi'zf(Wz)P:[Wz) . (12)

where

pr(”’z) = P(lewz)‘D(fz‘fmfl) = C(W:{’zz) P(fzkmfl)

C(Wz)

Thusﬁ(”’ﬂ po1) is the probability of the next word, given the previous word ar
the probability estimation of the tag of the next word. Since this estimation i

probability distribution over the tag set, the last two terms are averaged ove
tags using (3).

. Punctuation marks aretreated aswords

An improvement from the old version of Prophet is that punctuation marks:
periods, commas, colons etc., are treated as words by the model. This
simplification means that punctuation marks may be parsgohms, and thus r
special rule for the beginning of a sentence, as the old version had, is need
Furthermore, special tags are associated with punctuation marks, which m¢
them a natural part of the tag model. This assures that the predictor s sugg
after punctuation marks in the text are automatically optimized without extre
work.

. Finding optimal weightsfor the equations

The optimal values for the weighgsin equations (8), (9) and (12) can be four

by an iterative, statistical method described in [Jelinek, 1989]. These value:
be optimal with respect to the test text used. Within this project, we have de
to optimize the weights simply by testing different values in order to maximi
keystroke savings.

It is worth noting that if a term in these equations does not contribute positi
the performance of the predictor, the value for the corresponding weight wil
approach zero, and the term will not affect the sum. Hence, there is no dan
introducing additional terms to the equations. The worst that can happen is
the added terms will have no effect.

. Theprediction function in practice

In this and the following chapters paefix of a word will refer to the firsh letters
of the word; it can be the empty string and it can be the whole word. For ex
the prefixes ofagare™, "|", "ja" and"jag." When the user starts to type a wc
the predictor regards the sequence of letters as a prefix. Not until a prefix i<
completed during typing, either by a space or a punctuation mark, the prefi
be regarded as a word.

The prediction functiortakes as input the current context, the cursor positior
an integen which is the desired number of suggestions wanted by the user.
output is then most probable words which match the prefix at the cursor pos

As a prefix is completed during prediction, a new word is encountered, and
predictor makes a transition to a new state. After the transition, the predictc
computes the probabilities for all words to occur next, using (12), and returt
bestn words for suggestion. Now, if the user types the initial letter of the ne:
word, the predictor looks up the beswords with matching initial letter and
returns these words. As long as the user types additional letters of the worc
predictor continues to suggest words matching the prefix. Since the probab
of all words are already computed, the selection process will now only invol
finding the best words matching the prefix.

8. Managing unknown words

The words known to the predictor when a session starts have much statisti
information associated with them. There are counts for unigrams and bigrai
there are counts for how many times each word has been tagged with diffe
tags in the training text. Obviously, no such information is available for the 1
words which are encountered during a prediction session. The predictor mt
therefore try to extract this information for new words as they are used, just
information was once retrieved from the training text. However, the problen
that we do not want to change the database constructed from the training t
since it would be very troublesome to keep it consistent. New words will the
be stored separately from the pre-known words of the database. This led tc
decision to limit the amount of information associated with new words.

The only information associated with each new weid the frequencg(w) and
one tag, which means thaE(w, t) = 1 for onet and O for all others. Since no n
words are parts of bigrams, the interpolated bigram formula (11) will be red
to a unigram formula, and hence the model cannot take into account the pr.
word, when the probability for a new word is estimated. However, since a t:
associated with each new word, the last term of the bigram formula (8) for\
will make sure that the new words match the context when they are sugges

Another problem with learning unknown words is the estimef':,wJ - C(WMC,
which is the only non-zero term of the word bigram formula whénunknown.

If the countC from the training text is usef,(,w:' will be extremely small until a
word has been typed many times. Another approach is to use anothet cour
which counts the number of words typed during use, but that would mean t|

S will be very large in the beginning of a text and then diminish as more
words are typed. Instead we decided to use a value $ach that

s, S =

whereF is a constant. This ensures that the most common word among the
words is equally probable at all times. By chandihe influence of the new
words can be monitored. The constans chosen to maximize keystroke savit

9. Tagging unknown words

Our first approach to associate a tag with each unknown word as it occurre
to take the tag most probable according to equation (8). The selection was
improved by only choosing among tags which are likely for unknown words
Basically, these tags are nouns, adjectives, verbs and adverbs. Not surpris
the tags selected for new words were not very accurate because only the le
side context of the word is considered.

Of course, the tagging can be improved by looking at the right-hand side cc
of the unknown word, as new words are typed. But that would require

modifications of the program, since it is not designed to analyze the right-h:
context of words. Instead, | investigated a method to deduce a likely tag by

statistically analyzing the morphology of words with respect to their tags.
Intuitively, the last few letters of a word reveals much information about its
part-of-speech classification. The problem is how to find a limited set of
word-endings which gives as much information as possible about the probe
distribution of tags associated with words with common endings. An elabor:
algorithm to find a set of suffixes was devised, but unfortunately there was
available resources within the project to evaluate it. However, keystroke sa
improved slightly using morphological tagging, which indicates that it may
improve the language model.

10. Alternativesto part-of-speech tagging

Part-of-speech tagging is one way of achieving a mapping from the historie
words to a more manageable number of states, as described in the previou
chapter. However, there are no indications that a conventional set of
part-of-speech tags is an optimal equivalence classification for word predici
purposes. Indeed, experiments conducted by Jelinek showed that a classifi
derived by statistical means outperformed a conventional classification [Jel
1989]. Another interesting approach on how to infer a classification automa
is described in [Hutchens, 1995].

By using part-of-speech tags for classifying words, some of the syntactic pe¢
of the training texts are captured, but none of the semantic patterns. This rr
that the predictor given the sentence beginningét a talkative oltwill
considemanequally probable astoneor flu. Obviously, a classification of
words that capture both syntactic and semantic patterns would be preferab
attempt to extend the syntactic tags with semantic categories was performe
did not result in an improvement of the language model.

11. Selecting wordsfrom thetraining text

The extracted data will serve as the base for the language model and thus the q!
the training text is crucial to the quality of the language model. In addition to the .
tagged corpus we have access to an untagged corpus of 100 million words, maii
from newspapers and fiction. This corpus is large enough, but, as the tagged coi
may not contain texts of the kind a typical Prophet user would produce; short lett
notes, etc. A careful selection of texts would certainly be useful, but compiling it
requires much work, and is beyond the scope of the project.

In the 100 million word corpus there are hundreds of thousands of unique words
unfeasible to store all of the unique words, so there is a problem in deciding whic
words should be selected. The straight-forward approach is simply to select the |
frequent words. However, the most frequent words in the training corpus is not
necessarily the words which will give the best coverage for other texts. Typically.
certain names can occur very frequently in one text, but not at all in other texts.
Therefore, a better approach would be to divide the corpus into a small number «
groups, and to select words which are common in most groups using some critel
ranking the words. Such an approach is yet to be implemented, and consequent
word unigrams and bigrams selected for the database are those with the highesi
frequency in the training texts.

3. Heuristic improvements of the predictor

Many easily observed features of natural language are not captured by the simp
language model we have developed so far. Some of these features can be acco
by simple heuristic methods described in this section.

1. Strategy for incor porating modifications to the language model

The obvious way of modifying the language model to capture more of the
language is to add weighted terms to the bigram formula (12). This ensures
the added terms will have optimal effect when the model is optimized. How
this requires that the additional terms are normalized, which is not always €
accomplish. Moreover, when there are many new terms, which sometimes
correspond to user optional features, it gets complicated to handle the weig
vector correctly. For these reasons we decided to give up having a normali:
probability distribution of the words. This means that the perplexity will no Ic
be possible to compute, and that we have to resolve other methods of evall
the predictor as described in Chapter 5.

2. Recency promotion

One feature of natural language is that an occurrence of a word increases 1
probability of that word occurring again, soon, in the same text. This is true
especially for content words, as opposed to function words. To account for
recency promotion equation 12 is given an additional téwhn This term canno
be determined without doing a thorough statistical investigation beyond the
of the project, so an experimentally derived term was used:

r(wg) = FI{W;)R(WQ)ZP(%'WE)P(?‘EL“U’Q) (13)

In order to implement recency promotion efficiently, each word in the datab
associated with an 8-bit vallReranging from 0 to 255. Initially this value is O f
all words, but as a word occurs, Ryvalue is increased by some small value. ,
sentence is completed, tRevalues for each word is decreased by another sn
value. By tuning the increasing and decreasing valueg tiadue can reflect the
"recency" of each word.

The functionF(w) has two different values depending on whethés a function
word or a content word. This reflects the observation that content words are
likely to reoccur than function words.

The last factor was introduced to take into account the tag probability estim
given by the tag Markov model, thereby making the recency promotion sen
to the previous words. This means that words with appropriate tags are pro
to a greater extent than other words.

The implementation of this heuristic modification increased the keystroke si
by a few percent, which is a significant improvement. The scheme is very s
and the introduced overhead is only one byte per word and a constant ama

time per word to computgw).
. Case sengitivity

Another way to improve the quality of predictions is to monitor the user s
employment of capital letters. If the user capitalizes the initial letter of a wol
predictor can promote words that are usually spelled with an initial capital,
typically proper nouns. Conversely, if the user does not capitalize the initial
the predictor can promote words whose initial letter is normally written in lo
case. The promotion is achieved simply by scaling down the probabilities fc
capitalized or non-capitalized words.

Intuitively, altering the probability estimation to get case sensitivity should h
positive effect on the prediction quality. Indeed, with this enhancement add
Prophet, the predictions appear to be better, and a slight increase in keystr
savings was recorded. Thus case sensitivity was included in the new versic
Prophet. However, since less advanced users may not use capitals correct
might be confused by the behavior of the predictor when the suggestions d
on the case of the initial letter. Therefore, we decided to make case sensiti
optional.

. Repetition of suggestions

With the prediction function developed to date, the user may get the same
suggested repeatedly, while typing the prefix of a word. This happens wher
user types letters which makes the prefix match a word already suggested.
example, while typing the first letters of the wqagjar (hunt9 the predictor ma
well suggesfag () three times, thereby delaying the suggestiojagér. This
behavior is preferable in the case in which the user misses selecting a corr
suggestion, because he will soon get another opportunity to select the desi
word. On the other hand, multiple occurrences of the same word decreases
number of different words suggested, and hence, the possible keystroke se
are not optimized.

Some users may benefit from having suggestions repeated early, whereas
may not. Therefore, we decided to implement a user option which delays tr
repetition of suggestions, until all other matching words have been suggest
This is accomplished by scaling down the probabilities of words which have
already been suggested within the typing of a word.

. Minimal word length for suggestions

Just as in the old version of Prophet, the user can set the minimal length re
for words to appear in the suggestion list. Typically, the user does not want
have very short words suchig#) suggested.

In the new version, the user can also set the minimum number of letters the
would be saved when a suggestion is selected. For example, if this nuibazg!
and the user has typéureeletters of the current word, each suggested word
would be at leastive letters long. This option can be useful for a user withou
spelling difficulties, who does not want to have suggestions which save onl

letter, since it would require the same effort to type the last letter as to sele:
suggestion. On the other hand, users dihnbave spelling difficulties may well

want to have suggestions which do not save any letters at all, because the
suggestions can serve as confirmations of correct spelling.

6. Theorder of wordsin the suggestion list

In the old version of Prophet, the suggestions were sorted by frequency. Tr
of presenting words works well for most users. However, studies show that
sorting the suggestions by increasing length may help the user to find the c
suggestion faster. Moreover, users who prefer many suggestions may wan
them sorted alphabetically. We have implemented all three ways of sorting
suggestions, and the user can select the option he prefers.

7. Deriving inflected forms of words

The main lexicon contains both base forms and inflected forms of words; fo
example the base forgora (do), as well as the inflected fornggorde (did) and
gjort (dong occur. Each word in the lexicon, which is a base form of an adje
a verb or a noun, is marked with an inflection rule category number. Given-
rule category number and the suffix of the word, the correct inflection rule fc
word can be found. The rule is used to derive all inflected forms of the base
The benefit of using this scheme is that many inflected words need not be ¢
explicitly, yet they can be derived when wanted, thus saving storage space
scheme was first used in the old version of Prophet.

The inflected forms of words are derived in two different situations. Just as
old version, words in the suggestion list which can be inflected are marked,
enables the user to get another list with the inflected forms, when wanted. |
new version, inflected words can also be automatically derived when the pr
gets short of matching words. This feature was found to increase keystroke
savings slightly in simulations. A problem is that many words with strong fo
have a very small prefix in common with their base form, for exagipighas
only g in common with its inflections. This makes the procedure of finding a
inflected words with common prefixes very time consuming, since basically
base forms must be investigated. Another disadvantage is that no statistica
information of the derived forms is stored.

8. Avoiding suggestions of misspelled words

A word predictor which learns new words requires a smaller database and hopei
makes better predictions. A negative consequence of using an adaptive predicto
however, is that it will learn misspelled words, which later will be suggested to th
Unfortunately, the predictor cannot discern correct new words from meaningless
of letters accidentally created due to typing errors, and hence such non-words ai
suggested to the user. When these non-words are suggested, the user is distrac
desired suggestions are delayed.

Having all new words blindly suggested to the user was a serious problem with t
version of Prophet, but is remedied in the new version in two different ways. The
way is by letting the predictor check all unknown words with a spell-checker, anc

only accepted words to be suggested. The other way is by demanding that a ney
typed a certain number of times before it is allowed to appear in the suggestion |
improvement will certainly be appreciated by the users, but both methods have t
disadvantage that users are deprived of suggestions they might benefit from. Th
case when a word is correctly spelled, yet not accepted by the spell-checker, or'
word is, in fact, misspelled, but the user intends to correct all occurrences of the
later, using the spell-checker. We have implemented both these methods of avoi
misspelled words as user options.

. Improvements of the user interface

In this section some of the issues concerning the design of the user interface of 1
version of Prophet will be mentioned, although this was not my main task in the |

1. Thecontext problem

To be able to make full use of its language model, Predict must continuous
the context to the left of the current cursor position. Since the user can chai
cursor position arbitrarily, Prophet cannot assume that the text is composec
sequentially, i.e. without cursor movements. The old version of Prophet ma
assumption for practical reasons; it worked with any application and hence
could not get context information easily. The consequence was that when t
moved the cursor to another point in the text, the suggestions matched the
at the previous cursor position. Giving useless suggestions is obviously not
desirable behavior of the predictor.

The new version of Prophet was required to solve the context problem. Thi:
difficult task, since Prophet should be able to work with an arbitrary applica
and there is no standardized way of getting access to its context. One way
obtaining information about the context is to let the user type in an intermec
buffer over which Prophet has complete control. This non-transparent solut
not always desirable, because of the extra load on the user who must shuft
between the buffer and the target application. It may be helpful for dyslectic
however, since it limits the working context and provides a simpler user inte

Another way of solving the context problem is to enable Prophet to work wi
few particular applications, or perhaps to develop versions of Prophet, eacl
capable of communicating with a different application. This solution would t
transparent to the user, since no intermediate buffer is needed, but the
disadvantage is that it requires an unreasonable amount of implementation
cover all applications.

It was decided to construct a Prophet program capable of working optimally
MS Word. It should also be able to work with other applications than MS W
but then the context problem either demands use of an intermediate buffer
to reduced prediction quality. The intermediate buffer will have rudimentary
processing functionality, but as mentioned, it requires the user to shuffle the
to the target application.

2. Theuser should always be able to get suggestions

Perhaps the most significant improvement of the user interface concerns the use
possibility to find the intended word while typing. When the user starts to type a\
he may not be sure of the correct spelling, and thus he may not be able to type €
of the word to get the correct suggestion. Therefore, unlike the old version, the n
version enables the user to make exhaustive searches for words without typing
additional letters. When the user wants more suggestions, he clicks on a button
the prediction list or uses a short-cut key, and additional suggestions are display
puts the user much more in control of his situation, and will always allow him to f
the word he is looking for. Also, for many users, searching in a word list requires
effort than striking letter keys. This improvement will undoubtedly improve the us
appreciation of the program [Heckel, 1991].

Another improvement of the new version is that the list of suggestions, normally
containing about five words, can be resized arbitrarily. The old version s suggest
could contain up to nine words, but there is no reason to limit the number of
suggestions. An extremely slow typist, such as physicist Stephen Hawking, is pri
able to scan a large number of suggestions between each keystroke.

5. The prediction function

The language model and the heuristic modifications above give the pseudo-code of the pre
algorithm found on the next page. The calls to the procedures in rows 15, 16, 17, 20, and 2
perform the necessary changes to the probabilities of the words as described in this chapte

PredictWords{ontex} position n)

. prefix = FindLastPrefix¢ontex} position
if IsCompleted(prefix)

newWord= LookUpWord(all lexiconsprefix)
if newWord= Null

newWordtag = FindMostProbableTag()
AddWord(appropriate topicLexiconewWord
else // newWordis known

for each tad of previous position
recompute.prob using (9)

. for each tag for next position

. compute.prob using (8)

. for each wordwv

. computew.prob using (12)

. DoRecencyPromotion()

. RequireLength()

. DerivelnflectedWords()

. else// prefix augmented

. if Length(prefix) = 1

. PromoteCorrectlyCapped()

. DelayRepetition()

. return then most probable words

1. Lexicon management

The vocabulary of any natural language is unlimited, so it is obvious that the pre:
only can know a fraction of all words of the language in question. The most comi
words from the training texts are put in a database calletdirelexicon This lexicon
is supposed to cover at least 90 percent of the running words in any Swedish te»
average. Experiments have shown that this requirement can be met for Swedish
lexicon containing about 10 000 words. Words which do not qualify for the main
lexicon can be grouped together by topic and storéabie lexiconswhich are
described later in this chapter.

1. Main lexicon design

We have decided to use a static, rather than a dynamic main lexicon which was used in the
version. Using a static lexicon has many advantages:

® No misspelled words can enter the main lexicon and its data are never corrupted.

® User-specific data is stored separately, which enables easy updates of Prophet withot
information.

® More efficient data structures can be used, thereby increasing speed and saving mernr
® The predictor need not perform any troublesome updates of the statistical data.

The negative consequence of employing a static main lexicon is that adaptability must be r
by other means than by changing the main lexicon.

1. Makingthe predictor adaptive

The predictor should learn new words it encounters during prediction. Howe
the new words cannot be placed in the static main lexicon. Instead, they ar
in topic lexicons from which the predictor also can select words for suggest

The remaining problem in making the predictor fully adaptive is that words i
main lexicon will always have the same frequency, which implies that their
individual ranking will always be the same. This result of static ranking is to
extent improved by the recency promotion described earlier in this chapter.
Further improvements may be achieved by using some long term recency f
capturing the user s choice of words, but this approach is yet to be tested.

The need for adaptivity can be significantly reduced by using a more appro
main lexicon in the first place, rather than radically changing an inappropria
one. A set of main lexicons representing different levels of writing skills sho
be developed, but this does not lie within the scope of this project.

2. Topiclexicons

There can be many topic lexicons stored on file. When the user is writing al
one or more topics, the corresponding topic lexicons should be activated. F
should then suggest words from these lexicons and enter new words into s
lexicons. The ideal situation is that the predictor somehow triggers what tog
user is writing about and loads the corresponding lexicons, but this is genel

too difficult to achieve [Jelinek, 1989]. Consequently, the user himself must
responsible for activating the topic lexicons and for deciding which lexicon i
words should be added to.

One problem with using topic lexicons is that it will take an unacceptably loi
time for the user to produce sufficient amounts of text for the topic lexicons
reach adequate sizes [Jelinek, 1989]. Therefore, Prophet was given the abi
scan the user s previously composed texts and produce topic lexicons cont
the words unknown to the main lexicon and other topic lexicons.

The old version of Prophet employed only one topic lexicon. The new versi
capable of managing an arbitrary number of topic lexicons. An advantage c
many topic lexicons simultaneously is that the user can have a "private" tofg
lexicon containing non-topic-related words he uses very often: his name an
address, names of friends, etc. This lexicon can be used simultaneously wi
topic lexicons. Moreover, many users can share a common copy of the pre
without having to duplicate the main lexicon. The topic lexicons are expecte
contain on the order of one thousand words each, but there is no limit on h
many words they can contain.

3. Statistical information about topic words

Ideally, the information about main lexicon words and topic words should be the same. Hov
there are some practical problems with this approach. Firstly, if topic words can be parts of
bigrams, then there will be bigrams with one word in the main lexicon and the other word in
lexicon. Secondly, bigrams must be added during prediction, since topic words are not kno
advance. There are many ways to store and manage this type of bigram, but in all cases th
much administration needed for it to be worthwhile implementing within this project. Hence
such bigrams are stored, and this means that the first term of equation (12) is zero, when ti
previous word is a topic lexicon word. This is already the case for some main lexicon words
far from all bigrams of the main lexicon words are stored.

Limiting the amount of information associated with new words is of course limiting the predi
learning ability, but since the predictor tags unknown words, it still "learns” something abou
words.

1.

| mplementation of the
L anguage M odel

This chapter describes the implementation of the language model designed in the pre
chapter. It also describes programs developed in order to extract data from the trainin
and produce a database, as well as a program for optimizing and evaluating the predi

1. A system for word predictor construction

The creation of a word predictor requires processing of information from differen
sources. The word predictor needs a database containing statistical information .
n-grams, inflection rules, etc. It also needs efficient means of performance evalu
For these purposes | have developed-gnam extractor calleBxtract a database
generator calleGenerate and a simulator calleSimulate | have also developed a
rudimentary UNIX user interface for Predict, calléNIX-Prophet The relationships
between these programs and the sources of information are shown schematicall
Figure 3.

1. Theextractor

To extract worch-grams, as well as taggrams, from large training texts Extre
scans a set of text files and counts occurrences ofginems of interest. The
training texts can be either tagged or untagged. The resulting data are stor
files.

2. Thegenerator

Then-gram files extracted by Extract serve as input to Generate. The Gene
program prunes the setsrefirams to desired sizes and sorts them. Additione
information, such as inflection rules, is added, and the information is stored
as a main lexicon.

3. Thepredictor

The main lexicon created by Generate can then, without any further proces
used by Predict. The predictor can also use an arbitrary numiogri®ofexicons
previously created by Predict or generated through the scanning of texts.

4. Thesimulator
The Simulate program is given a text and uses Predict to reproduce the text with as few ke
as possible. The simulator represents a perfect user who does not make any typing errors,
does not miss any correct suggestions. When the text is completed, the simulator responds
following data:

® Text statistics, such as number of letters and words in the text.

® Text coverage, i.e. the fraction of the running words that was known to the predictor b
the simulation started.

Tagged corpus Lntagezd corpus

{20 worilsh 112050 e it
: o~ Requirements
L]:mract - A, = B b
¥
“N—oram files
Languvage specific
e inlormalion
__,.-'""# L el milechon des)
) Y e
renerale 1= Requirernendls
[':_H GG (VK woyraang. Uk Ligrarne)

¥

Mamn lexicon 1 Markov models
0l wrandod .

Heunzte rule: |

eIy, 1cpelee, elo)

User lexicon

{ Lk wowcs) (Fsuggestions, etc.)

Sullings |

¥
Simulate fe Test text
0l wrondsh
L |
Tzl resulls

(#oesradrokes savel, ebc)

Figure 3. A system for word predictor construction.

°
® | etter and overall keystroke savings.

® The distribution of the positions of the correct suggestions in the suggestion list.

This information is then used to evaluate the performance of different lexicons and differeni
configurations of Predict on selected test texts. Simulate also contains functionality for findi
optimum weights of the Markov model formulas and the parameters of the heuristic modific

1. Theprogramsare easy to use

If too much manual labor is required to generate lexicons and to evaluate the predictor, the
that these programs will be used again in the future is small. Therefore, | have put substani
in making these programs do as much work as possible automatically. For example, lexicol
different training texts and of different sizes can easily be generated with Generate using ct
line options. The lexicons can be used by Predict directly. Then, the difference in performail
between the lexicons can be measured by Simulate, without any additional processing.

1. Modeling of words and lexicons
1. Theword classand lexicon class hierarchies

Predict uses words with different sets of information. For example, main lexicon "
have bigrams and tags associated with them, as opposed to topic lexicon words
only have frequency and one tag. For this reason it makes sense to use a class
for words and lexicons.

An abstract clasBntry represents objects which can be put in lexicons, represente
an abstract clagsexicon.The Entry class has a subclas&rd, which is in turn a
superclass to thielainWord TopicWord,andDerivedWordclasses. These three clas
represent words from the main lexicon, from topic lexicons, and words derived b
inflection rules, respectively. There is also a hierarchy for lexicons, which mirrors
word class hierarchy.

There are many benefits of using a class hierarchy for words. Most parts of the
need not know if the words originate from the main lexicon or from a topic lexicol
This enables more compact and readable code. Furthermore, changes in the
representation of words will not propagate throughout the whole program.

2. Datarepresentation

As we have seen in the previous chapters, the predictor uses a huge amount of -
information and is very computation-intensive. Therefore, which data structures
algorithms are used is of crucial importance for the performance of the Predict p
Since the program is likely to run simultaneously with word-processors, such as
Word, which tend to use an extensive amount of the computer s available resout
importance of the effectiveness of the program must not be underestimated.

The predictor s vocabulary must be quite large, in the order of 10 000 words, pet
even up to 100 000 words. The predictor must also be able to learn thousands o
words typed by the user. Furthermore, inflected words of base forms can be deri
when needed. All these words, at least in principle, must be examined by Predic
each transition of the Markov models, in order to calculate probabilities for the ne
word. This fact requires a set of different data structures for storing the words
efficiently.

1. Representation of the main lexicon

As mentioned in the previous chapter, the main lexicon is static. Thus, information about wi
the main lexicon can be stored efficiently in a fixed size array, with fixed size elements. Ho\
since the actual strings of the words have different sizes, all strings are stored in a commor
pool to save space. Further improvement is possible by letting strings with common suffixe:
their storage space.

The number of bigrams of a word is varying, so all word bigrams are also stored in one con
array in order to save space. Each word has an index into the array where the indices of th
word (and the frequency) of the bigrams are located.

The words in topic lexicons, as well as the main lexicon words, are stored in sorted arrays.
reasons for choosing this structure are the following:

® A word in a lexicon of size can be accessed with binary sear(,o[l'jgf* ”)time.

O[lngg PE)

® An interval of words sharing the same prefix can be fou time.

® [teration over an interval of sorted words is straightforward and fast.
® A minimal overhead for maintaining the structure is necessary.

® The structure and its operators are easy to implement.

The major drawbacks of using arrays are that insertion is perfono[??ji'mne, and that re-sizing
of the arrays may be necessary. However, since the main lexicon is static, insertion is only
performed on topic lexicons, which are considerably smaller than the main lexicon.

1. Representation of thetag Lexicon

The number of tags is much smaller than the number of wondgypically

m~-Jn _ Since the tag bigram matrix is relatively dense, it is stored in a
two-dimensional array enabling fast access. The tag trigram matrix, on the
hand, is sparse, so trigrams are stored in a more compact form. For each t:
is an array of elements containing the second and third tag and the frequer
the trigram. This saves space at the cost of slower access. Access will be
especially slow when iterating over all trigrams with the first and third tags f
or with the second and third tags fixed. The present version of the program
however, does not access trigrams in this way, so this is not a problem.

2. Efficient representation of data

| have chosen to use data structures which do not require an abundance of
and auxiliary structures. As described above, simple arrays are used for stc
words. In addition to the benefits of using arrays already mentioned, an img
consequence of this choice of representation is that large chunks of memol
be allocated when the lexicons are loaded into the program. This cannot be

as easily with structures such as lists or trees, which use pointers. The ben
the chunk-wise memory allocation is that the program will load faster, whict
requirement for the Macintosh version of Prophet. Another benefit is that it -
space, since when many small segments of memory are allocated, the builf
memory manager will always use at least a few bits of extra memory for ea
allocated piece of memory.

When Prophet is once compiled for one type of machine, the main lexicon,
is common for all types of machines, is loaded into memory from a file. The
lexicon is stored again just by writing the byte sequences of the big chunks
allocated memory to another file. Now the main lexicon can be loaded muc
faster in the future by using this file instead. UNIX-Prophet loads ten times -
this way. Predict with a 10 000 word lexicon is loaded in less than a seconc
PC.

. Implementation of Extract

The extractor uses self-resizing hash tables for the stormg@ms. As
elements are inserted, the hash tables grow if the ratio between the numbe
elements and the size of the storage array exceeds a certain limit. This ass
lookups and insertions are performed in constant time, whatever the size oi
training text.

Since the number of word bigrams can be very large, the texts are scannec
During the first scan all information except word bigrams is extracted. Then
set of word unigrams is pruned of low-frequency words. During the second
only bigrams with both words occurring in the reduced set of unigrams are
considered, thus avoiding unnecessary storing of bigrams.

. Time complexity analysis of the prediction function

To look up a word in a lexicon of sireand to find intervals of words matchinc

prefix both tak ©llo22 ”), since binary search is used. Each time a word is
completed by the user, the probabilities for all words are re-computed, whic
takesO(n) for each lexicon. The Markov model for tags makes a transition w

takesO(tZ), wheret is the number of tags. If the last word was unknown to th
predictor, the word has to be inserted into a topic lexicon ousizich takes
O(u). Hence the total time is

o logn+n+Zui +£2]

which isO(n), with the assumptions made in this and previous chapters.

It is possible to reduce the number of words for which probabilities are com
at each transition by only considering the most common ones from the mos
classes. However, since experiments show that the time spent at each tran
short enough not to cause any irritating delays for the user, we decided not
implement such an improvement. Also, it is possible that such an improven

would debase the prediction quality if neglected words would have been se
if all words were considered. Moreover, the implementation cost is not negl
since the words not considered at the transition will have to be investigated
on, and this would inevitably require some administration.

5. Speed optimization

It is possible to reduce the time required for prediction by pre-computing pa
the equations used, or by transforming the equations in order to avoid
time-consuming arithmetic computations, such as divisions. At the cost of L
more memory, the terms of the Markov model equations were pre-compute
resulting in a 30 percent speed-up of the prediction function.

6. The source code

All programs are written in ANSI C++ to ensure portability. A number of generic classes, su
hash tables, lists, arrays, and object pools have been developed to handle sets of objects v
varying demands on access to their elements. These classes have been reused extensivel
parts of the programs.

The programs are modular to enable different types of functionality to be well isolated from
other. This facilitates easy implementation of future improvements. For example, by changi
few well isolated parts of the program we can extend the scope of the Markov models.

All programs together comprise 5 600 lines of code. Predict alone comprises 3 800 lines of

‘Evaluation of the new
Prophet

A word predictor should be evaluated in its full context. The benefits of saving keystro
and getting correct spelling must be weighed against the drawbacks of searching the
suggestion list for the intended word. The usefulness of the program is also specific tc
user and depends on many different aspects of the program. Such an evaluation of P
beyond the scope of this project for my part. In this chapter | will only consider keystrc
savings and the quality of the suggestions.

1. Measuring the performance of the predictor in practice
As described in Chapter 2, there are ways of measuring the performance o
predictor given by information theory. The best way seems to be to calculat
perplexity of the predictor with respect to a test text. However, there are twe
practical disadvantages using the perplexity as a performance measure.

The first problem concerns unknown words. When an unknown word is

encountered by the predictor, it is infinitely surprised, resulting in an infinite
perplexity which makes comparisons impossible. A solution could be to use
pre-defined number for the surprise instead of infinity in this case. But what
number should that be? If a small number, such as zero, is used, predictors
small vocabulary will score the lowest perplexity, since they will rarely be ve
surprised. Conversely, if a very large number is used, predictors with large
vocabularies will score best, since they will rarely be infinitely surprised, tht
collecting the least number of large surprises. Consequently, fair comparisc
between predictors with different lexicons are hard to make using perplexity
performance measure.

The other practical problem is that computing perplexity requires the probal
distribution over the words to be normalized. Normalization is a time consul
operation not affecting the rank among the suggestions, thus not improving
prediction quality. Moreover, using perplexity requires that the heuristic
complements to the prediction function, such as recency promotion describ
earlier, must be used more carefully, since they alter the probability distribu
a rather unsophisticated way.

Because of these problems with computing the perplexity, we decided to us
keystrokes savings defined by (5) as a performance measure instead. This
measure, in turn, has advantages and disadvantages as well. The advanta
that keystroke savings are easy to compute and that commercial word prec
are evaluated by comparing keystroke savings. Thus, keystroke savings fol
comparison purposes must be computed anyway.

Apparently, keystrokes savings are a cruder measurement than perplexity,
change in the probability distribution of the words may not change the rank
among the words, and hence minor improvements of the prediction functior
be hard to detect. Another disadvantage is that the number of saved keystr
does not say anything about the position of the correct word in the suggesti
If the suggestions are sorted by probability, one predictor might score bette
another one when five suggestions are used, but it could be the other way
when four predictions are used. This is true when the first predictor happen
have more correct fifth position suggestions, but fewer correct suggestions
first four positions than the other predictor.

2. Theperceived quality of the predictions

As mentioned, the performance of word prediction programs cannot be measure
perplexity or keystroke savings alone. The perceived quality of the predictions as
experienced by the user is even more important than keystroke savings. lll-fittinc
suggestions will distract and slow down the user, and he might even stop using t
program, even if it saves many keystrokes. As mentioned in the introduction, it is
possible to avoid ill-fitting suggestions, but it is important to delay them as much
possible.

Also, a slight change of the prediction function might not give a significant
improvement of the keystroke savings, yet the change could be valuable if the
suggestions given by the predictor appear to be better in some respect.

1. Results of ssmulations

This section covers some of the tests we have performed to investigate the impe
different features and parameters of Prophet. Four independent 10 000 word tex
used for the experiments one text for optimizing the parameters and the other t|
simulation and evaluation.

100
Oold wersion
=]
Key=troke
=wings .
B new wersion,
) 40 — =ame wiords
20 —
a Onew wersion,

best words
1=uggestion 5 suggestions

Figure 4. Keystroke savings of old version versus new version of Prophet.
1. Keystroke savings of the old versusthe new version

The old version of Prophet used a main lexicon containing 7 014 words anc
word pairs. For the purpose of comparing the two versions, two lexicons of
same size were generated for the new version. The first of these lexicons
contained exactly the same words as the lexicon of the old version. The se«
lexicon contained the 7 014 most common words from the tagged corpus. E
the keystroke savings evaluation program for the old version was error-prol
only one text of 200 words could be used successfully for the simulations. 1
results are shown in Figure 4.

The new version saved 33.0 percent of the keystrokes compared to 26.1 pe
saved by the old version, when the same words and one suggestion was u:
represents a 26.4 percent improvement. When the second lexicon was use
percent of the keystrokes were saved compared to 26.1 percent which is a
percent improvement. When five suggestions were used the improvements
33.2 and 37.6 percent, respectively.

2. Impact of different features

The tag Markov model, adaptivity by using topic lexicons, and the heuristic
modifications of the language model all contribute to improve the prediction
comparing the keystroke savings of an optimized Prophet configuration witl
keystroke savings of the same configuration, but with one feature removed.
impact of that feature is revealed. Table 1 lists the features and the increas
keystroke savings obtained when each feature is added to an otherwise op
configuration.

Table 1. Impact on keystroke savings by different features.

1 suggestion 5 suggestions

Feature % saved % increase % saved % increase
- 32.9 46.0

lear ning new words 29.7 10.7 40.9 12.6
tagging 28.7 14.9 43.2 6.4
recency promotion 31.9 31 43.9 4.8
repetition delay 29.2 129 45.4 13
case sensitivity 324 15 458 0.5
auto-inflection 32.8 0.3 45.7 0.7

3. Number of suggestions

The number of words in the suggestion list has of course a big impact on

keystroke savings. Naturally, the keystroke savings increases monotonicall
the number of alternatives. But the more suggestions, the longer time it tak
the user to inspect them and the greater the chance of missing correct sug
Also, as the number of suggestions grows, the increase in keystroke saving
diminishes. Most users are able to quickly scan five alternatives, which is a
default setting in Prophet.

K ywstroke 60

=vings Gy S0

L]

-
-

4

5 E

Murmberof suggestions

Figure 5. Keystroke savings as a function of the number of suggestions.

4. Comparisonswith word predictorsfor other languages

Prophet is the only commercially available word predictor for Swedish, but there
number of word predictors for English. Naturally, the keystroke savings measure
English word predictors cannot be directly compared with the keystroke savings
Prophet. However, experiments with the old version of Prophet indicate that higlr
keystroke savings can be obtained with word predictors for English than for Swe
when lexicons with equal sizes are used on comparable test texts. One plausible
for this is that it is easier to get a high text coverage for English. Many new Swec
words are composed by concatenating two or more words, which is not the case

English.

2. Prediction examples

The difference in the quality of the suggestions of the old and new versions is seen in
following example: When given the sequelzst ar en latt up..(It is an easy.), the old
version suggestgppgifter(task9g andUppsala(the name of a town) which does not matcl
the two last words very well at all. Oniyppgift(task anduppfattning(apprehensioncan be
considered acceptable suggestions. The new version on the other hand gives only on
acceptable suggestiompp (up).

Det ar en latt up...

upp

uppgift

uppgifter

uppfattning

Uppsala

old version

uppgift

uppfattning

uppmarksamhet

upp

upplevelse

new version

The difference in performance between the versions is even more striking when we ct
the example slightly. When given the sequebeear inteett latt up...(It is not an easy)..
the old version suggests exactly the same five words as before, even though there we
determineeett instead okn In this case none of the suggestions can be considered acc
But when the same sequence is given to the new version, the suggestions are all acc
except the last suggestiampp (up). This proves that the new version successfully takes
account the two previous words when predicting the next word.

Det ar inteett latt up...

upp

uppgift

uppgifter
uppfattning
Uppsala

old version

uppdrag
upptradande
uppenbart

uppror

upp

new version

It can also be noted that the old version suggested thelWppushlg despite the fact that it |
spelled with an initial capital. This is solved by the new version which will (optionally)
the wordUppsalauntil all other words are suggested.

Futur el mprovements

In the previous chapters the design and implementation of the Prophet word predictor
discussed and evaluated. Improvements such as extending the scope of the Markov r
and automatic tag classification and other straightforward enhancements have alread
mentioned. In this chapter | will discuss some more elaborate improvements of word
prediction tools in general.

1. Abbreviation expansion

A common feature of word processors and typing aids is "abbreviation exp:
or "auto correct". For this purpose, the word processor manages a list of sti
pairs. When the user types the first string of such a pair, this string is
automatically transformed into the other string of the pair. For exastplean be
expanded t&tockholmandohcauto-corrected toch This simple feature can
save many keystrokes for a user capable of using it correctly, but we have
not to implement it in Prophet, since such a feature does not lie within the s
of the project. However, it will surely be incorporated in future versions of tr
program.

2. Prophet and dyslexia

As stated previously, the two main target groups for Prophet are physically
handicapped persons and people with spelling disabilities such as dyslexia
there are no guarantees that the predictions are semantically or even synta
correct, the latter group will have two major problems using word predictors

The first problem is that the user must be able to decide if a suggested wor
word he intends to type. In fact, this is not always the case. For example, a
dyslectic user intending to type the wdall (cold) may not be able to select th
right word when given the two similar suggestitat(bare) andkall.

In Prophet, this problem is solved to some extent by incorporating speech
synthesis in the program. Speech synthesis will enable the user to listen to
selected word, thereby making it easier for him to decide whether that worc
intended word or not. Still, mistakes are inevitable due to the many homopt
in natural language. For exami&l (cabbagé andkol (coal), are both nouns
with the same pronunciation, but with different meaning. The next step wou
to include a thesaurus to enable explanations of words.

The second problem occurs if the user makes a spelling error at the beginn
word. The spelling error causes the intended word never to show up in the
suggestion list. For example, the user might start togypeshen he wants to
typecykel((bi-)cyclg, but this word will never be suggested, because it does
match the prefisyk

It is possible to solve this problem by having a spell-checker generate alter
prefixes to a suspicious prefix (suchsg®). These alternate prefixes (mayde;
cyk andpsyR can then be used as input to the predictor, instead of the origi
prefix, thereby enabling the generation of suggestions possibly including th
intended word.

3. Cooperation with spell-checker

The spell-checker can help the predictor by generating alternate prefixes, but the prec
also assist the spell-checker in finding better alternatives to misspelled words. The pre
makes probability estimations of tags and words in a text. This information could be u:
the spell-checker to find suggestions which would fit the context better. For example, i
"l have a brown shuemy spell-checker in MS Word 7.0 suggest®as the first alternative
to shue If the spell-checker would have consulted Prophet before it made the suggesti
maybe a noun such aBoewould have been the first alternative.

Yet a better way to assist spell-checkers could be to let Prophet identify correctly spel
words which do not seem to fit into the context, and warn the spell-checker about thos
words. In this way the spell-checker could detect words which are misspelled, but hap
form other words that the spell-checker accepts. This is a typical problem with most ol
spell-checkers. The same spell-checker as above gladly accepts the sémanea 'shé.

Prophet would hopefully find the wostheimprobable given the context. This improveme
however, is difficult to implement successfully, because Prophet might give too many
alarms. Also, this type of proof-reading should rather be done using a more powerful

language model which takes into consideration both left and right context of words wh

inspecting the text. But if no such program is available, Prophet could easily be modifi
do this kind of proof-reading. If this cooperation is made to work successfully, word
prediction will not be limited to the current target groups. All computer users would be
from an improved spell-checker.

3.

A

Conclusions

1.

Performance

It is clear that Prophet, in its current configuration is best suited to help phy
disabled persons without any linguistic problems. Such users can speed ug
typing radically when the program saves almost half of the keystrokes. How
to make full use of the program, the user must master the language he is u
The predictor can only partly assist a linguistically handicapped person, sin
cannot give only "correct" suggestions. Furthermore, the program does not
user when he misspells the prefix of a word, since no automatic
"prefix-correction” is implemented yet.

The tests in the previous chapter revealed that the new version of Prophet
percent compared to 35 percent of the old version, on an average text, whi
large improvement. When using a larger lexicon the new version achieves
keystroke savings of almost 50 percent.

The new version of Prophet is a sound implementation of well-established
probabilistic methods and a number of heuristic complements. This work h¢
come up with any theoretical break-throughs in the field of natural language
processing and the program does not comprise any state-of-the-art langua
modeling. Nonetheless, the resulting application will likely outperform all wc
predictors on the market, given the features and keystroke savings reporte(
these programs.

Reports from test users at the department of Speech, Music, and Hearing ii
that the new version gives the impression of being more intelligent, and tha
suggests words which fit much better into the context than the old version ¢

. Limitations

The major limitation of the language model is the small scope. Presently, tF
predictor considers the previous word and the two previous tags in order to
predictions. Hence, words outside the scope, which often have an impact o
next word are not considered at all, and consequently the prediction quality
suffers.

The scopes can be extended by one word and one tag, respectively, but it :

impractical to extend them further. Thus, to make improvements beyond thi
capability of Markov models as used in this project, other methods must be
investigated. Interesting approaches are clustering, proposed by Hutchens
[Hutchens, 1995] and methods described in [Jelinek, 1989].

3. Word prediction for everyone

It is easy to develop versions of Prophet for other languages since the predictor uses mainl
statistical information. The language specific rules are kept to a minimum and are well-isole
from the language-independent parts. A rudimentary version can be developed for any lanc
instantly just by extracting a database from a reasonably large corpus.

So it is easy to develop Prophet versions for all languages, but the users are still limited to
physically and linguistically handicapped persons. But there is another potential user group
would benefit from using Prophet: persons who are learning a new language. The same pr«
with linguistically handicapped persons are likely to concern this group too, but by incorpor:
dictionary for the native language of the user, Prophet might be a very useful tool for this gr
people. A successful implementation could mean a word predictor tool valuable for virtually
everyone, since most of us are learning another language!

Bibliography

Cormen, Leiserson, Rivest (199@jroduction to AlgorithmsMIT Press, McGraw Hill.

Ejerhed E., Kallgren G., Wennstedt O., Astrom, M. (1992) "The Linguistic Annotation Syste
the Stockholm-Umea Corpus Project", DGL-UUM-R-33, Department of General Linguistics
University of Umed, REPORT NO. 33.

Fischer, C. N., LeBlanc, R.J. (1990)afting a Compiler with CBenjamin/Cummings Pub. Co.
Heckel (1991)The Elements of Friendly Software Desi§gbex.

Hunnicutt, S. (1986l.exical Prediction for a Text-to-Speech System in Communication and
Handicap: Aspects of Psychological Compensation and TechnicalRAiggelmquist & L.-G.
Nilsson, eds., Elsevier Science Publishers.

Hutchens, J (1993 atural Language Grammatical Inferendgniversity of Western Australia.

Jelinek, F (1989%elf-Organized Language Modeling for Speech RecogniReadings in Speecl
Recognition, Waibel and Lee (Editors). Morgan Kaufmann.

Lippman, S (1991L++ Primer, Addison-Wesley.
Magnuson, T. (1994Evaluation of "Predict": An investigation and a follow-up study of a Swe

word prediction programSTL-QPSR (Speech Transmission Laboratory Quartely Progress a
Status Report) 4/1994, pp. 1-20.

Parsons, T. W. (1992)itroduction to Compiler ConstructioiComputer Science Press.

Stroustrup, B (1991)he C++ Programming LanguagénOI Edition, Addison-Wesley.

von Euler, C. (1997Dyslexi - ett allvarligt handikapp pa biologisk grund, (A serious handicag
with a biological basis)Socialmedicinsk Tidskrift, vol. 74, nr. 1.

