
Detection of spelling errors in Swedish

not using a word list en clair

Rickard Domeij� Joachim Hollman� Viggo Kann�

Numerical Analysis and Computing Science

Royal Institute of Technology

S{100 44 STOCKHOLM

SWEDEN

Abstract

We investigate how to construct an e�cient method for spelling error detection and correction

under the prerequisite of using a word list that is encoded and not possible to decode. Our

method is probabilistic and the word list is stored as a Bloom �lter. In particular we study

how to handle compound words and inections in Swedish.

Keywords: spelling error detection, spelling error correction, Bloom �lter

1 Introduction

How to automatically detect and correct spelling errors is an old problem. Nowadays, most word
processors include some sort of spelling error detection. The traditional way of detecting spelling
errors is to use a word list, usually also containing some grammatical information, and to look up
every word in the text in the word list (Kukich, 1992).

The main problem with this solution is that if the word list is not large enough, the algorithm
will report several correct words as misspelled, because they are not included in the word list. For
most natural languages the size of word list needed is too large to �t in the working memory of
an ordinary computer. In Swedish this is a big problem, because in�nitely many new words can
be constructed as compound words.

There is a way to reduce the size of the stored word list by using Bloom �lters (Bloom, 1970).
Then the word list is stored as an array of bits (zeroes and ones), and only two operations are
allowed: checking if a speci�c word is in the word list and adding a new word to the word list.
Both operations are extremely fast and the size of the stored data is greatly reduced.

There are two drawbacks to Bloom �lters: there is a tiny probability that a word not in the
word list is considered to be in the word list, and we cannot store any other information than the
words themselves, for example grammatical information.

The word list is stored encoded in a form that is impossible to decode|this is often a prereq-
uisite for commercial distribution. A program that detects exactly the words that are not in the
word list can never protect its word list, no matter how it is encoded. This is because it is possible
for a modern computer to test, in a few hours, all reasonable combinations of letters and in that
way reconstruct the complete word list. This is a crucial advantage of probabilistic spelling error
detection methods.

Under the prerequisite of using Bloom �lters we have developed a method for �nding and
correcting misspellings in Swedish texts. The method also works for other languages, similar to
Swedish.

�Electronic mail: domeij@nada.kth.se, joachim@matematik.su.se, viggo@nada.kth.se. Correspondence should

be addressed to Viggo Kann.

1

In this paper we describe the concept of Bloom �lters and how it is possible, in spite of
the restrictions of the Bloom �lters, to handle inections, compound words and spelling error
correction. We discuss the di�erences between correcting touch-typed texts and optically scanned
texts.

2 Swedish word formation

Swedish is a morphologically rich language compared to English. An ordinary verb in Swedish
has more than ten di�erent inectional forms. This makes word listing a heavy task for ordinary
computers.

Most words can also be compounded to form a completely new word. For example, the verb
rulla (roll) can combine with skridsko (skate) to form the word rullskridsko (roller skate). Since
words can combine without limit, it is not even possible to list them. This is a considerable
problem for Swedish spell checkers. A great deal of the tiring false alarms that make Swedish spell
checkers impractical are compound words.

As the example of Swedish compounding above shows, it is not always possible just to put
two words together to form a compound. Stem alteration is often the case, which can mean that
the last letter of the initial word stem is deleted or changed, depending (roughly) on what part of
speech and inectional group it belongs to. Between di�erent compound parts an extra -s- is often
added. However, individual words tend to behave irregularly, thus making compounding hard to
describe by general rules.

3 Bloom �lters

For a long time, the predominant search method has been hashing. The basic idea is to assign
an integer to every search key. These integers are then used as indexes into a table that holds all
the keys. Ideally, there would be a one-to-one correspondence between the integer indexes and
the keys, but this is not necessary and is in fact not even desirable in our application. To achieve
good results, it is essential that the function which maps search keys to integers can be quickly
computed and that the integers are distributed evenly over all possible table indexes.

If the problem at hand is simply a test for membership (e.g., to check if a word belongs to a
word list), then Bloom �lters (Bloom, 1970) can be used. A Bloom �lter is a special kind of hash
table, where each entry is either `0' or `1', and where we make repeated hashings into a single
table (using di�erent hash functions each time).

A word is added to the table by applying each hash function to the word and entering `1's in
the corresponding positions (i.e., the integer indices that the hash functions return).

To check if a word belongs to the word list, you apply the same hash functions and check if all
the entries are equal to `1'. If not all entries are equal to `1', then the word was not in the word
list.

It can happen that a word gets accepted even if it is not in the word list. The reason is that
two di�erent words may have the same signature, i.e., `1's in the same positions. Fortunately, the
probability for such collisions can easily be adjusted to a speci�c application. All we have to do is
to change the size of the table and the number of hash functions.

Let us compute the probability that a word not in the word list will be accepted by the Bloom
�lter. Suppose that the word list consists of n words, that the size of the hash table is m, and
that we use k independent and evenly distributed hash functions. We would like to compute the
probability that the values of the k functions all point to entries equal to `1'.

In the hash table n words have been stored, and for each word k entries have been set to `1'.
The probability that a speci�ed entry in the table is still `0' after that is

�
1�

1

m

�k�n

2

assuming that the k � n table entry settings were independent. The probability that k random
entries in the table all are `1' is

f(k) =

"
1�

�
1�

1

m

�k�n#k
:

The minimum of this function is found when

f 0(k) = 0)

�
1�

1

m

�k�n
=

1

2
;

which means that the hash table is used optimally when it is half-�lled with ones. We get

k = �
ln 2

n � ln
�
1� 1

m

� � ln 2 �
m

n
� 0; 69 �

m

n

and the error probability is
f(k) = 2�k:

Example 1 If the word list contains n = 100 000 words and we choose m = 2000 000 as the size
of the hash table, we should choose

k = ln2 �
2 000 000

100 000
� 13:9 � 14;

i.e., we should use 14 hash functions in the Bloom �lter. The probability that a random word is
accepted is f(14) � 6 � 10�5 = 0:006%.

3.1 An example of hash functions

Let cj be the ASCII-value
1 associated with the jth character in the word w, and let jwj denote the

total number of characters in w. For some chosen prime pi we compute the hash value2 hi(w) as

hi(w) =

jwjX
j=1

2(j�1)�7 cj mod pi:

We should say that there are various ways to speed up the computation of hi(w), and that an
e�cient implementation has an apparent e�ect on the overall performance of our method. One
could for instance compute 1=pi once, and use multiplication instead of a straightforward, but
costly, remainder taking.

Now, let us take a look at a concrete example. Assume that we want to check if the word test

is in the word list, and that we have chosen the primes p1; : : : ; p14 to be the 14 largest primes less
than 2 000 000, i.e., p1 = 1999993, p2 = 1999979,: : :, and p14 = 1999771.

Example 2 We compute hi(test), for i = 1; : : : ; 14. The ASCII-values corresponding to the word
test are c1 = 116, c2 = 101, c3 = 115, and c4 = 116. Applying the above formula for hi(w) gives
us

h1(test) = (20�7 � 116 + 21�7 � 101 + 22�7 � 115 + 23�7 � 116) mod 1999993 = 1167690

h2(test) = (20�7 � 116 + 21�7 � 101 + 22�7 � 115 + 23�7 � 116) mod 1999979 = 1169398

...

h14(test) = (20�7 � 116 + 21�7 � 101 + 22�7 � 115 + 23�7 � 116) mod 1999771 = 1194774

The word test is accepted if, and only if, the hash table entries 1167690, 1169398, : : : , and
1194774 are all equal to `1'.

1You can of course use character set maps other than ASCII.
2This is just an example of a hash function, any good hash function will do.

3

4 Compounding and inection

In our program, compounding and inection are handled by an algorithm that uses a list of ending
rules together with three di�erent word lists.

1. the exception list, containing words that cannot be part of a compound at all,

2. the last part list, containing words that can end a compound or be an independent word,

3. the �rst part list, containing altered word stems that can form the �rst or middle part of a
compound.

Inection is handled in a straightforward but unconventional way. We are trying a heuristical
method to reduce the number of word forms listed, and ensure that all forms of a word is repre-
sented. The last part list presented above does not actually contain all inectional word forms. It
only contains the basic word forms needed to infer the existence of the rest from ending rules.

Both basic word forms and altered word stems are (semi-) automatically constructed from a
machine readable dictionary with inectional and compound information.

input word

exception list

last part list

first part list
(recursive)

ending rules

legal word? yes/no

Figure 1: Look-up scheme for handling compounding and inection.

When a word is checked, the algorithm consults the lists in the order illustrated in Figure 1.
In the trivial case, the input word is found directly in the exception list or the last part list. If
the input word is a compound, only its last part is con�rmed in the last part list. Then the
�rst part list is looked up to acknowledge its �rst part. If the compound has more parts than
two, a recursive consultation is performed. The algorithm optionally inserts an extra -s- between
compound parts, to account for the fact that an extra -s- is generally inserted between the second
and third compound parts.

The ending rule component is only consulted if an input word cannot be found neither in the
exception list nor the last part list. If the last part of the input word matches a rule-ending, it is
considered a legal ending under the condition that the related basic inectional forms are in the
last part list. In this way, only three noun forms, out of normally eight, must be stored in the last
part list. The other noun forms are inferred by ending rules.

Example 3 The word docka (doll) belongs to the �rst inectional noun class in Swedish, and has
the following inectional forms:

docka (doll)
dockan (the doll)
dockor (dolls)
dockorna (the dolls)
dockas (doll's)
dockans (the doll's)
dockors (dolls')
dockornas (the dolls')

4

For this ending class only docka, dockan and dockor are put in the last part list. We construct the
following ending rules from which the other �ve forms can be inferred:

-orna -a, -an, -or
-as -a, -an, -or
-ans -a, -an, -or
-ors -a, -an, -or
-ornas -a, -an, -or

Consider the input word porslinsdockorna (porslin=porcelain). The input word cannot be
found in the exception list nor the last part list. Therefore the ending rules are consulted. The
�rst rule above is to be read (somewhat simpli�ed) like this: If the words dock-a, dock-an and
dock-or are in the last part list, then the word dock-orna is a legal word.

Finally the �rst part list is consulted. There the �rst part of the compound (porslins-) is found,
thus con�rming the legality of the input word.

Our handling of inections is a possible source of error. For example, the non-existing word
dekorna can be constructed using the rule above since the words deka (degenerate), dekan (dean)
and dekor (d�ecor) all exist in Swedish. It is important to design the rules in such a way that
the number of incorrect words that can be constructed is minimized. There are di�erent ways to
obtain better rules. We can include a new su�x on the right hand side of the rule, and at the
same time expand the word list with the corresponding inectional word forms. Another way is to
substitute a new su�x for a su�x on the right hand side. A third method is to include a negated
su�x which works in the following way. If the negated su�x S is included, and a word exists in
the word list with the su�x S, then the rule cannot be applied to that word.

In order to compare di�erent variants of ending rules we generate all possible words that can
be constructed from a speci�c rule. Using the rule in the example above, 1532 words can be
generated, and only two of them are incorrect. Thus, the error is 2=1532 � 0:0013.

5 Spelling error correction

Many studies, see for example Damerau (1964) and Peterson (1986), show that four common
mistakes cause 80 to 90 percent of all typing errors:

1. transposition of two adjacent letters,

2. one extra letter,

3. one missing letter, and

4. one wrong letter.

A method that has proven to be useful for generating spelling correction suggestions is to generate
all words that correspond to these four types of mistakes, and see which are correct words.

Words that are generated in this way are said to lie at distance of one from the original word.
If there are no correct words within this distance, one could continue the search by increasing the
distance by one at each step, but this is of course a very expensive process. An alternative method
is described by Du and Chang (1992).

This metric is well suited for touch-typed text but other metrics should be used for texts
entered in other ways. For instance, hand-written text, and texts that have been entered using
OCR-techniques, see Takahashi et al. (1990) and the section below, are likely to contain di�erent
types of errors.

A problem with the probabilistic method is that when we generate many suggestions for a
misspelled word there is a slight possibility that an incorrect word may slip in. It is however
possible to reduce such errors to a minimum by introducing a graphotactical table as suggested
by Mullin and Margoliash (1990). This table holds all allowed n-grams, i.e., combinations of n

5

letters, for some prespeci�ed limit n. We have chosen n = 4 and we store the graphotactical table
using one bit for every possible 4-gram, `1' if there is a Swedish word that contains the 4-gram
and `0' otherwise. A word is accepted as correct only if all its 4-grams appear in the table. In
Swedish only a small subset of the n-grams can appear at the beginning of a word, and likewise
only a small subset can appear at the end of a word. Therefore we consider the beginning and
end of the word as special letters in the n-grams. A graphotactical table for Swedish constructed
in this way will be �lled to about 8 percent.

The reasonableness of the generated words is checked both against the Bloom �lter and the
graphotactical table. The words that pass both tests will be suggested as corrections.

Example 4 Consider the misspelling strutn. Generate all words within distance one from this
word, check the words using the graphotactical table and using the Bloom �lter. We will show
below how many words that are left after each stage in this process.

1. Transpose two adjacent letters. 5 generated words (tsrutn, srtutn, sturtn, strtun, strunt).
After checking the graphotactical table only strunt is left, which will also pass the Bloom
�lter.

2. Take away one letter. 6 generated words (trutn, srutn, stutn, strtn, strun, strut). After
checking the graphotactical table only strut is left, which will also pass the Bloom �lter.

3. Insert one letter. 7 � 29 = 203 generated words (7 places to insert one letter and 29 letters
in the Swedish alphabet). After checking the graphotactical table 6 words are left (strutan,
struten, strutin, struton, strutna, strutne). Only struten will pass the Bloom �lter.

4. Replace one letter. 6 �28 = 168 generated words (6 letters to replace and 28 letters to replace
with). After checking the graphotactical table 13 words are left. Only one (struts) will pass
the Bloom �lter.

Thus four suggestions will be presented: strunt, strut, struten, and struts, which are all correct
Swedish words.

For a misspelled word of b letters we generate 59b + 28 words that must be checked. For
b = 10 we thus must check 618 words. If the misspelling itself introduces a 4-gram that is not in
the graphotactical table, then the number of words that have to be checked will be reduced to a
number smaller than 208, independent of b.

One should note that the graphotactical table has to be updated if we allow the user to add
her own words; fortunately, this is easy.

In earlier studies of automatic spelling correction, see for instance Takahashi et al. (1990),
it has been considered impractical to use word lists larger than about 10 000 words. Using our
methods, it is possible to have extremely large word lists without sacri�cing speed.

6 Correction in optically scanned documents

Correction in connection with OCR is in many ways di�erent from the ordinary spelling correction
described above. Not only are we faced with typing errors, but also errors due to imperfections in
the text recognition device used. Even a high quality system with a character recognition accuracy
rate as high as 99% may result in a mere 95% word recognition accuracy rate, because one error
per 100 characters equates to roughly one error per 20 words, assuming �ve-character words.

In an optically scanned document we can expect similar looking characters, or groups of char-
acters, such as: `O'-`0', `I'-`1'-`l', `A'-`.4', and `a'- �̀a'-`�a'-`�a'-`�a', to cause problems. This is common
source of error, especially in a language such as Swedish where �̀a', `�a', and `�o' are very common
\real" letters, i.e., not simply `a', and `o' with diacritical marks. Our preliminary results suggest
that roughly half of the errors in optically scanned Swedish texts are of this type.

6

It is natural to choose a metric, i.e., measure of distance between words, di�erent from the one
used for (directly) touch-typed texts. In contrast to the usual minimum edit distance, noninteger
distances are used here.

Our earlier remarks suggest that this metric depends both on the shape of the characters, and
the language (n-gram frequencies). As a step toward fully automatic word correction, or at least
in order to help the user of an interactive program, the potential corrections should be ordered
by increasing distance from the misspelled word. At the moment, we consider this ranking of
candidates to be the most interesting practical problem. The reason for this is that in nearly all
cases the correct word is to be found among the candidates, so the real problem is to pick the
right candidate. We are currently investigating techniques along the lines of Kernighan, Church
and Gale (1990, 1991).

7 Retrieving the word list

Any spelling error detection program's word list can be retrieved using the following algorithm.
Generate all possible combinations of letters (using the graphotactical table to throw away

impossible words) and input them to the spelling error detection program. Note which words the
program accepts. These words form the word list.

If the spelling error detection is exact, we have retrieved the word list exactly, but if it is
probabilistic, we have got a word list that contains some errors.

If we use the algorithm of our spelling error detection program, we will get about 2% nonsense
words, which will make the word list useless for others.

This error rate should not be confused with the probability that a misspelled word is accepted
by the Bloom �lter, which is 0.006% in our program.

8 Performance of our method

Here are some notes on the performance of the current implementation of our method. The
computer used is a Sun Sparc station ELC, a Unix machine comparable with a fast 486 PC.

� Speed:

{ looking up words in the exception list and the last part list only: 2500 words/sec,

{ general spelling detection (including compounding and inection): 700 words/sec,

{ spelling error correction: 20 words/sec.

� Memory requirements:

{ �rst part list 100 Kbyte (about 40000 words),

{ last part list 250 Kbyte (about 100000 words),

{ exception list 25 Kbyte (about 10000 words),

{ graphotactical table 100 Kbyte (4-grams, 29 letters in alphabet),

{ ending rules 10 Kbyte (about 600 rules).

References

Bloom, B. H. (1970), \Space/time trade-o�s in hash coding with allowable errors". Communi-
cations of the ACM 13, 422{426.

Church, K. W., Gale, W. A. (1991), \Probability scoring for spelling correction". Stat. Comput.
1, 93{103.

7

Damerau, F. J. (1964), \A technique for computer detection and correction of spelling errors".
Communications of the ACM 7, 171{176.

Du, M. W., Chang, S. C. (1992), \A model and a fast algorithm for multiple errors spelling
correction". Acta Informatica 29, 281{302.

Kernighan, N. D., Church, K. W., Gale, W. A. (1990), \A spelling correction program based on
a noisy channel model". In: Karlgren, H. (Ed.), COLING-90, The 13th International Conference
on Computational Linguistics, Helsinki, Finland, volume 2, 205{210.

Kukich, K. (1992), \Techniques for automatically correcting words in text". ACM Computing

Surveys 24, 377{439.

Mullin, J. K., Margoliash, D. J. (1990), \A tale of three spelling checkers". Software{Practice

and Experience 20, 625{630.

Peterson, J. L. (1986), \A note on undetected typing errors". Communications of the ACM 29,
633{637.

Takahashi, H., Itoh, N., Amano, T., Yamashita, A. (1990), \A spelling correction method and
its application to an OCR system". Pattern Recognition 23, 363{377.

8

