
Combining POS-taggers for improved accuracy on Swedish text

Jonas Sj̈obergh
KTH Nada

Stockholm, Sweden
jsh@nada.kth.se

Abstract

Several POS-taggers are trained and tested
on Swedish text. Methods to improve the
accuracy of the tagging are then exam-
ined. These methods include voting, let-
ting taggers change their voting contribu-
tion depending on how confident they are
and training a new second level classifier
on the output of the taggers. All these
methods are more accurate than the most
accurate original tagger, with 15% less er-
rors or better.

Which types of errors these methods cor-
rect and which types remain are also
examined. The number of errors in
some common error categories actually
increase, while many uncommon errors
are corrected.

1 Introduction

Part-of-speech tagging is a very important step in
most advanced language technology systems. It is
a nontrivial problem due to ambiguous words and
unknown words, i.e. words not in the lexicon. POS-
tagging is harder for some languages than others.
Typical accuracy for Swedish taggers is between
94% and 96% (Megyesi, 2001). Taggers may ei-
ther be based on manually written rules for a specific
language (Karlsson et al., 1995), language indepen-
dent, but trained on a tagged corpus (Brants, 2000;
Daelemans et al., 2001; Ratnaparkhi, 1996; Schmid,
1994; Brill, 1992) or a combination of both (Carl-
berger and Kann, 1999).

A straightforward way to improve tagging is to
combine the results of several taggers, hoping to take
advantage of the fact that different taggers are good
at tagging different constructions. The more gen-
eral problem of combining different classifiers, in
this case taggers, also known as using ensembles of
classifiers, has been tried before. A good overview
of why ensembles are a good idea and different ways
of constructing and combining classifiers is given in
(Dietterich, 1997). The basic idea is that classifiers
making uncorrelated errors can correct each other.

The error reduction achieved by combining classi-
fiers has been shown to be negatively correlated with
how correlated the errors made by the classifiers are
(Ali and Pazzani, 1996). Classifiers that are differ-
ent from each other in some way are likely to make
uncorrelated errors, thus different ways of creating a
diverse classifier ensemble have been studied. These
include using different classifier algorithms, using
different training sets, using different data features
(or feature weights) and generating different pseudo-
examples for training, see for instance (Tumer and
Ghosh, 1996) for examples from classifying in gen-
eral or (Màrquez et al., 1999) for POS-tagging ex-
amples.

Common ways of combining POS-taggers in-
clude voting, possibly weighted, training a new clas-
sifier on the output of the taggers and hand written
rules choosing a tagger based on for instance text
type or linguistic context, see for instance (Brill and
Wu, 1998), (van Halteren et al., 1998) and (Borin,
2000).

Combining classifiers in the context of POS-
tagging has mainly been used to increase tagging



accuracy. Other uses include automatically creating
a larger training corpus by bootstrapping and com-
bining two taggers (Màrquez et al., 1998) and using
an ensemble of taggers to filter out synthetic noise
(deliberately added tagging errors) in a pre-tagged
corpus (Berthelsen and Megyesi, 2000).

We have trained and evaluated seven taggers on
Swedish text. Specifically we have tried to maxi-
mize the accuracy by combining the taggers in dif-
ferent ways.

1.1 Training and evaluation

The Stockholm-Umeå Corpus (SUC) (Ejerhed et
al., 1992), a manually corrected tagged corpus of
Swedish, was used for training and testing. The tag
set in SUC was slightly modified, resulting in a tag
set of 150 tags.

Training and testing was performed by splitting
SUC into two parts: a test set consisting of about
60 000 words, and a training set consisting of the
rest of the corpus, about 1.1 million words. This re-
sults in approximately 5% of the words in the test
data being unknown words (words not in the train-
ing data). To increase reliability of results, the part
of SUC used as test data was chosen in 10 differ-
ent ways (with all 10 test sets being disjoint) and the
training and testing repeated once for every choice.
The test data was chosen to be as balanced as possi-
ble.

Testing was done by stripping the tags from the
test data and letting the taggers tag the text. The as-
signed tags were then compared to the original tags
of the test data and if the assigned tag for a word
was the same as the original tag it was deemed cor-
rect, otherwise incorrect. Data was gathered using
AutoEval (Bigert et al., 2003). This method results
in some unfairness, as SUC (and thus the test and
training data) contains some erroneous taggings and
some inconsistent taggings. Recently, some of the
tests were run again on a newer version of SUC,
where some taggings have been changed (presum-
ably corrected). This gave slight improvements on
all tested taggers, one typical example is an increase
in accuracy from 95.9% to 96.0%. Also, in some
cases several tags could be seen as correct, but only
the one chosen in SUC would be counted as such. A
thorough discussion of evaluation of automatic tag-

gers, tagging errors and ambiguous words in SUC
can be found in (Källgren, 1996).

1.2 Tested taggers

The taggers to use were chosen by finding tag-
gers that were easily available, language indepen-
dent enough to be used on Swedish text and easy to
train on new data. All tested taggers were run with
their default options. The following taggers were
tested:

� fnTBL (Ngai and Florian, 2001), a transforma-
tion based tagger.

� Granska (Carlberger and Kann, 1999), a tri-
gram HMM-tagger.

� Mxpost (Ratnaparkhi, 1996), a maximum en-
tropy tagger.

� Stomp (Sjöbergh, 2003)1, a tagger that matches
word sequences between training and test data.

� Timbl (Daelemans et al., 2001), a memory
based tagger. 2

Timbl was also trained as a second level classi-
fier to combine results of other taggers.

� TnT (Brants, 2000), a trigram HMM-tagger.

� TreeTagger (Schmid, 1994), a tagger using de-
cision trees.

1In this paper an old version of Stomp was used. A newer
version, much faster and with higher tagging accuracy is de-
scribed in the cited paper. The old version was the one available
at the time of these tests, and it works better in ensembles, de-
spite being less accurate on its own. The difference between
the two versions is the handling of unknown words, the old ver-
sion uses only the context of an unknown word where the new
version also uses the suffix of the word.

2Timbl can use either decision trees or memory based learn-
ing. Only memory based learning was used in these experi-
ments.

Timbl has no “default” option for POS-tagging, so features
had to be selected. It was trained on the following features:
for known words: the word itself, the two preceding assigned
tags, ambiguity class (possible tags for word), ambiguity class
of next word; for unknown words: the two preceding assigned
tags, last 4 letters (each a different feature), word is capitalized
flag, ambiguity class of next word. All words in any of the open
word classes were used for training the classification of un-
known words. Better features could probably be selected, mak-
ing Timbl more accurate, but this was deemed accurate enough.



Tagger Accuracy (%) Accuracy (%) Training Tagging
(all words) (unknown words) time time

Baseline1 87.3 25.4 34 s 13 s
fnTBL 95.6 79.8 2 h2 2 min2

Granska Original3 96.0 89.5 6 min 41 s
Granska3 95.4 88.4 6 min 41 s
Mxpost 95.5 85.1 13 h 4 min
Stomp 93.8 63.3 0 2.5 min
Timbl 94.7 79.1 8.5 min 1 h
TnT 95.9 88.5 20 s 8 s
TreeTagger 95.1 77.5 35 s 5 s
1 A unigram tagger: choose most common tag for known words and choose

most common open word class tag for unknown words. This tagger was not
used in later experiments, just for comparison here.

2 The SunBlade otherwise used did not have enough memory to run fnTBL,
so a Pentium III 1100 MHz (about twice as fast) was used instead.

3 Granska normally tokenizes text differently than the text in the test data,
mainly by combining some constructions of several words into one token.
This makes it hard to use in an ensemble, so another version of Granska,
which keeps the original tokenization, was used whenever Granska was used
in an ensemble. This version is quite a bit worse than the original. The
accuracy of the original version is shown for comparison with the accuracy
of the ensemble methods (since it happened to be the most accurate tagger).
The other, less accurate, version was used everywhere else.

Table 1: Tagging accuracy on Swedish text. Measurements are for training data of 1.1 million words, 5% of
words in the test data were unknown words. Training and tagging time was measured on a SunBlade 100.



Tagger Accuracy Accuracy
(all) (unknown words)

Best tagger 96.0 89.5
Best voting 96.6 90.2

Table 2: Accuracy of the best single tagger and of
voting taggers for the best voting ensemble, con-
sisting of all taggers except Timbl (adding Timbl is
slightly worse).

2 Accuracy of the original taggers

No optimization of the taggers performance was
done, since the goal was not to see which tagger was
most accurate but to try and improve tagging beyond
the most accurate single tagger. This may give some
taggers a lower score than they could achieve if op-
timized. Training time, tagging time and tagging ac-
curacy measurements can be found in table 1.

3 Methods for improved accuracy

3.1 Simple voting

One straightforward way of improving accuracy is
to use voting. If the errors made by the taggers
were independent, voting would be very useful. For
instance, three taggers, each with 95% accuracy
would have an accuracy above 99% when voting.
More taggers or more accurate taggers would per-
form even better.

Unfortunately, the errors made by the taggers are
not independent. Simple voting, giving one vote to
each tagger and letting a preselected tagger break
ties gives 96.6% accuracy for the best ensembles.
An accuracy increase from 96.0% (the best single
tagger) to 96.6% is an error reduction of 15%. The
difference in accuracy between the best voting en-
semble and the best single tagger is significant at the
5% level (using McNemar’s test (Everitt, 1977)).

Giving the taggers different voting weight manu-
ally, by for instance giving them weight proportional
to their stand alone accuracy (on data separate from
the test data) did not improve on simple voting.

An interesting property of voting ensembles is
that for words which all taggers assign the same tag
the accuracy is high. How high varies depending
on how many taggers are included in the ensemble,

No. of % of tokens Acc. when Acc.
taggers all agree all agree all words

7 87.6 99.0 96.5
6 88.4 98.9 96.5
5 89.2 98.7 96.4
4 90.2 98.5 96.2
3 91.4 98.2 96.1
2 95.3 97.6 -

Table 3: Accuracy on words for which all taggers in
an ensemble assign the same tag. Accuracy for an
ensemble size is measured as the mean value of the
accuracy for all ensembles of that size that can be
created from the examined taggers (if a tagger is not
allowed to occur twice in the same ensemble).

more taggers gives fewer words were all agree, but
higher accuracy on these words, see table 3.

Other properties of voting ensembles in these ex-
periments include: Almost all voting ensembles are
more accurate than the best tagger in the ensemble.
The only exception is when using one of the very
accurate taggers (fnTBL, Granska or TnT) together
with just the two worst taggers (Stomp and Timbl),
which is slightly worse than the good tagger alone.

A voting ensemble normally benefits from adding
more taggers, even if the new taggers are not very
good, but not always. Combining several good tag-
gers is generally better than combining bad taggers.

A voting ensemble can suffer from adding a new
very good tagger, if it is too similar to another tag-
ger already in the ensemble (thus pretty much giving
that tagger more weight). As an example of this, us-
ing just Mxpost, Timbl and Granska (or TnT) gives
higher accuracy than using Mxpost, Timbl, Granska
and TnT.

This is because both Granska and TnT are HMM-
taggers and produce very similar results. TnT and
Granska are in agreement in 97.8% of all cases, of
which about 96.8% are correct. On average two tag-
gers agree on 95.3% of all tags, with 97.6% of these
being correct. In table 4 the agreement between the
taggers are summarized.

This also works the other way around, adding a
quite bad tagger increases the performance of an en-
semble if the tagger is different enough from the tag-
gers already in the ensemble. An example of this is



fnTBL Granska Mxpost Stomp Timbl TnT TreeTagger
fnTBL - 95.8 (97.6) 95.5 (97.9) 94.3 (97.7) 95.6 (97.3) 96.4 (97.6) 95.4 (97.7)
Granska 95.8 (97.6) - 95.4 (97.8) 93.7 (97.8) 94.9 (97.6) 97.8 (96.8) 96.7 (96.9)
Mxpost 95.5 (97.9) 95.4 (97.8) - 93.2 (98.2) 94.6 (97.8) 95.9 (97.8) 95.1 (97.8)
Stomp 94.3 (97.7) 93.7 (97.8) 93.2 (98.2) - 94.9 (96.9) 94.2 (97.8) 93.7 (97.8)
Timbl 95.6 (97.3) 94.9 (97.6) 94.6 (97.8) 94.9 (96.9) - 95.6 (97.5) 93.7 (97.8)
TnT 96.4 (97.6) 97.8 (96.8) 95.9 (97.8) 94.2 (97.8) 95.6 (97.5) - 97.4 (96.9)
TreeTagger 95.4 (97.7) 96.7 (96.9) 95.1 (97.8) 93.7 (97.8) 94.6 (97.6) 97.4 (96.9) -

Table 4: Agreement ratios between taggers. The percentage of words for which the taggers assign the same
tag, and in parenthesis the accuracy on these words.

Stomp, which is by far the least accurate tagger, but
which is very useful when added to an ensemble.
For instance, an ensemble with Granska, Mxpost,
TnT and Stomp has higher accuracy than an ensem-
ble where Stomp has been exchanged for fnTBL, de-
spite fnTBL being a much more accurate tagger.

3.2 Giving confident taggers more weight

TreeTagger, Granska and Stomp can output confi-
dence measurements for their tag assignments, i.e.
an estimate of how likely it is that an assigned tag
is correct. These estimates can be used for thresh-
olding, discarding all words where the confidence
is below the threshold. In figure 1 the accuracy
on the remaining words as a function of how many
words are discarded is shown for the three taggers.
TreeTagger gives the best estimates, while the accu-
racy of Granska actually decreases if a high thresh-
old is set. This is caused by words that are unam-
biguous in the training data (i.e. always have the
same tag), which are not necessarily actual unam-
biguous words. Granska is very confident on these
words, while the accuracy for these words are actu-
ally below 98% in the test data.

One intuitively attractive use for these confidence
measurements is to let the tagger change its voting
contribution according to its confidence, i.e. give the
tagger more weight for words where it is confident.
This was tried in several ways. First by letting a tag-
ger overrule the voting when confidence is above a
chosen threshold, otherwise voting as normal. Sec-
ond, by ignoring the vote from a tagger when the
confidence is below a chosen threshold. Finally, by
giving the tagger a vote proportional to the confi-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Remaining words (%)

A
cc

ur
ac

y 
(%

)

Figure 1: Plot of the accuracy on remaining to-
kens as a function of how many words remain when
a threshold is chosen (words with scores below
the threshold are discarded). The dotted line is
for Stomp, the fully drawn is for Granska and the
dashed and dotted line is for TreeTagger. Granska
is very confident on unambiguous (in the training
data) words and thus suffers when a high thresh-
old is set, since accuracy for these are only about
98%. TreeTagger has lower accuracy here than in
other experiments. For some reason TreeTagger did
not choose the same tags as usual when outputting
confidence estimates.



dence. This was tried for all three of the taggers
above, both one at a time and all at once.

Unfortunately, this does not improve on sim-
ple voting (though the accuracy is not significantly
worse either), despite the fact that for instance
TreeTagger has an accuracy above 99% for some
thresholds (or below 40% when ignoring low con-
fidence words). This is caused by the fact that in
general the different taggers find the same words
hard (or easy) to tag. For words where TreeTagger
achieve over 99% accuracy most of the other tag-
gers also achieve about 99% accuracy. This means
that they can correct each other in the few cases one
of them is wrong, so voting is still superior.

The only exception to this is Stomp, which mea-
sures its confidence based on how many words of
matching context it found in the training data, which
when using a high enough threshold actually im-
proves voting slightly. This is probably because it
does not use the same type of information that most
other taggers do (i.e. n-grams of tags), and thus does
not always find the same words hard (or easy) as the
other taggers. Unfortunately matches where Stomp
is confident are very rare, so the increase in accuracy
is very small.

Of course, the opposite is also true, words most of
the taggers find easy are not always tagged very well
by Stomp. This is less useful since the other taggers
generally agree on the correct tag already.

3.3 Stacked classifier

Another way to combine the taggers in an ensemble
is to train a new classifier on the tags selected by the
taggers. This has the potential to correct even those
cases where none of the taggers choose the correct
tag (which no voting scheme could do). For 1.2% of
all words in these experiments, no tagger is correct.
It is also easy to combine taggers that use different
tagsets in this way, while voting is much trickier if
not all taggers use the same tagset.

For the evaluation of the stacked classifier ap-
proach, some extra work was done. First, all the
taggers were trained on a training set and each then
tagged an intermediary set. This intermediary set
did not overlap the training set. This was then re-
peated for other choices of intermediary and train-
ing set, while keeping all intermediary sets dis-
joint. The intermediary sets were then combined

Tagger Accuracy (all words)
Best tagger 96.0
Timbl 96.7
Relief-F 96.8

Table 5: Accuracy of two new second level clas-
sifiers and the best single tagger. The new classi-
fiers were trained on the output of the POS-taggers
(and, in the case of Timbl, the tag of the next word).
Relief-F was trained and tested on very few exam-
ples.

into one dataset, consisting of 580 000 words, and
the stacked classifiers were evaluated by 10-fold val-
idation on this dataset.

Training Timbl, as a memory based learner, on the
output of several taggers (Granska, Mxpost, Stomp
and TnT) gives 96.6% accuracy. Adding other types
of information, such as the estimated probabilities of
Granska and TreeTagger, decreases accuracy. This
is because the method used by Timbl cannot de-
tect that two features are dependent (i.e. use the
tag TreeTagger suggests only if TreeTagger is con-
fident). Using context increases accuracy slightly,
training Timbl on the tags from fnTBL, Granska,
Mxpost, Stomp, TnT and the tag selected by voting
on the following word gives 96.7% accuracy.

Another stacked classifier was created using the
Relief-F algorithm (Kononenko, 1994) to estimate
which attributes to use when building a decision tree.
Relief-F is capable of finding codependent features.
It was given the following input: the tags chosen by
Granska, Mxpost, TreeTagger, Stomp, TnT, Timbl
(as tagger), and the confidence estimates of Granska,
TreeTagger and Stomp. It achieves high accuracy,
96.8%, but this was tested on a small data set (9 000
words training data, 1 000 words test data, 10-fold
validation), since Relief-F is very time consuming
(weeks or months) with larger data sets.

Another way of using a stacked classifier is to spe-
cialize it on words which we believe are hard. One
way to do this is to consider tags for which all tag-
gers agree as “good enough” and the other words
as hard. This will hopefully allow the stacked clas-
sifier to learn what to do for the words were vot-
ing is less successful. This reduces the problem the
stacked classifier has to learn, but it also reduces the



amount of available training data.
This was tried by training and testing Timbl only

on those tags where there were at least two sugges-
tions from the tagger ensemble (using 10-fold vali-
dation). Accuracy on these words was then around
78%, which gives a total accuracy of 96.6% (these
word make up about 11% of all words and the accu-
racy on the rest is 99%). This is the same accuracy
as when using Timbl as a stacked classifier on all
words, so there was no improvement over a regular
stacked classifier.

4 What kind of errors remain

Generally, errors occur in a “mirror” patter, i.e. if
words with tag X are often misstagged as Y, then
errors of misstagging type Y words as X will also
be common. The most common type of tagging er-
rors made by the taggers are choosing singular in-
stead of plural and vice versa for nouns (7% of all
errors), adjective vs. adverb (10%), determiner vs.
pronoun (7%), proper noun vs. noun (7%), particle
vs. adverb (5%), preposition vs. particle (4%). This
corresponds well to other examinations of Swedish
POS-tagging (Megyesi, 2001).

After voting there are still many errors of these
types. The number of errors of some of these types
actually increase. One example is the singular/plural
problem for nouns. Before voting 7% of the errors
belonged to this type. The number of such errors
after voting would correspond to 8% of the original
errors, and make up 10% of all errors that remain
after voting. Before voting there are about 1 200
different error types, after voting there are only 900
types. This means that mostly uncommon errors are
corrected, and that the errors that remain are con-
centrated to fewer categories. This is an interesting
property, since it is less work to write manual cor-
rection rules for the (few) common error types than
for the (many) uncommon error types.

The stacked classifiers behave similarly to voting,
they mainly correct uncommon errors.

A small test shows that it is possible to write rules
that correct some of the tagging errors. These rules
can for instance make use of longer scope or seman-
tic clues that the taggers cannot use. Four rules were
created (by a non-linguist) in a few hours and ap-
plied on the tags selected by voting. These rules

corrected 131 errors and introduced 32 new errors
(and one error was changed to another error) for a
net gain of 99 correct tags.

While it is possible to write rules to correct some
tagging errors it seems hard to get large improve-
ments, though using a trained linguist or more time
to construct rules might achieve better results. One
problem is that the common errors are mistaking one
common tag for another common tag, so rules trying
to correct this often introduce many new errors be-
cause there are so many correctly assigned tags of
these types.

Many of the remaining errors are actually errors
in the corpus, ambiguities where the suggested tag
could also be considered correct or words where the
correct tag can only be selected by semantic knowl-
edge.

A discussion of common error types for auto-
matic and manual tagging in SUC can be found in
(Källgren, 1996).

5 Conclusions

Combining several taggers improves tagging accu-
racy, even when quite simple methods are used. An
error reduction by 15% to 18% was achieved in these
experiments. Using several taggers increases the
computational load though, the combined classifier
is at least as slow as the slowest tagger.

When combining taggers at least one good tagger
should be used, then as many and as different taggers
as possible should be added. Adding more taggers
to an ensemble is generally good, but can sometimes
decrease accuracy, if the new tagger is too similar to
a tagger already in the ensemble. Dissimilar taggers
are good in ensembles, even if they are not that good
alone.

Some taggers can give estimates of how confident
they are. Though this did not help while voting,
since most taggers found the same words easy or
hard, the estimates could be used for other things.
One example is detecting possible errors in an exist-
ing tagged corpus. When the tag in the corpus differs
from the suggested tag and the confidence of the tag-
ger is high enough there is probably an error in the
corpus. They could also be used in creating a new
tagged corpus quickly, as manually checking only
(the few) tags with low confidence would still catch



most tagging errors. Using this kind of information
for choosing when to trust the tagger has been ex-
amined before, see (Elworthy, 1994).

Words for which many taggers vote the same also
have these properties, and this could be used in the
same way. This also has been tried before, to remove
synthetic noise (deliberately added tagging errors) in
a corpus (Berthelsen and Megyesi, 2000).

Combining taggers by voting or training a new
stacked classifier increases the number of errors of
some of the common error types, but removes many
more errors of uncommon error types. This leads
to fewer total errors and a concentration of errors to
fewer error types. This property is useful in several
ways, it is for instance less work to manually create
correction rules for a few classes of errors than for
many.

6 Acknowledgments

This work has been funded by The Swedish Agency
for Innovation Systems (VINNOVA).

I would like to thank my supervisor professor
Viggo Kann. I would also like to thank Stockholm
University for letting me use the Stockholm-Umeå
Corpus.

References
Kamal M. Ali and Michael J. Pazzani. 1996. Error reduction through learning

multiple descriptions. Machine Learning, 24(3):173–202.

Harald Berthelsen and Beáta Megyesi. 2000. Ensemble of classifiers for noise
detection in pos tagged corpora. In Proceedings of the Third International
Workshop on TEXT, SPEECH and DIALOGUE, Brno, Czech Republic.

J. Bigert, L. Ericson, and A. Solis. 2003. Missplel and AutoEval: Two generic
tools for automatic evaluation. In Proceedings of Nodalida 2003, Reykjavik,
Iceland.

Lars Borin. 2000. Something borrowed, something blue: Rule-based combina-
tion of POS taggers. In Proceedings of the Second International Conference
on Language Resources and Evaluation, Athens.

Thorsten Brants. 2000. TnT – a statistical part-of-speech tagger. In Proceedings
of the 6th Applied NLP Conference, ANLP-2000, Seattle, USA.

Eric Brill and Jun Wu. 1998. Classifier combination for improved lexical disam-
biguation. In Proceedings of the Thirty-Sixth Annual Meeting of the Associa-
tion for Computational Linguistics and Seventeenth International Conference
on Computational Linguistics, Montreal, Canada.

Eric Brill. 1992. A simple rule-based part-of-speech tagger. In Proceedings of
ANLP-92, 3rd Conference on Applied Natural Language Processing, Trento,
IT.

Johan Carlberger and Viggo Kann. 1999. Implementing an efficient part-of-
speech tagger. Software – Practice and Experience, 29(9):815–832.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and Antal van den Bosch.
2001. Timbl: Tilburg memory-based learner – version 4.0 reference guide.

Thomas Dietterich. 1997. Machine learning research: Four current directions. AI
Magazine, 18(4):97–136.

Eva Ejerhed, Gunnel Källgren, Ola Wennstedt, and Magnus Åström. 1992. The
linguistic annotation system of the Stockholm-Umeå Corpus project. Tech-
nical report, Department of General Linguistics, University of Umeå (DGL-
UUM-R-33), Umeå, Sweden.

David Elworthy. 1994. Automatic error detection in part of speech tagging. In
Proceedings of the International Conference on New Methods in Language
Processing, Manchester.

Brian Everitt. 1977. The Analysis of Contingency Tables. Chapman and Hall.

Gunnel Källgren. 1996. Linguistic indeterminacy as a source of errors in tagging.
In Proceedings of COLING-96, Copenhagen, Denmark.

Fred Karlsson, Atro Voutilainen, Juha Heikkila, and Atro Anttila. 1995. Con-
straint Grammar, A Language-independent System for Parsing Unrestricted
Text. Mouton de Gruyter.

Igor Kononenko. 1994. Estimating attributes: Analysis and extensions of RE-
LIEF. In Proceedings of the European Conference on Machine Learning,
Catania, Italy.

Lluı́s Màrquez, Lluı́s Padró, and Horacio Rodrı́guez. 1998. Improving tag-
ging accuracy by using voting taggers. In Proceedings of the Second
Conference on Natural Language Processing and Industrial Applications,
NLP+IA/TAL+AI’98, Moncton, New Brunswick, Canada.

Lluı́s Màrquez, Horacio Rodrı́guez, Josep Carmona, and Josep Montolio. 1999.
Improving POS tagging using machine–learning techniques. In Proceedings
of EMNLP/VLC’99, Maryland, USA.

Beáta Megyesi. 2001. Comparing data-driven learning algorithms for POS tag-
ging of Swedish. In Proceedings of EMNLP 2001, Carnegie Mellon Univer-
sity, Pittsburgh, USA.

Grace Ngai and Radu Florian. 2001. Transformation-based learning in the fast
lane. In Proceedings of NAACL-2001, Carnegie Mellon University, Pitts-
burgh, USA.

Adwait Ratnaparkhi. 1996. A maximum entropy part-of-speech tagger. In Pro-
ceedings of the Empirical Methods in Natural Language Processing Confer-
ence, University of Pennsylvania, Philadelphia, USA.

Helmut Schmid. 1994. Probabilistic part-of-speech tagging using decision trees.
In Proceedings of the International Conference on New Methods in Language
Processing, Manchester, UK.

Jonas Sjöbergh. 2003. Stomp, a POS-tagger with a different view. In Proceedings
of RANLP-2003, Borovets, Bulgaria.

Kagan Tumer and Joydeep Ghosh. 1996. Error correlation and error reduction in
ensemble classifiers. Connection Science, 8(3-4):385–403.

Hans van Halteren, Jakub Zavrel, and Walter Daelemans. 1998. Improving
data driven wordclass tagging by system combination. In Proceedings of the
Thirty-Sixth Annual Meeting of the Association for Computational Linguis-
tics and Seventeenth International Conference on Computational Linguistics,
Montreal, Canada.


