
Towards Optimal Lower Bounds

For Clique and Chromatic Number?

Lars Engebretsen1,?? and Jonas Holmerin2

1 MIT Laboratory for Computer Science
200 Technology Square, NE43-369

Cambridge, Massachusetts 02139-3594
E-mail: enge@mit.edu

Phone: (617) 253-1499 Fax: (617) 258-8682
2 Dept. of Numerical Analysis and Computer Science

Royal Institute of Technology
SE-100 44 Stockholm, SWEDEN

E-mail: joho@nada.kth.se
Phone: +46 8 790 68 09 Fax: +46 8 790 09 30

December 4, 2000

Abstract. It was previously known that neither Max Clique nor Min Chro-
matic Number can be approximated in polynomial time within n1−ε, for
any constant ε > 0, unless NP = ZPP. In this paper, we extend the
reductions used to prove these results and combine the extended reduc-
tions with a recent result of Samorodnitsky and Trevisan to show that

unless NP ⊆ ZPTIME(2O(log n(log logn)3/2)), neither Max Clique nor Min

Chromatic Number can be approximated within n1−O(1/
√

log logn). Since
there exists polynomial time algorithms approximating both problems within
n1−O(log logn/ logn), our result shows that the best possible ratio we can hope
for is of the form n1−o(1), for some—yet unknown—value of o(1) between
O(1/

√
log logn) and Ω(log logn/ logn).

1 Introduction

The Max Clique problem, i.e., the problem of finding in a graph G = (V,E)
the largest possible subset C of the vertices in V such that every vertex
in C has edges to all other vertices in C, is a well-known combinatorial
optimization problem. The decision version of Max Clique was one of
the problems proven to be NP-complete in Karp’s original paper on NP-
completeness [16], which means that we cannot hope to solve Max Clique
efficiently, at least not if we want an exact solution. Thus, attention has

?A preliminary version of this paper appeared in Proceedings of 27th ICALP [7].
??Part of the work performed at the Department of Numerical Analysis and Computer

Science, Royal Institute of Technology, Stockholm, SWEDEN.

1

turned to algorithms producing solutions which are at most some factor
from the optimum value. It is trivial to approximate Max Clique in a graph
with n vertices within n—just pick any vertex as the clique—and Boppana
and Halldórsson [6] have shown that Max Clique can be approximated within
O(n/ log2 n) in polynomial time. It is an astonishing, and unfortunate, result
that it is hard to do substantially better than this. In fact, the Max Clique
problem cannot be approximated within n1−ε, for any constant ε > 0, un-
less NP = ZPP. The first to explore the possibility of proving strong lower
bounds on the approximability of Max Clique were Feige et al. [10], who
proved a connection between Max Clique and probabilistic proof systems.
Their reduction was then improved independently by Bellare, Goldreich, and
Sudan [4] and Zuckerman [23]. As the final link in the chain, H̊astad [15]
constructed a probabilistic proof system with the properties needed to get
a lower bound of n1−ε.

Since the hardness result holds for any arbitrarily small constant ε, the
next logical step to improve the lower bound is to show inapproximability
results for non-constant ε. However, H̊astad’s proof of the existence of a
probabilistic proof system with the needed properties is very long and com-
plicated. This has, until now, hindered any advance in this direction, but
with the appearance of the new ingenious construction of Samorodnitsky
and Trevisan [22] new results are within reach.

In this paper, we show that it is indeed impossible to approximate Max
Clique in polynomial time within n1−ε where ε ∈ O(1/

√
log log n), given that

NP does not admit randomized algorithms with slightly super-polynomial
expected running time. To do this we first ascertain that the reductions
from probabilistic proof systems to Max Clique [10, 4, 23] work also in the
case of a non-constant ε. This has the additional bonus of collecting in one
place the various parts of the reduction, which were previously scattered
in the literature. We also extend the previously published reductions to
be able to use the construction of Samorodnitsky and Trevisan [22], which
characterizes NP in terms of a probabilistic proof system with so called non-
perfect completeness. To our knowledge, such reductions have not appeared
explicitly in the literature before.

When we combine the new reductions with the probabilistic proof system
of Samorodnitsky and Trevisan [22], we obtain the following concrete result
regarding the approximability of Max Clique:

Theorem 8.1. Unless NP ⊆ ZPTIME(2O(logn(log log n)3/2)), Max Clique
on a graph with n vertices cannot be approximated within n1−O(1/

√
log log n)

in polynomial time.

As a comparison, the best known polynomial time approximation algo-
rithm [6], approximates Max Clique within n1−O(log log n/ logn).

Another problem—akin to Max Clique—is Min Chromatic Number, i.e.,
the problem of finding the minimum number of colors needed to properly

2

vertex color a graph. In fact, results regarding the approximability of Min
Chromatic Number are very similar to the above results regarding the ap-
proximability of Max Clique. If the graph has n vertices, it is always possible
to properly vertex color the graph using n colors and at least one color is
always needed. This immediately gives an algorithm approximating Min
Chromatic Number within n and Halldórsson [13] has shown that the prob-
lem can be approximated within

O
(
n(log logn)2/ log3 n

)
= n1−O(log log n/ logn)

in polynomial time. On the negative side, Feige and Kilian [8, 11] have
shown that Min Chromatic Number cannot be approximated within n1−ε,
for any constant ε > 0, unless NP = ZPP. In this paper, we combine
a slight development of the construction used by Feige and Kilian [8, 11]
with an extended version of the probabilistic proof system of Samorodnitsky
and Trevisan [22] and obtain the following concrete result regarding the
approximability of Min Chromatic Number:

Theorem 11.2. Unless NP ⊆ ZPTIME(2O(logn(log log n)3/2)), it is impos-
sible to approximate Min Chromatic Number on a graph with n vertices
within n1−O(1/

√
log log n) in polynomial time.

The paper is outlined as follows: After some basic definitions in Sec. 2, we
give a description of the developments of connections between probabilistic
proof systems and the approximability of Max Clique and Min Chromatic
Number in Sec. 3. This description leads to a proposed modification of a cer-
tain parameter of proof systems, the amortized free bit complexity, in Sec. 4.
In Sec. 5 we establish that the previously known reductions from probabilis-
tic proof systems to Max Clique can be used also when the amortized free
bit complexity and the other parameters involved are not constants. Our
tools are the original construction of Feige et al. [10] and the gap amplifi-
cation technique of Zuckerman [23], and our goal is to obtain results of the
form “If NP has a probabilistic proof system with certain parameters, then
Max Clique cannot be approximated within some factor in polynomial time
unless NP is contained in some class.” for various values of the parameters
involved. The results we obtain are implicit in the works of Zuckerman [23]
and Bellare et al. [4], we repeat them here for the sake of completeness. In
Sec. 6, we generalize the reductions to the case of non-perfect completeness.
After a brief description of the new result of Samorodnitsky and Trevisan [22]
in Sec. 7, we combine our reductions with their result to prove our lower
bound on the approximability of Max Clique, Theorem 8.1, in Sec. 8. Then
we turn to Min Chromatic Number. We first describe the reductions used
to prove our lower bound in Sec. 9 and then show how the construction of
Samorodnitsky and Trevisan can be modified to be usable for proving lower

3

bounds on the approximability of Min Chromatic Number in Sec. 10. Fi-
nally, we combine the above two sections to prove our lower bound on the
approximability of Min Chromatic Number in Sec. 11.

2 Optimization and Approximation

In this paper, we study polynomial time approximation algorithms for some
NP-hard optimization problems. To measure the efficiency of such an algo-
rithm, we prove guarantees of the form that the algorithm always outputs
a feasible solution with weight at most some factor from the weight of the
optimal solution.

Definition 2.1. Let P be a maximization problem. For an instance x of P
let opt(x) be the optimal value. A solution y, with weight w(x, y), is c-
approximate if it is feasible and w(x, y) ≥ opt(x)/c.

Definition 2.2. Let P be a minimization problem. For an instance x of P
let opt(x) be the optimal value. A solution y, with weight w(x, y), is c-
approximate if it is feasible and w(x, y) ≤ c · opt(x).

Definition 2.3. A c-approximation algorithm for an optimization problem
is a polynomial time algorithm that for any instance x of the problem and
any input y outputs a c-approximate solution.

We use the wording to approximate within c as a synonym for to compute a
c-approximate solution. Let us now formally define the problems we study
in this paper.

Definition 2.4. Max Clique is the following problem: Given a graph G =
(V,E) find the largest possible C ⊆ V such that if v1 and v2 are vertices
in C, then (v1, v2) is an edge in E.

Definition 2.5. Max Independent Set is the following problem: Given a
graph G = (V,E) find the largest possible I ⊆ V such that if v1 and v2 are
vertices in I, then (v1, v2) is not an edge in E.

Obviously, Max Clique and Max Independent Set are equivalent problems
since every clique in a graph G is an independent set in the complement
graph G and vice versa.

Definition 2.6. Min Chromatic Number is the following problem: Given a
graph G = (V,E) find the smallest possible integer k such that it is possible
to partition V into k disjoint subsets with the property that if (v1, v2) is an
edge in V , then v1 and v2 belong to different subsets in this partition.

4

3 Preliminaries

A language L is in the class NP if there exists a polynomial time Turing
machine M , with the properties that

1. For x ∈ L, there exists a proof π, of size polynomial in |x|, such that
M accepts (x, π).

2. For x /∈ L, M does not accept (x, π) for any proof π of size polynomial
in |x|.

Arora and Safra [3] used a generalization of the above definition of NP to
define the class PCP[r, q], consisting of a probabilistically checkable proof
system (PCP) where the verifier has oracle access to the membership proof,
is allowed to use r(n) random bits and query q(n) bits from the oracle.

Definition 3.1. A probabilistic polynomial time Turing machine V with
oracle access to π is an (r, q)-restricted verifier if it, for every oracle π and
every input of size n, uses at most r(n) random bits and queries at most
q(n) bits from the oracle. We denote by V π the verifier V with the oracle π
fixed.

Definition 3.2. A language L belongs to the class PCP[r, q] if there exists
an (r, q)-restricted verifier V with the properties that

1. For x ∈ L, Prρ[V π accepts (x, ρ)] = 1 for some oracle π.

2. For x /∈ L, Prρ[V π accepts (x, ρ)] ≤ 1/2 for all oracles π.

where ρ is the random string of length r.

3.1 Connection Between PCPs and Max Clique

The connection between the approximability of Max Clique and PCPs was
first explored by Feige et al. [10], who showed that

NP ⊆ PCP[O(log n log log n), O(log n log log n)] (1)

and used this characterization of NP and a reduction to show that unless
NP ⊆ DTIME(nO(log log n)), Max Clique cannot be approximated within
any constant in polynomial time.

The assumption on NP needed to prove hardness result on the approx-
imability of Max Clique is closely related to the connection between the
classes NP and PCP[r, q] for various values of r and q. This connection
was the subject of intensive investigations leading to the following result of
Arora et al. [2]:

Theorem 3.3. NP = PCP[O(log n), O(1)].

5

A consequence of this result is that the abovementioned assumptions in the
proof of Feige et al. [10] could be weakened to P = NP. In fact, the lower
bound was improved as well, to a factor Nβ, for some constant β.

A technical tool in the proof of Feige et al. [10] is the construction of
a graph GV,x, corresponding to a verifier in some proof system and some
input x.

Definition 3.4. A list (a1, . . . , ak) is an accepting view for a random string
of a verifier in a PCP if it contains answers to the queries made by the
verifier on this random string and those answers make the verifier accept.

Note that it is enough to put the answers in the list, the queries can be in-
ferred from the random string and, in the case of adaptive verifiers, previous
answers.

Definition 3.5. Two accepting views are consistent if, whenever some bit
is queried from the oracle, the answers are the same for both views.

Definition 3.6. From a verifier V and some input x, the graph GV,x, the
FGLSS graph corresponding to V and x, is defined as follows: Every vertex
in GV,x corresponds to an accepting computation of the verifier. Thus a
vertex can be described by a random string and an accepting view for that
random string. Two vertices in GV,x are connected if they correspond to
consistent accepting views.

In the original construction, the number of vertices in GV,x was bounded by
2r(n)+q(n), where r(n) is the number of random bits used by the verifier and
q(n) is the number of bits the verifier queries from the oracle. Feige et al.
suggest in their paper that the bound on the number of vertices in GV,x
could be improved, and it was later recognized that the number of vertices
can be bounded by 2r(n)+f(n), where f(n) is the free bit complexity.

Definition 3.7. A verifier has free bit complexity f if the number of ac-
cepting views is at most 2f for any outcome of the random bits tossed by the
verifier.

The free bit complexity is enough when only an upper bound on the number
of vertices in GV,x is necessary. To give a lower bound, one needs to refine
the above definition.

Definition 3.8. A verifier has average free bit complexity fav if the sum,
over all random strings, of the number of accepting views is 2r+fav.

Lemma 3.9. Suppose that we construct the graph GV,x from a verifier V
and an input x as described in Definition 3.6. Also suppose that this verifier
has free bit complexity f and average free bit complexity fav. Then the
number of vertices in GV,x graph is 2r+fav ≤ 2r+f .

6

Proof. Since every vertex in GV,x corresponds to an accepting computation
of the verifier, the number of vertices in GV,x is exactly 2r+fav . The last
inequality follows since fav ≤ f . 2

In fact, the verifiers considered in this paper all have fav = f , and thus we
use f instead of fav everywhere.

Definition 3.10. A language L belongs to the class FPCPc,s[r, f] if there
exists a verifier V with free bit complexity f that given an input x and
oracle access to π tosses r independent random bits ρ and has the following
properties:

1. For x ∈ L, Prρ[V π accepts (x, ρ)] ≥ c for some oracle π.

2. For x /∈ L, Prρ[V π accepts (x, ρ)] ≤ s for all oracles π.

We say that V has completeness c and soundness s.

To understand the intuition behind the free bit complexity of a proof system,
it is perhaps best to study the behavior of a typical verifier in a typical proof
system. Such a verifier first reads a number of bits, the free bits, from the
oracle. From the information obtained from those bits and the random
string, the verifier determines a number of bits, the non-free bits, that it
should read next from the oracle and the values these bits should have in
order for the verifier to accept. Finally, the verifier reads these bits from the
oracle and check if they have the expected values.

Theorem 3.11. Suppose that L ∈ FPCPc,s[r, f]. Let x be some instance
of L, and construct the graph GV,x as in Definition 3.6. Then, there is a
clique of size at least c2r in GV,x if x ∈ L, and there is no clique of size
greater than s2r if x /∈ L.

Proof. First suppose that x ∈ L. Then there exists an oracle such that a
fraction c of all random strings make the verifier accept. The computations
corresponding to the same oracle are always consistent, and thus there exists
a clique of size at least c2r in GV,x.

Now suppose that x /∈ L and that there is a clique of size greater than s2r

in GV,x. Since vertices corresponding to the same random string can never
represent consistent computations, the vertices in the clique all correspond
to different random strings. Thus, we can use the vertices to form an oracle
making the verifier accept with probability larger than s. This contradicts
the assumption that the PCP has soundness s. 2

Corollary 3.12. Suppose that NP ⊆ FPCPc,s[O(log n), f] for some con-
stants c, s, and f . Then it is impossible to approximate Max Clique within
c/s in polynomial time unless P = NP.

7

Proof. Let L be some NP-complete language and x be some instance of L.
Let B be some polynomial time algorithm approximating Max Clique within
c/s.

The following algorithm decides L: Construct the graph GV,x corre-
sponding to the instance x. Now run B on GV,x. If the output from B is
at least s2r where r ∈ O(log(n)) is the number of random bits used by the
verifier, accept x, otherwise reject.

By Lemma 3.9, the number of vertices in GV,x is 2r+f . Since, in our
case, r is logarithmic and f is a constant, the graph GV,x has polynomial
size. Since B is a polynomial time algorithm, the above algorithm also runs
in polynomial time. 2

It is possible to improve on the above result by gap amplification. The
simplest form of gap amplification is to simply run a constant number of
independent runs of the verifier. If the verifier accepts for all these runs, we
accept, otherwise we reject. This shows that, for any constant k,

FPCPc,s[r, f] ⊆ FPCPck,sk [kr, kf], (2)

for any functions c, s, r, and f , which strengthens Corollary 3.12 as follows:

Corollary 3.13. Suppose that NP ⊆ FPCPc,s[O(log n), f] for some con-
stants c, s, and f . Then it is impossible to approximate Max Clique within
any constant in polynomial time unless P = NP.

The above procedure can improve the inapproximability result from a spe-
cific constant c/s to any constant, but to improve the inapproximability
result from nα to nα

′
for some constants α and α′, we have to use a more

sophisticated form of gap amplification. Also, the concept of free bit com-
plexity needs to be refined. To see why the above procedure fails in this
case, suppose that we have some proof system which gives a graph GV,x
with n = 2r+f vertices such that we can deduce that it is impossible to ap-
proximate Max Clique within nα in polynomial time. Put another way, this
particular proof system has c/s = nα. Now we try to apply the above gap
amplification technique. Then we get a new graph GV ′,x with 2kr+kf = nk

vertices and a new inapproximability factor ck/sk = nkα. Thus, we have
failed to improve the lower bound. Obviously, it is not only the free bit
complexity of a proof system that is important when it comes to proving
lower bounds for Max Clique, but also the gap, the quotient of the sound-
ness and the completeness. We see above that an exponential increase in
the gap does not give us anything if the free bit complexity and the number
of random bits increase linearly. Bellare and Sudan [5] recognized that the
interesting parameter is f/ log s−1 in the case of perfect completeness. This
parameter was later named the amortized free bit complexity and denoted
by f̄ . Note that the above gap amplification does not change f̄ . Two meth-
ods which do improve the lower bound in the case above by keeping down

8

the number of random bits needed to amplify the gap have appeared in the
literature [4, 23], and both prove the same result: If every language in NP
can be decided by a proof system with logarithmic randomness, perfect com-
pleteness, and amortized free bit complexity f̄ , then Max Clique cannot be
approximated within n1/(1+f̄)−ε in polynomial time, unless NP = ZPP.
The constructions are valid for any constant f̄ and some arbitrarily small
constant ε > 0.

3.2 Connection Between PCPs and Min Chromatic Number

Lund and Yannakakis [19] reduced Min Chromatic Number to Max Clique.
This reduction, which did not preserve the ratio of approximation, was im-
proved by Khanna, Linial, and Safra [17] and Bellare and Sudan [5]. As
a final improvement, Fürer [12] constructed a randomized reduction show-
ing that if Max Clique cannot be approximated within n1/(1+f), then Min
Chromatic Number cannot be approximated within nmin{1/2,1/(1+2f)}−o(1).

In the reduction used above to prove strong lower bounds on the approx-
imability of Max Clique, we used the graph GV,x defined in Definition 3.6
as a technical tool. Instead of first prove a strong lower bound on Max
Clique and then reduce Min Chromatic Number to Max Clique, Feige and
Kilian [8, 11] used the graph GV,x—or to be more precise, the complement
of this graph—to more directly prove a lower bound on the approximability
of Min Chromatic Number. To describe their proof we need to introduce
some properties of graphs.

Definition 3.14. Given any graph G, we define

V (G) = the set of vertices in G,
α(G) = the size of G’s maximum independent set,
χ(G) = the minimum number of colors needed to vertex-color G.

Obviously, α(G) · χ(G) ≥ |V (G)|; The vertices in V (G) can be covered by a
union of χ(G) independent sets, each of size at most α(G). The fractional
chromatic number can be defined by considered arbitrary distributions on
G’s independent sets.

Definition 3.15. The fractional chromatic number χf (G) is the smallest
real k such that for some distribution D on G’s independent sets, choosing I
according to D covers any v ∈ V (G) with probability at least 1/k.

The fractional chromatic number is related to the independence number and
the number of vertices in the same way as the chromatic number; It can be
shown that α(G) · χf (G) ≥ |V (G)|.

Furthermore, χf (G) ≤ χ(G); We can pick the independent sets corre-
sponding to the color classes obtained from a proper vertex-coloring of G

9

with χ(G) colors and use the uniform distribution on these independent sets
as the distribution D above. Lovász [18] has shown that

χf (G) ≥ χ(G)
1 + lnα(G)

.

This implies that a hardness result of the form nβ for the fractional chro-
matic number translates into a hardness result of the form nβ−O(log log n/ logn)

for the chromatic number. Thus, if we can prove a result similar to Theo-
rem 3.11 for the fractional chromatic number, we more or less automatically
obtain a result for Min Chromatic Number. Since α(G) · χf (G) ≥ |V (G)|,
Theorem 3.11 can directly be used to prove the following:

Lemma 3.16. Suppose that L ∈ FPCPc,s[r, f]. Let x be some instance
of L, and construct the graph GV,x as in Definition 3.6. Then, GV,x has
fractional chromatic number at least 2f/s if x /∈ L.

Proof. By Theorem 3.11, there is no clique of size greater than s2r in GV,x,
i.e., α(GV,x) ≤ s2r, if x /∈ L. By the connection between the fractional
chromatic number and the independence number, this implies that

χf (GV,x) ≥ |V (GV,x)|/s2r = 2f/s,

where the last equality follows from Lemma 3.9. 2

Unfortunately we cannot get a bound for the case x ∈ L by an equally
simple manipulation of Theorem 3.11. Feige and Kilian used an extension
of the class FPCP to define a new parameter of probabilistic proof systems
and then proved that this parameter can be used to get a bound on the
fractional chromatic number for the case when x ∈ L.

Definition 3.17. A language L belongs to the class RPCPρ,s[r, f] if it be-
longs to the class FPCPc,s[r, f] for some c > s and, in addition to this,
there is a probability distribution on the valid proofs with the property that
if a valid proof of an input in L is selected according to this distribution, for
any random string, every accepting view occurs with probability at least ρ.
The parameter ρ is called the covering radius of the proof system.

Note that ρ ≤ 1/2f since the best we can hope for is that each of the
2f accepting views occur with equal probability. Below, we will not be able
to achieve the optimal ρ, but come within a constant factor. Using the
covering radius, it is possible to prove a result similar to Theorem 3.11 for
the fractional chromatic number [11].

Theorem 3.18. Suppose that a language L ∈ RPCPρ,s[r, f]. For an in-
put x, let GV,x be the graph from Definition 3.6 corresponding to such an
RPCP for L. Then

x ∈ L =⇒ χf (GV,x) ≤ 1/ρ,

x /∈ L =⇒ χf (GV,x) ≥ 2f/s.

10

Proof. By Theorem 3.11, there is no clique of size greater than s2r in GV,x,
i.e., α(GV,x) ≤ s2r, if x /∈ L. By Lemma 9.1, this implies that

χf (GV,x) ≥ |V (GV,x)|/s2r = 2f/s,

where the last equality follows from Lemma 3.9.
For the case x ∈ L we proceed as follows: Let π be a proof making the

verifier accept. By the proof of Theorem 3.11, this proof corresponds to
a clique in GV,x. This implies that every proof making the verifier accept
corresponds to a clique in GV,x, i.e., to an independent set in GV,x.

By Definition 3.17, there exists a distribution on the valid proofs such
that every accepting view occurs with probability at least ρ. Suppose that
the prover selects a proof according to this distribution. This induces a
distribution on the independent sets in GV,x with the property that any
given vertex in GV,x is covered by the independent set with probability at
least ρ. By the Definition 3.15, this implies that χf (GV,x) ≤ 1/ρ. 2

Note that Theorem 3.18 gives a hardness result for the fractional chromatic
number very similar to the hardness result for Max Clique obtained in Corol-
lary 3.12.

Corollary 3.19. Suppose that NP ⊆ RPCPρ,s[r, f] where r ∈ O(log n)
and the other parameters are constants. Then it is impossible to approximate
the fractional chromatic number within ρ2f/s in polynomial time unless P =
NP.

Proof. Let L be some NP-complete language and x be some instance of L.
Let B be some polynomial time algorithm approximating Min Chromatic
Number within ρ2f/s.

The following algorithm decides L: Construct the graph GV,x corre-
sponding to the instance x. Now run B on GV,x. If B determines that
GV,x has a proper vertex coloring using more than 2f/s colors, accept x,
otherwise reject.

Since the number of random bits used by the verifier is logarithmic and
the average free bit complexity is a constant, the graph GV,x has polynomial
size. Since B is a polynomial time algorithm, the above algorithm also runs
in polynomial time. 2

At first, it may seem strange that the completeness does not appear in the
above result. However, the completeness does appear, although very implic-
itly, in the covering radius. Intuitively, the quantity ρ2f has the same role
in this result as the completeness in the lower bound on the approximability
of Max Clique.

To get hardness result of the form nβ for Max Clique, gap amplification
is used to boost a constant inapproximability threshold. In the case of
Min Chromatic Number, Feige and Kilian [8, 11] used randomized graph

11

products. We describe the details of this construction in Sec. 9, for now
we just mention that the construction gives the following hardness result:
Suppose that NP ⊆ RPCPρ,s[r, f]. Let

β = 1− log ρ−1

f + log s−1
− logD + r + f

D(f + log s−1)
,

where D is a parameter that can be selected to boost the inapproximability
result. Then it is impossible to approximate the fractional chromatic number
in a graph with N ≤ 2D(f+log s−1) vertices within Nβ in polynomial time
unless L ∈ ZPTIME(2Θ(r+D(f+log s−1))).

4 A New Amortized Free Bit Complexity

For the case of non-perfect completeness, Bellare et al. [4] define the amor-
tized free bit complexity as f/ log(c/s). In this paper, we propose that this
definition should be modified.

Definition 4.1. The amortized free bit complexity for a PCP with free bit
complexity f , completeness c and soundness s is

f̄ =
f + log c−1

log(c/s)
. (3)

Note that both this definition and the previous one reduce to f/ log s−1

in the case of perfect completeness, i.e., when c = 1. Note also that the
above gap amplification does not change the amortized free bit complexity,
neither with the original definition nor with our proposed modification of
the definition. However, our proposed definition is robust also with respect
to the following: Suppose that we modify the verifier in such a way that it
guesses the value of the first free bit. This lowers the free bit complexity
by one, and halves the completeness and the soundness of the test. With
our proposed definition, the amortized free bit complexity does not change,
while it decreases with the definition of Bellare et al. [4]. In the case of
perfect completeness, the lower bound on the approximability increases as
the amortized free bit complexity decreases. This makes it dubious to have
a definition in the general case that allows the free bit complexity to be
lowered by a process as the above. Using our proposed definition of the free
bit complexity, we can prove the following results:

Theorem 5.7. If NP ⊆ FPCP1,s[r, f], then, for any R > r, Max Clique
in a graph with N vertices cannot be approximated within N1/(1+f̄)−r/R in
polynomial time unless NP ⊆ coRTIME(2Θ(R+f̄+Rf̄)).

Corollary 5.9. If NP ⊆ FPCP1,s[r, f] for some r ∈ Ω(log n), then, for
any R > r, Max Clique in a graph with N = 2R+(R+2)f̄ vertices can-
not be approximated within N1/(1+f̄)−r/R in polynomial time unless NP ⊆
ZPTIME(2Θ(R+f̄+Rf̄)).

12

Theorem 6.4. If NP ⊆ FPCPc,s[r, f] for some r ∈ Ω(log n), then, for
any R > r such that cd2R/2 > 2r, where d = (R+2)/ log s−1, Max Clique in
a graph with N vertices cannot be approximated within N1/(1+f̄)−(r+3)/(R+2)

in polynomial time unless NP ⊆ BPTIME(2Θ(R+f̄+Rf̄)).

Note that we in our applications choose R such that r/R is small, thus
essentially reducing the above lower bounds to N1/(1+f̄). If we want to get a
reduction without two-sided error in the case of non-perfect completeness, we
do not quite achieve the above. Instead, the interesting parameter becomes

Fν =
1 + νf

ν log(ν/s) + (1− ν) log(1− ν)
. (4)

where ν is a parameter which is arbitrarily close to c. We can then prove
the following theorem

Theorem 6.16. Suppose that NP ⊆ FPCPc,s[r, f]. Let ν be any constant
such that s < ν < c. Let h = (c− ν)/(1− ν). Then, for any R > r, it is im-
possible to approximate Max Clique in a graph with N = 2R+(R+2)Fν vertices
within N1/(1+Fν)−r/R−(log h−1)/R in polynomial time unless

NP ⊆ ZPTIME(2Θ(R+Fν+RFν)).

5 Zuckerman’s Construction

In this section we show how to obtain strong inapproximability results for
Max Clique, given that we have at hand a theorem saying that NP ⊆
FPCP1,s[r, f]. One way to lower the soundness in a PCP is to run several
independent runs of the verifier. As discussed above, this is not enough in our
case. Instead, Zuckerman [23] used a probabilistic construction to in some
sense recycle randomness. His construction uses R random bits to simulate
a number of runs each using r random bits. In his paper, the parameters s
and f were constants and r logarithmic, but we make no such assumptions in
this section. Instead we establish that Zuckerman’s construction works even
in the general case, and we prove a general theorem where the parameters
involved appear.

The idea is to pick a random bipartite graph with 2R vertices on the left
side, 2r vertices on the right side, and where the degree of the vertices on
the left side is d. From this graph construct a new probabilistic machine,
which uses the R random bits to select a vertex v on the left side, and then
runs the verifier in the proof system d times, letting the verifier’s random
bits be determined by the vertices adjacent to v. If we obtain only accepting
runs, we accept our input, otherwise we reject. Obviously, it may happen
that we incorrectly accept an input which is not in the language. Since
our original proof system for NP has soundness s, an s-fraction of all r-bit
random strings may cause the verifier to accept. Thus, we must bound the

13

probability that a large subset of the vertices on the left side has only such
neighbors.

Definition 5.1. A bipartite graph H = (E, V1∪V2) is a (d, n1, n2)-disperser
if all vertices in V1 have degree d, all vertices in V2 have expected degree
d|V1|/|V2|, and no sets S1 ⊆ V1 and S2 ⊆ V2 of cardinality n1 and n2,
respectively, have the property that every vertex in S1 is connected only with
vertices in S2.

Lemma 5.2. Let H be a random bipartite graph H = (E, V1 ∪ V2) where
|V1| = 2R, |V2| = 2r < 2R, and the edge set E ⊆ V1×V2 is chosen as follows:
For each v ∈ V1, pick d neighbors independently and uniformly among the
vertices in V2. We allow multiple edges in H. If d = (R + 2)/ log s−1 for
some s < 1, the graph H is a (d, 2r, s2r)-disperser with probability at least
1− 2−2r .

Proof. Let S1 be a subset of cardinality 2r of the vertices in V1 and S2 be a
subset of cardinality s2r of the vertices in V2. Call a vertex v ∈ V1 S2-bad if
all the neighbors of v are in S2. Let AS1,S2 be the event that all v ∈ S1 are
S2-bad. Since the neighbors of every v ∈ V1 are chosen independently and
uniformly,

Pr[AS1,S2] = sd|S1| = sd2r

for fixed S1 and S2. Thus,

Pr
[⋃
S1

⋃
S2

AS1,S2

]
≤
∑
S1

∑
S2

Pr[AS1,S2] ≤
(

2r

s2r

)(
2R

2r

)
sd2r .

This is at most 2(R+1−d log s−1)2r = 2−2r since d = (R+ 2)/ log s−1. 2

The above lemma means that a graph H constructed as in the lemma with
high probability has the property that for any PCP which uses r random bits
and has soundness s, few of the vertices in V1 has only accepting neighbors.
Let us now formalize this property.

Definition 5.3. Given a verifier V from some proof system and an input x
we first pick a random bipartite graph H as in Lemma 5.2 with V1 = {0, 1}R
and V2 = {0, 1}r. We then construct an acceptance tester, which is a prob-
abilistic machine A(H,V, x) behaving as follows on oracle π: It picks a ran-
dom v ∈ V1, and determines the d = (R + 2)/ log s−1 neighbors u1, . . . , ud
of v in V2. It simulates V on x and π with random strings u1, . . . , ud, and
accepts if all simulations accept. We write Aπ(H,V, x) for A(H,V, x) with
the oracle π fixed. We say that a random string σ is an accepting string
for the tester Aπ(H,V, x) if Aπ(H,V, x) accepts on oracle when the vertex
v ∈ V1 corresponding to σ is the random vertex picked.

14

Lemma 5.4. Suppose that L ∈ FPCP1,s[r, f], and that V is the verifier in
that proof system. The acceptance tester A(H,V, x) as described in Defini-
tion 5.3 has the following properties given some input x:

1. If x ∈ L, then there is an oracle π such that all R-bit strings are
accepting strings for Aπ(H,V, x).

2. If x /∈ L, then the following holds with probability 1 − 2−2r over the
choice of H: For all oracles π at most 2r of all R-bit strings are
accepting strings for Aπ(H,V, x).

Proof. We first assume that x ∈ L. Then there is an oracle π such that
all r-bit string make the verifier V accept on x and π. This implies, by
Definition 5.3, that all R-bit strings are accepting strings for Aπ(H,V, x).

Now we study the case x /∈ L. Lemma 5.2 implies that with probability
1− 2−2r , the graph H used to construct the acceptance tester has the prop-
erty that there are no sets U and S of cardinality 2r and s2r, respectively,
such that all vertices in U are connected only to vertices in S. Let us now
suppose that this is the case. For any oracle π, let Sπ be the set of all r-bit
strings that make the verifier V accept on π. Since the proof system has
soundness s, the set Sπ can contain at most s2r strings. Thus, at most 2r of
all R-bit strings can be accepting strings for Aπ(H,V, x). 2

Note that once H is fixed, we get a new PCP with a new verifier VH that
uses R random bits and runs d repetitions of the verifier V from the original
PCP. We now construct a graph GVH ,x as in Definition 3.6. Then we prove
that there is a connection between the size of the maximum clique in this
graph and the acceptance probabilities of the acceptance tester. Finally, we
use this connection to show that an algorithm approximating Max Clique
within n1/(1+f̄)−r/R can probabilistically decide a language in FPCP1,s[r, f]
with one-sided error.

Lemma 5.5. Suppose that L ∈ FPCP1,s[r, f] and that V is the verifier
in the above proof system. Given some input x, pick an acceptance tester
A(H,V, x) as in Definition 5.3 and construct the graph GVH ,x as in Defini-
tion 3.6. Then the following holds:

1. If x ∈ L, there is a clique of size 2R in GVH ,x.

2. If x /∈ L, the following holds with probability 1− 2−2r over the choice
of H: There is no clique larger than 2r in GVH ,x.

Proof. This follows from Lemma 5.4 together with a proof very similar to
that of Theorem 3.11. 2

Lemma 5.6. Suppose that L ∈ FPCP1,s[r, f], where r ∈ Ω(log n), and
that there is an algorithm B which approximates Max Clique within 2R−r,

15

in a graph G with N = 2R+(R+2)f̄ vertices. Then L ∈ coRTIME(T (N) +
p(N)), where T (N) is the running time of the algorithm B on a graph with
N vertices and p is some polynomial.

Proof. Given the verifier V from the proof system and an input x, we pick
an acceptance tester A(H,V, x) and construct the graph GVH ,x as described
in Definition 3.6. Since the acceptance tester uses R random bits and has
free bit complexity df = (R+2)f̄ , the number of vertices in GVH ,x is at most
2R+(R+2)f̄ . Run B on GVH ,x. If the output from B is at least 2r we accept,
otherwise we reject.

By Lemma 5.5, the above algorithm never rejects if x ∈ L, and if x /∈ L
the algorithm accepts with probability at most 2−2r . The running time of the
algorithm is T (N)+p(N) for some polynomial p, so L ∈ coRTIME(T (N)+
p(N)). 2

Now we are ready to prove a lower bound on the approximability of Max
Clique.

Theorem 5.7. If NP ⊆ FPCP1,s[r, f], then, for any R > r, Max Clique
in a graph with N = 2R+(R+2)f̄ vertices cannot be approximated within
N1/(1+f̄)−r/R in polynomial time unless NP ⊆ coRTIME(2Θ(R+f̄+Rf̄)),
where f̄ is the amortized free bit complexity as per Definition 4.1.

Proof. In Lemma 5.6, let the language L be some NP-complete language and
the algorithm B be some algorithm with polynomial running time. Then,
the lemma implies that clique in a graph withN = 2R+(R+2)f̄ vertices cannot
be approximated within 2R−r in polynomial time, unless

NP ⊆ coRTIME
(
2Θ(R+f̄+Rf̄)

)
.

To express the approximation ratio in terms of N , we note that

2R−r = N (R−r)/(R+(R+2)f̄).

The exponent is at least

(R+ 2)− (r + 2)
(R+ 2)(1 + f̄)

>
1

1 + f̄
− r + 2
R+ 2

,

since f̄ > 0. Since the last term above is at most r/R when R > r. 2R−r >
N1/(1+f̄)−r/R. 2

To show a hardness result under the weaker assumption that

NP * ZPTIME
(
2Θ(R+f̄+Rf̄)

)
,

we make use of the following relation between the classes NP, coRTIME(·),
and ZPTIME(·).

16

Lemma 5.8. If NP ⊆ coRTIME(T (n)) for some function T (n), then
NP ⊆ ZPTIME(O(n log n)T (n)).

Proof. We show that

Sat ∈ coRTIME(T (n)) =⇒ Sat ∈ ZPTIME(O(n log n)T (n)). (5)

If Sat is in coRTIME(T (n)), there exists a randomized algorithm A that
probabilistically decides Sat in time T (n). For an instance in the language,
the algorithm never rejects, but for an instance not in the language, the algo-
rithms accepts with probability 1/2. We can lower this probability to 1/n2

by repeating the algorithm 2 logn times. Let us call this new algorithm A′.
The running time of A′ is (2 log n)T (n).

For a formula φ, the following randomized procedure with high proba-
bility either rejects φ if it is unsatisfiable or finds a satisfying assignment
to φ if it is satisfiable: Run A′ on the formula φ. If A′ rejects, we know that
φ cannot be satisfiable. If A′ accepts, we assume that φ is satisfiable and try
to deduce a satisfying assignment. Suppose that φ depends on the variables
x1, . . . , xn. Then we try to set x1 to true in φ, and run A′ on the resulting
formula. If A′ accepts, we keep x1 true, otherwise we set x1 to false. This
process is repeated to obtain an assignment to all n variables. If A′ never
gave us a false positive during this process, we end up with a satisfying as-
signment. The probability of this event is at least 1− 1/n, since A′ accepts
inputs which are not in the language with probability at most 1/n2.

To sum up, the above procedure behaves as follows: For satisfiable for-
mulas, it produces a satisfying assignment in time O(n log n)T (n) with prob-
ability 1 − 1/n. For unsatisfiable formulas, it rejects in time O(log n)T (n)
with probability 1− 1/n2. Thus, it obtains a definitive answer in expected
time O(n log n)T (n), both for satisfiable and unsatisfiable formulas. 2

By combining Theorem 5.7 and Lemma 5.8, we obtain the following corol-
lary:

Corollary 5.9. If NP ⊆ FPCP1,s[r, f] for some r ∈ Ω(log n), then, for
any R > r, Max Clique in a graph with N = 2R+(R+2)f̄ vertices can-
not be approximated within N1/(1+f̄)−r/R in polynomial time unless NP ⊆
ZPTIME(2Θ(R+f̄+Rf̄)).

In the case where f̄ is some constant and r ∈ O(log n), this reduces to
the well known theorem that Max Clique cannot be approximated within
n1/(1+f̄)−ε, for any constant ε > 0, unless NP = ZPP. To see this, just
choose R = r/ε above.

If we could come up with a way to construct dispersers deterministically,
we would get a hardness result for Max Clique under the assumption that
NP 6⊆ DTIME(·), but for now we get a hardness result under the assump-
tion that NP 6⊆ ZPTIME(·). But once we have this assumption we can
prove a stronger version of Corollary 5.9.

17

Lemma 5.10. Suppose that L ∈ FPCP1,s[r, f], where r ∈ Ω(log n), and
that there is a probabilistic algorithm B that approximates clique within 2R−r

in a graph with N = 2R+(R+2)f̄ without making any errors. Then L ∈
coRTIME(4T (N)+p(N)), where T (N) is the expected running time of the
algorithm B on a graph with N vertices and p is some polynomial.

Proof. Given the verifier V from the proof system and an input x, we pick
an acceptance tester A(H,V, x) and construct the graph GVH ,x as described
in Definition 3.6. The number of vertices in this graph is at most 2R+(R+2)f̄ .
Run B on GVH ,x for 4T (n) time steps. If B has not terminated within this
time—this happens with probability at most 1/4 by Markov’s inequality—
we accept x. Otherwise we proceed as follows: If the value output by B is
at least 2r we accept, otherwise we reject.

By Lemma 5.5, the above algorithm never rejects if x ∈ L, and if x /∈ L
the algorithm accepts with probability at most 1/4 + 2−2r . The running
time of the algorithm is 4T (N) + p(N) for some polynomial p, so L ∈
coRTIME(4T (N) + p(N)). 2

We now combine the above lemma with a slight restatement of Theorem 5.7
to obtain a slightly stronger hardness result.

Theorem 5.11. If NP ⊆ FPCP1,s[r, f] and n log n = 2O(R+f̄+Rf̄), then,
for any r ∈ Ω(log n) and any R > r, it is impossible to approximate Max
Clique in a graph with N vertices within N1/(1+f̄)−r/R by algorithms with
expected polynomial running time unless NP ⊆ ZPTIME(2Θ(R+f̄+Rf̄)).

Proof. By Lemma 5.8, it suffices to prove that it is hard to approximate
Max Clique unless NP ⊆ coRTIME(2Θ(R+f̄+Rf̄)). In Lemma 5.10, let
the language L be some NP-complete language and the algorithm B be
some algorithm with expected polynomial running time. Then, the lemma
implies that Max Clique in a graph with N = 2R+(R+2)f̄ vertices cannot
be approximated within 2R−r in expected polynomial time, unless NP ⊆
coRTIME(2Θ(R+f̄+Rf̄)). As in the proof of Theorem 5.7, the approxima-
tion ratio is at least N1/(1+f̄)−r/R. 2

6 Our Extensions

In this section we show how to generalize the constructions from Sec. 6 to
the case of non-perfect completeness (that is c < 1). We assume from now on
that we have at hand a theorem saying that NP ⊆ FPCPc,s[r, f], and try
to deduce inapproximability results from this characterization. If we allow
two-sided error in the reduction, the methods from Sec. 5 can be generalized
as described in Sec. 6.1. The major new complication arises when we want
to prove hardness results under the assumption that NP 6⊆ ZPTIME(·),

18

which requires the reduction to produce an algorithm deciding a language
in NP with one-sided error. A method achieving this is explored in Sec. 6.2.

6.1 Two-Sided Error

In this section, we want to use a theorem saying that NP ⊆ FPCPc,s[r, f],
to deduce inapproximability under the assumption that NP does not admit
slightly superpolynomial algorithms with two-sided error. With the same
approach as in the case of perfect completeness, we get the following ana-
logue to Lemma 5.4:

Lemma 6.1. Suppose that L ∈ FPCPc,s[r, f], and that V is the verifier in
that proof system. If we construct an acceptance tester A(H,V, x) from V
and some input x as described in Definition 5.3, it has the following prop-
erties:

1. If x ∈ L, then with probability 1−e−cd2R/8 there is an oracle π such that
at least cd2R/2 of all R-bit strings are accepting strings for Aπ(H,V, x).

2. If x /∈ L, then with probability 1− 2−2r , for all oracles π at most 2r of
all R-bit strings are accepting strings for Aπ(H,V, x).

The probabilities are over the choice of the random bipartite graph H.

Proof. We first assume that x ∈ L. Then there is an oracle π such that a
fraction c of the r-bit strings makes V π accept x. This implies, by the con-
struction of the graph H = (E, V1, V2) in Lemma 5.2 and by Definition 5.3
that the probability (over the choice of H) that a vertex v ∈ V1 corresponds
to an accepting string for Aπ(H,V, x) is cd. Let Xv be the indicator variable
for this event, and let Y =

∑
v∈V1

Xv. Now, a standard Chernoff bound [20,
Chapter 4] implies that

Pr[Y ≤ cd2R/2] ≤ e−cd2R/8.

The case x /∈ L is exactly as in the proof of Lemma 5.4. 2

The following lemma is similar to Lemma 5.5.

Lemma 6.2. Suppose that L ∈ FPCPc,s[r, f] and that V is the verifier
in the above proof system. Given some input x, pick an acceptance tester
A(H,V, x) as in Definition 5.3 and construct the graph GVH ,x as in Defini-
tion 3.6. Then the following holds:

1. If x ∈ L, the following holds with probability 1 − e−c
d2R/8 over the

choice of H: There is a clique of size cd2R/2 in GVH ,x.

2. If x /∈ L, the following holds with probability 1− 2−2r over the choice
of H: There is no clique larger than 2r in GVH ,x.

19

The reduction is slightly different from Lemma 5.6, since the size of clique
in the case x ∈ L may be less than cd.

Lemma 6.3. Suppose that L ∈ FPCPc,s[r, f], that r ∈ Ω(log n), that R
and r are such that cd2R/2 > 2r, where d = (R+ 2)/ log s−1, and that there
is an algorithm B which can approximate Max Clique within cd2R−r/2 in a
graph G with N = 2R+(R+2)f/ log s−1

vertices. Then L ∈ BPTIME(T (N) +
p(N)), where T (N) is the running time of the algorithm B on a graph with
N vertices and p is some polynomial.

Proof. Given the verifier V from the proof system and an input x, we pick
an acceptance tester A(H,V, x) and construct the graph GVH ,x as described
in Definition 3.6. Since the acceptance tester uses R random bits and has at
most 2Df = 2(R+2)f/ log s−1

accepting computations, the number of vertices
in GVH ,x is at most 2R+(R+2)f/ log s−1

. Run B on GVH ,x. If B returns a value
which is at most 2r, reject, otherwise accept.

By Lemma 5.5, if x ∈ L the above algorithm rejects with probability at
most e−c

d2R/8. This is at most 1/3 provided that 8 ln 3 < cd2R. Since we
have assumed that r ∈ Ω(log n) and cd2R > 2r+1, this holds when n is large
enough. If x /∈ L the algorithm accepts with probability at most 2−2r < 1/3.
The running time of the algorithm is T (N) + p(N) for some polynomial p,
so L ∈ BPTIME(T (N) + p(N)). 2

We get the following analogue to Theorem 5.7:

Theorem 6.4. Suppose that NP ⊆ FPCPc,s[r, f] for some r ∈ Ω(log n).
Then, for any and R > r such that cd2R/2 > 2r, where d = (R+2)/ log s−1,
the Max Clique problem in a graph with N vertices cannot be approximated
within N1/(1+f̄)−(r+3)/(R+2) in polynomial time unless

NP ⊆ BPTIME
(
2Θ(R+f̄+Rf̄)

)
,

where f̄ is our proposed amortized free bit complexity from Definition 4.1.

Proof. In Lemma 6.3, let the language L be some NP-complete language and
the algorithmB be some algorithm with polynomial running time. Then, the
lemma implies that Max Clique in a graph with N = 2R+(R+2)f/ log s−1

ver-
tices cannot be approximated within cd2R−r/2 in polynomial time, unless
NP ⊆ BPTIME(2Θ(R+f̄+Rf̄)). To express the approximation ratio in
terms of N , we note that

cd2R−r/2 = N (R−d log c−1−r−1)/(R+(R+2)f/ log s−1)

By the definition of d, the exponent is

R− (R+ 2) log c−1

log s−1 − r − 1

R+ (R+ 2)f/ log s−1
,

20

which is at least

(R+ 2)
(
1− log c−1

log s−1

)
− (r + 3)

(R+ 2)(1 + f/ log s−1)
.

This is at least
log c− log s
f − log s

− r + 3
R+ 2

.

The first term is equal to

log c− log s
log c− log s+ f + log c−1

=
1

1 + f̄

if we use our proposed definition f̄ = (f+log c−1)/ log(c/s) of the amortized
free bit complexity. To sum up, cd2R−r > N1/(1+f̄)−(r+3)/(R+2). 2

In the case where f̄ is some constant and r ∈ O(log n), this reduces to the
theorem that Max Clique cannot be approximated within n1/(1+f̄)−ε, for any
constant ε > 0, unless NP = BPP. To see this, just choose R = (r+3)/ε−2
above.

6.2 One-Sided Error

We want to use a theorem saying that NP ⊆ FPCPc,s[r, f], to deduce inap-
proximability under the assumption that NP does not admit probabilistic
algorithms that have slightly superpolynomial expected running time and
never make any mistakes. By Lemma 5.8, it suffices to prove if Max Clique
can be approximated within a certain factor, then NP admits a probabilis-
tic algorithm with slightly superpolynomial running time and a one sided
error. We will do this this by replacing the acceptance tester of Section 5
and Section 6.1 with a threshold tester, defined in this section. The thresh-
old tester will be guaranteed large acceptance probability in the case when
x ∈ L. We do this by making the condition for acceptance to be that a large
fraction of all runs of the verifier V accepts, rather than requiring all runs
to be accepting. The threshold tester will, as the acceptance tester, make
use of a bipartite graph H, but we want the graph used in the threshold
tester to have sligthly different properties.

Definition 6.5. A bipartite graph H = (E, V1∪V2) is a regular (d, n1, n2, ν)-
disperser if all vertices in V1 have degree d, all vertices in V2 have degree
d|V1|/|V2|, and no sets S1 ⊆ V1 and S2 ⊆ V2 of cardinality n1 and n2, re-
spectively, have the property that for every vertex in S1 at least a fraction ν
of its neighbors are vertices in S2.

Before proving that there exists a probabilistic construction that produces
certain regular (d, n1, n2, ν)-dispersers with high probability, we prove that
such dispersers have an additional useful property.

21

Lemma 6.6. Let H be a regular (d, n1, n2, ν)-disperser. For any set S2

containing a fraction 1 − c of the vertices in V2, at most a fraction (1 −
c)/(1− ν) of the vertices in V1 has the property that at least a fraction 1− ν
of their neighbors in S2.

Proof. Let S2 be as in the statement of the lemma. Then there are at most
(1 − c)|V2| · d|V1|/|V2| = (1 − c)d|V1| edges E(S2) with one vertex in S2. If
v is any vertex with at least a fraction (1 − ν) of its neighbors in S2, then
at least (1 − ν)d of the edges E(S2) must have v as one vertex—the other
vertex is in S2. Thus there can be at most

(1− c)d|V1|
(1− ν)d

=
1− c
1− ν |V1|

such vertices v. 2

The probabilistic construction producing regular (d, n1, n2, ν)-dispersers is
very similar to the one producing (d, n1, n2)-dispersers in Lemma 5.2, but
the choice of the parameter d is different. To prove that the construction is
correct with high probability we also need to rely on the following estimate
of certain binomial coefficients:

Lemma 6.7. Let 0 < α < 1. Then, for any non-negative integer n such
that nα(1− α) > 169/72π,

log
(
n

αn

)
≤ n

(
α logα−1 + (1− α) log(1− α)−1

)
. (6)

Proof. By Stirling’s formula, k! = kke−k
√

2πk(1 + θ), where 0 ≤ θ ≤ 1/12.
If we use this estimate and the definition of the binomial coefficient, we
obtain the bound(

n

αn

)
=

√
2πn(1 + θ1)

ααn
√

2παn(1 + θ2)(1− α)(1−α)n
√

2π(1− α)n(1 + θ3)

=
(
α−α(1− α)−(1−α)

)n· 1√
n
· 1√

2πα(1− α)
· (1 + θ1)

(1 + θ2)(1 + θ3)
.

Since we assumed that nα(1 − α) > 169/72π, the last three factors above
multiply to something less than one. 2

Lemma 6.8. Let H be a random bipartite graph H = (E, V1 ∪ V2) where
|V1| = 2R, |V2| = 2r < 2R, and the edge set E ⊆ V1×V2 is chosen uniformly
at random from the space of all edge sets with the property that the degree
of every vertex in V1 is d and the degree of every vertex in V2 is d2R−r. If

d =
R+ 2

ν log(ν/s) + (1− ν) log(1− ν)

for some s and ν such that 2r−R ≤ s < ν/(1−ν)1−1/ν and ν < 1, the graph H
is a regular (d, 2r, s2r, ν)-disperser with probability at least 1− 2−2r .

22

Proof. Let S1 be a subset of cardinality 2r of the vertices in V1 and S2 be a
subset of cardinality s2r of the vertices in V2. Call a vertex v ∈ V1 (S2, ν)-
bad if at least a fraction ν of the neighbors of v are in S2. Let AS1,S2 be the
event that all v ∈ S1 are (S2, ν)-bad. We now estimate Pr[AS1,S2] for fixed
S1 and S2.

The construction of H can be viewed as selecting, uniformly at random,
a perfect matching on the vertices of a d2R × d2R bipartite graph G. Every
vertex in V1 corresponds to d vertices on the left side of G; every vertex in V2

corresponds to d2R−r vertices on the right side. There are (d2R)! perfect
matchings in G. For AS1,S2 to occur, the following must occur for every
vertex in v ∈ V1: At least νd of the vertices in G corresponding to v must
be matched with vertices corresponding to accepting computations of the
verifier. There are at most(

d

νd

)2r(sd2R

νd2r

)
(νd2r)!(d2R − νd2r)!

such matchings, thus

Pr[AS1,S2] ≤
(
d

νd

)2r (sd2R)!
(sd2R − νd2r)!

· (d2R − νd2r)!
(d2R)!

<

(
d

νd

)2r

sνd2r ,

where the last inequality follows since s < 1. By using the bound (6) from
Lemma 6.7, we can rewrite the bound on Pr[AS1,S2] as

Pr[AS1,S2] ≤ 2(−(1−ν) log(1−ν)−ν log(ν/s))d2r .

This implies that

Pr
[⋃
S1

⋃
S2

AS1,S2

]
≤
∑
S1

∑
S2

Pr[AS1,S2] ≤
(

2r

s2r

)(
2R

2r

)
Pr[AS1,S2].

The latter quantity above is at most 2−2r since

d =
R+ 2

ν log(ν/s) + (1− ν) log(1− ν)
. 2

The acceptance tester is modified in accordance with the new notion of a
bad vertex from Lemma 6.8.

Definition 6.9. Given a verifier V from some proof system and an input x,
we construct a threshold tester T (H,V, x, ν) as follows: We pick a random
bipartite graph H as in Lemma 6.8, with V1 = {0, 1}R and V2 = {0, 1}r.
Every vertex in V1 has

d =
R+ 2

ν log(ν/s) + (1− ν) log(1− ν)

neighbors in V2. The threshold tester T (H,V, x, ν) then behaves as follows
on oracle π: It picks a random v ∈ V1, and determines the d neighbors
u1, . . . , ud of v in V2. It simulates V on x and π with random strings

23

u1, . . . , ud, and accepts if at least νd of the simulations accept. We write
T π(H,V, x, ν) for T (H,V, x, ν) with the oracle fixed to π. We say that a
random string σ is an accepting string for T π(H,V, x, ν) if T π(H,V, x, ν)
accepts when the vertex v ∈ V1 corresponding to σ is the random vertex
picked.

Lemma 6.10. Suppose that L ∈ FPCPc,s[r, f], and that V is the verifier in
that proof system. If we construct a threshold tester T (H,V, x, ν) from V and
some input x as described in Definition 6.9, it has the following properties:

1. If x ∈ L, then there is an oracle π such that at least a fraction (c −
ν)/(1− ν) of all R-bit strings are accepting strings for T π(H,V, x, ν).

2. If x /∈ L, then with probability 1 − 2−2r over the choice of H, for
all oracles π at most 2r of all R-bit strings are accepting strings for
T π(H,V, x, ν).

Proof. We first assume that x ∈ L. Then there is an oracle π such that at
most (1 − c)2r of all possible r-bit strings make the verifier V reject. By
Lemma 6.6 and Definition 6.9, this implies that at most a fraction (1 −
c)/(1 − ν) of all R-bit strings are non-accepting strings for T (H,V, x, ν).
Thus, at least a fraction (c − ν)/(1 − ν) of all R-bit strings are accepting
strings for T (H,V, x, ν).

Now we study the case x /∈ L. By Lemma 6.8 with probability at least 1−
2−2r , the H used in the threshold tester is a regular (d, 2r, s2r, ν)-disperser.
Assume that H is such a disperser. Let π be any oracle. Let U be the set
of all R-bit strings that are accepting strings for T π(H,V, x, ν). Let S be
the set of all r-bit strings which are accepting strings for V π(x). Since the
proof system has soundness s, the set S can contain at most s2r strings.
By Definition 6.9, a vertex is in U if at least fraction ν of its neighbors are
connected to vertices in S. Since H is a regular (d, 2r, s2r, ν)-disperser, U
can contain at most 2r elements. Thus with probability at least 1−2−2r , for
all oracles π, there are at most 2r accepting R-bit string for T π(H,V, x, ν).

2

As usual we now want to construct a graph from the tester T (H,V, x, ν).
To keep down the size of the graph, we let each vertex correspond to several
accepting computations. Specifically, a vertex is defined by a random string
and a list of νd accepting computations of the verifier V .

Definition 6.11. Let T (H,V, x, ν) be a threshold tester from definition 6.9.
A ν-transcript of an accepting computation of T (H,V, x, ν) is a list of νd
lists of pairs of oracle queries and answers corresponding to the first νd
accepting runs of V in this accepting computation.

Definition 6.12. Two ν-transcripts are consistent if whenever the same
query occurs in the more than one transcript the answers are the same in
both transcripts.

24

Definition 6.13. Given a threshold tester T (H,V, x, ν) we define the graph
GT (H,V,x,ν) as follows: Every vertex in GT (H,V,x,ν) corresponds to a set of
accepting computations of the threshold tester, namely those accepting com-
putations of T (H,V, x, ν) that have the same random string and the same
ν-transcript as per Definition 6.11. Two vertices in GT (H,V,x,ν) are con-
nected if they correspond to different random strings and the ν-transcripts
are consistent.

Lemma 6.14. Suppose that we use a verifier V from a PCP with free bit
complexity f to construct first T (H,V, x, ν) as described in Definition 6.9
and then GT (H,V,x,ν) as described in Definition 6.13. Then GT (H,V,x,ν) has
at most 2R+(R+2)Fν vertices, where Fν is defined by equation (4).

Proof. There are 2R possible random strings. Since the free bit complexity
of V is f , the number of accepting transcripts for each random string is at
most

(
d
νd

)
(2f)νd ≤ 2(1+νf)d ≤ 2(R+2)Fν . 2

Lemma 6.15. Suppose there is a clique of size p2R in GT (H,V,x,ν). Then
there is a proof which the threshold tester T (H,V, x, ν) accepts with proba-
bility at least p. Conversely, if there is a proof which T (H,V, x, ν) accepts
with probability p, then there is a clique in GT (H,V,x,ν) of size at least p2R.

Proof. Let S be the vertices in a clique of size p2R. Since there are no edges
between vertices in GT (H,V,x,ν) that correspond to the same random string,
the vertices in S correspond to different random strings. Furthermore, each
v ∈ S corresponds to a list of νd lists of accepting computations of the
verifier V . Construct a proof π as follows: If (q, a) occurs in some vertex,
put a as the answer to q in the proof. Since the vertices in S form a clique,
the ν-transcripts corresponding to vertices in S are consistent. Thus, the
above process will not introduce any conflicts. For the queries which do not
occur in any vertex, put an arbitrary answer in the proof. Now consider a
random string σ for which there is a vertex in S. T π(H,V, x, ν) will run the
verifier V with d random strings. By the construction of π, at least νd of
these runs accept, thus T π(H,V, x, ν) will accept on this σ. To conclude,
T π(H,V, x, ν) accepts with probability at least p.

For the converse, consider a proof π making T (H,V, x, ν) accept with
probability p. Then for each random string for which the verifier accepts
there will be a vertex in the graph corresponding to the first νd accepting
runs of V . Since the ν-transcripts corresponding to these vertices are con-
sistent, all of these vertices will be connected. Thus, there is a clique of size
p2R in GT (H,V,x,ν). 2

In the same way as in the proof of Lemmas 5.5 and 5.6 it follows that
if a language L ∈ FPCPc,s[r, f] and there is an algorithm B which can
determine whether a graph with 2R−(R+2)Fν vertices has a clique of size (c−

25

ν)2R/(1 − ν) or a clique of at most size 2r, then L ∈ coRTIME(T (N) +
p(N)), where T (N) is the running time of the algorithm B on a graph with
N vertices and p is some polynomial. Armed with this result, we can prove
the following theorem:

Theorem 6.16. Suppose that NP ⊆ FPCPc,s[r, f]. Let ν be any constant
such that s < ν < c. Let h = (c− ν)/(1− ν). Then, for any R > r, it is im-
possible to approximate Max Clique in a graph with N = 2R+(R+2)Fν vertices
within N1/(1+Fν)−r/R−(log h−1)/R in polynomial time unless

NP ⊆ ZPTIME
(
2Θ(R+Fν+RFν)

)
.

Proof. By Lemma 5.8, it suffices to show that it is hard to approximate Max
Clique unless NP ⊆ coRTIME(2Θ(R+Fν+RFν)).

Let the language L above be some NP-complete language, and the al-
gorithm B some algorithm with polynomial running time. Then we obtain
that unless NP ⊆ coRTIME(2Θ(R+Fν+RFν)), it is impossible to approxi-
mate Max Clique in a graph with N vertices within

h2R−r = N (R−r−log h−1)/(R+(R+2)Fν)

in polynomial time. The exponent in the above expression is at most

(R+ 2)− (r + 2)− log h−1

(R+ 2)(1 + Fν)
<

1
1 + Fν

− r

R
− log h−1

R
. 2

Also in this case it is possible to weaken the assumption on the approxima-
tion algorithm for Max Clique, which gives the following theorem (we omit
the proof):

Theorem 6.17. Suppose that NP ⊆ FPCPc,s[r, f]. Let ν be any constant
such that s < ν < c. Let h = (c − ν)/(1 − ν). Then, for any R > r, it is
impossible to approximate Max Clique in a graph with N = 2R+(R+2)Fν ver-
tices within N1/(1+Fν)−r/R−(log h−1)/R by algorithms with expected polynomial
running time unless NP ⊆ ZPTIME(2Θ(R+Fν+RFν)).

If Fν is a constant and r(n) ∈ O(log n), we get a theorem which says that
Max Clique is hard to approximate within N1/(1+Fν)−ε−o(1), for ν arbitrarily
close to c, if we choose R = r/ε in the above theorem.

This might seem worse than in the case with two-sided error, where the
interesting parameter was f̄ = (f+log c−1)/ log(c/s) instead of Fν . However,
when c is close to 1 and s is small, we expect f̄ and Fν to be close.

7 A PCP With Low Amortized
Free Bit Complexity

In their recent paper, Samorodnitsky and Trevisan [22] give a new PCP
for NP with optimal amortized query complexity, 1 + ε for any constant

26

ε > 0. This result implies that the test has free bit complexity ε, for any
constant ε > 0. Since the analysis of the construction is much simpler than
the analysis of the construction of H̊astad [15], with reasonable effort it is
possible to work through the construction with a non-constant ε; it turns
out that the analysis is correct even in this case. In this section, we give a
review of the construction of Samorodnitsky and Trevisan [22] rephrased in
a way that is useful for the applications of this paper. The starting point is
the same as in H̊astad’s recent construction [14] used to prove hardness of
approximation for linear equations: The NP-hard problem G-gap E3-Sat-
5 [2, 9].

Definition 7.1. G-gap E3-Sat-5 is the following decision problem: We are
given a Boolean formula φ in conjunctive normal form, where each clause
contains exactly three literals and each literal occurs exactly five times. We
know that either φ is satisfiable or at most a fraction G of the clauses in φ
are satisfiable and are supposed to decide if the formula is satisfiable.

7.1 An Interactive Proof System For G-gap E3-Sat-5

There is a well-known two-prover one-round interactive proof system that
can be applied to G-gap E3-Sat-5. It consists of two provers, P1 and P2,
and one verifier. Given an instance, i.e., an E3-Sat formula φ, the verifier
behaves as follows:

1. Pick a clause C and variable x in C uniformly at random from the
instance.

2. Send x to P1 and C to P2. P1 returns an assignment to x and P2 returns
an assignment to the variables in C.

3. Accept if these assignments are consistent and satisfy C.

If the provers are honest, the verifier always accepts with probability 1 when
φ is satisfiable. However, the provers can fool the verifier to accept an unsat-
isfiable instance of G-gap E3-Sat-5 with probability at most (2 +G)/3. To
summarize this in the language of PCPs, the abovementioned proof system
has completeness 1 and soundness (2+G)/3. The soundness can be lowered
to ((2 + G)/3)u by repeating the protocol u times independently, but it is
also possible to construct a one-round proof system with lower soundness as
follows: The verifier picks u clauses {C1, . . . , Cu} uniformly at random from
the instance. For each Ci, it also picks a variable xi from Ci uniformly at ran-
dom. The verifier then sends {x1, . . . , xu} to P1 and the clauses {C1, . . . , Cu}
to P2. It receives an assignment to {x1, . . . , xu} from P1 and an assignment
to the variables in {C1, . . . , Cu} from P2, and accepts if these assignments
are consistent and satisfy C1 ∧ · · · ∧ Cu. As above, the completeness of this
proof system is 1, and it can be shown [21] that the soundness is at most

27

cuG, where cG < 1 is some constant depending on G but not on u or the size
of the instance.

7.2 The PCP

The proof is what H̊astad [14] calls a Standard Written Proof with parame-
ter u. It is supposed to represent a string of length n. When φ is a satisfiable
formula this string should be a satisfying assignment.

Definition 7.2. If U is some set of variables taking values in {−1, 1}, we
denote by {−1, 1}U the set of every possible assignment to those variables.
Define FU = {f : {−1, 1}U → {−1, 1}}.

Definition 7.3. The long code of an assignment x ∈ {−1, 1}U is a mapping
Ax : FU → {−1, 1} where Ax(f) = f(x).

Definition 7.4. A Standard Written Proof with parameter u contains for
each set U ⊆ [n] of size at most u a string of length 22|U|, which we interpret
as the table of a function AU : FU → {−1, 1}. It also contains for each
set W constructed as the set of variables in u clauses a function AW : FW →
{−1, 1}.

Definition 7.5. A Standard Written Proof with parameter u is a correct
proof for a formula φ of n variables if there is an assignment x, satisfying φ,
such that AV is the long code of x|V for any V of size at most u or any V
constructed as the set of variables of u clauses.

The verifier is parameterized by the integer k and the positive real num-
ber ε > 0, and it should accept with high probability if the proof is a correct
Standard Written Proof for a given formula φ.

The verifier uses a convention called folding when it accesses the proof.
This convention ensures that the constant term in the Fourier series—the
term corresponding to the case when α is the function that always evalu-
ates to 1 for all arguments—is zero, which turns out to be important below.
H̊astad [14] calls this folding over true. Another technical property that
turns out to be important is that the only non-zero terms in the Fourier
expansion of certain tables in the proof are terms corresponding to the case
when α is a function evaluating to −1 only for arguments that form satis-
fying assignments to a Boolean formula Φ. This can be achieved by what
H̊astad [14] calls conditioning upon Φ. Folding over true and condition-
ing upon Φ can be done simultaneously, we refer the reader to H̊astad’s
paper [14] for details. In this paper, all tables accessed by the verifier are
assumed to be folded over true. The tables that are also conditioned upon Φ
are denoted by AV,Φ below.

We are now ready describe the procedure used by the verifier.

28

1. Select uniformly at random u variables x1, . . . , xu. Let U be the set of
those variables.

2. For j = 1, . . . ,m, select uniformly at random u clauses Cj,1, . . . , Cj,u
such that clause Cj,i contains variable xi. Let Φj be the Boolean
formula Cj,1 ∧ · · · ∧Cj,u. Let Wj be the set of variables in the clauses
Cj,1, . . . , Cj,u.

3. For i = 1, . . . , k, select uniformly at random fi ∈ FU .

4. For j = 1, . . . , k, select uniformly at random gj ∈ FWj .

5. For all (i, j) ∈ [k]× [k], choose eij ∈ FWj such that, independently for
all y ∈W ,

(a) With probability 1− ε, eij(y) = 1.

(b) With probability ε, eij(y) = −1.

6. Define hij such that hij(y) = fi(y|U)gj(y)eij(y).

7. If for all (i, j) ∈ [k] × [k], AU (fi)AWj ,Φj (gj)AWj ,Φj (hij) = 1, then
accept, else reject.

This verifier has query complexity 2k+k2 and since there are exactly 2k ac-
cepting configurations for every outcome of the verifier’s random string, both
the free bit and the average free bit complexity are 2k.

Lemma 7.6. The verifier needs

r ≤ u log n+ ku log 5 + k2u + k23u + k223u log ε−1 (7)

random bits.

Proof. To select the set U , at most lognu random bits are needed. Once
U has been selected, it is enough to use k log 5u random bits to select the
sets W1, . . . ,Wk since every variable occurs in five clauses. Since there are
22s functions from a set of size s to {−1, 1}, it is enough to use k2u + k23u

to select the functions f1, . . . , fk and g1, . . . , gk. To sample one of the error
functions e11, . . . , ekk, we need to use log ε−1 random bits for every possible
assignment to the variables it depends on. Thus, k223u log ε−1 random bits
suffice to sample all the error functions. 2

Lemma 7.7. The completeness of the above PCP is at least (1− ε)k2
.

Proof. Given a correct proof, the verifier can only reject if one of the error
functions eij are not 1 for the string encoded in the proof. Since the error
functions are chosen pointwise uniformly at random, the probability that
they all evaluate to 1 for the string encoded in the proof is (1− ε)k2

. Thus,
the verifier accepts a correct proof with at least this probability. 2

29

To prove a bound on the soundness, Samorodnitsky and Trevisan [22] expand
an expression for the acceptance condition in a Fourier series, and then
manipulate this expression to obtain a strategy for the provers P1 and P2

in the two-prover one-round interactive proof system for G-gap E3-Sat-5
from Sec. 7.1. We outline the quite technical proof below. In the proof we
need to use the Fourier expansion of the long code. More details on this
topic can be found in the paper of Samorodnitsky and Trevisan [22] or in
H̊astad’s paper [14], for the purposes in this paper it is sufficient to know
that a function A : FV → {−1, 1} can be written as

A(f) =
∑
α∈FV

Âαχα(f)

where

χα(f) =
∏

x∈{−1,1}V
α(x)=−1

f(x),

Âα = 〈A,χα〉 = 2−2|V |
∑
f∈FV

A(f)χα(f).

Lemma 7.8. Suppose that the verifier in the above PCP accepts with prob-
ability 2−k

2
+ δ. Then there exists a strategy for the provers P1 and P2 in

the two-prover one-round interactive proof system for G-gap E3-Sat-5 from
Sec. 7.1 such that the verifier accepts with probability at least 4εδ2.

Proof. To shorten the notation, we define the shorthands A(f) = AU (f)
and Bj(g) = AWj ,Φj (g). The test in the PCP accepts with probability
2−k

2 ∑
S⊆E E[TS] where

TS =
∏

(i,j)∈S
A(fi)Bj(gj)Bj(hij).

We use the convention that T∅ = 1. Suppose that the acceptance probability
is at least 2−k

2
+ δ for some δ > 0. Then some term, corresponding to

some S 6= ∅, in the above expression is at least δ. Number the vertices in
this set S in such a way that there is at least one edge of the form (1, j) and
all edges of that form are (1, 1), . . . , (1, d). Split the product in the definition
of TS into the two factors

TS =
∏

(i,j)∈S,i6=1

A(fi)Bj(gj)Bj(hij)
d∏
j=1

A(f1)Bj(gj)Bj(h1,j)

30

Since the first factor is independent of f1 and e1,1, . . . , e1,k, we use conditional
expectation to rewrite E[TS]. If we let E1[·] denote the expected value taken
over the random variables f1 and e1,1, . . . , e1,k, we obtain

E[TS] = E
[∏

(i,j)∈S,i6=1

A(fi)Bj(gj)Bj(hij) E1

[d∏
j=1

A(f1)Bj(gj)Bj(h1,j)
]]
,

which implies, since |A(·)| = |Bj(·)| = 1, that by the Cauchy-Schwartz
inequality

∣∣E[TS]
∣∣2 ≤ E

[∣∣∣∣E1

[(
A(f1)

)d d∏
j=1

Bj(h1,j)
]∣∣∣∣2
]
. (8)

The remaining factors are expressed using the Fourier transform:

A(f1) =
∑
α∈FU

Âαχα(f1), (9)

Bj(h1,j) =
∑

βj∈FWj

B̂j,βjχβj (h1,j), (10)

where Âα = 〈A,χα〉 and B̂j,βj = 〈Bj , χβj 〉. When we insert the Fourier
expansions (9) and (10) into the bound (8) and expand the products, we
obtain one term for each possible combination of α and β1, . . . , βd. It turns
out that many of these terms vanish and that the remaining bound is as
follows:

∣∣E[TS]
∣∣2 ≤ E

 ∑
α,β1,...,βd

α=πU (β1)···πU (βd)

Â2
αB̂

2
1,β1
· · · B̂2

d,βd
(1− 2ε)2(|β1|+···+|βd|)

 ,
where the projections πU (βj) are defined as the functions sending a y in Wj

to the element
∏
y:y|U=x β(y).

Let us sum up what we have done so far: Given that the verifier in the
PCP accepts with probability at least 2−k

2
+ δ,

E

 ∑
α,β1,...,βd

α=πU (β1)···πU (βd)

Â2
αB̂

2
1,β1
· · · B̂2

d,βd
(1− 2ε)2(|β1|+···+|βd|)

 ≥ δ2,

where the expectation is over the verifier’s choice of U and W1, . . . ,Wk.
We now construct a strategy for the provers P1 and P2. Prover P1 re-

ceives a set U of u variables. For j = 2, . . . , d, P1 selects uniformly at
random u clauses Cj,1, . . . , Cj,u such that clause Cj,i contains variable xi.
Let Φj be the Boolean formula Cj,1 ∧ · · · ∧ Cj,u. Let Wj be the set of vari-
ables in the clauses Cj,1, . . . , Cj,u. Then P1 computes the Fourier coefficients

31

Âα = 〈A,χα〉 and B̂j,βj = 〈Bj , χβj 〉 for j = 2, . . . , d, selects (α, β2, . . . , βd)
randomly such that Pr[(α, β2, . . . , βd)] = Â2

αB̂
2
2,β2
· · · B̂2

d,βd
, forms the func-

tion α′ = απU (β2) · · ·πU (βd) and returns an arbitrary x such that α′(x) 6= 1.
If no such x exists, P1 returns an arbitrary x ∈ {−1, 1}U .

Prover P2 receives Φ1 consisting of u clauses, computes B̂1,β1 = 〈Bj , χβ1〉,
selects a random β1 with the distribution Pr[β1] = B̂2

1,β1
, and returns a

random y such that β1(y) 6= 1. Such a y always exists since the tables in
the proof are folded, and since B̂1,β1 are the Fourier coefficients for B1, such
assignments satisfy Φ1.

The acceptance probability of this strategy can be written

Pr[accept] = E
[
Pr[accept | U,Φ1, . . . , Φd]

]
.

Thus, we assume from now on that U and Φ1, . . . , Φd are fixed and try to
estimate the acceptance probability under these assumptions.

The folding implies that there exists x such that (πU (β1))(x) 6= 1; by
the conditioning the function α′ sends every such x to the element −1. This
implies that there exists a y such that x = y|U and β1(y) 6= 1. Given the x
chosen by P1, the probability that P2 chooses a y such that y|U = x and
β1(y) 6= 1 is at least 1/|β1|. All this put together implies that the acceptance
probability can be bounded from below by

Pr[accept | U,Φ1, . . . , Φk] ≥
∑

α,β1,...,βd
α=πU (β1)···πU (βd)

Â2
αB̂

2
1,β1
· · · B̂2

d,βd

|β1|
.

We now use the bounds
1
|β| > 4εe−4ε|β| > 4ε(1− 2ε)2|β|,

where the first inequality follows since ex > 1+x > x for any real positive x
and the second inequality follows from e−x > 1 − x, which is true for any
real positive x. Thus,

Pr[accept | U,Φ1, . . . , Φm] ≥ 4εδ2. 2

Corollary 7.9. The PCP described above is a PCP for the NP-hard lan-
guage G-gap E3-Sat-5 provided that cuG < 4εδ2.

Proof. The provers P1 and P2 with the properties stated in Lemma 7.8 can
be used to make the verifier in the two-prover one-round protocol for G-gap
E3-Sat-5 from Sec. 7.1 accept an incorrect proof with probability at least
4εδ2. On the other hand, we know [21] that the soundness of the two-prover
one-round protocol for G-gap E3-Sat-5 from Sec. 7.1 is cuG. 2

32

Theorem 7.10. G-gap E3-Sat-5 ∈ FPCPc,s[r, f], where

c ≥ 1/e,

s ≤ 21−k2
,

r = C0k
2
(
log n+ k log 5

)
+ k23C0k2

+ k2 log k223C0k2
,

f = 2k,

for any increasing function k(n) and some C0 ∈ Θ(1).

Proof. To get c ≥ 1/e we need to have ε = 1/k2 and to get s ≤ 21−k2
we

need to have δ = 2−k
2
. These choices imply that

u >
log ε−1δ−2 − 2

log c−1
G

≥ 2k2 + log k2 − 2
log c−1

G

= Θ(k2),

thus we select u = C0k
2 for some C0 ∈ Θ(1). When we insert these

choices of parameters into the bound (7) on the number of random bits
from Lemma 7.6, we obtain

r ≤ C0k
2
(
log n+ k log 5

)
+ k23C0k2

+ k2 log k223C0k2
. 2

Corollary 7.11. G-gap E3-Sat-5 ∈ FPCPc,s[r, f], where

c ≥ 1/e,

s ≤ 2−Θ(log log n),

r ∈ Θ(log n log log n),

f ∈ Θ(
√

log log n).

Proof. Select k2 = C1 log log n, where 3C0C1 < 1. Then

r = Θ(log n log logn) +Θ(log log n log log logn)(log n)3C0C1

= Θ(log n log logn),

where the last equality follows since 3C0C1 < 1. 2

8 Hardness Of Approximating Max Clique

When we combine Corollary 7.11 from Sec. 7.2 with our reductions from
Sec. 6.2, we obtain the following result regarding the approximability of
Max Clique:

Theorem 8.1. The size of the largest clique in a graph with N vertices
cannot be approximated within N1−O(1/

√
log logN) in polynomial time unless

NP ⊆ ZPTIME(2O(logn(log log n)3/2)).

33

Proof. By Corollary 7.11, G-gap E3-Sat-5 ∈ FPCPc,s[r, f], where

c ≥ 1/e,

s ≤ 2−Θ(log log n),

r ∈ Θ(log n log log n),

f ∈ Θ(
√

log log n).

If we select ν = 1/3 < c,

Fν =
Θ(
√

log logn)
Θ(log log n)

= Θ(1/
√

log log n).

Then we set R = r/Fν = Θ(log n(log logn)3/2) in Theorem 6.16 and get
that

h =
c− ν
1− ν ≥

3− e
2e
∈ Θ(1) (11)

and that it is impossible to approximate Max Clique in a graph with N =
2R+(R+2)Fν vertices within

N1/(1+Fν)−r/R−(log h−1)/R ≥ N1−Θ(1/
√

log log n) (12)

in polynomial time, unless

NP ⊆ ZPTIME(2Θ(r/Fν+Fν+r)) = ZPTIME(2Θ(logn(log log n)3/2))

Since N = 2R+(R+2)Fν = 2Θ(logn(log log n)3/2), log logN = Θ(log log n), which
implies that the ratio (12) can be written as N1−O(1/

√
log logN). 2

Note that we do not gain anything if we use Theorem 6.4 instead of Theo-
rem 6.16. In the former case we get

f̄ =
2k +O(1)
k2 +O(1)

=
2
k

+ o(1/k). (13)

and to get a reasonable value for r, we need to set k2 = O(log log n). Thus we
get the same hardness result (except for the constant), but with a stronger
assumption, i.e., NP 6⊆ BPTIME(·) instead of NP 6⊆ ZPTIME(·), if we
use Theorem 6.4.

We could try to improve the result results by strengthening the assump-
tions on NP. To do this, we probably need a new PCP which does not use
the long code. Basically, the what happens when we try to improve the lower
bound is the following: As we try to increase the gap by querying more bits
in the proof, the number of random bits used increases, with the result that
the size of the FGLSS graph grows to fast for us to get any improvement.

To see this, suppose we try to get an even larger gap in Corollary 7.11.
To get this, we would need a parameter k = Ω(

√
log log n). This would make

34

the last term in the bound (7) dominate, that is, r = Θ(k2 log k223C0k2
). If

we choose the rest of the parameters as before (with respect to k), we get
that the size of the FGLSS graph, N = 2Θ(r/Fν) = 2Θ(rk). It follows that
log logN = Θ(k2), or equivalently, that k = Θ(

√
log logN).

If we look at the important term in Theorem 6.16, we see that the
best result we can get is that Max Clique is hard to approximate within
N1/(1+Fν) = N1/(1+Θ(1/k)). Since k = Θ(

√
log logN), the best lower bound

we can hope for is one of the form N1−O(1/
√

log logN).
Since the last term in r comes from choosing bits to read in the proof, a

more efficient encoding of the proof would decrease this term, and thus we
would get a better expression of k as a function of N .

9 The Construction Of Feige and Kilian

In their reduction, Feige and Kilian [8, 11] do not compute a lower bound
on the approximability of the chromatic number ab initio. Instead, they
computed a lower bound on the approximability of a relaxation of the chro-
matic number, the fractional chromatic number. Their proof circles around
the following four quantities of a graph G:

1. V (G) = the set of vertices in G.

2. α(G) = the size of G’s maximum independent set.

3. χ(G) = the minimum number of colors needed to vertex-color G.

4. χf (G) = the fractional chromatic number of G.

The above parameters are intuitively related, since a graph with a large
maximum independent set should not need many colors to properly vertex
color it.

Lemma 9.1. For any graph G

α(G) · χf (G) ≥ |V (G)|. (14)

Proof. By the definition of the fractional chromatic number, there exists a
distribution D on G’s independent sets with the property that for any ver-
tex v ∈ V (G), PrD[v covered by I] ≥ 1/χf (G) when I is selected according
to D. Introduce an indicator random variable

Xv =

{
1 if v is covered by I,
0 otherwise.

Then
∑

v∈V (G)Xv is the size of the independent set selected according to D.
Since all of G’s independent sets have cardinality at most α(G),

α(G) ≥ ED

[∑
v∈V (G)

Xv

]
=

∑
v∈V (G)

Pr
D

[Xv = 1] ≥ |V (G)|/χf (G). 2

35

It turns out that the fractional chromatic number is sandwiched between
two expressions involving the chromatic number. Since we can pick the
independent sets corresponding to the color classes obtained from a proper
vertex-coloring of G with χ(G) colors and use the uniform distribution on
these independent sets as the distribution D above, the fractional chromatic
number can be bounded from above by

χf (G) ≤ χ(G). (15)

As for a lower bound, Lovász [18] has shown that

χf (G) ≥ χ(G)
1 + lnα(G)

. (16)

This implies that a hardness result of the form nβ for the fractional chromatic
number translates into a similar hardness result for the chromatic number.

Lemma 9.2. Suppose that the fractional chromatic number of a graph G
with n vertices cannot be approximated within nβ(n). Then the chromatic
number of this graph cannot be approximated within nβ(n)−O(log log n/ logn).

Proof. Suppose that we have an algorithm A that outputs a value A(G) ≤
χ(G) · nβ(n)/(1 + lnα(G)). By the bound (16), we can use

A(G) ≤ χ(G) · nβ(n)/
(
1 + lnα(G)

)
≤ χf (G) · nβ(n)

to approximate χf (G) within nβ(n), which contradicts the assumption of the
lemma. Since α(G) ≤ n, we conclude that it is impossible to approximate
χ(G) within

nβ(n)

1 + lnα(G)
≥ nβ(n)

1 + lnn
= nβ(n)−log(1+lnn)/ logn = nβ(n)−O(log log n/ logn). 2

The above lemma implies that if we can prove a result similar to Theo-
rem 3.11 for the fractional chromatic number, we more or less automatically
obtain a result for Min Chromatic Number. As we saw in Theorem 3.18,
Feige and Kilian [11] obtained such a result by introducing a new parameter,
the covering radius, associated with the prover in a PCP. To amplify the
bound, Feige and Kilian [8, 11] used graph products.

Definition 9.3. For any two graphs G and H, we define the graph product
G×H as the graph with vertex set V (G)× V (H) and edge set{(

(vG, vH), (wG, wH)
)

: (vG, wG) ∈ E(G) ∨ (vH , wH) ∈ E(H)
}

The k-wise graph product of G with itself is denoted by Gk.

It is easy to see that α(GD) = (α(G))D and Lovász [18] has shown that
χf (GD) = (χf (G))D. These observations immediately strengthens Corol-
lary 3.19 as follows:

36

Corollary 9.4. Suppose that NP ⊆ RPCPρ,s[r, f] where r ∈ O(log n) and
the other parameters are constants. Then it is impossible to approximate Min
Chromatic Number within any constant in polynomial time unless P = NP.

To get from a constant lower bound to a bound of the form nβ we must
use D = Ω(log n). However, this gives a graph with superpolynomial size.
Feige and Kilian [8, 11] studied vertex induced subgraphs of graphs formed
by a graph product and proved that for any graph G, vertex induced sub-
graphs of GD can be used to obtained an amplified lower bound on the
approximability of χf (G).

Lemma 9.5. For any graph G and any integer D, a vertex induced sub-
graph G′ obtained by selecting—independently and uniformly at random with
probability 2/CD—vertices from GD, satisfy the following relations with high
probability:

(|V (G)|/C)D ≤ |V (G′)| ≤ 4(|V (G)|/C)D,
α(G) ≤ C =⇒ α(G′) ≤ D|V (G)|.

Proof. The expected number of vertices in V (G′) is 2(|V (G)|/C)D. By
standard Chernoff bounds [20, Chapter 4],

Pr
[
E[|V (G′)|]/2 ≤ |V (G′)| ≤ 2 E[|V (G′)|]

]
≥ 1− 2e−E[|V (G′)|]/8.

To prove that the second property holds with high probability, first let S be
any independent set in GD. For every s ∈ S, let Xs be an indicator random
variable for the event {s ∈ G′}. Since Pr[Xs = 1] = 2/CD and we assume
that |S| ≤ CD,∑

s∈S
E[Xs] = 2|S|/CD ≤ 2.

From [8, Lemma 2.12], it follows that

Pr
[∑
s∈S

Xs > D|V (G)|
]
≤ e−D|V (G)|(ln(D|V (G)|)−2)/2.

The probability that the second property does not hold is at most the sum
over all independent sets S of the above probability. Since there are at most
3D|V (G)|/3 independent sets in GD [8, Lemma 2.13], this sum is at most

3D|V (G)|/3e−D|V (G)|(ln(D|V (G)|)−2)/2.

Since 31/3/e < 1, the sum tends to 0 as n grows. 2

Corollary 9.6. Suppose that L ∈ RPCPρ,s[r, f]. Then it is possible to
randomly construct a graph G′ which has the following properties:

|V (G′)| ≥ s−D2Df with high probability,

x ∈ L =⇒ χf (G′) ≤ 1/ρD,

x /∈ L =⇒ χf (G′) ≥ |V (G′)|/D2r+f with high probability.

37

Proof. By Theorem 3.18, the graph GV,x has the following properties:

|V (GV,x)| = 2r+f ,

x ∈ L =⇒ χf (GV,x) ≤ 1/ρ,

x /∈ L =⇒ α(GV,x) ≤ s2r.

By the choices G = GV,x and C = s2r in Lemma 9.5, the following holds
with high probability:

V (G′) ≥ (|V (GV,x)|/s2r)D = 2Df/sD,

α(GV,x) ≤ s2r =⇒ α(G′) ≤ D|V (GV,x)|.

When these properties are combined with the bound (14) from Lemma 9.1,
the proof follows. 2

Theorem 9.7. Suppose that L ∈ RPCPρ,s[r, f]. Let

β = 1− log ρ−1

f + log s−1
− logD + r + f

D(f + log s−1)
.

Then it is impossible to approximate χf in a graph with N ≤ 2D(f+log s−1)

vertices within Nβ in polynomial time unless

L ∈ ZPTIME(2Θ(r+D(f+log s−1))).

Proof. Suppose there is an algorithm A approximating χf within Nβ in
polynomial time. Consider the following probabilistic algorithm:

1. On input x, construct the graph GV,x from the RPCP.

2. Sample a random subgraph G′ ⊂ GV,x
D with N = |V (GV,x

D)|/(s2r) =
2Df/sD vertices.

3. Run A on G′. Accept x if A(G′) ≤ N/D2r+f , reject otherwise.

By Corollary 9.6, the above algorithm probabilistically decides L with one-
sided error if A approximates χf within

N/D2r+f

1/ρD
=

NρD

D2r+f
.

This error can be removed with self-reduction. To relate the above ratio
to Nβ, we try to express it as Nβ′ . Solving for β′ gives:

β′ =
logNρD − logD2r+f

logN
(17)

= 1 +
D log ρ
logN

− logD + r + f

logN
(18)

≥ 1− log ρ−1

f + log s−1
− logD + r + f

D(f + log s−1)
(19)

= β. (20)

38

As for the underlying assumption, step 1 takes time Θ(2r+f), step 2 can be
done in time Θ(N), and step 3 takes time Θ(Nk) for some constant k. Since
N ≤ (1/s)D2Df , we have that L ∈ ZPTIME(2Θ(r+D(f+log s−1))) 2

10 Randomizing the Protocol From Sec. 7

We now need to construct a protocol with good covering radius. We will
do this by randomizing the protocol of Samorodnitsky and Trevisan [22],
described in Section 7.

The intuition behind the randomized version of the protocol is that
prover adds some dummy clauses—which are not ordinary 3-Sat clauses, but
clauses which contain three literals and are satisfied for any assignment—to
the instance of G-gap E3-Sat-5. The new variables added to the instance in
this way are given a random assignment. This introduces a distribution on
the proofs, which enables us to prove something about the covering radius.
Since the verifier has free bit complexity 2k, there are 22k different accept-
ing views. We want to prove that each of those accepting views occur with
probability 2−2k according to the above distribution. Actually, we cannot
achieve exactly this, but we can get within a constant factor, which is close
enough.

In the case of perfect completeness, it is enough to prove that every
possible outcome of the free bits occur with high enough probability when
the prover selects a proof for the case x ∈ L. This was done by Feige
and Kilian [8, 11] by requiring the selected functions to be well balanced.
The verifier was then modified to abort its execution in a suitable way—it
accepted in the original construction [8, 11], but we want it to reject in this
paper—whenever it happened to select an fi or a gj without this property.

In our case, however, it may occur that a proof selected by the prover is
rejected because of the error functions eij , which means that a naive compu-
tation of the probability of a certain outcome of the free bits overestimates
the probability that this outcome occurs as an accepting computation. In-
deed, for some random strings, there are no correct proofs which the verifier
accepts. (Let us remark at this point that this does not contradict the fact
that the free bit complexity is 2k. Once the verifier has fixed its random
string, there are 22k accepting views, it is just that some of those accepting
views may correspond to an incorrect proof.) We resolve this issue by en-
suring that there are no views for which very few proofs are accepted. This
can be accomplished by requiring that the functions eij must be sparse and
modify the verifier to reject if it selects an eij lacking this property.

Since we make the verifier reject if it selects any bad function, the size of
the FGLSS graph decreases. We must prove that this decrease is 1 − o(1);
Lemma 9.5 and Corollary 9.6 are still valid if that is the case.

39

10.1 The Randomized PCP

The proof in the randomized PCP is an extension of the Standard Written
Proof with parameter u defined in Sec. 7.2.

Definition 10.1. Let R = {rij : i ∈ [n] ∧ j ∈ [M]}. For any set V ⊆ [n],
let RV = {rij : i ∈ V ∧ j ∈ [M]}.

Definition 10.2. A Randomized Standard Written Proof with parameters
u and M contains for each set U ⊆ [n] of size at most u a string of length
22|U|(1+M)

, which we interpret as the table of a function AU∪RU : FU∪RU →
{−1, 1}. It also contains for each set W constructed as the set of variables
in u clauses a function AW∪RW : FW∪RW → {−1, 1}.

Definition 10.3. A Randomized Standard Written Proof with parameters
u and M is a correct proof for a formula φ of n variables if there is an
assignment x, to the (M + 1)n variables in φ and R, satisfying φ, such that
AV ∪RV is the long code of x|V concatenated with the variables in RV for
any V constructed as a subset of size at most u of the variables and any V
constructed as the set of variables of u clauses.

The intuition behind the above definitions is that we add, for every origi-
nal variable, M new variables that are given a random assignment. This
random assignment induces a distribution on the correct proofs. Note
that the enumeration of the rij variables in the construction implies that
U ∪RU ⊆W ∪RW whenever U ⊆W .

Definition 10.4. Given U and W1, . . . ,Wk, the functions fi ∈ FU and
gj ∈ FWj are well balanced if, for an arbitrary fixed x,

Pr
ri∈U{−1,1}

[
~f(x) = ~u ∩ ~g(x) = ~v

]
≥ 2−2k−1. (21)

for all settings of the non-random variables, all ~u, and all ~v.

Definition 10.5. We call eij ε-sparse if, for an arbitrary fixed x,

Pr
ri∈U{−1,1}

[
eij(x) = −1

∣∣ ~f(x) = ~u ∩ ~g(x) = ~v
]
< ε (22)

for all settings of the non-random variables in Wj, any well-balanced ~f and
~g, all ~u, and all ~v.

The verifier is extended correspondingly. It is still parameterized by the
integer k and the positive real number ε > 0, but it should accept with high
probability if the proof is a correct Randomized Standard Written Proof
for a given formula φ. As in Sec. 7.2, all tables accessed by the verifier are
assumed to be folded over true. The tables that are also conditioned upon Φ
are denoted by AV,Φ below.

40

1. Select uniformly at random u variables U ′ = {x1, . . . , xu}. Let U =
U ′ ∪RU ′ .

2. For j ∈ {1, . . . ,m}, select uniformly at random u clauses Cj,1, . . . , Cj,u
such that clause Cj,i contains variable xi. Let Φj be the Boolean
formula Cj,1 ∧ · · · ∧ Cj,u, W ′j be the set of variables in Φj , and Wj =
W ′j ∪RW ′j .

3. For i ∈ {1, . . . , k}, select uniformly at random fi ∈ FU .

4. For j ∈ {1, . . . , k}, select uniformly at random gj ∈ FWj .

5. Reject unless the functions f1, . . . , fk, g1, . . . , gk are well-balanced.

6. For all (i, j) ∈ [k]× [k], choose eij ∈ FWj such that, independently for
all y ∈Wj ,

(a) With probability 1− ε, eij(y) = 1.
(b) With probability ε, eij(y) = −1.

Reject unless the functions e11, . . . , ekk are 2ε-sparse.

7. Define hij such that hij(y) = fi(y|U)gj(y)eij(y).

8. If for all (i, j) ∈ [k] × [k], AU (fi)AWj ,Φj (gj)AWj ,Φj (hij) = 1, then
accept, else reject.

The prover, given a satisfying assignment to the formula φ, chooses the
proof according to the distribution induced by choosing each rij uniformly
and independently at random in {−1, 1}.
Lemma 10.6. The verifier needs

u log n+ ku log 5 + k2u(1+M) + k23u(1+M) + k223u(1+M) log ε−1 (23)

random bits.

Proof. To select the set U , at most lognu random bits are needed. Once
U has been selected, it is enough to use k log 5u random bits to select the
sets W1, . . . ,Wk since every variable occurs in five clauses. Since there are
22s functions from a set of size s to {−1, 1}, it is enough to use k2u(1+M) +
k23u(1+M) to select the functions f1, . . . , fk and g1, . . . , gk. To sample one of
the error functions e11, . . . , ekk, we need to use log ε−1 random bits for every
possible assignment to the variables it depends on. Thus, k223u(1+M) log ε−1

random bits suffice to sample all the error functions. 2

We note that the verifier can check whether its choice of f1, . . . , fk and
g1, . . . , gk resulted only in well balanced functions in time O(2k23u+2k), and
whether its choice of e11, . . . , ekk resulted only in 2ε-sparse functions in time
O(k223u+2k). This time is polynomial in the size of the proof given that k
and u are both O(log n).

41

10.2 The Prover’s Perspective

The prover gives a random assignment the variables in the dummy clauses,
i.e., to the ri variables. This introduces a distribution on the correct proofs
and enables us to prove something about the covering radius.

Lemma 10.7. The RPCP in Sec. 10.1 has covering radius at least

min
~u,~v

Pr
Π

[
~f(x) = ~u ∩ ~g(x) = ~v ∩ ~e(x) = ~1

]
.

where Π is the distribution on the proofs induced by choosing each rij uni-
formly and independently at random in {−1, 1}.

Proof. By definition, ρ is a lower bound on PrΠ [view] for any view making
the verifier accept when x ∈ L. When we have a correctly encoded proof the
verifier accepts if the error functions all evaluate to 1. Thus, the probability
of the accepting view (~u,~v) is PrΠ

[
~f(x) = ~u ∩ ~g(x) = ~v ∩ ~e(x) = ~1

]
. 2

Corollary 10.8. The RPCP in Sec. 10.1 has covering radius at least

min
~u,~v

Pr
Π

[
~f(x) = ~u ∩ ~g(x) = ~v

]
min
~u,~v

Pr
Π

[
~e(x) = ~1

∣∣ ~f(x) = ~u ∩ ~g(x) = ~v
]
.

where Π is the distribution on the proofs induced by choosing each rij uni-
formly and independently at random in {−1, 1}.

To bound the above probabilities we require that the functions f1, . . . , fk,
g1, . . . , gk, and e11, . . . , ekk must have certain properties and claim that the
covering radius is large whenever the functions have these properties.

Theorem 10.9. Suppose that f1, . . . , fk and g1, . . . , gk are well balanced
and that e11, . . . , ekk are 2ε-sparse. Then ρ ≥ (1− 2k2ε)2−2k−1.

Proof. Since f1, . . . , fk and g1, . . . , gk are well balanced,

min
~u,~v

Pr
Π

[
~f(x) = ~u ∩ ~g(x) = ~v

]
≥ 2−2k−1;

since e11, . . . , ekk are 2ε-sparse,

min
~u,~v

Pr
Π

[
~e(x) = ~1

∣∣ ~f(x) = ~u ∩ ~g(x) = ~v
]
≥ 1− k2 · 2ε.

By Corollary 10.8, this implies that ρ ≥ (1− 2k2ε)2−2k−1. 2

Let us sum up what we have done so far: If the verifier selects only functions
with certain nice properties, we obtain an RPCP with a covering radius
that is only a constant factor from the optimal one—provided that we select
ε ∈ O(1/k2).

42

10.3 The Verifier’s Perspective

Let us—for a moment—ignore the fact that the verifier may reject prema-
turely should it select a “bad” function. Then, with an argument identical
to that in Sec. 7.2, it follows that the above PCP has completeness at least
(1− ε)k2

and soundness at most 2−k
2

+ δ provided that cuG ≤ 4εδ2. Regard-
ing the soundness, the calculations in Lemma 7.8 work also in this extended
case by letting the set U in Lemma 7.8 correspond to U ′ ∪ RU ′ , and the
sets Wj correspond to W ′j ∪ RW ′j . This gives a strategy for the provers P1

and P2 which gives an assignment to both the non-random and the random
variables, and the success rate for this strategy is at least 4εδ2.

That the verifier rejects if it selects a bad function can never increase
the soundness. Thus, as far as the soundness is concerned we may ignore
the fact that the verifier may reject prematurely. However, the size of the
FGLSS graph corresponding to the verifier in question decreases slightly
since some vertices, the vertices corresponding to some random strings, are
removed entirely. We now prove that this decrease is miniscule. In fact, the
only critical bound is the bound on χf when x /∈ L. For this bound, i.e.,
the bound from Corollary 9.6, to remain valid, it is enough to prove that
the decrease is less than a 1− o(1) factor. We start by proving a bound on
the probability that f1, . . . , fk and g1, . . . , gk are well balanced.
Lemma 10.10 [11, Lemma 5]. Let r0 be the number of random variables
in U and let s0 be the number of non-random variables in U . Let rj and sj
be defined accordingly for the Wj. Let nj = rj + sj. Suppose that

rj − 2k − 1 ≥ 5nj/6,
nj ≥ 6 log 2k + 12,

2(1/3)nj−1 − 2(1/6)nj ≥ 2k + s1 + . . .+ sk.

Then all but a 2k
∑k

i=0 e
−2nj fraction of the choices of f1, . . . , fk, g1, . . . , gk

are well balanced.

Corollary 10.11. Suppose that k(n) is an increasing function, M ≥ 12,
and u ≥ 26k + 13. Then all but a 2k(k + 1)e−2u/2 fraction of the choices of
functions f1, . . . , fk, g1, . . . , gk are well balanced.

Proof. It follows from steps 1 and 2 in the description of the verifier in
Sec. 10.1 that rj ≥ nj/(1 + 1/M). We want to select our parameters in
such a way that rj − 2k − 1 ≥ 5nj/6, which is, by the above bound on rj ,
equivalent to

nj
1− 5/M
6 + 6/M

≥ 2k + 1.

Since M ≥ 12, the left hand side is at least

nj
1− 5/12
6 + 1/2

≥ nj
13
.

43

Thus, we need to select our parameters in such a way that nj ≥ 26k + 13.
This bound will hold if u ≥ 26k+13, which also implies that nj ≥ 6 log 2k+12
for all k > 0. Since

2(1/3)nj−1 − 2(1/6)nj = Ω(2nj/3),

2k + s1 + . . .+ sk = O(n2
j),

clearly 2(1/3)nj−1 − 2(1/6)nj ≥ 2k + s1 + . . .+ sk for large enough nj . Thus,
the conditions in Lemma 10.10 are met and the result follows. 2

Now we turn to proving that the error functions e11, . . . , ekk are 2ε-sparse
with high probability given that the verifier selected well balanced functions
f1, . . . , fk, g1, . . . , gk. Let Π be the distribution induced by choosing all the
random variables uniformly and independently at random.

Lemma 10.12. Assume that f1, . . . , fk, g1, . . . , gk are well balanced and that
Mu ≥ 4k + 2. Then PrΠ [~aj | ~f(~x) = ~u ∩ ~g(~x) = ~v] ≤ 2−5Mu/2 for any fixed
assignment ~aj to the variables in Wj and any fixed ~u,~v

Proof. By the definition of conditional probability,

Pr
Π

[
~aj
∣∣ ~f(~x) = ~u ∩ ~g(~x) = ~v

]
=

PrΠ
[
~aj ∩ ~f(~x) = ~u ∩ ~g(~x) = ~v

]
PrΠ

[
~f(~x) = ~u ∩ ~g(~x) = ~v

]
≤ PrΠ [~aj]

PrΠ
[
~f(~x) = ~u ∩ ~g(~x) = ~v

] .
Since the 3Mu random variables in Wj are set independently at random,
PrΠ [~aj] ≤ 2−3Mu and since the ~f and ~g are well balanced, PrΠ [~f(~x) =
~u ∩ ~g(~x) = ~v] ≥ 2−2k−1. Thus,

Pr
Π

[
~aj
∣∣ ~f(~x) = ~u ∩ ~g(~x) = ~v

]
≤ 2−3Mu+2k+1 ≤ 2−5Mu/2,

where the last inequality follows from our assumption on k. 2

Corollary 10.13. Suppose that f1, . . . , fk, g1, . . . , gk are well balanced. Let
rj be the number of random variables in Wj. Assume that Mu ≥ 4k + 2.
Then the probability, over the choice of eij for fixed i and j, that eij is
2ε-sparse is at least 1− exp(3u+ 2k − ε22Mu/3−1).

44

Proof. By Definition 10.5, we must bound the probability that

Pr
Π

[
eij(x) = −1

∣∣ ~f(x) = ~u ∩ ~g(x) = ~v
]
≥ 2ε (24)

for some setting of the non-random variables in Wj and for some ~u and ~v.
By Lemma 10.12, we can assume that for a fixed j

Pr
Π

[
~aj
∣∣ ~f(x) = ~u ∩ ~g(x) = ~v

]
≤ 2−5Mu/2

for any assignment ~aj to the variables inWj . Now fix ~u, ~v, and an assignment
to the 3u non-random variables in Wj . Let

X~aj = −ε+ I{eij(~aj)=−1|~f(x)=~u∩~g(x)=~v} (25)

X =
∑
~aj

Pr
Π

[~aj |~f(x) = ~u ∩ ~g(x) = ~v]X~aj . (26)

Then X is a random variable depending on the choice of eij . Furthermore,

X + ε =
∑
~aj

Pr
Π

[~aj |~f(x) = ~u ∩ ~g(x) = ~v]I{eij(~aj)=−1|~f(x)=~u∩~g(x)=~v}

= Pr
Π

[
eij(x) = −1

∣∣ ~f(x) = ~u ∩ ~g(x) = ~v
]
.

We bound the probability that X ≥ ε by noting that

Eeij
[
Pr
Π

[~aj | ~f(x) = ~u ∩ ~g(x) = ~v]X~aj
]

= 0,∣∣Pr
Π

[~aj | ~f(x) = ~u ∩ ~g(x) = ~v]X~aj
∣∣ ≤ 2−5Mu/2.

The first identity follows by the construction of the functions eij , the second
bound follows by the assumption in the formulation of the lemma. Since
there are 23Mu random variables inWj , there are 23Mu terms in the sum (26).
From [1, Theorem A.16], it thus follows that

Pr[X > ε] ≤ exp
(
−
(ε

2−5Mu/3

)2
/

23Mu+1

)
= exp

(
−ε22Mu/3−1

)
.

This bound holds for fixed ~u, ~v, and a fixed assignment to the non-random
variables in Wj .

Since there are 22k possible ~u,~v and 23u possible assignments to the non-
random variables in Wj , we obtain that the probability, over the choice of
eij , that eij is 2ε-sparse is at least 1− 23u+2k exp(−ε22Mu/3−1). 2

By combining the above, we obtain the following bound on the probability
that the verifier rejects prematurely.

Theorem 10.14. Suppose that k(n) is an increasing function, M ≥ 12, and
u ≥ 26k + 13. Then, the verifier selects well balanced functions f1, . . . , fk
and g1, . . . , gk and 2ε-sparse error functions e11, . . . , ekk with probability at
least 1− 2k(k + 1)e−2u/2 − k2 exp(3u+ 2k − ε22Mu/3−1).

45

Proof. By Corollary 10.11 all but a 2k(k+1)e−2u/2 fraction of the choices of
functions f1, . . . , fk, g1, . . . , gk are well balanced. Since the verifier chooses
uniformly at random among these functions, the probability that it selects
a function that is not well-balanced is less than 2k(k + 1)e−2u/2 .

Corollary 10.13 implies that, given that the verifier selected well balanced
functions f1, . . . , fk, g1, . . . , gk, it selects an error function which is not 2ε-
sparse with probability at most k2 exp(3u+ 2k − ε22Mu/3−1). 2

10.4 Wrapping It Together

Theorem 10.15. G-gap E3-Sat-5 ∈ RPCPρ,s[r, f], where

ρ ≥ 2−2k−2,

s ≤ 21−k2
,

r = C0k
2
(
log n+ 3k + log(3M + 1)

)
+ k2C0k2

+ k2(log k2 + 2)23C0k2
,

f = 2k,

for any increasing function k(n) and some C0 ∈ Θ(1).

Proof. By Theorem 10.9, the RPCP described in Section 10.1 has covering
radius ρ ≥ (1 − 2k2ε)2−2k−1. We need to select ε in such a way that ρ is
large. We choose ε = 1/4k2, which implies that

ρ ≥ (1− 2k2ε)2−2k−1 = 2−2k−2.

To get soundness s ≤ 21−k2
we choose δ = 2−k

2
. This gives the following

bound on u:

u >
log ε−1δ−2 − 2

log c−1
G

≥ 2k2 + log k2

log c−1
G

= Θ(k2),

thus we select u = C0k
2 for some C0 ∈ Θ(1). When we insert these

choices of parameters into the bound (23) on the number of random bits
from Lemma 10.6, we obtain

r ≤ C0k
2(log n+ 3k) + k23C0(1+M)k2

+ k2(log k2 + 2)23C0(1+M)k2
. 2

Corollary 10.16. G-gap E3-Sat-5 ∈ RPCPρ,s[r, f], where

ρ ≥ 2−Θ(
√

log log n),

s ≤ 2−Θ(log log n),

r ∈ Θ(log n log log n),

f ∈ Θ(
√

log log n).

46

Proof. Select k2 = C1 log log n, where 3C0C1(1 +M) < 1. Then the expres-
sion for the number of random bits becomes

r = Θ(log n log logn) +Θ(log log n log log logn)(log n)3C0C1(1+M)

= Θ(log n log logn),

where the last equality follows since 3C0C1(1 +M) < 1. 2

Let us remark at this point that the above choices of parameters satisfy the
requirement that the decrease in the FGLSS graph due to the possibility of
rejecting prematurely is bounded by a factor 1− o(1).

11 Hardness Of Approximating
Min Chromatic Number

When we combine Corollary 10.16 with the reductions from Sec. 9 we ob-
tain our hardness result regarding the approximability of Min Chromatic
Number:

Theorem 11.1. The fractional chromatic number in a graph with N ver-
tices cannot be approximated within N1−O(1/

√
log logN) in polynomial time

unless NP ⊆ ZPTIME(2O(logn(log log n)3/2)).

Proof. By Corollary 10.16, G-gap E3-Sat-5 has an RPCP with the following
parameters:

ρ ≥ 2−Θ(
√

log log n),

s ≤ 2−Θ(log log n),

r ∈ Θ(log n log log n),

f ∈ Θ(
√

log log n).

If we set D = r/k = Θ(log n
√

log logn) and use Theorem 9.7, it follows that
χf is impossible to approximate within Nβ, where

β = 1− log ρ−1

f + log s−1
− logD + r + f

D(f + log s−1)

= 1− O(
√

log logn)
Ω(log logn)

− O(log n log log n)
Ω(log n(log logn)3/2)

= 1−O(1/
√

log log n),

unless

NP ⊆ ZPTIME
(
2Θ(r+r(2+k))

)
= ZPTIME

(
2Θ(logn(log log n)3/2)

)
.

47

The number of vertices in the graph is

N = 2D(f+log s−1) = 2Θ(logn(log log n)3/2)

and since log logN = Θ(log log n), we obtain β > 1−O(1/
√

log logN).
2

Theorem 11.2. Unless NP ⊆ ZPTIME(2O(logn(log log n)3/2)), it is impos-
sible to approximate Min Chromatic Number on a graph with n vertices
within n1−O(1/

√
log log n) in polynomial time.

Proof. This follows when Theorem 11.1 is combined with Lemma 9.2. 2

12 Future Work

An obvious improvement of this work would be to weaken the assumptions
on NP we used in our hardness result. Best of all, of course, would be to
construct deterministic reductions, since this would allow us to replace the
probabilistic complexity classes with deterministic ones in all our assump-
tions on NP.

As discussed in Section 8, another way to improve the result would be
to use a more efficient coding of the proof than the long code. This would
make the number of random bits used increase slower as the gap increases,
which would give us a stronger result.

Until this is done, an interesting open question is to determine the best
definition of the amortized free bit complexity. We have proposed that the
definition should be

f̄ =
f + log c−1

log(c/s)
. (27)

This definition works well in the sense that a PCP with one-sided error gives
a hardness result for Max Clique under the assumption that NP-complete
problems cannot be decided in expected slightly superpolynomial time, and
similarly a PCP with two-sided error gives a hardness result for Max Clique
under the assumption that NP-complete problems cannot be decided with
two-sided error in probabilistic slightly superpolynomial time.

However, we have seen in Sec. 6.2 that if one wants to use a PCP with
two-sided error to obtain hardness results under the assumption that NP-
complete problems cannot be decided in expected slightly superpolynomial
time, the interesting parameter is (close to) Fc, defined in equation 4. To
establish whether it is possible to improve this to our proposed definition
of f̄ , or if Fc is the best possible in this case is an interesting open question.

Trying to obtain an upper bound is also interesting, especially since it is
currently unknown how well the Lovász ϑ-function approximates Max Clique
and Min Chromatic Number. It has been shown by Feige [8] that it cannot

48

approximate Max Clique within n1−O(1/
√

logn), but, in light of the results
of this paper, this does not compromise the Lovász ϑ-function very much.
It may very well be that it beats the combinatorial algorithm of Boppana
and Halldórsson [6] for Max Clique and Halldórsson’s algorithm [13] for Min
Chromatic Number.

13 Acknowledgments

We would like to thank Alex Samorodnitsky and Luca Trevisan for providing
us with preliminary versions of their paper [22]. We would also like to thank
Johan H̊astad for useful discussions.

References

1. Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wiley & Sons, New
York, 1991.

2. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Márió Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501–555, May 1998.

3. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. Journal of the ACM, 45(1):70–122, January 1998.

4. Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs and non-
approximability—towards tight results. SIAM Journal on Computing, 27(3):804–915,
June 1998.

5. Mihir Bellare and Madhu Sudan. Improved non-approximability results. In Proceed-
ings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, pages
184–193, Montréal, Québec, Canada, 23–25 May 1994.

6. Ravi Boppana and Magnús M. Halldórsson. Approximating maximum independent
sets by excluding subgraphs. Bit, 32(2):180–196, June 1992.

7. Lars Engebretsen and Jonas Holmerin. Clique is hard to approximate within n1−o(1).
In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors, Proceedings of 27th
International Colloquium on Automata, Languages and Programming, volume 1853 of
Lecture Notes in Computer Science, pages 2–12, Geneva, 9–15 July 2000. Springer-
Verlag.

8. Uriel Feige. Randomized graph products, chromatic numbers, and the Lovász ϑ-
function. Combinatorica, 17(1):79–90, 1997.

9. Uriel Feige. A threshold of lnn for approximating set cover. Journal of the ACM,
45(4):634–652, July 1998.

10. Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Márió Szegedy. In-
teractive proofs and the hardness of approximating cliques. Journal of the ACM,
43(2):268–292, March 1996.

11. Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. Journal of
Computer and System Sciences, 57(2):187–199, October 1998.

12. Martin Fürer. Improved hardness results for approximating the chromatic number.
In 36th Annual Symposium on Foundations of Computer Science, pages 414–421,
Milwaukee, Wisconsin, 23–25 October 1995. IEEE.

49

13. Magnús M. Halldórsson. A still better performance guarantee for approximate graph
coloring. Information Processing Letters, 45(1):19–23, January 1993.

14. Johan H̊astad. Some optimal inapproximability results. In Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Computing, pages 1–10, El Paso, Texas,
4–6 May 1997. Accepted for publication in Journal of the ACM.

15. Johan H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182(1):105–142, 1999.

16. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller
and James W. Thatcher, editors, Complexity of Computer Computations, pages 85–
103. Plenum Press, New York, 1972.

17. Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approxi-
mating the chromatic number. In Proceedings of 2nd Israel Symposium on Theory
of Computing and Systems, pages 250–260, Natanya, Israel, 1993. IEEE Computer
Society.

18. László Lovász. On the ratio of optimal integral and fractional covers. Discrete Math-
ematics, 13(4):383–390, December 1975.

19. Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimiza-
tion problems. Journal of the ACM, 41(5):960–981, September 1994.

20. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, Cambridge, 1995.

21. Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803,
June 1998.

22. Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with opti-
mal amortized query complexity. In Proceedings of the Thirty-second Annual ACM
Symposium on Theory of Computing, pages 191–199, Portland, Oregon, 21–23 May
2000.

23. David Zuckerman. On unapproximable versions of NP-complete problems. SIAM
Journal on Computing, 25(6):1293–1304, December 1996.

50

