
Linear Consistency Testing∗

Yonatan Aumann† Johan H̊astad‡ Michael O. Rabin§ Madhu Sudan¶

February 18, 2002

∗A preliminary version of this paper appeared in the Proceedings of the 3rd International Workshop on Random-
ization and Approximation Techniques in Computer Science (RANDOM ’99), Berkeley, California.

†Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan, 52900, Israel. Email:
aumann@cs.biu.ac.il.

‡Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, Sweden.
Email: johanh@nada.kth.se.

§DEAS, Harvard University, Cambridge, MA 02138, USA and Institute of Computer Science, Hebrew University,
Jerusalem, Israel. Email: rabin@deas.harvard.edu. Research supported, in part, by NSF Grant NSF-CCR-97-00365.

¶Department of Electrical Engineering and Computer Science, MIT, 545 Technology Square, Cambridge, MA
02139, USA. Email: madhu@mit.edu. Research supported in part by a Sloan Foundation Fellowship, an MIT-NEC
Research Initiation Grant and NSF Career Award CCR-9875511.

1

Abstract

We extend the notion of linearity testing to the task of checking linear-consistency of multiple

functions. Informally, functions are “linear” if their graphs form straight lines on the plane.

Two such functions are “consistent” if the lines have the same slope. We propose a variant

of a test of Blum, Luby and Rubinfeld [8] to check the linear-consistency of three functions

f1, f2, f3 mapping a finite Abelian group G to an Abelian group H : Pick x, y ∈ G uniformly

and independently at random and check if f1(x) + f2(y) = f3(x + y). We analyze this test for

two cases: (1) G and H are arbitrary Abelian groups and (2) G = F
n
2 and H = F2.

Questions bearing close relationship to linear-consistency testing seem to have been implicitly

considered in recent work on the construction of PCPs and in particular in the work of H̊astad [9].

It is abstracted explicitly for the first time here. As an application of our results we give yet

another new and tight characterization of NP, namely ∀ε > 0, NP = MIP1−ε, 12
[O(log n), 3, 1].

I.e., every language in NP has 3-prover 1-round proof systems in which the verifier tossesO(log n)

coins and asks each of the three provers one question each. The provers respond with one bit

each such that the verifier accepts instance of the language with probability 1 − ε and rejects

non-instances with probability at least 1
2 . Such a result is of some interest in the study of

probabilistically checkable proofs.

Warning: Essentially this paper has been published in Journal of Computer and Sys-

tem Sciences and is subject to copyright restrictions. In particular it is for personal

use only.

2

1 Introduction

The study of linearity testing was initiated by Blum, Luby and Rubinfeld in [8]. A function f

mapping a finite Abelian group G to an Abelian group H is “linear” (or more conventionally, a

homomorphism) if for every x, y ∈ G, f(x) + f(y) = f(x+ y). Blum, Luby and Rubinfeld showed

that if a function f satisfies the identity above for a large fraction of pairs x, y ∈ G, then f is close

to being linear. This seminal result played a catalytic role in the study of program checking/self-

testing [7, 8]. It is also a crucial element in the development of efficient PCP characterizations of

NP and in particular occupies a central role in the results of [1, 6, 5].

In this paper we extend this study to testing the consistency of multiple functions. Given a

triple of functions f1, f2, f3 : G → H, we say that they are “linear-consistent” if they satisfy:

∀x, y,∈ G, f1(x) + f2(y) = f3(x + y). 1 At first glance this definition does not seem to enforce

any structural property in f1, f2 or f3. We show, however, that if f1, f2, f3 are linear-consistent,

then they are: (1) Affine: I.e., there exists a1, a2, a3 ∈ H such that for every i ∈ {1, 2, 3} and

∀x, y ∈ G, fi(x) + fi(y) = fi(x + y) + ai; and (2) Consistent: I.e., a1 + a2 = a3 and for every

i, j ∈ {1, 2, 3} and ∀x ∈ G, fi(x)− ai = fj(x)− aj.

We go on to study triples of functions f1, f2, f3 that do not satisfy the identity f1(x) + f2(y) =

f3(x + y) everywhere, but do satisfy this identity with high probability over a random choice of

x and y. We provide two analyses for this case. The first is a variant of the analysis due to

Coppersmith described in [8] for linearity testing over arbitrary Abelian groups. We obtain the

following result:

If f1, f2, f3 : G→ H satisfy δ
�
=Prx,y∈G[f1(x)+ f2(y) �= f3(x+ y)] < 2

9 , then there exists

1A slightly more symmetric equivalent definition would be to use: ∀x, y, z ∈ G such that x + y + z = 0, f1(x) +
f2(y) + f ′

3(z) = 0. To see that this is equivalent set f ′
3(z) = −f3(−z).

3

a triple of linear-consistent functions f̃1, f̃2, f̃3 : G→ H such that for every i ∈ {1, 2, 3},

Prx∈G[fi(x) �= f̃i(x)] ≤ δ.

The second variant we study is when G = F
n
2 and H = F2, where F2 is the finite field of two

elements. This special case is of interest due to its applicability in the construction of efficient

“probabilistically checkable proofs” and has been extensively studied due to this reason — see the

work of Bellare et al. [4] and the references therein. Bellare et al. [4] give a nearly tight analysis of

the linearity test in this case and show, among other things, that if a function f fails the linearity

test with probability at most δ then it is within a distance of δ from some linear function. We

extend their analysis to the case of linear-consistency testing and show an analogous result for this

test:

If f1, f2, f3 : F
n
2 → F2 and γ > 0, satisfy Prx,y∈F

n
2
[f1(x)+f2(y) �= f3(x+y)] = 1

2 −γ < 1
2 ,

then there exists a triple of linear-consistent functions f̃1, f̃2, f̃3 : F
n
2 → F2 such that for

every i ∈ {1, 2, 3}, Prx∈F2[fi(x) �= f̃i(x)] ≤ 1
2 − 2γ

3 .

Motivation: We believe that the linear-consistency test is a natural variant of the linearity test

and will potentially find similar applications in general. Our original motivation came from the

analysis of a variant of a protocol for deniable encryption proposed by Aumann and Rabin [3].

However, at this point we do not have any concrete applications to this case.

One scenario where the linear-consistency test does seem to appear naturally is the case of prob-

abilistically checkable proofs or variants thereof. Tasks similar to linear-consistency testing were

implicit in the works of H̊astad (e.g. in [9]), where probabilisitic checks to check “validity” and

“consistency” of two functions A and B are often used. The notion of validity used in [9] is a

more stringent one than that of linearity, however the analysis techniques are similar. In this paper

4

we derive an application to the construction of “multiple prover proof systems for NP”. Another

situation where linear-consistency testing plays a small role is in a recent result of H̊astad and

Wigderson [10]. We describe these applications in the paragraphs below.

Multiple-prover Interactive Proofs: An (r, p, a)-restricted MIP verifier V (for a p-prover one-

round proof system) is one that acts as follows: On input x ∈ {0, 1}n, V tosses r(n) random coins

and generates one question each for each of the p provers. The provers respond with a bits each.

The response of the ith prover is allowed to be an arbitrary function of x and the query to the i

prover, but is independent of the queries to the other provers. The verifier then outputs a verdict

“accept/reject” based on the input x, its random coins and the answers of the p-provers. V is said

to verify membership of a language L with completeness c and soundness s, if for every x ∈ L, there

exist p-provers that are accepted by V with probability at least c; and for every x �∈ L, for every

p-provers, the verifier accepts with probability at most s. The class of all languages with p-prover

one-round proof systems, in which the provers respond with a bits and the verifier is r(·) restricted

and has completeness c and soundness s is denoted MIPc,s[r, p, a].

Multiple prover interactive proof systems (MIPs) are a special case of the more familiar case

of probabilistically checkable proof systems (PCPs). The difference is that in a PCP, all ques-

tions are sent to one “oracle-prover”. The two main parameters of interest are the “randomness-

parameter” (same as in MIP) and the “query-parameter”, which counts the total number of bits of

response from the oracle-prover. Thus the following containment is obtained easily MIPc,s[r, p, a] ⊆

PCPc,s[r, p · a] (where the second parameter is the number of queries). However, a converse of the

form PCPc,s[r, q] ⊆ MIPc,s[r, q, 1] is not known to be true and is a subject of some interest. Most

strong PCP constructions today are obtained from some strong MIP construction. It is gener-

ally believed that MIP is a more restrictive model, but no results are known separating p-prover

5

1-bit MIPs from p-query PCPs. In view of the recent tight analysis of 3-query proof systems by

H̊astad [9] showing NP = PCP1−ε, 1
2
[log, 3], it was conceivable that one could separate 3-query PCPs

from 3-prover 1-bit proof systems. However, our analysis of the linear-consistency tests leads us to

an equally tight characterization of NP with MIPs. We show:

∀ε > 0,NP = MIP1−ε, 1
2
[O(log n), 3, 1].

In fact in view of our analysis we believe that there may be no separation between p-prover 1-bit

MIPs and p-query PCPs for any constant p.

Graph-based linearity tests. Graph-based linearity tests were introduced by Trevisan [14],

as a means to study a variety of “linearity tests” that are more complicated that the BLR test,

but are more efficient in some senses. Nearly-optimal analyses of graph-based linearity tests were

given by Samorodnitsky and Trevisan [12]. A recent result of H̊astad and Wigderson [10] shows

how this analysis could be simplified significantly. Linear-consistency testing plays a small but

arguably crucial role in this simplified analysis. The analysis of [10] reexpresses any graph-based

linearity test as a linear-consistency test on three related functions. Their analysis abstracts away

the complications arising from the definition of the test into the complex relations satisfied by

the functions. The analysis then ignores the relations satisfed by these functions and instead just

applies the analysis of linear consistency testing to this triple. This yields that these functions are

close to some linear-consistent triple, which in their case immediately implies that the function

being tested is close to being linear. While their proofs can be (and are) described without mention

of linear-consistency testing, the concept seems to play an important role in their analysis.

6

Outline of this paper. In Section 2 we present some basic definitions of linear-consistency. In

Section 3 we provide the analysis of linear-consistency tests over arbitrary Abelian groups. In

Section 4 we consider the special case where the groups are vector spaces over F2. In Section 5 we

give the MIP construction.

2 Definitions

For groups G,H, let HomG→H denote the set of homomorphisms from G to H. I.e.,

HomG→H
�
={φ : G→ H|∀x, y ∈ G,φ(x) + φ(y) = φ(x+ y)}.

For groups G,H, let AffG→H denote the set of affine functions from G to H. I.e.,

AffG→H
�
={ψ : G→ H|∃a ∈ H,φ ∈ HomG→H s.t. ∀x ∈ G,ψ(x) = φ(x) + a}.

A triple of functions (f1, f2, f3) is defined to be linear-consistent if there exists a homomorphism

φ ∈ HomG→H and a1, a2, a3 ∈ H such that a1 + a2 = a3 and for every i ∈ {1, 2, 3} and x ∈ G,

fi(x) = φ(x) + ai.

The following proposition gives an equivalent characterization of linear-consistent functions.

Proposition 1 Functions f1, f2, f3 : G→ H are linear-consistent if and only if for every x, y ∈ G,

f1(x) + f2(y) = f3(x+ y).

Proof: Let f1, f2, f3 be linear-consistent, and let φ ∈ HomG→H and a1, a2, a3 ∈ H be as guar-

anteed to exist by the definition of linear-consistency. Then, for every x, y ∈ G, f1(x) + f2(y) −

7

f3(x+ y) = φ(x) + φ(y)− φ(x+ y) + a1 + a2 − a3 = 0 as required. This gives one direction of the

proposition.

Now suppose f1, f2, f3 satisfy ∀x, y, f1(x) + f2(y) = f3(x+ y). Using x = y = 0, we get

f1(0) + f2(0) = f3(0) (1)

Next we notice that f1(x)+f2(0) = f3(x) (using y = 0). Subtracting f1(0)+f2(0) = f3(0) from both

sides we get f1(x)− f1(0) = f3(x)− f3(0). Similarly we get f2(x)− f2(0) = f3(x)− f3(0). Thus we

may define φ(x) = f1(x)−f1(0) = f2(x)−f2(0) = f3(x)−f3(0). We now verify that φ ∈ HomG→H .

For arbitrary x, y ∈ G, φ(x)+φ(y)−φ(x+y) = f1(x)−f1(0)+f2(y)−f2(0)− (f3(x+y)−f3(0)) =

(f1(x) + f2(y) − f3(x + y)) − (f1(0) + f2(0) − f3(0)) = 0. Thus for ai = fi(0) and φ as above, we

see that f1, f2, f3 satisfy the definition of linear-consistency.

For x, y ∈ G, the linear-consistency test through x and y is the procedure which accepts iff f1(x)+

f2(y) = f3(x + y). Our goal in the remaining sections is to derive relationships between the

probability with which a triple f1, f2, f3 is rejected by the linear-consistency tests when x and y

are chosen at random, and the proximity of f1, f2 and f3 to linear-consistent functions.

3 Linear-consistency over arbitrary Abelian groups

In this section we consider the case of G and H being arbitrary finite Abelian groups. We extend

the argument due to Coppersmith that appears in [8] to this case. We show that if the test rejects

with probability δ < 2
9 , then by changing the value of each of the fi’s on at most δ fraction on the

inputs, we get a triple of linear-consistent functions. In what follows, we use d(f, g) to denote the

distance of f from g, i.e., Prx∈G[f(x) �= g(x)].

8

Theorem 2 Let G, H be finite Abelian groups and let f1, f2, f3 : G→ H. If

δ
�
= Pr

x,y∈G
[f1(x) + f2(y) �= f3(x+ y)] <

2
9
,

then there exists a triple of linear-consistent functions g1, g2, g3 such that for every i ∈ {1, 2, 3},

εi
�
=d(fi, gi) ≤ δ. Furthermore, ε

�
= ε1+ε2+ε3

3 satisfies 3ε(1− 2ε) ≤ δ.

Remark 3 1. If f1 = f2 = f3, then we recover the linearity testing theorem of [8] (see also [4]).

2. The proof actually shows that ε1 + ε2 + ε3 − 2(ε1ε2 + ε2ε3 + ε3ε1) ≤ δ. Tightness of this and

other aspect of the theorem are discussed in Section 3.1.

Proof: For f : G→ H, define Corr
f
y(x) to be f(x+ y)− f(y). Define

f̃(x) = Pluralityi∈{1,2,3},y∈G{Corr
fi
y (x)},

where Plurality(S) for a multiset S is the most commonly occurring element in S, with ties

being broken arbitrarily. Note that if f1, f2, f3 are linear consistent then Corr
fi
y (x) = φ(x) for

any i and y and the hope in general is that f̃ should equal the sought after φ.

For i ∈ {1, 2, 3} and x ∈ G, let γi(x)
�
=Pry∈G

[
f̃(x) �= Corr

fi
y (x)

]
. Let γi = Ex[γi(x)]. Let

γ(x) = 1
3 [γ1(x) + γ2(x) + γ3(x)] and let γ = Ex[γ(x)]. Note that, by the definitions, γ =

γ1+γ2+γ3

3 .

Our plan is to show that the γi(x)’s are all small and then to use this in two ways: First we use it

to show that f̃ is a homomorphism. Then we show that the functions fi’s are within a distance of

γi from affine functions that are in the orbit of f̃ .

9

Claim 4 For every x ∈ G, and i �= j ∈ {1, 2, 3},

Pr
y1,y2

[
Corr

fi
y1
(x) �= Corr

fj
y2(x)

]
≤ 2δ.

Proof: We prove the claim only for the case i = 1, j = 2. Other cases are proved similarly.

Over the choice of y1 and y2, consider two possible “bad” events: (A) f1(x + y1) + f2(y2) �=

f3(x + y1 + y2) and (B) f1(y1) + f2(x + y2) �= f3(x + y1 + y2). Observe first that if neither of the

bad events listed above occur, then we have

Corr
f1
y1
(x)

= f1(x+ y1)− f1(y1)

= (f3(x+ y1 + y2)− f2(y2))− f1(y1) ((A) does not occur)

= (f3(x+ y1 + y2)− f2(y2))− (f3(x+ y1 + y2)− f2(x+ y2)) ((B) does not occur)

= f2(x+ y2)− f2(y2)

= Corr
f2
y2
(x).

Now notice that the event listed in (A) has probability exactly δ (in particular, this event is

independent of x). Similarly probability of the event in (B) is also δ. Thus the probability that

(A) or (B) occurs may be bounded from above by 2δ. The claim follows.

The claim above allows us to prove upper bounds on the quantities γi(x) for every x. This implies,

in particular, that the function f̃ is defined at every point x by an overwhelming majority; a fact

that is critical in proving that f̃ is a homomorphism.

Claim 5 For every x ∈ G, and i ∈ {1, 2, 3} and j �= i ∈ {1, 2, 3}, the following hold:

1. γi(x) ≤ 2δ.

10

2. γi(x) + γj(x)− 2γi(x)γj(x) ≤ 2δ.

3. γ(x) < 1
3 .

Proof: Fix x and for α ∈ H, let pα = Pry∈G[Corr
fi
y (x) = α] and qα = Pry∈G[Corr

fj
y (x) = α].

The hope is that the same value of α maximizes both pα and qα and this value has then to be f̃(x).

We start by showing that maxα∈H{pα} is very large. Observe that

Pr
y1,y2

[Corr
fi
y1
(x) = Corr

fj
y2(x)] =

∑
α∈H

pαqα ≤ max
α∈H

{pα} ·
∑
α∈H

qα = max
α∈H

{pα}.

Using Claim 4 the left-hand side of the inequality above is at least 1− 2δ. Thus we establish that

maxα{pα} ≥ 1− 2δ > 5/9. Similarly we can show that maxα{qα} > 5/9.

Next we show that these maxima occur for the same value of α ∈ H. Assume otherwise. Let p̃ =

maxα{pα} and q̃ = maxα{qα}. By the above p̃, q̃ > 5/9 > 1/2. Since the maxima occur for distinct

values of α, we may upper bound the quantity Pry1,y2 [Corr
fi
y1
(x) = Corr

fj
y2(x)] by p̃(1−q̃)+(1−p̃)q̃.

With some manipulation, the latter quantity is seen to be equal to 1
2 − 2(p̃− 1

2)(q̃ − 1
2) <

1
2 , which

contradicts Claim 4.

Thus we find that Pluralityy{Corr
fi
y (x)} points to the same value for every i ∈ {1, 2, 3}; and

this value is f̃(x). Thus we conclude γi(x) = 1 −maxα{pα} ≤ 2δ, yielding Part (1) of the claim.

Part (2) follows by observing that

Pr
y1,y2

[Corr
fi
y1
(x) = Corr

fj
y2(x)] ≤ (1− γi(x))(1 − γj(x)) + γi(x)γj(x)

and then using Claim 4 to lower bound the left-hand side by 1− 2δ.

11

Adding the inequalities given by Part (2) for the three different choices of i, j gives

2(γ1(x) + γ2(x) + γ3(x)) − 2(γ1(x)γ2(x) + γ2(x)γ3(x) + γ3(x)γ1(x)) ≤ 6δ.

Notice that for any a, b, c we have

(a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ bc+ ca) ≥ (a+ b+ c)2/3 + 2(ab+ bc+ ca)

and hence

ab+ bc+ ca ≤ (a+ b+ c)2/3. (2)

Using this inequality for a = γ1(x), b = γ2(x), c = γ3(x) and using the fact that γ(x) = 1
3(γ1(x) +

γ2(x) + γ3(x)), we get

6γ(x) − 6γ(x)2 ≤ 6δ.

Using the fact that δ < 2/9, this yields that either γ(x) < 1
3 or γ(x) >

2
3 . Since γ1(x), γ2(x), γ3(x) <

4
9 (by Part (1)) and γ(x) =

1
3(γ1(x) + γ2(x) + γ3(x)), we rule out the latter possibility. This yields

Part (3) of the claim.

The following claim now follows by a convexity argument.

Claim 6 For every distinct i, j ∈ {1, 2, 3}, γi + γj − 2γiγj ≤ 2δ.

Proof: By Part (2) of Claim 5 we know that for every x ∈ G, γi(x) + γj(x) − 2γi(x)γj(x) ≤ 2δ.

Rewriting, we get that for every x ∈ G (12 − γi(x))(12 − γj(x)) ≥ 1
4 − δ. By Part (1) of Claim 5, we

also know that γi(x), γj(x) ≤ 2δ < 1
2 . The set {(α, β) ∈ R

2|α, β > 0, αβ > 1
4 − δ} is convex and

12

since the average of a set of points that belong to a convex set belongs to the same convex set, we

find that γi = Ex[γi(x)] and γj = Ex[γj(x)] also satisfies the inequality (12 − γi)(12 − γj) ≥ 1
4 − δ.

The claim follows immediately.

Claim 7 f̃ is a homomorphism. I.e., ∀ x, y ∈ G, f̃(x) + f̃(y) = f̃(x+ y).

Proof: Fix x, y ∈ G. We will show that there exist i ∈ {1, 2, 3} and u ∈ G (by picking them

at random) such that none of the following bad events occur. (A) f̃(x) �= fi(x + u) − fi(u); (B)

f̃(y) �= fi(u)− fi(u− y); and (C) f̃(x+ y) �= fi(x+ u)− fi(u− y).

It is immediate that if none of the events (A)-(C) occur, then

f̃(x) + f̃(y)− f̃(x+ y) = (fi(x+ u)− fi(u)) + (fi(u)− fi(u− y))− (fi(x+ u)− fi(u− y)) = 0.

The probability that (A) occurs is, by definition, γ(x) and similarly the probabilities of (B) and

(C) occurring are given by γ(y) and γ(x + y), respectively. By the union bound, the probability

that (A) or (B) or (C) occurs is, using Claim 5, Part (3), strictly less than 1. Thus such a pair

(i, u) does exist.

Claim 8 For every i ∈ {1, 2, 3}, there exists αi ∈ H such that

Pr
x∈G

[fi(x) �= f̃(x) + αi] ≤ γi.

Furthermore α1 + α2 = α3.

Proof: Fix i ∈ {1, 2, 3}. By definition of γi(x), we have for every x, Pra∈G[f̃(x) �= fi(x + a) −

fi(a)] ≤ γi(x). Thus, we get Prx,a∈G[f̃(x) �= fi(x+a)−fi(a)] ≤ γi. In particular, there exists a0 ∈ G

13

such that Prx∈G[f̃(x) �= fi(x+a0)−fi(a0)] ≤ γi or equivalently Prx∈G[f̃(x−a0) �= fi(x)−fi(a0)] ≤

γi. But f̃ is a homomorphism, and thus we have f̃(x− a0) = f̃(x) − f̃(a0). Thus we find that for

this choice of a0, Prx∈G[fi(x) �= f̃(x) + fi(a0)− f̃(a0)] ≤ γi. The first part of the claim follows by

setting αi = fi(a0)− f̃(a0).

To prove the second part assume for contradiction that α1 + α2 �= α3. Say that x is i-good if

fi(x) = f̃(x) + αi. The probability that x is 1-good, y is 2-good and (x+ y) is 3-good is at least

(1− γ1)(1− (γ2 + γ3)).

This follows since the probability that x is 1-good is least 1− γ1 and both the event that y is not

2-good and the event that x + y is not 3-good is independent of x being 1-good. Hence, by the

assumption α1 + α2 �= α3, we conclude that

(1− γ1)(1− (γ2 + γ3)) ≤ δ.

Using the symmetric arguments and adding the 3 inequalities we get

3− 3(γ1 + γ2 + γ3) + 2(γ1γ2 + γ1γ3 + γ2γ3) ≤ 3δ. (3)

Using Claim 6 (for all distinct pairs i, j) we get (after some rearrangement) that

2(γ1 + γ2 + γ3)− 6δ ≤ 2(γ1γ2 + γ2γ3 + γ3γ1). (4)

14

Adding Equations (3) and (4) and using γ1 + γ2 + γ3 = 3γ we get

3− 3γ − 6δ ≤ 3δ.

We conclude that

3δ + γ ≥ 1,

which contradicts δ < 2/9 and γ < 1/3.

We are almost done with the proof of Theorem 2. The final claim, sharpens the bounds on the

proximity of the functions fi(x) to the functions f̃(x) + αi.

Claim 9 The following inequalities hold:

1. γ1 + γ2 + γ3 − 2(γ1γ2 + γ2γ3 + γ3γ1) ≤ δ.

2. 3γ − 6γ2 ≤ δ.

3. γ1, γ2, γ3 ≤ δ.

Proof: We proceed as in the proof of Part (2) of Claim 8. Recall that x is i-good if fi(x) =

f̃(x) + αi. Pick x, y at random and consider the events (A) x is not 1-good, (B) y is not 2-good

(3) x + y is not 3-good. Using the pairwise independence of the events, we can lower bound the

probability that exactly one of the events (A), (B) or (C) occurs by

γ1(1− (γ2 + γ3)) + γ2(1− (γ3 + γ1)) + γ3(1− (γ1 + γ2)).

To see this note that the probability that, (A) occurs and (B) and (C) do not occur is at least

γ1(1− (γ2+ γ3)) and the other terms follow similarly. But whenever exactly one of (A)-(C) occurs,

15

then the test rejects. Thus, the quantity above is at most δ and this yields Part (1) of the claim.

Part (2) follows by using γ1+γ2+γ3 = 3γ and using γ1γ2+γ2γ3+γ3γ1 ≤ 3γ2. The latter inequality

is just a special case of (2).

For Part (3), we first use Part (2) to improve the bound on γ. Notice that by Part (2) of Claim 5,

we know γ < 1
3 . Using Part (2) of this claim, we notice that we can improve upon this bound to

γ < 1
6 (no value γ in the interval [

1
6 ,

1
3] satisfies 3γ − 6γ2 < 2

9). Now assume for contradiction that

γ1 > δ. Then rearranging the inequality from Part (1), we get

γ1(1− 2(γ2 + γ3)) + γ2 + γ3 − 2γ2γ3 ≤ δ.

Since γ2 + γ3 ≤ 3γ < 1
2 , we notice that 1− 2(γ2 + γ3) > 0 and we can use γ1 > δ to obtain:

δ(1 − 2(γ2 + γ3)) + γ2 + γ3 − 2γ2γ3 < δ.

⇒ (γ2 + γ3)(1− 2δ) − 2γ2γ3 < 0.

⇒ (γ2 + γ3)(1− 2δ) − 1
2
(γ2 + γ3)2 < 0.

⇒ (γ2 + γ3)(1 − 2δ − 1
2
(γ2 + γ3)) < 0.

But the last inequality contradicts the fact that δ < 2/9 and γ2 + γ3 <
1
2 .

The theorem now follows from the above claims as follows. Set gi(x) = f̃(x) + αi, where αi’s are

as given by Claim 8. It follows from Claims 7 and 8 that g1, g2, g3 are linear-consistent. It follows

from Claim 8 that fi is within a distance of γi from gi; and the bounds on γi from Claim 9 bound

these distances.

16

3.1 Tightness of Theorem 2

Theorem 2 is tight in that one cannot improve the bound δ < 2
9 without significantly weakening the

bound on the proximity of the nearest linear-consistent functions to f1, f2 and f3. This tightness is

inherited from the tightness of the linearity testing theorem of Blum, Luby and Rubinfeld, whose

analysis also imposes the same upper bound on δ. For the sake of completeness, we recall the

example, due to Coppersmith, here.

Let G = H = Z3n for some large n, and let f = f1 = f2 = f3 be the function

f(x) =




3n− 1 if x = −1 mod 3

0 if x = 0 mod 3

1 if x = 1 mod 3

Then the probability that the linearity test rejects is 2
9 , while (for large enough n), the nearest

affine functions to f are the constant functions, which disagree from f in at least 2
3 of the inputs.

As we increase δ > 2/9, the bounds on the proximity of the nearest linear(-consistent) functions

become worse, approaching 0 as δ → 1/4 as demonstrated by the following example. For positive

integers m,n let f : Z(2m+1)n → Z(2m+1)n be the function f(x) = x mod (2m+ 1) if x mod (2m+

1) ∈ {0, . . . ,m} and f(x) = (x mod (2m + 1)) + n − 2m − 1 otherwise. It may be verified that

the closest affine functions to f are the constant functions which are at a distance of at least

1 − 1
2m+1 from f . On the other hand the linearity test (and the hence the linear-consistency test

on f1 = f2 = f3 = f) accepts with probability at least 3
4 .

Thus for δ ≥ 1
4 the linearity tests can not guarantee any non-trivial proximity with a linear function.

In the range δ = [2/9, 1/4] we do not seem to have tight bounds. For δ < 2
9 , the bounds given on

εi can not be improved either, as shown in the following proposition.

17

Proposition 10 For every ε1, ε2, ε3 < 1
4 , there exist a family of triples of functions f

(n)
1 , f

(n)
2 , f

(n)
3 :

F
n
2 → F2 such that the distance of f

(n)
i to the space of affine functions converges to εi and the

probability that the linear-consistency test rejects is at most ε1 + ε2 + ε3 − 2(ε1ε2 + ε2ε3 + ε3ε1).

Proof: Let Si be any subset of �εi2n� vectors from F
n
2 with first coordinate being 1. Let f

(n)
i (x) =

1 ⇔ x ∈ Si. Then, since εi < 1
4 , the nearest affine function is the zero function, thus establishing

the claim on distance. By the nature of the Si’s it is not possible that x ∈ S1, y ∈ S2 and x+y ∈ S3.

Therefore, the linear-consistency test rejects if and only if exactly one of x, y, x+ y fall in S1, S2, S3

respectively. If we let ρi denote 2−n|Si|, then the probability of this event is easily shown to be

(exactly) ρ1+ρ2+ρ3−2(ρ1ρ2+ρ2ρ3+ρ3ρ1) which in turn is at most ε1+ε2+ε3−2(ε1ε2+ε2ε3+ε3ε1).

4 Linear-consistency tests over F2

In this section we consider the collection of affine functions and homomorphisms from F
n
2 to F2.

The results obtained are stronger in that it shows that any triple of functions that are accepted

by the linear-consistency tests with non-trivial probability2 are non-trivially close to a triple of

linear-consistent functions.

For the purposes of this section it is better to think of the elements of F2 as {+1,−1} and we

denote a typical element of F
n
2 by 'x

�
= (x1, x2 . . . xn) where xi ∈ F2. Multiplication (over the reals)

replaces addition modulo two in this representation. The set of homomorphisms Homn mapping

{+1,−1}n → {+1,−1} is given by Homn = {(α|α ⊆ [n]}, where (α('x) =
∏

i∈α xi. The set of affine

2Since a triple of random functions would pass the linear-consistency tests with probability 1
2
, we consider the

passing probability to be non-trivial if it is strictly larger than 1
2
.

18

functions is given by Affn = {(α|α ⊆ [n]} ∪ {−(α|α ⊆ [n]}. The homomorphisms now satisfy

(α('x)(α('y) = (α('x · 'y), where 'x · 'y represents the coordinate-wise product of the two vectors.

Let 〈f, g〉, the inner product between f, g : {+1,−1}n → {+1,−1}, be given by

〈f, g〉 = 1
2n

∑
�x∈{+1,−1}n

f('x)g('x).

Then 〈(α, (α〉 = 1 and 〈(α, (β〉 = 0 if α �= β. The homomorphisms form a orthonormal basis over

the reals for the set of functions from {+1,−1}n → R. I.e. every function f : {+1,−1}n → R

is given by f('x) =
∑

α⊆[n] f̂α(α('x), where f̂α = 〈f, (α〉 is the α-th Fourier coefficient of f . It is

easily verified that the following (Parseval’s identity) holds: 〈f, f〉 = ∑
α⊆[n] f̂

2
α. For functions

f : {+1,−1}n → {+1,−1}, 〈f, f〉 = 1. The Fourier coefficients are of interest due to the following

easily verified fact.

Proposition 11 For every function f : {+1,−1}n → {+1,−1}:

• ε
Hom

(f)
�
=minα⊆[n]{d(f, (α)} = minα⊆[n]{1−f̂α

2 }.

• ε
Aff

(f)
�
=ming∈Affn

{d(f, g)} = minα⊆[n]{1−|f̂α|
2 }.

Our result is the following:

Theorem 12 Given functions fi : {+1,−1}n → {+1,−1}, for i ∈ {1, 2, 3}, such that

Pr
�x,�y
[f1('x)f2('y) �= f3('x · 'y)] = δ,

for every i ∈ {1, 2, 3}, ε
Aff

(fi) ≤ δ. Furthermore, there exists a triple of linear-consistent functions

g1, g2, g3 such that for every i ∈ {1, 2, 3}, d(fi, gi) ≤ 1
2 − 2γ

3 , where γ =
1
2 − δ.

19

Remark 13 Notice that even when G = F
n
2 and H = F2, Theorem 12 does not subsume Theorem 2.

In particular the error bounds given by Theorem 2 are stronger, when δ < 2/9. However for δ > 2/9,

and in particular for δ → 1
2 , Theorem 12 is much stronger.

Proof: Let f̂i,α be the Fourier coefficient corresponding to the character (α of fi. For the first

part it suffices, by Proposition 11, to show that for every i ∈ {1, 2, 3} maxα{|f̂i,α|} ≥ 1−2δ. For the

second part notice that the linear consistent functions g1, g2, g3 are given by some homomorphism

(α and b1, b2, b3 ∈ {+1,−1} satisfying b1b2b3 = 1 such that gi('x) = bi(α('x). Thus our task may be

rephrased as saying that we wish to show there exists an α such that {min{|f̂1,α|, |f̂2,α|, |f̂3,α|}} ≥
2(1−2δ)

3 (which captures the distance property) and f̂1,α.f̂2,α.f̂3,α ≥ 0 (which captures the property

that b1b2b3 = 1).

We proceed as in [4]. We first express the event that the test rejects algebraically. Let I�x,�y be 1 if

f1('x)f2('y) �= f3('x · 'y) and 0 otherwise. Then

I�x,�y =
1
2
(1− f1('x)f2('y)f3('x · 'y)) .

Since the rejection probability of the linear-consistency test is simply the expected value of I�x,�y, we

get:

δ = E�x,�y∈R{+1,−1}n

[
1
2
(1− f1('x)f2('y)f3('x · 'y))

]
.

Expressing the fi’s in terms of their Fourier basis we simplify the inner expression above.

1− 2δ = E�x,�y∈R{+1,−1}n [f1('x)f2('y)f3('x · 'y)]

= E�x,�y∈R{+1,−1}n


∑

α⊆[n]

f̂1,α(α('x)
∑

β⊆[n]

f̂2,β(β('y)
∑

γ⊆[n]

f̂3,γ(γ('x · 'y)



20

=
∑

α,β,γ⊆[n]

f̂1,αf̂2,β f̂3,γE�x,�y∈R{+1,−1}n [(α('x)(β('y)(γ('x · 'y)]

=
∑

α,β,γ⊆[n]

f̂1,αf̂2,β f̂3,γ

(
E�x∈R{+1,−1}n [(α('x)(γ('x)]E�y∈R{+1,−1}n [(β('y)(γ('y)]

)

=
∑

α,β,γ⊆[n]

f̂1,αf̂2,β f̂3,γ (〈(α, (γ〉〈(β, (γ〉)

=
∑

α⊆[n]

f̂1,αf̂2,αf̂3,α,

where the last equality is obtained by recalling that 〈(α, (γ〉 = 0 if α �= γ and 1 otherwise.

For the first part, assume for contradiction that maxα{f̂1,α} < 1− 2δ. Then we get:

1− 2δ =
∑

α⊆[n]

f̂1,αf̂2,αf̂3,α

≤
∑

α⊆[n]

|f̂1,α||f̂2,α||f̂3,α|

≤ max
α

{|f̂1,α|}
∑

α⊆[n]

|f̂2,α||f̂3,α|

< (1− 2δ)
∑

α⊆[n]

|f̂2,α||f̂3,α|

≤ (1− 2δ)
∑

α⊆[n]

f̂2
2,α + f̂2

3,α

2

= 1− 2δ. (Using Parseval’s Identity)

The next to last inequality follows from the fact that the geometric mean is smaller than the

arithmetic mean. ¿From the above contradiction the first part of the theorem follows.

Now to see the second part, assume for contradiction that for every α, either f̂1,αf̂2,αf̂3,α < 0 or

there exists an i, s.t. |f̂i,α| < 2(1−2δ)
3 .

Let S0 = {α|f̂1,αf̂2,αf̂3,α < 0} and for i ∈ {1, 2, 3}, let Si = {α||f̂i,α| < 2(1−δ)
3 , α �∈ Sj for any j < i}.

By definition the sets Si are disjoint. Furthermore, by assumption, S0 ∪ S1 ∪ S2 ∪ S3 = 2[n]. Thus,

21

the following sequence of inequalities leads to a contradiction.

1− 2δ =
∑

α⊆[n]

f̂1,αf̂2,αf̂3,α

=
∑

α⊆S0

f̂1,αf̂2,αf̂3,α +
∑

α⊆S1

f̂1,αf̂2,αf̂3,α +
∑

α⊆S2

f̂1,αf̂2,αf̂3,α +
∑

α⊆S3

f̂1,αf̂2,αf̂3,α

< 0 +
2(1 − 2δ)

3


∑

α⊆S1

|f̂2,αf̂3,α|+
∑

α⊆S2

|f̂1,αf̂3,α|+
∑

α⊆S3

|f̂1,αf̂2,α|



≤ 2(1− 2δ)
3


∑

α⊆S1

f̂2
2,α + f̂2

3,α

2
+
∑

α⊆S2

f̂2
1,α + f̂2

3,α

2
+
∑

α⊆S3

f̂2
1,α + f̂2

2,α

2




≤ (1− 2δ)
3

(∑
α

f̂2
1,α + f̂2

2,α + f̂2
3,α

)

≤ 1− 2δ.

This contradiction completes the proof of the second part.

5 3-prover 1-bit proof systems

We first recall the definition of an MIP proof system. For integers p, a and function r : Z
+ → Z

+,

an MIP verifier V is (r, p, a) restricted if on input x ∈ {0, 1}n, V tosses r(n) coins and issues p

queries q1, . . . , qp to p-provers P1, . . . , Pp and receives a bit responses a1, . . . , ap from the p provers.

The prover Pi is thus a function mapping qi to some a bit string ai. The verifier then outputs

a Boolean verdict accept/reject based on x, its random coins and the responses a1, . . . , ap. An

(r, p, a)-restricted MIP verifier V achieves completeness c and soundness s for a language L if for

every x ∈ L there exists a collection of p provers that force the V to accept with probability at

least c, while for x �∈ L no tuple of p provers can make V accept with probability greater than s.

MIPc,s[r, p, a] is the collection of all languages L that have (r, p, a) restricted MIP verifiers achieving

22

completeness c and soundness s.

We prove the following containment for NP.

Theorem 14 For every ε > 0, NP = MIP1−ε, 1
2
+ε[O(log n), 3, 1].

Remark 15 1. To obtain the equality NP = MIP1−ε, 1
2
[O(log n), 3, 1] as stated in the introduc-

tion we apply Theorem 14 with the parameter ε/3, and then change the verifier to reject with

probability 2ε/3 without looking at the proof. This gives a proof system with completeness at

least (1− 2ε/3)(1 − ε/3) ≥ 1− ε and soundness at most (1− 2ε/3)(1/2 + ε/3) ≤ 1/2.

2. Zwick [15] proved that for non-adaptive PCPs reading three bits, if c/s > 2 only languages in

P can be accepted. The result extends to the case of adaptive PCPs using an earlier reduction

of Trevisan [13] from adaptive to non-adaptive PCPs. Since a PCP proof system is more

powerful than an MIP proof system (for the same choice of parameters), the same lower

bound also applies in our situation showing that our result is essentially tight.

Our verifier and analysis are simple variants of the verifier and analysis of H̊astad [9]. We use here

the formalism ‘inner verifier” of Trevisan [14].

Definition 16 A (r, 3, 1)-good MIP inner-verifier system consists of an (r, 3, 1)-restricted MIP

verifier Vinner (for some function r); 3 encoding functions E1, E2 and E3; and two (probabilistic)

decoding functions D1 and D2. An inner-verifier system is good, if for every ε > 0 there exists a

γ > 0 such for every pair of positive integers m,n, the following hold:

Completeness If a ∈ [n], b ∈ [m] and π : [m] → [n] satisfy π(b) = a then Vinner, on input

(m,n, π, ε) accepts the provers P1 = E1(a), P2 = E2(b), and P3 = E3(b) with probability at

least 1− ε.

23

Soundness For each P1, P2, P3, D2(P2, P3) ∈ [m] and D1(P1) ∈ [n]. If Vinner on input (m,n, π, ε)

accepts provers P1, P2, P3 with probability 1
2 + ε, then π(D2(P2, P3)) = D1(P1) with probability

at least γ (over the coin tosses of the decoding procedures D1 and D2).

To get the intuition of this definition, one should think of a and b as long answers given by provers

in a two-prover protocol. The purpose of the inner verifier is to transform the reading of all of

a and b to a much more efficient procedure by interacting with the three provers. The encoding

function gives the procedure how to transform answers by provers in the two-prover protocol to

provers in this new protocol and the decoding functions do the translation in the other direction.

The function π captures the acceptance condition in the two-prover protocol.

For the readers more familiar with [9] we point out that n codes all assignments on the set U , m

the assignments on W satisfying the chosen clauses and each of the encoding functions Ei is the

long code of [5]. For readers not familiar with either [14] or [9] these notions are defined in the

proof of Lemma 17 below.

The following lemma is a standard application of the paradigm of recursive proof composition [2],

applied to the state-of-the-art constructions of 2-prover proof systems [11] together with the for-

malism of our inner verifier. It is the same construction that is used in [9] but since the formalism

used here is different we also sketch the proof.

Lemma 17 If there exists a (O(log n), 3, 1)-good inner-verifier system then, for every ε > 0, NP =

MIP1−ε, 1
2
+ε[O(log n), 3, 1].

Proof [Sketch]: We first use the result of [1] to observe that it suffices to obtain a 3-prover

1-bit proof system verifying satisfiability of a 3-CNF formula ϕ, under the promise that either ϕ

is satisfiable, or that no assignment satisfies more than a c-fraction of the clauses of ϕ, for some

24

c < 1. We first create a V2ip for a 2-prover constant-bit verifier V2ip for this (promise) problem as

follows: For a constant u to be chosen shortly, V2ip picks a set of u random clauses of ϕ and let W

be the set of variables appearing in these clauses. The verifier then picks a set U of u variables by

picking one variable at random from each chosen clause. The set U is sent to the first prover and

the set W to the second. The two provers respond with assignments of the variables in the two sets

and V2ip accepts iff the assignments are consistent on U and the picked clauses are satisfied. We

clearly have perfect completeness, i.e., if ϕ is satisfiable, then there exist provers that are always

accepted by V2ip. Using [11] it follows that the soundness is at most cu1 for some c1 < 1.

The inner-verifier system is designed to reduce the query complexity of the verification of V2ip.

Given a (r, 3, 1)-good MIP inner-verifier Vinner, we compose V2ip with Vinner to obtain Vcomp. For

each set U and W we have tables as follows. We let n = 2u where each element corresponds to an

assignment on U and let m be the number of assignments on W that satisfies the picked clauses

and we number these in some arbitrary way to get a correspondence between such assignments on

W and [m]. The function π is defined as the natural projection of assignments.

The composed verifier Vcomp interacts with three provers PI, PII and PIII where PI is supposed to,

for each U , provide an encoding of an assignment on U while PII and PIII are supposed to provide

encodings of assignments on W for every set W . Given ϕ, Vcomp picks sets U and W as above and

then let us consider P1(·) = PI(U, ·), P2(·) = PII(W, ·), and P3(·) = PIII(W, ·) as three provers for

Vinner. Vcomp invokes Vinner on input (n,m, π, ε/2) with oracles P1, P2 and P3, accepting iff Vinner

does.

The completeness follows immediately (by completeness of V2ip and Vinner). To see the soundness,

we claim that if PI, PII, PIII are accepted by Vcomp with probability 1
2 + ε, then the pair of provers

PA, PB given by PA(U) = D1(PI(U, ·)) and PB(W) = D2(PII(W, ·), PIII(W, ·)) are accepted by V2ip

25

with probability at least εγ
2 . The lemma follows from this claim by setting u s.t. cu1 <

εγ
2 .

To verify the claim, we first apply Markov’s inequality to observe that for at least a ε
2 -fraction of

choices of U,W , the invocation of Vinner accepts P1, P2, P3 with probability at least 1
2 +

ε
2 . For all

such choices consider the output of D1 and D2. Since these are assignments on U and W these

are legitimate answers of PA and PB . By the definition of m, the outputs of PB always satisfy the

chosen clauses. Finally by the definition of π whenever π(D2(P2, P3)) = D1(P1) the answers are

consistent on U and hence V2ip accepts. This completes the proof.

Proof (of Theorem 14): By Lemma 17 it suffices to establish the existence of a (O(log n), 3, 1)-

good inner-verifier system. We describe the three components of the inner-verifier system in order;

and then analyze the system.

The inner verifier Given (n,m, π, ε), Vinner picks three functions f : [n]→ {+1,−1}, g : [m]→

{+1,−1} and η : [m]→ {+1,−1} such that f(1) = g(1) = 1 and otherwise f and g are random and

unbiased while η is random with bias 1− ε, i.e., for every input j ∈ [m], η(j) is 1 with probability

1 − ε and −1 with probability ε, independently. Let b = f(π(1))η(1) and g′ be the function given

by g′(j) = bf(π(j))g(j)η(j). The verifier sends f to P1, g to P2 and g′ to P3. If the responses

are a1, a2, a3 ∈ {+1,−1}, then Vinner accepts if a1a2a3 = b. As in [9], g′ should be thought of as a

perturbation (given by η) of the product of f and g. The variable b is introduced only to make sure

that g′(1) = 1. The main difference between this verifier and that of [9] is that this verifier sends

the queries g and g′ to two different provers, while the verifier of [9] sent it to a (single) oracle.

For the sake of the analysis it will be cleaner to use an alternate description of the above verifier. For

this description, notice first that f : [n]→ {+1,−1} may also be viewed as a vector f ∈ {+1,−1}n.

Thus P1 may be viewed as a function from {+1,−1}n to {+1,−1}. Actually, P1 (resp. P2, P3) is

never queried with any function f with f(1) = −1, but extending P1 to be defined also for such f

26

by setting P1(f)
�
=− P1(−f) whenever f(1) = −1 gives a more symmetric situation and makes the

situation more similar to that in [9]. Thus we assume from now on that the functions P1, P2 and

P3 are defined for all inputs and preserve negation. We may now think of Vinner as if it picks f and

g totally at random, η as before and lets g′ be the function g′(j) = f(π(j))g(j)η(j). It sends f to

P1, g to P2 and g′ to P3 and accepts iff P1(f)P2(g)P3(g′) = 1.

It is easy to check that this yields exactly the same protocol as described above. The only reason

for our slightly more complicated description is that enables us to assume that Pi(h) = −Pi(−h)

for any i and h.

Encoding The encoding functions are just the “long codes” (see [5, 9, 14]). I.e., E1(a) is the

function P1 that on input f : [n] → {+1,−1} responds with f(a), while E2(b) (as also E3(b)) is

the function P2 that on input g : [m] → {+1,−1} responds with g(b). The completeness of the

protocol follows immediately.

Decoding The decoding function D1 is from [9, 14]. The decoding function is based on the

Fourier coefficients of the functions Pi where we use

Pi(h) =
∑
α

P̂i,α(α(h).

D1(P1) works as follows: Pick α ⊆ [n] with probability P̂ 2
1,α, and output a random element of α.

Note that α is never empty, since P̂1,∅ = 0 for any function P1 satisfying P1(f) = −P1(−f).

The new element of our proof is the decoding functionD2. D2(P2, P3) works as follows: Pick β ⊆ [m]

with probability |P̂2,β · P̂3,β | and output a random element of β. Notice that the probabilities of

picking the sets β add up to at most 1. This is true since by the inequality between the geometric

27

and arithmetic mean

∑
β

|P̂2,β · P̂3,β | ≤
∑
β

P̂ 2
2,β + P̂ 2

3,β

2
≤ 1.

If the sum of the probabilities is less than 1 we do nothing in the remaining case.

Analysis We now relate the performance of these decoding functions with the acceptance prob-

ability of the inner verifier Vinner. First we express the latter quantity in terms of the Fourier

expansions of the functions Pi.

The fact that Vinner accepts with probability 1/2 + ε implies that

2ε = Ef,g,η[P1(f)P2(g)P3(g′)]

= Ef,g,η


∑

α⊆[n]

P̂1,α(α(f)
∑

β⊆[m]

P̂2,β(β(g)
∑

β′⊆[m]

P̂3,β′(β′(g′)




=
∑

α,β,β′
P̂1,αP̂2,βP̂3,β′Ef,g,η

[
(α(f)(β(g)(β′(ηgf(π))

]
=

∑
α,β,β′

P̂1,αP̂2,βP̂3,β′Ef

[
(α(f)(β′(f(π))

]
Eg

[
(β(g)(β′(g)

]
Eη

[
(β′(η)

]
.

Clearly the second expected value is 0 unless β = β′ in which case it is 1. The third expected value

is, by a small calculation, seen to be (1 − 2ε)|β′|. Finally the first expected value is 0 unless it is

the case that each a ∈ α has an odd number of b ∈ β′ such that π(b) = a while for each a �∈ α this

number is even. We denote this condition by π2(β′) = α since it is naturally a “mod 2” extension

of π to sets. Summing up, we have

2ε =
∑
β

P̂1,π2(β)P̂2,βP̂3,β(1− 2ε)|β|

28

The partial sum over all β with |P̂1,π2(β)| < ε is at most ε. So, we conclude that

ε ≤
∑

β s.t. |P̂1,π2(β)|>ε

P̂1,π2(β)P̂2,βP̂3,β(1− 2ε)|β| ≤ ε−1
∑

β

P̂ 2
1,π2(β)P̂2,βP̂3,β(1− 2ε)|β|. (5)

Let us now estimate the probability that D1(P1) = π(D2(P2, P3)) when D1 and D2 are defined as

above. We claim that whenever D2 chooses β and D1 chooses π2(β) then probability that we get

π(b) = a is at least 1/|β|. This is true since for any choice of D1 of an element a ∈ π2(β) there

is at least one b ∈ β such that π(b) = a. The probability that D2 chooses this element is at least

1/|β|. Now note that the probability that D1 chooses π2(β) is P̂ 2
1,π2(β) and the probability that D2

chooses β is |P̂2,βP̂3,β| and thus, by the above argument, we have

Pr[D1(P1) = π(D2(P2, P3))] ≥
∑
β

P̂ 2
1,π2(β)P̂2,βP̂3,β|β|−1

≥ ε
∑
β

P̂ 2
1,π2(β)P̂2,βP̂3,β(1− 2ε)|β|

(Using x−1 ≥ ε(1− 2ε)x for any x ≥ 1, ε ≥ 0)

≥ ε3 (Using (5))

Thus setting γ = ε3 we have established the desired properties of Vinner.

Now we just note that Theorem 14 follows from Lemma 17 and the constructed inner verifier.

Acknowledgments

We would like to thank the reviewers of RANDOM’99 as well as the referee of the current paper

for numerous comments and corrections.

29

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof verification and

the hardness of approximation problems. Journal of the ACM, 45(3):501-555, 1998.

[2] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP.

Journal of the ACM, 45(1):70-122, 1998.

[3] Y. Aumann and M. O. Rabin. Manuscript. 1999.

[4] M. Bellare, D. Coppersmith, J. Håstad, M. Kiwi and M. Sudan. Linearity testing in

characteristic two. IEEE Transactions on Information Theory, 42(6): 1781-1795, 1996.

[5] M. Bellare, O. Goldreich and M. Sudan. Free bits, PCPs, and non-approximability –

towards tight results. SIAM Journal on Computing, 27(3):804-915, 1998.

[6] M. Bellare, S. Goldwasser, C. Lund and A. Russell. Efficient probabilistically check-

able proofs and applications to approximation. Proceedings of the Twenty-Fifth Annual ACM

Symposium on the Theory of Computing, pages 294-304, San Diego, California, 16-18 May

1993.

[7] M. Blum and S. Kannan. Designing programs that check their work. Journal of the ACM,

42(1):269-291, 1995.

[8] M. Blum, M. Luby and R. Rubinfeld. Self-testing/correcting with applications to numer-

ical problems. Journal of Computer and System Sciences, 47(3):549-595, 1993.

[9] J. Håstad. Some optimal inapproximability results. Proceedings of the Twenty-Ninth An-

nual ACM Symposium on Theory of Computing, pages 1-10, El Paso, Texas, 4-6 May 1997.

Complete version accepted for publication in Journal of ACM.

30

[10] J. Håstad and A. Wigerson. Simple analysis of graph tests. Manuscript. December 2000.

[11] R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763-803, 1998.

[12] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal amor-

tized query complexity. Proceedings of the Thirty-Second Annual ACM Symposium on Theory

of Computing, pages 181-190, Portland, Oregon, 21-23 May 2000.

[13] L. Trevisan. Positive linear programming, parallel approximation, and PCP’s. Proceedings

of the 4th European Symposium on Algorithms, pages 62–75. LNCS 1136, Springer-Verlag,

1996.

[14] L. Trevisan. Recycling queries in PCPs and in linearity tests. Proceedings of the Thirtieth

Annual ACM Symposium on the Theory of Computing, pages 299-308, Dallas, Texas, 23-26

May 1998.

[15] U. Zwick. Approximating algorithms for constraint satisfaction problems involving at most

three variables per constraint. Proceedings of the ninth ACM-SIAM Symposium on Discrete

Algorithms, 1998.

31

