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Abstract

We prove that, unless any problem in NP can be solved in proba-

bilistic polynomial time, for any � > 0, the size of the largest clique in a

graph with n nodes is hard to approximate in polynomial time within

a factor n1��. This is done by constructing, for any Æ > 0, a proba-

bilistically checkable proof for NP which uses logarithmic randomness

and Æ amortized free bits.

Warning: Essentially this paper has been published in Acta

Matehmatica and is subject to copyright restrictions. In particular

it is for personal use only.

1 Introduction

The basic entity in complexity theory is a computational problem which,
from a mathematical point of view, is simply a function F from �nite binary
strings to �nite binary strings. To make some functions more intuitive these
�nite binary strings should sometimes be interpreted as integers, graphs, or
descriptions of polynomials. An important special case is given by decision
problems where the range consists of only two strings usually taken to be 0
or 1.

A function F should be realized by an algorithm and there are many
ways to mathematically formalize the notion of an algorithm. One of the
�rst formalizations which is still heavily used is that of a Turing Machine.
However, since we in this paper do not deal with the �ne details of the de�ni-
tion, the reader might as well think of a standard computer with a standard
programming language. The only idealization needed is that the computer
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contains an in�nite number of words of memory each of which remain of
bounded size. The algorithm has some means of reading information from
the external world and also some mechanism to write the result. Time is
measured as the number of elementary steps.

A �nite binary string x in the domain is simply called the input, while the
output is the �nal result of the computation delivered to the outside world.
An algorithm solves the computational problem F if it when presented x on
its input device, it produces output F (x). A parameter that is important to
measure the performance of the algorithm is the length of the input which
simply is the number of binary symbols in x.

In complexity theory the basic notion of eÆciently computable is de-
�ned as computable in time polynomial in the input-length. The class of
polynomial time solvable decision problems is denoted by P. Establishing
that a problem cannot be solved eÆciently can sometimes be done but for
most naturally occurring computational problems of combinatorial nature,
no such bounds are known. Many such problems fall into the class NP;
problems were positive answers have proofs that can be veri�ed eÆciently.
Standard problems in NP are satis�ability (given a formula ' over Boolean
variables, is it possible to assign truth values to the variables to make '
true) and the clique problem (given a graph G and an integer k, are there
k nodes all of which are connected in G). These problems are traditionally,
in computer science, denoted by SAT and CLIQUE, respectively. It is still
unknown whether NP=P, although it is widely believed that this is not the
case. It is even the case that much work in complexity theory, and indeed
even this paper, would have to be reevaluated if NP=P.

There is a group of problem in NP, called the NP-complete problems
and introduced by Cook [14], which have the property that they belong to
P if and only if NP=P. Thus being NP-complete is strong evidence that a
problem is computationally intractable and literally thousands of natural
computational problems are today known to be NP-complete (for an out-
dated but still large list of hundreds of natural problems see [21]). SAT and
CLIQUE are two of the most well known NP-complete problems.

Many combinatorial optimization problems have a corresponding deci-
sion problem which is NP-complete. For instance, consider the optimization
problem that given a graph G to determine the size of the largest set of
nodes which are all pairwise connected in G. Since solving this problem
implies solving CLIQUE, a polynomial time algorithm always giving the
correct optimum would imply that NP=P. Optimization problem with this
property are called NP-hard (not NP-complete as they do not fall into the
class NP as they are not decision problems). Solving NP-hard optimization
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problems exactly is thus hard, but in many practical circumstances it is al-
most as good to get an approximation of the optimum. Di�erent NP-hard
optimization problems behave very di�erently with respect to eÆcient ap-
proximation algorithms and this set of questions form a research area in its
own.

In this paper we study the possible performance of a polynomial time
approximation algorithm for the optimization version of CLIQUE, tradition-
ally denoted Max-Clique but here we use the abbreviation MC. We demand
that the algorithm, on input a graph G with n vertices, outputs a number
that is always at most the size of the largest clique in G. We say that we
have an f(n) approximation algorithm if this number is always at least the
size of the largest clique divided by f(n). The best polynomial time approxi-
mation algorithm for MC achieves an approximation ratio of O( n

(log n)2
) [12],

and thus it is of the form n1�o(1). This is not an easy result but note that
an approximation factor of n is trivial since the clique cannot contain more
than all n nodes and any set of a single node is a clique. On the negative
side, there has been a sequence of papers [11, 17, 2, 1, 8, 18, 9, 7] giv-
ing stronger and stronger inapproximability results based on very plausible
complexity theoretic assumptions. The strongest lower bound is by Bellare,
Goldreich and Sudan [7] who prove (under the assumption that NP6=ZPP1)
that, for any � > 0, MC cannot be eÆciently approximated within n1=3��.
We strengthen these results to prove that, under the same assumption, for
any � > 0, MC cannot be eÆciently approximated within n1��. Thus, MC
is indeed very diÆcult to approximate. As in previous papers we use the
connection, discovered by Feige et al. in their seminal paper [17], between
multiprover interactive proofs and inapproximability results for MC. Let us
brie
y describe this connection.

NP can be viewed as a proof system where a single in�nitely powerful
prover P tries to convince a polynomial time veri�er V that a statement is
true. For concreteness let us assume that the statement is that a formula
' is satis�able. In this case, P displays a satisfying assignment and V can
easily check that it is a correct proof. This proof system is complete since
every satis�able ' admits a correct proof, and it is sound since V can never
be made to accept an incorrect statement.

If ' contains n variables, V reads n bits in the above proof. An inter-
esting question is whether we could restrict V to read fewer bits, the fewest

1ZPP is that class of problems that can be solved in expected polynomial time by a
probabilistic algorithm that never makes an error, i.e. only the running time is stochastic.
The faith in the hypothesis NP6=ZPP is almost as strong as in NP6=P.
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possible being a number of bits which is independent of the the number of
variables in '. It is not hard to see that this is impossible unless we relax
the requirements of the proof. The proof remains a �nite binary string, but
we allow the veri�er to make random choices. This means that given ' we
can now speak of the probability that V accepts a certain proof �. When
V was restricted to be deterministic this probability was either 0 or 1 while
now it is a number in the interval [0; 1]. In this paper we assume that if '
is satis�able then there is a proof that makes V accept with probability 1
while when ' is not satis�able then there is some constant s < 1 such that
for any proof � the probability that V accepts is bounded by s. The param-
eter s is called the soundness of the proof and a 0-sound proof is a proof in
the original sense of the word. Note that this soundness probability is only
taken over V 's internal random choices and is true for any nonsatis�able '
and any attempted proof �. This implies that we can decrease this false
acceptance probability to sk by using a veri�er V (k) that runs the original
veri�er k times using independent random choices.

It is an amazing fact, proved by Arora et al [1], that any NP-statement
has a proof of the above type, usually called probabilistically checkable proof
or simply PCP, where V only reads a constant, independent of the size of the
statement being veri�ed, number of bits of the proof and achieves soundness
s = 1=2. Apart from being an amazing proof system this gives a connection
to approximation of optimization problems as follows (for details on the
connection to MC we refer to [17]).

Fix a formula ' and consider the PCP by Arora et al. We have a well
de�ned function acc(�), the probability that V accepts a certain proof �.
Consider max� acc(�). If ' is satis�able this optimum is 1, while if ' is
not satis�able then the optimum is at most s. Thus, even computing this
optimum approximately would enable us to decide an NP-complete question.
It turns out that by choosing a suitable coding one can make max� acc(�)
be proportional to the size of the maximal clique in a graph G'. It follows
that approximating MC within a factor 1=s implies solving an NP-complete
problem and hence the former must be NP-hard.

Since we are aiming at rather exact quantitative results, all parts of the
above argument have to be carried out in detail and optimized to identify
the crucial parameters to obtain the best possible results. This has already
been done and, somewhat surprisingly, for clique the situation is not very
complicated.

The construction of G' uses all the possible random choices made by
V and hence it is essential that this number is polynomial, or, in other
words, that V only 
ips a logarithmic number of binary coins. Apart from
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this requirement, the only parameter that matters is the amortized free-bit
complexity. To explain this concept let us give a small example. A common
\subroutine" in a PCP is to check that a function g given by a table is a
low degree polynomial; in the simplest case a linear function. To be speci�c,
assume that the proof requires that g is a linear function over GF [2] from
f0; 1gn to f0; 1g and is thus given by 2n bits. To check this, V can generate
two random points x and y and check that g(x) + g(y) = g(x + y). Thus
V reads the bits g(x) and g(y) recording their values and then checks that
g(x+y) has the correct value. One can prove (see [6]) that any g that passes
this test with high probability is close to a linear function. This essentially
means that one can assume that g is a linear function and this can be used
to prove correctness of the overall PCP.

Now consider a general PCP. During the veri�cation procedure V looks
at a number of bits. Sometimes V has no idea what the value of the bit
should be (as when reading g(x) and g(y) in the example) while some other
times it is in a \checking mode" (as when reading g(x+y) above) and knows
what to expect, and when the value is not as expected V rejects the input.
The number of questions of the �rst type is the number of free bits and if
we denote this number by f , the number of amortized free bits is f= log2 s

�1

where s is the soundness. One indication that this is a natural parameter
can be seen from replacing V by V (k) as discussed above, i.e. running V
k times with independent random choices. In this case f is replaced by
kf while s is replaced by sk. Thus the number of amortized free bits is
preserved.

The connection between inapproximability and amortized free bits is now
the following [17, 18, 9, 34]; suppose any NP-statement admits a PCP which
has a polynomial time veri�er which uses logarithmic randomness and uses
k amortized free bits. Then for any � > 0, unless NP=ZPP, MC cannot be

approximated with n
1

k+1
�� in polynomial time.

Bellare, Goldreich and Sudan [7] proved that in fact we essentially have
an equivalence, in that if it is NP-hard to approximate MC within a factor

n
1

k+1 then NP has a proof-system with essentially k amortized free bits.
In this paper, for any Æ > 0, we give a proof-system which uses Æ amor-

tized free bits. As discussed above, this gives an inapproximability factor
for MC of n1�� for any � > 0.

This paper is the �nal version of the results announced in [24] and [25].

Related results. The framework of PCPs has lead to a number of strong
inapproximability results. For a good survey of the results we refer to [7], and
let us here only mention a couple of the strongest results on some problems
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of general interest. Feige and Kilian [19] has used the results of this paper
to derive the same strong, i.e. factor n1��, inapproximability results for
chromatic number. Chromatic number is the problem to color the nodes of
graph G with the minimal number of colors such that no two adjacent nodes
have the same color.

Set cover is another central problem and an instance of this problem is
given by a family of sets Si contained in a universe X. The task is to �nd
the minimal size subcollection (Sij )

k
j=1 that covers X, i.e. such that each

x 2 X is contained in some Sij . A greedy strategy approximates this number
within approximately lnn (see, for instance [27]) where n is the cardinality
of X. This was proved by Feige [15] to be the best possible performance for
an eÆcient approximation algorithm.

There are many NP-hard optimization problems which can be eÆciently
approximated within some constant c1 but such that there is another con-
stant c2 for which the approximation problem is NP-hard. For some prob-
lems, the gap between c1 and c2 can be made arbitrarily small. The latter
is true for Max-E3-SAT (the problem of satisfying the maximal number of
clauses in a CNF formula where each clause is of length exactly 3) and
Max-Lin-2 (satisfying the maximal number of equations in a linear system
of equations mod 2) where the c1 and c2 both are essentially 8/7 and 2,
respectively [26]. There are other problems where a gap remains between
the two constants. Examples of such problems are Max-Cut (given a graph,
partition the nodes into two sets such that a maximal number of edges go
between the two sets) and Max-E2-SAT (analogous to Max-E3-SAT with
the di�erence that clauses are of length 2). For Max-Cut c1 � 1:074 [22]
while c2 = 22=21 � � � 1:047 [26] while for Max-E2-SAT, c1 � 1:138 [16]
and c2 = 17=16 � � � 1:0625 [26], both for an arbitrary � > 0.

Organization of the paper. In Section 2 we give some basic de�nitions
and statements of prior works that are essential to us. In Section 3 we take
the �rst steps towards the desired PCP and recall the long code introduced
in [7]. It is important to test the property that a given string is a correctly
formed long code and in Section 4 we give such a test. It turns out to be
essential that this test can take into account side conditions and thus the
main result of this section is given in Theorem 4.17. In Section 5 we show
how to use the constructed test as a subroutine to get the desired PCP for
an arbitrary NP-statement.
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2 De�nitions and formal statements of prior work

We consider binary strings and the length of a string x is denoted by jxj and
we also use absolute values to denote the size of other natural objects. In
particular jT j is the cardinality of a set T . The notation O(f(n)) denotes
any function which is bounded by cf(n) for some absolute constant c and
all suÆciently large values of n.

An assignment on a set U is an element of f0; 1gU . For two sets U �W
and an assignment y on W we let yjU be the induced assignment on U . For
a set � of assignments ofW we let �U (�) be the set of assignments on U that
contain exactly yjU for all y 2 �. A function f de�ned for assignments on
U is automatically extended to assignments on W by letting f(y) = f(yjU ).

A Boolean formula is a CNF-formula if it is a conjunction of disjunc-
tions of literals, where a literal is a variable or a negated variable. Such a
disjunction is also called a clause and a formula is a 3-CNF-formula if each
clause is of length at most 3.

We introduce some more notation as needed later but right now we turn
to some basic de�nitions.

2.1 Complexity classes

To de�ne complexity classes we need to �x one formal model of computation.
We let this be the Turing machine (for a de�nition see [30]), although any
other formal model would do as well. Time is measured as the number
of elementary steps of the machine. A language is simply a set of �nite
binary strings. An example is the set of satis�able Boolean formulas under
some suitable encoding. When speaking of Turing machines in connection
with languages we say that a Turing machine M accepts an input x i� it
outputs 1 on this input and otherwise we say that it rejects. We say that
M accepts a language L if it accepts exactly the elements of L. The most
basic complexity class is P.

De�nition 2.1 A language L belongs to P i� there is some constant c such
that there is a deterministic Turing machine M that on every input x runs
in time O(jxjc) and accepts L.

Other classes of interest in this paper are NP and ZPP. A probabilistic
Turing machine has the ability to select a random bit. This has become
known as \
ipping a random coin" and we use this terminology. The out-
put of a probabilistic machine is in general a random variable. For ZPP ,
however, the output is determined by the input only.
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De�nition 2.2 A language L belongs to ZPP i� there is some constant c
such that there is a probabilistic Turing machine M that on input x runs in
expected time O(jxjc) and outputs 1 i� x 2 L.

Thus for ZPP the answer of the machine is always correct while the
running time is relaxed to be true only in the expected sense. The class
NP is usually de�ned in terms of nondeterministic Turing machines. Since
we do not need the de�nition of nondeterministic computation while proof
systems play an essential role here, we choose to de�ne NP in terms of proof
systems and hence we need a detour.

A proof system is de�ned through a veri�er V . It is an eÆcient algorithm
and thus a, possibly probabilistic, polynomial time Turing machine. It needs
some mechanism to access the proof and we allow V to have access to one
or more oracles. An oracle � can be simply be thought of as a bit string
and the question "i ?" is simply answered by the i'th bit of �. When we
want to emphasize the fact that V uses a particular oracle � we write V �.
Once the input x and � are �xed we get a well-de�ned probability that V �

accepts the input x. If V is deterministic then it is either 0 or 1 while if V
is probabilistic it is a number in the interval [0; 1].

De�nition 2.3 A language L belongs to NP i� there is a deterministic
polynomial time veri�er V such that for some constant c the following is
true. On each input x 2 L there is a proof � such that V � accepts x in time
at most O(jxjc). If x 62 L there is no � such that V � accepts x.

It is not diÆcult to see that P�ZPP�NP and it is not known whether
any of the inclusions is proper. It is strongly believed that ZPP�NP, while
the relation between P and ZPP is more open to speculation. For a more
complete discussion of complexity classes and related concepts we refer to
[30].

2.2 Probabilistic proof systems

As discussed in the introduction we are interested in proof systems where the
veri�er is probabilistic. The simplest variant is a probabilistically checkable
proof.

De�nition 2.4 A Probabilistically Checkable Proof (PCP) with soundness
s for a language L is given by a veri�er V with the following properties

� For x 2 L there is a proof � such that V � outputs 1 on input x with
probability 1.
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� For x 62 L and all � the probability that V � outputs 1 on input x is
bounded by s.

We are interested in eÆcient PCPs and hence we assume that V runs
in worst case polynomial time. There are many other parameters of V of
interest. We here only discuss the parameters relevant to our paper and for
a more complete discussion we refer to [7].

De�nition 2.5 The veri�er V uses logarithmic randomness if on each in-
put x and proof �, V � 
ips O(log jxj) random coins.

When discussing the acceptance probability of V as a combinatorial
problem it is natural to discuss all possible executions of V . The only parts
of V that are not predictable are the random coins and the answers that
V gets from the oracle. These parameters completely determine whether or
not V accepts. We call a sequence of oracle answers and random coins a
pattern. We are only interested in patterns that cause V to accept. The key
concept we need is that of amortized free bits but �rst we need to de�ne
free bits.

De�nition 2.6 A PCP uses � f free bits if for each sequence of random
coins of V , there are at most 2f di�erent sets of oracle answers that complete
an accepting pattern.

In our protocols, the number of free bits is in fact rather simple to
calculate. When V reads bits in the oracle, either he has no idea what to
expect or he is checking that a certain bit has a given value. The number
of free bits is then simply the number of read bits of the �rst kind. We now
proceed to de�ne amortized free bits.

De�nition 2.7 The amortized free bit complexity of a PCP with soundness
s is de�ned as

f

log(1=s)
;

where f is the number of free bits.

As mentioned in the introduction amortized free bits is the key to in-
approximability of clique. The basic construction is from [17] while the
current statement of the connection is from [7]2 but at least Theorem 2.8
can be extracted from [11, 34].

2In [7], only the conclusion that NP�coRP is given. It is not diÆcult, as in [34], to get
the conclusion NP=ZPP.
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Theorem 2.8 [7] Suppose any language in NP admits a PCP with a prob-
abilistic polynomial time veri�er that uses logarithmic randomness and f
amortized free bit. Then, unless NP=ZPP, for any � > 0, Max Clique can-
not be approximated within n1=(1+f+�) in polynomial time.

If one is only willing to believe that NP6=P then we have the following
variant.

Theorem 2.9 [7] Suppose any language in NP admits a PCP with a prob-
abilistic polynomial time veri�er that uses logarithmic randomness and f
amortized free bit. Then, unless NP=P, for any � > 0, Max Clique cannot
be approximated within n1=(2+f+�) in polynomial time.

We also need what is generally called a two-prover one-round interactive
proof. Such a veri�er has two oracles but has the limitation that it can only
ask one question to each oracle and that both questions have to be produced
before either of them is answered. We do not limit the answer sizes of the
oracles which we denote by P1 and P2.

De�nition 2.10 A probabilistic polynomial time Turing machine V is a
veri�er in a two-prover one-round proof system with soundness s for a lan-
guage L if on input x it produces two strings q1(x) and q2(x), such that

� For x 2 L there are two oracles P1 and P2 such that the probability
that V accepts (x; P1(q1(x)); P2(q2(x))) is 1.

� For x 62 L, for any two oracles P1 and P2 the probability that V accepts
(x; P1(q1(x)); P2(q2(x))) is bounded by s.

Let us be more speci�c on the order of the quanti�ers. The provers P1 and
P2 depend on x but must be �xed before q1(x) and q2(x) are produced and
hence the answer P1(q1(x)) only depends on x and q1(x) and in particular
it is independent of q2(x). The similar statement is true for P2(q2(x)).

Brief history. The notion of PCP was introduced by Arora and Safra
[2]. It was a variation of randomized oracle machines discussed by Fortnow,
Rompel and Sipser [20] and transparent proofs by Babai et al [4]. Multi-
prover interactive proofs were introduced by Ben-Or et al [10], and all these
systems are variants of interactive proofs as introduced by Goldwasser, Mi-
cali, and Racko� [23] and Babai [3].
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2.3 Essential previous work

The surprising power of interactive proofs was �rst established in the case of
one prover [28], [33] and then for many provers [5]. After the fundamental
connection with approximation was discovered [17] the parameters of the
proofs improved, culminating in the following result [2, 1].

Theorem 2.11 [1] For any integer k � 3 there is a constant ck < 1 such
that any language in NP admits a PCP with soundness ck and a probabilistic
polynomial time veri�er V that uses logarithmic randomness and reads at
most k bits of the proof.

Note that the soundness of any V can be improved by making d in-
dependent runs. This implies, in particular, that cdk � cdk and hence the
constant ck can be made to go to 0 when k increases. The number of bits
read cannot, unless P=NP, be decreased to 2 preserving the property that
V always accepts a correct proof of a correct NP-statement. This follows
from the fact that one can decide whether a 2-CNF formula is satis�able in
polynomial time (for a formal proof see [7]).

Properties described by reading 3 bits of a proof can be coded by a
3-CNF formula where the variables in the formula correspond to the bits
of the proof. The acceptance probability of a proof is closely related to the
number of clauses satis�ed by the corresponding assignment and in this case
Theorem 2.11 can be rephrased.

Theorem 2.12 [1] There is a universal constant c < 1 such that, given
an arbitrary NP-statement, we can, in polynomial time, construct a 3-CNF
formula ' such that if the NP-statement is true then ' is satis�able while
if the NP-statement is false, no assignment satis�es a fraction larger then c
of the clauses.

Subsequent work, [26], has shown that this universal constant can be set
to any constant larger than 7/8; however, we do not use this fact here. On
the other hand it is convenient to work with a very uniform looking formula
'. The following extension, based on results in [31], is found as Proposition
1 in [15].

Theorem 2.13 [15] There is a universal constant c < 1 such that, given
an arbitrary NP-statement, we can, in polynomial time, construct a 3-CNF
formula ' in which each clause is of length exactly 3 and such that each
variable appears exactly 5 times, such that if the NP-statement is true then
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' is satis�able while if the NP-statement is false, no assignment satis�es a
fraction larger then c of the clauses.

Let us now turn to two-prover interactive proofs. Given a one-round
protocol with soundness s we can repeat it k times in sequence improving the
soundness to sk. This creates many round protocols, whereas we need our
protocols to remain one-round. This can be done by what has become known
as parallel repetition and this simply means that V repeats his random

choices to choose k pairs of questions (q
(i)
1 ; q

(i)
2 )ki=1 and sends (q

(i)
1 )ki=1 to

P1 and (q
(i)
2 )ki=1 to P2 all at once. V then receives k answers from each

prover and accepts if it would have accepted in all k protocols given the
individual answers. The soundness of such a protocol can be greater than
sk, but Raz [32] proved that, when the answer size is small, the soundness
is exponentially decreasing with k.

Theorem 2.14 [32] For all integers d and s < 1, there exists cd;s < 1 such
that given a two-prover one-round proof system with soundness s and answer
sizes bounded by d, then, for all integers k, the soundness of k protocols run
in parallel is bounded above by ckd;s.

In fact it is suÆcient for our main theorem that the acceptance proba-
bility, for �xed s and d, tends to 0, arbitrarily slowly, when k increases. We
do not know of a simple proof of this fact and hence we might as well use
the powerful Theorem 2.14.

Finally, we need standard Cherno� bounds to estimate the probability
that we have large deviations. Constants are of no great concern and we use
Theorem 4.2 and Theorem 4.3 of [29].

Theorem 2.15 Let p � 1
2 and let X1;X2 : : : Xn be independent Bernoulli

random variables with Prob[Xi = 1] = p for each i. Then for all Æ, 0 � Æ � p
we have

Prob

"����� 1n
nX
i=1

Xi � p

����� � Æ

#
� 2e�

Æ2n
4p

3 First steps towards a good proof system

We want to construct a proof system for an arbitrary language in NP. The
basic steps in constructing such a proof system are rather simple and let us
give an overview.
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We start by a simple two-prover one-round protocol which is obtained
more or less immediately from Theorem 2.13. We improve the soundness
of this protocol by running several copies of it in parallel and using Theo-
rem 2.14. It is possible to transform this improved two-prover protocol to
a PCP simply by writing down prover answers of P1 and P2 to all possible
questions. The answers are, however rather long and since the key quan-
tity we want to keep small is the number of (free) bits read, we write the
answers in a more useful form by asking the prover to supply the value of
all Boolean functions of these answers. This is the long code of the answers
as de�ned in [7]. This enables V to access complicated information in a
single bit. The fact that we allow the proof to contain the answers of the
provers in expanded form puts the extra burden on V to check that the
these parts of the proof are indeed a correct code of something. Once this
is established, though in a very weak sense, we prove that this something
would have enabled P1 and P2 to convince the veri�er in the parallelized
two-prover protocol with a substantial probability.

We follow the above outline and start by describing the two-prover pro-
tocols. We are thus given an arbitrary NP-statement.

We translate, using Theorem 2.13, the NP-statement to a 3-CNF formula
' with the properties given in that theorem. Assume that the resulting
formula has n variables and hence m = 5n

3 clauses each of length exactly 3.
Suppose ' = C1 ^ C2 ^ : : : ^ Cm, where Cj contains the variables xaj , xbj
and xcj . Consider the following one-round two-prover interactive proof.

Simple two-prover protocol

1. V chooses j 2 [m] and k 2 faj ; bj ; cjg both uniformly at random. V
sends j to P1 and k to P2.

2. V receives values for xaj ; xbj and xcj from P1 and for xk from P2. V
accepts i� the two values for xk agree and Cj is satis�ed.

Before we proceed let us make an observation. Since each clause is of length
exactly 3 and each variable appears in exactly 5 clauses, if V �rst chooses
a random variable xk to send to P2 and next a random clause containing
xk to send to P1 he generates questions with exactly the same probability
distribution.

Proposition 3.1 If any assignment satis�es at most a fraction c of the
clauses of ', then V accepts in the simple two-prover protocol with probability
at most (2 + c)=3.
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Proof: The answers by P2 de�nes an assignment x0 to all variables. Since
the provers coordinate their strategies, P1 knows x

0 and it is now not hard to
determine the optimal strategy for P1. Whenever V chooses a clause that is
satis�ed by x0, P1 answers according to x

0. Whenever V chooses a clause not
satis�ed by x0, to have any probability of V accepting P1 should not answer
according to x0 and to have minimal probability of his answer being found
inconsistent with the answer of P2 he should change the value of exactly one
variable. The probability of V rejecting in this case is exactly 1/3, and since
x0 (as well as any other assignment) satis�es at most a fraction c of the
clauses, the probability that V rejects is at least (1� c)=3. The proposition
follows.

We now concentrate on the game consisting of u parallel copies of this
basic game which we call the u-parallel two-prover game. In this game V
picks u variables (xik)

u
k=1 and then uniformly at random for each k he picks

a clause Cjk that contains xik . The (Cjk)
u
k=1 are sent to P1 while (xik)

u
k=1 are

sent to P2. The provers return values for the queried variables and V accepts
if the values are consistent and satisfy the chosen clauses. The veri�er can
again be made to always accept when ' is satis�able, while the acceptance
probability in the case where it is only possible to satisfy a constant fraction
of the clauses is, by Theorem 2.14 and Proposition 3.1, bounded by cu for
some suitable constant c. Combining with Theorem 2.13 we get a result
that is central to us and hence we state it for later reference.

Theorem 3.2 There is a universal constant c < 1 such that, given an arbi-
trary NP-statement, we can, in polynomial time, construct a 3-CNF formula
' such that when the u-parallel two-prover game is executed on ' the fol-
lowing is true. If the NP-statement is true then the veri�er can be made to
always accept while if the NP-statement is false, no strategy of the provers
can convince the veri�er with probability larger than cu.

We reserve for the rest of this paper c to denote the value of the constant
in this theorem.

To �x notation, let U = fxi1 ; xi2 : : : xiug be the set of variables chosen
by V and sent to P2, and W the set of variables in (Cjk)

u
k=1 and thus the

set of variables to which P1 is supposed to give a value. Typically, provided
no variable is chosen twice, U is of size u and W of size 3u and we always
have U �W .

As discussed in the introduction to this section we want to replace this
two-prover interactive proof by a PCP consisting of the answers of P1 and
P2 given in a more redundant form.

14



De�nition 3.3 [7] The long code of a string x of length w is of length 22
w
.

The coordinates of the codeword are identi�ed with all possible functions
f : f0; 1gw 7! f0; 1g and the value of coordinate f is f(x).

The long code is extremely wasteful but in our applications we have
w � 3u, and since u is a constant, the size of the codeword is also a constant.
Consequently, the size of proof is just a constant times larger than the size
that would have been required to simply write down the answers of P1 and
P2.

To see how useful this coding can be, let us give a simple test to check
the PCP we have constructed. Thus the PCP is supposed to be constructed
from a satisfying assignment x0 and for each U andW as constructed above
it contains the long code of x0 restricted to the set in question. Let us denote
by AT the supposed long code on the set T .

Simple PCP test(`)

1. Choose U by choosing u variables with the uniform distribution. For
i = 1; 2 : : : `, choose a set Wi by uniformly selecting, for each variable
xik , a random clause Cjik

containing xik and letting Wi be the set of
variables in the u clauses. The constructions of the di�erent Wi are
done independently.

2. Choose a random function f : f0; 1gU 7! f0; 1g and let gi = Cji1
^

Cji2
^ : : : ^ Cjiu

. Accept if AU (f) = AWi(f) and AWi(gi) = 1 for all
i = 1; 2 : : : ; `. Remember that f can be interpreted as a function on
Wi by ignoring the coordinates not in U .

It is easy to see that the simple PCP test always accepts a correct proof.
Also note that the simple PCP test uses only one free bit, as determined
by AU (f), independent on the value of `. Now suppose that the proof is
correctly formed in the sense that, for every T , AT is the long code of some
string xT , and that the simple PCP test accepts with probability p. We
claim that for suÆciently large ` this gives strategies for P1 and P2 that
make the veri�er accept with probability at least p=5. Since the latter is
at most cu we get that the soundness of the PCP is at most 5cu, and thus
the number of amortized free bits would be O(1=u) which can be made
arbitrarily small.

The mentioned strategy for the provers is almost what one expects. P1,
when askedW , answers xW . Note that, since by assumption, 1 = AWi(gi) =
gi(x

W ) whenever V accepts we can assume that xW satis�es the clauses
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used to construct W . The strategy for P2 is the optimal strategy given the
strategy of P1. In other words, given U , P2 considers all W that could be
asked in the same conversation. He knows the answer of P1 in each case
and simply chooses the assignment that maximizes the probability that the
veri�er accepts. For completeness we analyze this strategy in Appendix A.

The assumption that each AT is a correct long code is extremely strong
and crucial in the above analysis; there are incorrect proofs that do not
satisfy this description and are always accepted. One such incorrect proof
is the proof where each bit is equal to 1.

We conclude that the property of being a correct code-word is a crucial
one. We next design a test to test exactly this property.

4 Testing a supposed long code

Let us �rst make some minor changes of the notation used so far and also
introduce some new notation. We want at analyze a supposed long code
A : f0; 1g2

w
7! f0; 1g. We replace f0; 1g by f�1; 1g with �1 taking the place

of 1. With this correspondence exclusive-or turns into multiplication. Other
logical operators, like ^ remain de�ned (but note the ^ is notmultiplication).
Thus from now on, A : f�1; 1g2

w
7! f�1; 1g. The inputs to A are thought

of as functions f�1; 1gw 7! f�1; 1g. A typical function is denoted by f
and we also use vectors of functions denoted by ~f = (fi)

s
i=1 for some s. To

distinguish a function f from the string of length 2w which we use as an input
to A, we denote the latter hfi. We let A operate on a vector of functions
and we let ~A(h~fi) be the vector (A(hfii))

s
i=1. We are also interested in

functions B : f�1; 1gs 7! f�1; 1g which we think of as Boolean predicates.
Combining ~A and ~f as above we get B( ~A(h~fi)) which is a bit and BÆ ~f which
is the function which on input x takes the value B(f1(x); f2(x) : : : fs(x)) =
B(~f(x)).

We are interested in the property that A describes a correct long code,
i.e., that A(hfi) = f(x0), for some x0 and each f . In other words, a long
code is simply a point evaluation. When probing a supposed long code we
use the terminology \A looks like a point evaluation at x0" to denote the
fact that A(hfi) = f(x0) for all queried f . Thus a correct long code always
looks like a point evaluation at the input which it codes. Our main test of
a long code is now rather straightforward.
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The complete Non-Adaptive Test(s)

1. Pick, with the uniform distribution, s random functions fi : f�1; 1g
W 7!

f�1; 1g and ask for (A(hfii))
s
i=1.

2. For all Boolean predicates B of s bits ask for A(hB Æ ~fi) and check
that

A(hB Æ ~fi) = B( ~A(h~fi)):

First note that for A to have any chance to pass the test it must be correct
on the constant functions. This follows, since if B is identically one then
B( ~A(h~fi)) = 1 and hence A(hB Æ ~fi) must also take this value and B Æ ~f is
the function which is constant one. Similarly for B being identically �1.

We refer to the test as the CNA-test(s) and we claim that it uses s free
bits, as given by the queries for (A(hfii))

s
i=1. This follows since the values

of A(hB Æ ~fi) are known before the corresponding query is asked.
When accessing an oracle a question is called non-adaptive if the decision

to ask the question is independent of previous answers. In the CNA-test, the
veri�er asks all possible non-adaptive questions to which it knows the answer
given the information ~A(h~fi). Note, however, that there are other questions
one might ask since if A(hfi) = 1 then we should have A(hf ^ f 0i) = 1 for
any function f 0. These questions are, however, adaptive and seems harder
to analyze and we do not know how to use them to simplify the current
analysis.

Let us �rst show that if the test accepts then the outcome looks like
some point evaluation.

Lemma 4.1 Suppose the CNA-test(s) accepts using a speci�c set of random
choices ~f . Then there is an input x such that A looks like a point evaluation
at x. In other words, A(hfi) = f(x) for all tested functions f .

Proof: Since, in case of accept, all values are determined by ~A(h~fi), it is
suÆcient to �nd an x such that fi(x) = A(hfii) for i = 1; 2 : : : s. Suppose
there is no such x. Let �i = A(hfii) and consider the Boolean predicate
B~�(z) , (^si=1(zi = �i)). Then B~� Æ ~f is a function which is identically false.
This follows since, by our hypothesis, for each x there is an i such that
fi(x) 6= A(hfii) and this causes the i'th term in the expression for B(~f(x))
to be false. B~�( ~A(h~fi)) is, however, true and hence A(hB~� Æ ~fi) = 1 while
B~�( ~A(h~fi)) = �1 and the test rejects. This is a contradiction.
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Before going into the analysis consider the following example.

Example: For any three speci�c assignments x0, x1 and x2 let

A(hfi) = f(x0)� f(x1)� f(x2):

This is not a correct long code and in fact it is not diÆcult to see that any
correct long code takes the same value as A for exactly half of the possible
f . Now consider what happens when we do the CNA-test. Suppose that
fi(x

0) = fi(x
1) for i = 1; 2; : : : ; s. Then this is also true for any B Æ ~f and

hence A(hfi) = f(x2) for all queried functions f . Thus, with probability
at least 2�s the test accepts and the result looks like the long code for x2.
Similarly it is possible to get results that look like the long codes for x0 or
x1, respectively.

Since we want an arbitrarily small number of amortized free bits we
cannot a�ord a failure probability of 2�s when we are using s free bits (since
this gives at least one amortized free bit). Thus, we modify the acceptance
criteria by allowing the supposed long code to look like a small number of
di�erent correct long codes. The important property is that this set S of
possible long codes is small and that it can be speci�ed in advance before
performing the test. In the above example we have S = fx0; x1; x2g.

Let us return to the main path. In the following theorem, C�;k (resp.,
D�;k;s) is a constant depending on only � and k (resp. �, k, and �).

Theorem 4.2 For any � > 0 and positive integer k, for s � C�;k and
w � D�;k;s the following is true. For any A : f�1; 1g2

w
7! f�1; 1g there is

a set S containing at most 2�s points in f�1; 1gw such that when the CNA-
test(s) is performed, except with probability 2�ks, the test either rejects or
the outcome is consistent with being a point evaluation at an element x 2 S.

The probability is taken over the random choices of the veri�er perform-
ing the test, i.e. over the choice of random functions fi.

Proof: Decreasing � only strengthens the conclusion since it decreases the
allowed size for S, and hence we can assume that � � 1=2. We do not only
assume that s is suÆciently large compared to k and � but also compared to
constants l and m to be introduced later. This can be done since the latter
constants are made to depend only on k and �. A constant denoted by cl;m
depends in some way on parameters m and l but not on other parameters.
The value of cl;m might change from line to line.
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The proof relies on Fourier transforms and we assume the reader is fa-
miliar with the basic concepts. In our setting,3 the Fourier coeÆcients are
de�ned by

Â� = 2�2
w

X
f :f�1;1gw 7!f�1;1g

A(hfi)
Y
x2�

f(x) (1)

where � � f�1; 1gw and we also have Fourier inversion given by

A(hfi) =
X

��f�1;1gw

Â�

Y
x2�

f(x):

By Parseval's identity and jA(hfi)j = 1 for all f , we know that
P

� Â
2
� = 1:

First we note that whenever the test asks A about a function f it also
asks about the function �f . This implies that it is optimal for the adversary
to have A(hfi) = �A(h�fi) since any violation of this causes immediate
rejection. From this point on we assume4 that indeed A(hfi) = �A(h�fi)
is true for all f . This implies that Â� = 0 for all � with j�j even. This
follows since the terms for f and �f cancel each other in the de�ning sum
(1).

The set S is taken to be the points that are elements in Fourier coeÆ-
cients that have a large absolute value and correspond to small sets. To be
more exact

S = fx j 9�; � 3 x such that j�j � l ^ Â2
� � l2��sg: (2)

where l is a parameter (depending only on k and �) to be speci�ed later.
Since

P
� Â

2
� = 1 at most 2�sl�1 di�erent � have Â2

� � l2��s and since each
� contributes at most l points to S, it follows that S contains at most 2�s

points as required by the theorem.

3The setup might look a little bit unfamiliar. Normally, we deal with function f :
f�1; 1gn 7! f�1; 1g and then

f̂� = 2�n
X

x

f(x)
Y

i2�

xi and f(x) =
X

��[n]

f̂�
Y

i2�

xi:

In this familiar case we can view x as a function from [n] to f�1; 1g. In the present
situation, however, the argument to A is a function from f�1; 1gw to f�1; 1g and thus it
is natural that f�1; 1gw takes the place of [n] in the de�nition of the Fourier transform.

4Technically this is justi�ed by modifying A to satisfy this property and then working
with the modi�ed A.
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4.1 Concentrating on a speci�c point evaluation

We want to analyze the probability that the CNA-test accepts and is not
consistent with a point evaluation at any point of S. Recall that whenever
the test accepts it is consistent with some point y (cf. Lemma 4.1). It is
easier to analyze the probability that for a �xed point y 62 S the test is
consistent with a point evaluation at y but not at any point of S.

Whenever the outcome of the test is consistent with a point evaluation
at x it is also consistent with a point evaluation at any point x0 such that
fi(x) = fi(x

0) for all i's. Since the fi's are random functions we expect about
2w�s such x0. Thus, arguing informally, if we have probability p of the test
accepting and not being consistent with a point evaluation at any point
S there should be a point y such that the probability of being consistent
with a point evaluation at y but not at any point in S should be around
p2�s. Since p anyway is of the form 2�ks for an arbitrary k we lose little by
replacing 2�ks with 2�(k+1)s while the advantage of working with a speci�c
y is signi�cant. We make this argument formal.

Lemma 4.3 Let ~f = f1; f2; : : : ; fs be uniformly and independently selected
random functions. The probability that there exists a vector ~b = (b1; : : : bs)
such that

jfx : ~f(x) = ~bgj < 2w�(s+1)

is bounded by 2s+12�2
w�(s+4)

.

Proof: Fix any value of ~b. The probability that x satis�es ~f(x) = ~b is 2�s

and it is independent for di�erent x. Thus we can apply the Cherno� bound
(cf. Theorem 2.15) with n = 2w, p = 2�s and Æ = 2�(s+1). Summing over
all possible ~b, the result follows.

Now assume that we have probability p of the CNA-test(s) accepting
while not being consistent with any point in S. Then if p > 2�ks, by
Lemma 4.3 we can conclude that, for suÆciently large w (e.g. w > s+ 6 +
log (ks)), we have probability p=2 of the test accepting, not being consistent
with any point in S and being consistent with 2w�(s+1) di�erent points. Now
for any point y 62 S let Py be the probability that the CNF-test is consistent
with y but not any point in S. It follows thatX

y

Py � (p=2) � 2w�(s+1)

as each accept event described above is counted in at least 2w�(s+1) di�erent
Py's and it happens with probability at least p=2. Hence for some y we have
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must have
Py � p2�(s+2) � 2�(k+2)s:

We state this for future reference.

Lemma 4.4 Assume that w � ws;k. If for any �xed y 62 S, the probability
that the outcome of the CNA-test(s) is consistent with a point evaluation at
y but not with a point evaluation at any point in S is at most 2�(k+2)s, then
Theorem 4.2 follows.

Fixing y 62 S, we proceed to estimate the probability that the CNA-
test(s) is consistent with y but not with any point of S. We represent the
�rst event (i.e. the consistency of the test with point evaluation at y) byX

B

Iy(hB Æ ~fi) = 0 (3)

where Iy is an indicator function de�ned by Iy(hfi) = 1 if A(hfi) 6= f(y)
and 0 otherwise. For technical reasons we only sum over those B which
are unbiased i.e. take the value one at exactly 2s�1 points. This makes
the sum only smaller and corresponds to allowing only unbiased B in the
CNA-test. Note that for such a B, the function B Æ ~f is a random function
with uniform distribution. Of course, di�erent B do not give independent
random functions, but each function in itself is random. Denote by Y the
random variable de�ned by the sum (3). Using

Iy(hfi) =
1�A(hfi)f(y)

2
;

we show (below) that the Fourier coeÆcients Î�;y of Iy satisfy

Î;;y =
1

2
(1� Âfyg) (4)

Î�;y = �
1

2
Â��fyg; for any � 6= ;; (5)

where � denotes symmetric di�erence of sets. A basic fact that we will use
many times is that for a uniformly chosen function f , the f(x)'s are identical
and independent random variables, each uniformly distributed in f�1; 1g.
Thus,

P
f

Q
x2� f(x) = 0 for every nonempty set �, and (4) and (5) follow.

For example, for � 6= ;,

Î�;y = 2�2
w
�
1

2

X
f :f�1;1gw 7!f�1;1g

(1�A(hfi)f(y))
Y
x2�

f(x)

= �2�2
w
�
1

2

X
f :f�1;1gw 7!f�1;1g

A(hfi)
Y

x2��fyg

f(x) = �
1

2
Â��fyg:
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Now

Y =
X
B

Iy(B Æ ~f) =
X
B

X
�

Î�;y
Y
x2�

B(~f(x))

=
1

2

�
2s

2s�1

�
�
1

2

X
B

X
�

Â��fyg

Y
x2�

B(~f(x)):

We divide this last sum into three pieces. The �rst sum, �1, is over those �
with j�j � l, the second, �2, is over those � with j�j < l and Â2

��fyg � l2��s

and �3 is over the rest, i.e. over � with j�j < l and Â2
��fyg < l2��s. The

random variable Y can now be written as

Y =
1

2

�
2s

2s�1

�
�
1

2
(Y1 + Y2 + Y3);

where Yi corresponds to the sum �i. In order for y to be a possible point of
evaluation we need Y = 0, and hence Yi �

1
3

� 2s

2s�1

�
for i = 1, 2 or 3. Recall

that we are actually interested in the intersection of the event Y = 0 and the
event that the test is not consistent with any point evaluation in S. Thus,
we may analyze the partial sums, Yi's, assuming that the latter event holds
(i.e. inconsistency with S). Actually, we take advantage of this liberty only
in the analysis of Y2. Speci�cally, we use the fact that in this case for every
x 2 S there exists a query fi of the test so that fi(x) 6= fi(y). In other word
for ~f selected by the test we have ~f(x) 6= ~f(y), for every x 2 S.

4.2 Estimating Y1.

It is not diÆcult to bound

Y1 ,
X
B

X
� j j�j�l

Â��fyg

Y
x2�

B(~f(x))

since we can compute the second moment almost immediately.

Lemma 4.5

E(Y 2
1 ) �

�
2�(ls)=4 + 2e�2

(s=2)�4
�
�

�
2s

2s�1

�2

:

Before we prove this lemma let us state the immediate corollary we really
need.

22



Corollary 4.6 For each integer k there is a constant sk such that for l >
4k + 9, and s � sk we have

Prob

�
Y1 �

1

3
�

�
2s

2s�1

��
� 2�((k+2)s+1):

Proof: (Of Corollary 4.6) By Markov's inequality (applied to Y 2
1 ), the

probability that Y1 � X is at most X�2E(Y 2
1 ). Substituting X = 1

3 �� 2s

2s�1

�
and the bound for E(Y 2

1 ) given by Lemma 4.5 and doing a calculation
establishes the corollary.

Proof: (Of Lemma 4.5)

E(Y 2
1 ) = E

0
@
0
@X

B

X
�;j�j�l

Â��y

Y
x2�

B(~f(x))

1
A

21
A =

(for notational simplicity we skip the condition j�j � l in the calculations)

= E

0
@X
B1;B2

X
�1;�2

Â�1�fygÂ�2�fyg

Y
x2�1

B1(~f(x))
Y
x2�2

B2(~f(x))

1
A

=
X
�1;�2

Â�1�fygÂ�2�fyg

X
B1;B2

E

 Y
x2�1

B1(~f(x))
Y
x2�2

B2(~f(x))

!
(6)

We claim that whenever �1 6= �2 the inner expected value is 0. To see this
assume that x0 2 �1 and x0 62 �2. Then B1(~f(x

0)) has expected value 0
and is independent of all other variables that in
uence the product. The
case x0 62 �1 and x0 2 �2 is of course symmetric. The remaining terms are

X
�

Â2
��fyg

X
B1;B2

E

 Y
x2�

B1(~f(x))B2(~f(x))

!
: (7)

To estimate this we �rst establish.

Lemma 4.7 For any function G that maps f�1; 1gs to f�1; 1g, the proba-
bility, over a random unbiased predicate B, that������

X
z2f�1;1gs

G(z)B(z)

������ � k (8)

is bounded by 2e�k
22�(s+4)

.

23



Proof: We opt for a simple proof rather than the best bounds. Think of
choosing an unbiased predicate B as �rst pairing the elements of f�1; 1gs

into 2s�1 disjoint pairs and then giving the value 1 to exactly one element
in each pair. If both the pairing and the choice which variable gets the
value 1 in each pair are done with the uniform distribution we select a
random B with the uniform distribution. Now �x any pairing and analyze
the event in the lemma using only the randomness of the choice within the
pairs. For a pair (x1; x2) the contribution to the sum in (8) is always 0
when G(x1) = G(x2), and otherwise it is either 2 or �2 depending on the
choice within the pair. Thus, the sum in (8) is the sum of t random variables
taking the values 2 and �2 with equal probability, where t is the number of
pairs (x1; x2) with G(x1) = �G(x2). The lemma now follows from Cherno�
bounds (Theorem 2.15). Speci�cally, letting X 0

i 2 f�2g denote the value of
the i'th pair, and using Xi = (X 0

i + 2)=4, we have

Prof

"�����
tX

i=1

X 0
i

����� � k

#
= Prof

"�����1t
tX

i=1

Xi �
1

2

����� � k

4t

#

< 2 � e
�

( k4t )
2�t

4� 12 � 2 � e�k
22�(s+4)

;

where the last inequality uses t � 2s�1.

Let us resume the analysis of (7). Assume that for some (�xed) B1 and
B2 ������

X
z2f�1;1gs

B1(z)B2(z)

������ � 23s=4: (9)

Then this is just another way of saying that for each x 2 �

jE(B1(~f(x))B2(~f(x)))j � 2�s=4

and since we have independence for di�erent x we have�����E
 Y
x2�

B1(~f(x))B2(~f(x))

!����� � 2�j�js=4:

For �xed B2, the fraction of B1 violating (9) is, by Lemma 4.7, bounded by

2e�2
s=2�4

. Since j�j � l for any term in (7) we get

E(Y 2
1 ) �

X
�

Â2
��fyg � (2

�ls=4 + 2e�2
s=2�4

)

�
2s

2s�1

�2

;
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since
�

2s

2s�1

�
is the number of unbiased B's and each term in (7) is bounded

above by 1. Using
P

� Â
2
� � 1, Lemma 4.5 follows.

4.3 Estimating Y2

Our second term Y2, which sums over �'s of size at most l which correspond
to large Fourier coeÆcients, is estimated by a worst case estimate, using the
hypothesis that any element x 2 S we have ~f(y) 6= ~f(x) (see above). The key
fact is that since we only use Fourier coeÆcients that contain elements from
S (de�ned explicitly to contain only the �'s considered here), the summation
over B creates a lot of cancellation.

Lemma 4.8 For any integer l and � > 0, there is a constant sl;� such that

for s > sl;� and any choice of ~f such that ~f(x) 6= ~f(y) for any x 2 S we

have jY2j � 21+�s�s
�

2s

2s�1

�
< 1

3

�
2s

2s�1

�
.

Proof: Remember that

Y2 =
X

�;j�j<l;Â2
��fyg

�l2��s

Â��fyg

X
B

Y
x2�

B(~f(x)) (10)

Since y 62 S, by the de�nition of S, for all � in the above sum y 62 ��fyg
and hence y 2 �. We now have the following lemma

Lemma 4.9 Let z1; z2 : : : zr 2 f�1; 1gs be any values such that zi 6= zj for
i 6= j. Then if we sum over all unbiased predicates

X
B

rY
i=1

B(zi) = (�1)r=2
r=2Y
i=1

r + 1� 2i

2s + 1� 2i

�
2s

2s�1

�
: (11)

if r is even and otherwise the sum is 0.

Proof: The statement for odd r is obvious since the terms for the predicates
B and �B cancel each other. For even r, think of the sum in (11) as an
expected value over a random unbiased B. Again pick a random B as in the
proof of Lemma 4.7 by �rst randomly picking a pairing and then randomly
giving one element in each pair the value 1 and the other the value �1. If
the r elements do not pair up, the expected value over the second random
choice is 0 while if they do pair up it is (�1)r=2. To analyze the probability
that the elements pair up we put the elements zi into pairs one by one. The
element z1 goes into some pair. The probability that its mate is one of the
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zi is (r� 1)=(2s� 1). This follows since there are 2s� 1 possible partners of
which r � 1 are allowed. Assume that z1 did pair up with zj and consider
any remaining zi. The probability that it pairs up is by a similar reasoning
(r � 3)=(2s � 3) and we continue in this way until all elements are paired
up. The probability this happens is

r=2Y
i=1

r + 1� 2i

2s + 1� 2i

and the lemma follows.

Now, for any � in the sum (10) consider the set of values ~f(x) for x 2 �.
Make these values pairwise distinct by simply erasing both element of pairs
that are equal (this does not a�ect the product) resulting in a set �0 � �.
Since ~f(y) 6= ~f(x) for any x 2 � where x 6= y and y 2 �, we get j�0j � 2
(remember that j��fygj is odd since otherwise Â��fyg =0) and clearly
j�0j � l. Using Lemma 4.9 we see that the maximal value (assuming l � s)
of j
P

B

Q
x2�B(

~f(x))j is obtained �0 = 2 and we get�����
X
B

Y
x2�

B(~f(x))

����� � 1

2s � 1
�

�
2s

2s�1

�
< 21�s �

�
2s

2s�1

�
:

Substituting this in (10) gives

jY2j �
X

�;Â2
��l2

��s

jÂ�j � 2
1�s

�
2s

2s�1

�
<
X
�

Â2
� � 2

1+�s�s

�
2s

2s�1

�

= 21+�s�s
�

2s

2s�1

�

and Lemma 4.8 follows.

4.4 Estimating Y3

To estimate Y3 we calculate a high order moment. As when calculating the
second moment of Y1, many terms in the Fourier expansion do vanish due to
the expected value being 0. The remaining sum is somewhat nontrivial and
we use the properties of functions with the Fourier support concentrated on
small sets. (Recall that Y3 is the sum over �'s of small size which correspond
to small coeÆcients.)

26



Lemma 4.10 Let m be an even integer then for any integer l there is a
constant cl;m such that

E(Y m
3 ) � cl;m �

�
e�2

s=2�4
+ 2��ms=4 + 2�ms=16

�
�

�
2s

2s�1

�m
:

Again we have an immediate corollary that gives us what we really want.

Corollary 4.11 For any integers k and l and � > 0 there is constant sk;l;�
such that for s � sk;l;�

Prob

�
Y3 �

1

3

�
2s

2s�1

��
� 2�((k+2)s+1):

Proof: (Of Corollary 4.11) Analogously to the proof of Corollary 4.6, for
any X, the probability that Y3 � X is bounded by X�mE(Y m

3 ) for any even
integer m. Now set X = 1

3

� 2s

2s�1

�
and m > max(4 � (k+ 3) � ��1; 16 � (k+ 3)),

apply Lemma 4.10, set s suÆciently large and make a calculation.

Proof: (Of Lemma 4.10) We have

E(Y m
3 ) =

X
�1;�2:::�m

 
mY
i=1

Â�i�fyg

! X
B1;B2:::Bm

E

 
mY
i=1

Y
x2�i

Bi(~f(x))

!
(12)

where the sum ranges over all �i satisfying j�ij < l and Â2
�i�fyg

� l2��s.
To analyze a generic term, set T = [mi=1�i. We �rst claim that if there is

some x 2 T that belongs to exactly one �i then the inner expected value is 0.
This follows since in this case Bi(~f(x)) is an unbiased random variable that
is independent of all other factors in the product. Thus, we are interested
in sets �i that form a double cover (of T ). By this we mean that each x 2 T
appears in at least two di�erent �i's. From now on we only sum over �i's
which form a double cover.

Lemma 4.12 If �i form a double cover of T , then

X
B1;B2:::Bm

E

 
mY
i=1

Y
x2�i

Bi(~f(x))

!
�
�
2�jT js=4 + 2m+1e�2

s=2�4
�� 2s

2s�1

�m
:

Proof: This is again based on the fact that for almost all B1; B2 : : : Bm,
E(
Q

ijx2�i
Bi(~f(x))) is exponentially small and that it is independent for
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di�erent x 2 T . Consider any nonempty subset C of f1; 2; : : : mg. The
probability (over random unbiased B1; B2 : : : Bm) that������

X
z2f�1;1gs

Y
i2C

Bi(z)

������ � 23s=4 (13)

is bounded, by Lemma 4.7, by 2e�2
s=2�4

. Thus the number of Bi such that
(13) is violated for any C is bounded by

2m+1e�2
s=2�4

�
2s

2s�1

�m
:

For any other sequences of Bi's we have

jE(
Y

ijx2�i

Bi(~f(x)))j � 2�s=4

for any x 2 T . Since the values of f at di�erent points are independent we
have �����E

 
mY
i=1

Y
x2�i

Bi(~f(x))

!����� =
Y
x2T

������E
0
@ Y
ijx2�i

Bi(~f(x))

1
A
������ � 2�jT js=4:

The lemma follows by summing the two terms.

We proceed to bound (12). We �rst estimate that sum over even covers,
i.e. those collections of �i such that each x is a member of an even number
of �i. For an arbitrary function F : f�1; 1g2

w
7! R denote the sum

X
�1;�2:::�m

�����
mY
i=1

F̂�i

�����
by dcm(F ) when we sum over double covers and by ecm(F ) when we sum
over even covers. We later apply the estimates with F (hfi) = f(y)A(hfi)
which has F̂� = Â��fyg.

Lemma 4.13 For any function F such that F̂� = 0 for j�j > l we have
ecm(F ) � cm;lkFk

m
2 .

Proof: Let F 0 be the function with Fourier coeÆcients jF̂�j. Since

X
f

mY
i=1

Y
x2�i

f(x) = 22
w
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when �i form an even cover and this sum is 0 otherwise, we have

ecm(F ) = 2�2
w
X
f

X
�1;�2:::�m

mY
i=1

(jF̂�i j �
Y
x2�i

f(x))

= 2�2
w
X
f

 X
�

jF̂�j
Y
x2�

f(x)

!m

= 2�2
w
X
f

F 0(hfi)m = kF 0kmm

where we are using the standard Lm-norm. However, when considering
functions whose Fourier support are on sets of constant size, the various Lp
norms are all related (this is Proposition 3 in [13]):

Lemma 4.14 [13] For every constants l and m there is a constant cl;m,

such that all function F such that F̂� = 0 for j�j > l we have

kFkm � cl;m � kFk2:

Lemma 4.13 now follows from Lemma 4.14, kF 0k2 = kFk2, and the above
reasoning.

Next we do a similar estimate for double covers (remember that constants
cm;l might change their value):

Lemma 4.15 For any function F such that F̂� = 0 for j�j > l we have
dcm(F ) � cm;lkFk

m
2 .

Proof: From the function F we probabilistically construct a di�erent func-
tion F 0 such that each term in the sum for dcm(F ) has a constant (depending
on l and m) probability of occurring in the sum for ecm(F

0). We make sure
that kFk2 = kF 0k2 while the size of the nonzero Fourier coeÆcients only
increase by a factor of 2.

The construction is as follows: Replace each x 2 f�1; 1gw by two inputs
x1 and x2. For each � we construct �0 by, randomly and independently for
each x 2 �, letting �0 contain only x1, only x2, or both with probability
1=3 each. For example � = fx; yg may be replaced to either of the nine sets
fx1; y1g; fx2; y1g; fx1; x2; y1g; fx1; y2g; fx2; y2g; fx1; x2; y2g; fx1; y1; y2g; fx2; y1; y2g;
or fx1; x2; y1; y2g. The mapping � 7! �0 is injective and we de�ne the func-
tion F 0 by its Fourier coeÆcients. We have

F̂ 0
� =

�
jF̂�j if � = �0

0 otherwise
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and in particular F̂ 0
� = 0 for every � of size greater than 2l. We claim that

each term in the sum for dcm(F ) has a probability at least (2=9)ml=2 to
appear in the sum for ecm(F

0).
Namely suppose that for a term

Qm
i=1 F̂�i , (�i)

m
i=1 form a double cover

of T . Clearly jT j � ml=2. Let T 0 be obtained from T by replacing each
element x by the two elements x1 and x2. We claim that probability that
(�0i)

m
i=1 form an even cover of T 0 is at least (2=9)ml=2. Since replacement is

done independently for each x, we just need to establish that the probability
that both x1 and x2 are covered an even number of times is at least 2=9.
Take any two sets that contain x (assume that these are �1 and �2 and
let �3; �4; : : : �r be all other sets containing x). Now there are four cases
to consider and let us for brevity only consider one, the other cases being
similar. Suppose �0i for i � 3 contain x1 an odd number of times, and x2

an even number of times. Then if �01 contains both elements and �02 only
x2 (or the other way around) both x1 and x2 are covered an even number
of times. This happens with probability 2=9.

To wrap up the proof, note that, by Lemma 4.13, for any F , ecm(F
0) �

cm;2lkF
0km2 = cm;2lkFk

m
2 and by the above argument

dcm(F ) � (9=2)ml=2 � E(ecm(F
0))

and thus adjusting the value of the constant cl;m, the lemma follows.

Lemma 4.15 and Lemma 4.12 can be used to bound the part of the sum
(12) when jT j is large (see below). Next we address the case when jT j is
small.

Lemma 4.16 We have

X
�1;�2:::�m

mY
i=1

jÂ�i�fygj � cm;l;t2
�(m�2t)�s=2 (14)

where the sum is over all (�i)
m
i=1 that form a double cover of some set of

size t and such that j�ij < l and Â2
�i�fyg

< l2��s for i = 1; 2; : : : ;m.

Proof: The key to this proof is that there are few such collections of
sets (�i)

m
i=1 while Â�i�fyg are small and as there are many factors in each

product this makes the total sum very small.
Consider the sum X

�1;�2:::�2t

2tY
i=1

jÂ�i�fygj
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where the sum is over all (�i)
m
i=1 that form a double cover of some set of

size t. By Lemma 4.15, with F (hfi) = f(y)A(hfi), this is bounded by a
constant ct;l. Now for each double cover with m elements choose a double
sub-cover of the same T with 2t elements. This is always possible. Since
each Â��fyg that we are considering is bounded by (l2��s)1=2, the original
double cover has weight (i.e. the value of the corresponding product) which
is at most (l2��s)(m�2t)=2 times the weight of the double sub-cover. Each
sub-cover of size 2t can occur for at most (

Pl
i=0

�t
i

�
)m�2t original covers of

size m. This follows since there are at most
Pl

i=0

�t
i

�
subsets of T of size at

most l and hence at most that many choices for each �i. Hence we get the
total bound for the sum in (14)

(l2��s)(m�2t)=2 �

 
lX

i=0

�
t

i

�!m�2t

ct;l < ct;l;m2
��s(m�2t)=2

and the lemma follows.

Let us now conclude the proof of Lemma 4.10. We divide the sum (12)
according to the size of T = [mi=1�i. Summing over T with jT j � m=4, we
use Lemma 4.12 and Lemma 4.15, again with F (hfi) = f(y)A(hfi) , (andP

Â2
��fyg � 1) to get the bound

cl;m

�
e�2

s=2�4
+ 2�ms=16

�� 2s

2s�1

�m
(15)

for that part of the sum. Summing over T with jT j < m=4, Lemma 4.16
gives, together with the trivial estimate

X
B1;B2:::Bm

E

 
mY
i=1

Y
x2�i

Bi(~f(x))

!
�

�
2s

2s�1

�m
;

the bound

cl;m2
�ms�=4

�
2s

2s�1

�m
: (16)

Combining (15) and (16), Lemma 4.10 follows.

4.5 Concluding Theorem 4.2 and extending it

We have already done all the work to prove Theorem 4.2. If Y = 0 and
the CNF-test is not consistent with any point in S, by Lemma 4.8, we need
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either Y1 �
1
3

�
2s

2s�1

�
or Y3 �

1
3

�
2s

2s�1

�
. The sum of the probabilities of these

two events is, by Corollary 4.6 and Corollary 4.11, bounded from above by
2�(k+2)s. By Lemma 4.4 this is suÆcient to prove the theorem.

Theorem 4.2 is a powerful theorem as it stands but we require slightly
more. In a protocol, establishing that a table describes a correct long code is
just testing a syntactic property and what we really care about is to establish
that the input for which we have this long code satis�es some properties of
interest. In our case we are interested in establishing that the input satis�es
the chosen clauses and that we have consistency between di�erent long codes.
It turns out that we can get these extra, and essential, properties by adding
some extra probes to the table A. These extra probes are not free (in the
technical sense of the word) and hence do not cost us anything.

We formalize the extra property that we want to test as h(x0) = �1 (i.e.
h(x0) is true) for some function h. It turns out that it is suÆcient to make
sure that A(hfi) = A(hgi) for all queried f and all g with g ^h = f ^h. We
now give the extended test.

CNA-Test(s) with side condition h

1. Pick, with the uniform distribution, s random functions fi : f�1; 1g
W 7!

f�1; 1g and ask for A(hfii).

2. For all Boolean predicates B of s bits ask for A(hB Æ ~fi) and check
that

A(hB Æ ~fi) = B( ~A(h~fi)):

3. For any queried function f ask for A(hgi) for any g such that f ^ h =
g ^ h. Reject unless A(hfi) = A(hgi) for all such g.

We now establish that Theorem 4.2 remains true even in the presence of
side conditions.

Theorem 4.17 For any � > 0 and integer k, for s � C�;k and w � D�;k;s

the following is true. For any A : f�1; 1g2
w
7! f�1; 1g there is a set S con-

taining at most 2�s points in f�1; 1gw such that, for any h, when the CNA-
test(s) with side condition h, is performed, except with probability 2�ks, the
test either rejects or the outcome is consistent with being a point evaluation
at an element x 2 S with the additional property that h(x) is true.

The probability is taken over the random choices of the veri�er perform-
ing the test, i.e. over the choice of random functions fi.

We stress that the set S is independent of the side condition h.
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Proof: The proof only requires a rather simple argument on top of the
proof of Theorem 4.2. Again de�ne the set S by (2) and de�ne

A0(hfi) = 2�H
X

g j g^h=f^h

A(hgi) (17)

where H is the number of points satisfying h(x) = 1 and thus 2H is the
number of functions g appearing in the sum (17). Thus A0 maps into [�1; 1]
and the veri�er rejects whenever it gets a value not of absolute value 1. The
CNA-test(s) with side condition h can be viewed as querying the function
A05. Thus we can repeat the proof of Theorem 4.2 and conclude that the
outcome of is, except with probability 2�ks, either that the test fails or the
outcome is consistent with a point evaluation at a point y 2 S0 where

S0 = fx j 9�; � 3 x such that j�j � l ^ Â0
2
� � l2��sg: (18)

From Lemma 4.18 below it follows that S0 � S \ fx j h(x) = �1g and this
completes the proof of Theorem 4.17.

Lemma 4.18 The Fourier coeÆcients of A0 are given by Â0� = Â� if all
x 2 � satisfy h(x) = �1 and Â0� = 0 otherwise.

Proof: Using (17), the de�nition of the Fourier transform and the Fourier
inversion formula we have

Â0�0 = 2�2
w
X
f

A0(hfi)
Y
x02�0

f(x0)

= 2�(2
w+H)

X
f

X
g j g^h=f^h

A(hgi)
Y
x02�0

f(x0)

= 2�(2
w+H)

X
�

X
f

X
g j g^h=f^h

Â�

 Y
x2�

g(x)

! Y
x02�0

f(x0)

!
:(19)

Now suppose we have an x0 2 � with h(x0) = 1. Consider a pairing of the
functions g and g0 where g0(x0) = �g(x0) while g0(x) = g(x) for all x 6= x0.

5We have to extend the CNA-test by allowing the values of the function A be in [�1; 1]
with the understanding that the test rejects whenever it sees a value which does not have
absolute value 1. This changes nothing since being consistent with a point evaluation at
the point y is still equivalent to Y = 0.
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Then either both g and g0 belong or both do not belong to the sum (19) and
hence their contributions cancel each other and

X
g j g^h=f^h

 Y
x2�

g(x)

!
= 0:

We can thus drop the terms with � containing an x such that h(x) = 1. If,
on the hand h(x) = �1 for each x 2 � then, since g(x) = f(x) for all such
x's X

g j g^h=f^h

Y
x2�

g(x) = 2H
Y
x2�

f(x)

and the sum (19) reduces to

2�2
w
X
�

X
f

Â�

Y
x02���0

f(x0)

where we only sum over �'s with h(x) = �1 for each x 2 �. Now using the
fact that

2�2
w
X
f

Y
x02���0

f(x0) = 1

if �0 = � and 0 otherwise the lemma follows.

5 Main theorem

We want to prove

Theorem 5.1 For any Æ > 0 there is a PCP for NP which uses logarithmic
randomness and Æ amortized free bits.

By Theorems 2.8 and 2.9 we have two immediate corollaries.

Theorem 5.2 For any � > 0, unless NP = ZPP , there is no polynomial
time algorithm that approximates Max-Clique within a factor n1��.

Theorem 5.3 For any � > 0, unless NP = P , there is no polynomial time
algorithm that approximates Max-Clique within a factor n1=2��.
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Proof: (Of Theorem 5.1) We can clearly assume Æ � 1=4. The PCP
follows closely the simple test discussed in Section 3. The modi�cations
needed are that we choose many functions on U and we use CNA-Test(s)
with appropriate side conditions to test the supposed long codes on the sets
Wi. We call it the FAF-test as in Few Amortized Free bits. The test is
applied to a 3-CNF-formula ', as given by Theorem 2.13, which has exactly
3 variables in each clause and such that each variable appears 5 times. It
tries to distinguish the two cases when P1 and P2 can convince the veri�er
in the u-parallel two-prover game with probability 1 and the case when they
can only convince the veri�er with probability cu. The formula ' is given
by the clauses (Ci)

m
i=1 and has n variables. The written proof consists of,

for each set T of size at most 3u a table AT of size 22
jT j

which for a correct
proof of a satis�able ' is the long code of the restriction to T of a �xed
satisfying assignment. The value of the constant u is speci�ed below.

FAF-Test(Æ)

1. Setting of parameter.

� Set ` = dÆ�1e.

� Set k = 40`2.

� Set s suÆciently large compared to ` and k. In particular s >
C1=2;k where C1=2;k is the constant of Theorem 4.17 and s > s`
where s` is the constant from Lemma 5.5 below.

� Set u suÆciently large compared to `, k and s. In particular we
need Theorem 4.17 to be true with w = 3u (so w � D1=2;k;s),

and we also need cu < 2�30`
2s where c is the constant from The-

orem 3.2.

2. Choose U by choosing u variables with the uniform distribution. For
i = 1; 2; : : : ; 10`, choose a setWi by, for each variable xik in U , picking,
with uniform probability, a random clause Cjik

that contains xik and
letting Wi be the set of all variables in the clauses. The constructions
of the di�erent Wi are done independently.

3. Choose 10`s random functions gj : f�1; 1g
U 7! f�1; 1g; j = 1; 2; : : : ; 10`s,

with uniform distribution, and read (AU (hgji))
10`s
j=1 .

4. Apply the CNA-test(s) with side conditions, to the supposed long
code AWi on Wi for i = 1; 2; : : : ; 10`. The side conditions are given by
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(gj(x) = AU (hgji))
10`s
j=1 and that (Cjik

)uk=1 are all true. The functions
gj are extended to Wi by ignoring all coordinates not in U .

5. Accept i� all tests accept.

Note that for a correct NP-statement we can easily construct a correct proof,
i.e. �x one satisfying assignment x and for each set U and W simply write
down the long code of x restricted to that set. It is not diÆcult to see
that in this case the veri�er always accepts. Note also that the amount of
randomness used by the veri�er is logarithmic. Most of the randomness is
used to choose the set U and after this only a constant number of random
bits is needed to choose each Wi and the gj . We next turn to the free bit
complexity.

Lemma 5.4 FAF-Test(Æ) uses 20`s free bits.

Proof: Reading (AU (hgji))
10`s
j=1 constitutes 10`s free bits and the free bits

in the 10` applications of the CNA-Test(s) total another 10`s free bits.

The other crucial (and hard) part of the proof of Theorem 5.1 is the
soundness and it is given below.

Lemma 5.5 For any integer ` there is a constant s` such that for s > s`, if
FAF-test(Æ) accepts with probability at least 2�20`

2s then there are strategies
for P1 and P2 in the u-parallel one-round two-prover protocol that makes the
veri�er accept with probability at least 2�30`

2s.

We �rst claim that Theorem 5.1 follows by Lemma 5.4 and Lemma 5.5.
Note �rst that, by our choice of u, the soundness error of the u-parallel one-
round two-prover protocol is smaller than 2�30`

2s and thus the conclusion of
Lemma 5.5 implies that ' is satis�able. Thus it follows that the soundness
error of the FAF-test(Æ) is at most 2�20`

2s. Using Lemma 5.4, the amortized
number of free bits is at most 20`s=(20`2s) = 1=` � Æ and Theorem 5.1
follows.

Proof: (Of Lemma 5.5) For eachWi we have, by Theorem 4.17 (with � = 1=2
and k = 40`2), a set SWi of assignments on Wi of cardinality at most 2s=2

such that if the test does not fail then, except with probability 2�40`
2s, the

outcome of the test is consistent with a point evaluation at some y 2 SWi

that also satis�es the side conditions i.e. it satis�es the chosen clauses and
takes the correct value under the functions (gj)

10`s
j=1 . The latter conditions,

forcing AWi(hgji) = AU (hgji) play a key role below. We de�ne a set which
measures the amount of coordination among the di�erent SWi .
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De�nition 5.6 For a set U let common(U) be the set

fx j PrW [9y 2 SW ^ yjU = x] � 2�20`sg

where W is chosen with the probability distribution that is used to pick Wi

in the FAF-test(Æ). Here we only consider y 2 SW that satis�es the clauses
used to construct W .

Before we continue, let us give some intuition. We want to check consis-
tency between the long code on U and the long code on W . As proved in
[7], two-way consistency requires one amortized free bit. To get around this
lower bound we use here one-many consistency. We have many tables (e.g.
the long codes on Wi for i = 1; 2; : : : 10`) which should be consistent with
some other (i.e. the long code on U). We can now read a few bits (10`s) in
the long code on U and check it against the many tables. If there were no
consistency among the many tables, say that they were random long codes,
the probability of acceptance would be around (2�10`s)10` = 2�100`

2s which
is smaller than we are aiming to prove. Thus, to have a good probability
of success, the long codes on Wi should have some common properties and
this is what we use.

Note that the long code on U merely produces a reference point and
hence plays no essential role in the argument. This is natural since chang-
ing it to the long code of a random assignment changes the acceptance
probability by at most a factor 2�10`s. Thus, the important parameter is
not the behavior on U but rather the properties the long codes on Wi have
in common. This re
ects the central role of common(U). After this detour
let us return to the main path.

Lemma 5.7 Suppose common(U) is empty, then the probability that FAF-
test(Æ) accepts given that U is chosen is bounded by c`2

�40`2s.

Proof: Remember that if the test accepts then, except with probability
10`2�40`

2s, it is compatible with some yi 2 SWi for all i = 1; 2; : : : ; 10`. Thus
we analyze the probability that this happens and the test accepts given that

common(U) is empty. In this case there must be a collection
�
yi 2 SWi

�10`
i=1

such that for some bj 's

gj(y
i) = bj for all 1 � i � 10` and 1 � j � 10`s: (20)

We denote the vector of yi's by ~y and we always assume that yi 2 SWi. We
analyze the probability of (20) by �rst �xing ~y and then analyzing the prob-
ability that this particular ~y satis�es (20) for a random choice of functions
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gj . Consider the set
K(~y) , (yijU )

10`
i=1

of projections onto U , keeping only one copy of each assignment if the several
yi give the same projection. The condition (20) says exactly that every
chosen gj is constant on the set K(~y). The probability that this happens
for an individual j is 2�(jK(~y)j�1) and thus the probability that (20) is true
for this ~y is 2�10`s(jK(~y)j�1). Thus the key is to analyze the size of K(~y).

Lemma 5.8 Suppose common(U) is empty. Then

ProbW1;W2:::W10`
[ min
~y2SW1

�;:::SW10`

jK(~y)j � 5`] � c`2
�95`2s:

Proof: Let us �rst analyze the probability that �U(SWi) intersects [
i�1
j=1�U (SWj ).

The latter contains at most 10`2s=2 elements (since jSWj j � 2s=2). The prob-

ability of any single element occurring in �U (SWi) is bounded by 2�20`s (by
the de�nition of common(U) and using that this set is empty) and hence the
probability of a nonempty intersection is bounded by 10`2�19`s. For there to
exist a ~y 2 SW1�; : : : SW10`

giving at most 5` di�erent projections it must be
the case that for 5` di�erent i, �U (SWi) (i.e., the set of possible projections
of the ith element in ~y) has a nonempty intersection with [i�1j=1�U (SWj ) (i.e.,
the possible projections of prior elements). The probability of this event is
bounded by

�10`
5`

�
� (c`2

�19`s)5` = c`2
�95`2s and the lemma follows.

Let us return to the proof of Lemma 5.7. There are at most (2s=2)10`

ways of picking ~y 2 SW1�; : : : SW10`
. Assuming that jK(~y)j � 5` + 1, the

probability that an individual choice is compatible with the functions gj
is bounded, by the reasoning above, by 2�10`s(5`+1�1) = 2�50`

2s. Thus the
probability that any ~y is compatible with the choice of the gj 's is bounded by

25`s2�50`
2s � 2�45`

2s. Since, by Lemma 5.8, the probability that any ~y sat-
is�es jK(~y)j � 5` is bounded by c`2

�95`2s, we just add the two probabilities
and Lemma 5.7 follows.

To wrap up the proof of Lemma 5.5, let us now de�ne a strategy for the
provers in the u-parallel two-prover game.

P2 simply answers with any element in common(U), while P1 answers
with a random element of SW . If either of these sets is empty the corre-
sponding prover gives up. Assuming FAF-test(Æ) accepts with probability
2�20`

2s then, in view of Lemma 5.7, common(U) is nonempty with proba-
bility at least 2�20`

2s� c`2
�40`2s and let us analyze the probability that the

veri�er accepts when this is the case. Suppose P2 answers with x
U then, by
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the de�nition of common(U), the probability that SW contains an element
y such that yjU = xU and such that y satis�es the clauses Cjk is at least
2�20`s. The probability that P1 answers with such an element, given that it
exists, is at least jSW j�1 � 2�s=2. Thus in the two-prover game we have an
overall success probability that is at least

(2�20`
2s � c`2

�40`2s) � 2�20`s � 2�s=2 > 2�30`
2s

provided s > s` and the proof is complete.
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A Analysis of idealized protocol of Section 3

Set ` = d log p�1 where d is a constant to be determined.
By assumption AWi is the long code of an assignment xWi on Wi. We

may assume without loss of generality that xWi satis�es the picked clauses
(i.e., gi(x

Wi) = 1), or else the test rejects anyhow. Let us consider the set
XU; ~W = (xWi jU )

`
i=1, where

~W = (W1; :::;W`). The acceptance condition of

the test (i.e., AWi(f) = AU (f) for i = 1; :::; `) implies that f is constant

on XU; ~W . The probability of this happening, for a random f , is 2=2jXU; ~W
j.

Thus the probability, p, that the test accepts is at most

2 �E
U; ~W

[2�jXU; ~W
j] (21)

Now for a �xed U let pU denote the value

maxxPrW [xW jU = x] (22)

where W is a random set constructed as in the simple test (i.e., a random
extension of U to clauses). We claim that EU [pU ] is a lower bound on
the acceptance probability of the two-prover proof system. This is shown
by letting P1 answer according to the xWi 's, and P2 answer with the x
which gives the maximum in (22). Thus, all that remains is to lower bound
EU [pU ] as a function of p. Towards this end let us analyze the probability
of acceptance in the simple test as a function of pU .
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It is natural to study the size of XU; ~W , and we analyze this by �xing U
and picking the sets Wi at random one by one, investigating how the size of
XU; ~W grows. We de�ne

Xi
U; ~W

= (xWj jU )
i
j=1

i.e. the part of XU; ~W obtained from the �rst i sets Wi. Clearly jXi+1

U; ~W
j =

jXi
U; ~W

j + 1 unless Xi
U; ~W

already contains xWi+1 jU in which case the two

sets are equal. Since the probability that xWi+1 jU take any �xed value is
bounded from above by pU , the probability that Xi+1

U; ~W
= Xi

U; ~W
is at most

jXi
U; ~W

j � pU , which is smaller than 1=2 when jXi
U; ~W

j � 1
2pU

. We claim that

Pr ~W [jXU; ~W j � min(
`

4
;

1

2pU
)] � 2�c`

for some absolute constant c. This follows since for this event not to be
true, events of the form jXi+1

U; ~W
j = jXi

U; ~W
j, each occurring with probability

at most 1=2, must happen at least 3`=4 times in ` tries.

Thus, E ~W [2�jXU; ~W
j] � 2�c` +max(2�`=4; 2�1=2pU ). Now, using (21), we

have
p

2
� E ~W [2�jXU; ~W

j] < 2�c` + 2�`=4 +EU [2
�1=2pU ]

and setting the constant d (in the de�nition of `) suÆciently large, we con-
clude EU [2

�1=2pU ] > p=2:5. Finally, using x > 2�1=x for all x > 0, we
have

EU [pU ] >
1

2
�EU [2

�1=2pU ] > p=5;

and the proof is complete.
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