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Abstract

This article describes an automatic evaluation pro-
cedure for NLP system robustness under the strain
of noisy and ill-formed input. The procedure re-
quires no manual work or annotated resources. It
is language and annotation scheme independent and
produces reliable estimates on the robustness and
accuracy of NLP systems. The procedure was ap-
plied to five parsers and one part-of-speech tagger
on Swedish text. To establish the reliability of the
procedure, a comparative evaluation involving an-
notated resources was carried out on the tagger and
three of the parsers.

1 Introduction

Automatic parsing of text is a popular field of re-
search. Many of the applications where parsing is
used, such as parsing human input to a computer
system, handle text that is not proofread. Depend-
ing on the application, the text can be relatively er-
ror free (e.g. parsing newspaper articles from the in-
ternet) or contain large amounts of errors (e.g. using
a parser as a tool for second language learners when
writing essays). If the intended use of a parser is do-
mains with many errors, it must be robust enough to
produce useful output despite noisy input. It is not
sufficient to achieve a good performance on error-free
text. Usually, the accuracy of a parser on error-free
text is known, but the accuracy on texts containing
errors is often unknown.
Carroll et al. (1998) give a comprehensive

overview of different parser evaluation methods and
discuss some shortcomings. Evaluation of parsers
is usually carried out by comparing the parser out-
put to a manually annotated or manually corrected
version of a test text. Manual work is expensive,
and not necessarily error free. If the NLP system
is under development, the evaluation has to be car-
ried out repeatedly. Thus, very large amounts of
annotated resources may be required to avoid data
exhaustion. Many languages have no large manually
annotated resources at all, and those existing often
contain only error-free texts.
Manual annotation is not only expensive, but of-

ten hard to reuse when evaluating a new parser.
Generally, it is non-trivial to map the output of
one parser to the output of another (Hogenhout and

Matsumoto, 1996). Often, different parsers do not
generate the same information, so a mapping would
have to add or remove information. Thus, the ef-
fort of manually annotating text with one type of
parse information is not generally reusable for other
parsers.
To carry out the evaluation of NLP system ro-

bustness while avoiding the above-mentioned draw-
backs, we propose a procedure that requires no man-
ual work or annotated resources. Robustness in
this context is defined as the system’s reluctancy to
change its output when the input becomes increas-
ingly noisy and ill-formed. There are, as pointed out
by Menzel (1995), many other types of robustness.
The only requirements of the evaluation method
are a (relatively error-free) text and an estimate
of the accuracy of the parser (on error-free text,
which is usually known). Despite the modest re-
quirements, the evaluation procedure provides accu-
rate estimates of the robustness of an NLP system.
The method is a further development from work

by Bigert et al. (2003b). It is based on introduc-
tion of artificial errors in error-free text. Another
approach to evaluation of parser robustness is pro-
vided by Li and Roth (2001). It is based on an an-
notated corpus of low quality language use, in this
case transcribed phone calls.
We assessed the reliability of the evaluation

method by using five different parsers and one part-
of-speech tagger. All five parsers process written
Swedish text, even though the evaluation method
is language independent. The tagger and three of
the parsers had resources annotated with the cor-
rect tagger/parser output, allowing us to verify the
results of the unsupervised evaluation.

2 Proposed Method

We are given an NLP system processing and out-
putting row-based data, that is, reading one input
(e.g. a word) per row and producing one output (e.g.
a parse string) per row. We want to assess the ro-
bustness of the system. To this end, we need to eval-
uate the performance of the system when applied to
input with increasing amounts of noise. The pro-
posed method is applicable to most NLP system,
but parsers will be used here for the clarity of expo-
sition.



Naturally, the performance of an NLP system can
be better assessed with an annotated resource. To
begin with, the discussion here will include such a
resource. The aim is to establish how much infor-
mation can be gained concerning the performance of
the NLP system without the annotated resource.
We require a text to be used in the evaluation.

The text will be processed by the NLP system (i.e.
a parser). Even though the text can be chosen ar-
bitrarily, we simplify the exposition of the method
by using the text from a treebank; but keep in mind
that the method does not require an annotated re-
source. We introduce spelling errors in the text to
determine the performance of the NLP system un-
der the influence of noisy and ill-formed input. To
this end, we use a freeware program called Missplel
(Bigert et al., 2003a), producing human-like spelling
errors. We introduce spelling errors simulating key-
board mistypes. To avoid alternate interpretations
of a sentence, the spelling errors result only in words
not present in a dictionary. For details on the intro-
duction of spelling errors, we refer to (Bigert et al.,
2003b).
Three different data sources are involved in the

discussion of the evaluation method. The three files
have the same number of rows since they all originate
from the same text (i.e. the text in the treebank).
For each row, they contain a data pair: a word (that
may or may not be misspelled) and a parse string for
that word. Only the parse part is used here.
The first file, denoted m, is the manually checked

annotated resource (e.g. a tree bank). The second
file, denoted 0 (zero), is the output of the NLP sys-
tem when applied to the original treebank text (0%
errors). The third file, denoted n, is the output of
the NLP system when applied to the text containing
errors (e.g. n = 5% of the words in the file are mis-
spelled). Clearly, a file containing n% errors, n > 0,
is more difficult to parse than an error-free text and
the aim is to determine how difficult.

2.1 Five Cases
Given one row of the treebank, the 0% file and the
n% file, we analyze the different cases that may oc-
cur. Say that the treebank parse (i.e. the correct
answer) is a. Either the 0% file contains the correct
answer a, or an incorrect answer b. Furthermore, the
n% file may contain the correct answer a, the same
incorrect answer as the 0% file b or even another
incorrect answer c. From this, we obtain several dif-
ferent combinations.
We introduce a notation (denoted m0n) consisting

of three columns. The first position is the parse
found in the treebank m, the second is the 0% file
0 and the third is the n% file n. For example, abc
means that the parse from the treebank was a, the
parse from the 0% file was b and the parse found in
the n% file was c.
Thus, using the new notation, we get five differ-

ent cases when comparing parses of a single word:
aaa, aab, aba, abb and abc, as shown in Table 1.

The first case aaa is the most common, where all
three files agree on the same parse. Second, aab
is the case where an error nearby in the text cor-
rupted the parsing process of this row. The third
case aba is unusual, but not negligibly so. This may
occur when the parser is uncertain and chooses be-
tween two equal alternatives and arbitrarily chooses
the correct one at the n% level due to a nearby er-
ror in the text. The fourth case abb is common
and occurs when the parser does not know how to
parse a correct grammatical construction. The last
case abc may be caused by an error introduced near
a correct grammatical construction that the parser
cannot parse correctly. This case is uncommon.

# x m0n m0 mn 0n x 5% x 10%
1 xaaa aaa = = = 0.849 0.811
2 xaab aab = 0.0401 0.078
3 xaba aba = 0.00317 0.00635
4 xabb abb = 0.100 0.0908
5 xabc abc 0.00772 0.0140

Table 1: The five cases when comparing parse
strings. The m column originates from the manually
annotated treebank, the 0 column from the output of
the parser on the treebank text (0% errors) and the
n column is the output of the parser run on a text
containing n% errors. The last two columns are ex-
amples of the relative frequencies of the five cases
with 5% and 10% errors in the text (for the GTA
parser in Section 3).

Let xaaa, xaab, xaba, xabb and xabc correspond to
the relative frequencies of the five cases in Table 1.
For example, if abb occupies 10% of the rows, xabb =
0.10. Clearly,

xaaa + xaab + xaba + xabb + xabc = 1, (1)

since they cover all possible outcomes. Let acrm0

denote the accuracy when comparing the m column
to the 0 column. We see that

acrm0 = xaaa + xaab (2)

since only in cases aaa and aab, the two columns
contain the same output a. Furthermore, by the
same reasoning,

acrmn = xaaa + xaba and (3)
acr0n = xaaa + xabb. (4)

The xabb is included in the last equality since 0
equals n in abb even though they both differ from m.
The fact that they differ from the treebank cannot
be established without the correct answer m.
We say that the performance of the NLP system

degrades when the performance decreases with in-
creasing levels of errors in the text. The degradation
degrn is a comparison between the performance at
the n% error level and the performance at the 0%
error level. Let

degrn = 1− acrmn

acrm0
. (5)



Clearly, this is calculable only if you have access to
acrmn and acrm0.
Normally, some sort of evaluation has been carried

out to estimate the accuracy acr of the parser on
error-free text. High accuracy is obtained when the
correct answer m often corresponds to the output 0.
Thus, the accuracy is a very good estimate for acrm0

and we will use acrm0 = acr . Nevertheless, without
the annotated resource, we do not have access to or
estimates for acrmn.

2.2 Upper and Lower Bounds
We want to estimate the degradation degrn without
knowing acrmn. Without the annotated resource,
we only have access to acr0n and acrm0 = acr . We
will use these to establish an upper bound degrnupper

for degrn. We want the value degrnupper to be an ex-
pression including acr and acr0n that can be proven
to be greater than degrn.
We propose

degrnupper =
1− acr0n

acr
(6)

as an upper bound. We prove that degrnupper is
always greater than degrn by letting

degrnupper = degrn + ε. (7)

Equations (1)–(2) and (4)–(6) give us

ε =
2xaba + xabc

acr
. (8)

We see that ε ≥ 0 since all x ≥ 0 and thus,
degrnupper ≥ degrn as required.
The smaller the value of ε, the better. From the

discussion, we see that xaba and xabc are normally
quite small, which is promising.
We now turn to a lower bound for degrn. We

propose

degrnlower =
1
2
degrnupper =

1− acr0n

2acr
. (9)

Similar to the upper bound, the expression must be
proven to be less than degrn. To this end, we let

degrnlower + δ = degrn. (10)

From Equations (1)–(2), (4)–(5) and (9), we obtain

δ =
xaab − 3xaba − xabc

2acr
, (11)

which is non-negative when xaab ≥ 3xaba + xabc.
Both cases aab, aba and abc are the result of an

introduced spelling error. With no errors, xaab, xaba

and xabc are all zero and with increased levels of in-
troduced errors, they will all increase. Hence, xaab,
xaba and xabc are positively correlated. Further-
more, it is clear that case aab is much more com-
mon than aba and abc since it involves correctly
parsed text at the 0% error level. The accuracy acr

determines the amount of correctly parsed text and
thus, with reasonable accuracy, the above inequality
holds with a good margin of error. See Appendix A
for details on the conditions under which the above
inequality holds. Experiments in Section 3 further
support the inequality by showing that the left-hand
side is more than twice the right-hand side.
From the above discussion, we have obtained

degrnlower ≤ degrn ≤ degrnupper. (12)

2.3 Estimation of the Degradation
The simple relationship between the upper and lower
bounds allows us to deduce some further informa-
tion. Given an upper bound degrnupper and a lower
bound degrnlower, we want to estimate the position
of the true value degrn. Clearly, degrn is somewhere
in between degrnlower and degrnupper from Equa-
tion (12). Let degrnestim be the center of the inter-
val contained by the lower and upper bound, that
is,

degrnestim =
1
2
(degrnlower + degrnupper) (13)

and let γ be the distance from degrn to degrnestim.
Then,

degrn + γ = degrnestim. (14)
Equations (7), (10) and (13) yield γ = (ε − δ)/2.
Using Equations (8) and (11) results in the explicit
form

γ =
7xaba + 3xabc − xaab

4acr
. (15)

With reasonable accuracy, we see that γ is small if
7xaba + 3xabc ≈ xaab.
As the discussion above about the lower bound

illustrated, xaab, xaba and xabc are correlated. See
Appendix A for a discussion on the conditions re-
quired to make γ small. Though the experiments in
Section 3 show that γ is quite small, we make no
claims that γ is equally small for all NLP systems.
The estimations here are just theoretical indications
where the true value of degrn may reside.
We have indicated that degrnestim is, in theory,

close to degrn. By using Equations (6) and (9), we
simplify and obtain an explicit formula for the esti-
mated degradation:

degrnestim =
3
4
degrnupper. (16)

Hence, without having an annotated resource, we
can estimate the robustness (degradation) of the sys-
tem quite accurately.

2.4 Accuracy
Now that the degradation of the performance has
been established, we turn to the accuracy. The def-
inition of degrn in Equation (5) states that degrn =
1 − acrmn/acr . We are interested in the accuracy
of the NLP system on the n% file, that is, acrmn.
Rearranging the above equation yields

acrmn = acr(1− degrn). (17)



acr required: estimated accuracy of the NLP system on error-free text
acrm0 ≈ acr assumption: system accuracy on test text is close to acr
acr0n known: obtainable without annotated resource
degrn unknown: degradation (robustness) of the NLP system
acrmn unknown: accuracy of the NLP system on erroneous text
degrnupper = (1 − acr0n)/acr upper bound for degradation
degrn ≤ degrnupper degradation is bounded from above
degrnestim = 3

4
degrnupper approximation of degradation

degrnestim − degrn = γ approximation is not exact
γ = (7xaba + 3xabc − xaab)/4acr deviation of the approximation
acrmnlower = acr(1 − degrnupper) lower bound for accuracy on erroneous text
acrmnlower ≤ acrmn accuracy is bounded from below
acrmnestim = acr(1 − degrnestim) approximation of accuracy
acrmnestim − acrmn = λ approximation is not exact
λ = acr · (−γ) deviation of the approximation
if xaab ≥ 3xaba + xabc condition: required for the lower bound on the degradation
degrnlower = 1

2
degrnupper lower bound for degradation

degrnlower ≤ degrn ≤ degrnupper degradation is bounded if condition is met
acrmnupper = acr(1 − degrnlower) upper bound for accuracy on erroneous text
acrmnlower ≤ acrmn ≤ acrmnupper accuracy is bounded if condition is met

Table 2: Summary of the theory of the evaluation procedure.

Since degrn is unknown, we use degrnupper,
degrnlower and degrnestim to obtain bounds on the
accuracy:

acrmnlower = acr(1− degrnupper), (18)
acrmnupper = acr(1− degrnlower), (19)
acrmnestim = acr(1− degrnestim). (20)

The estimation in Equation (20) is not precise, so
we let

acrmn + λ = acrmnestim. (21)

From Equations (14), (17) and (20), we obtain

λ = acr · (−γ). (22)

Thus, if |γ| is small, |λ| is even smaller, and thus,
acrmnestim is a good approximation of the accuracy
of the NLP system when applied to a file containing
n% errors.
To summarize, the theory of the evaluation pro-

cedure is presented in Table 2.

3 Empirical Results
3.1 Parsers Used
Five different parsers were used to assess the accu-
racy of the evaluation method.
GTA (Knutsson et al., 2003) is a rule-based shal-

low parser. It relies on hand-crafted rules of which
a few are context-sensitive. The rules are applied
to part-of-speech tagged text. GTA identifies con-
stituents and assigns phrase labels but does not build
full trees with a top node.
FDG (Voutilainen, 2001), Functional Depen-

dency Grammar, is a commercial dependency parser
(http://www.connexor.com). It builds a connected
tree structure, where every word points at a domi-
nating word. Dependency links are assigned a func-
tion label. FDG produces other information too,

such as morphological analysis and lemma of words,
which is not used here.
The dependency parser by Nivre (2003) uses a

manually constructed grammar and assigns depen-
dency links between words, working from part-of-
speech tagged text. We denoted it the MCD parser
(manually constructed dependency).
The Malt parser (Nivre et al., 2004), another de-

pendency parser, is based on the same algorithm as
MCD but uses a memory-based classifier trained on
a treebank instead of a manually constructed gram-
mar. Unlike MCD, the Malt parser not only assigns
dependency links between words but also attaches
function labels to these links.
A manually constructed context-free grammar for

Swedish was used with an implementation of Ear-
ley’s parsing algorithm, as described in (Megyesi,
2002). We denoted it the Earley parser.
The GTA, MCD, Malt and Earley parsers are all

under development.

3.2 Parser Robustness Evaluation
In the evaluation, we used 100 000 words from
the Stockholm-Ume̊a Corpus (SUC) (Ejerhed et al.,
1992). The SUC is a balanced collection of written
Swedish, well proofread. The SUC is annotated with
part-of-speech information, even though that infor-
mation was not used in our experiments. It does not
contain any parse annotation.
The 100 000 word text was parsed using each of

the parsers. The parse results of this error-free text
(0% errors) constituted the 0 file, as defined in the
first part of Section 2. Spelling errors (resulting
in non-existing words only) were randomly inserted
into the text, using a tool that emulates errors pro-
duced by a human, as described in Section 2. The
parse results from the misspelled text (containing
e.g. 5% errors) constituted the n file, also from Sec-
tion 2. For the GTA, the MCD and the Malt parser,



Error Parse Estimated Estimated
level differs degradation accuracy

1 1.2 0.7 - 1.3 (1.0) 88 - 88 (88)
2 2.4 1.3 - 2.6 (2.0) 87 - 88 (87)
5 5.7 3.2 - 6.4 (4.8) 83 - 86 (85)

10 11 6.2 - 12 (9.4) 78 - 83 (81)
20 21 12 - 24 (18) 68 - 78 (73)

Table 3: Estimated robustness of the GTA parser
on 100 000 words. All figures are given in per cent.
Estimated accuracy on error-free text: 89%.

Error Parse Estimated Estimated
level differs degradation accuracy

1 0.9 0.5 - 1.1 (0.8) 81 - 82 (82)
2 1.7 1.1 - 2.1 (1.6) 81 - 81 (81)
5 4.3 2.6 - 5.3 (4.0) 78 - 80 (79)

10 8.6 5.2 - 10 (7.8) 74 - 78 (76)
20 17 10 - 20 (15) 66 - 74 (72)

Table 4: Estimated robustness of the MCD parser
on 100 000 words. All figures are given in per cent.
Estimated accuracy on error-free text: 82%.

Error Parse Estimated Estimated
level differs degradation accuracy

1 1.8 1.2 - 2.4 (1.8) 77 - 78 (77)
2 3.7 2.3 - 4.7 (3.5) 75 - 77 (76)
5 8.9 5.7 - 11 (8.5) 70 - 74 (72)

10 17 11 - 22 (16) 61 - 70 (66)
20 31 20 - 39 (29) 48 - 63 (55)

Table 5: Estimated robustness of the Malt parser
on 100 000 words. All figures are given in per cent.
Estimated accuracy on error-free text: 79%.

Error Parse Estimated Estimated
level differs degradation accuracy

1 0.8 0.5 - 0.9 (0.7) 89 - 90 (89)
2 1.7 0.9 - 1.8 (1.4) 88 - 89 (89)
5 4.1 2.3 - 4.5 (3.4) 86 - 88 (87)

10 8.2 4.5 - 9.1 (6.8) 82 - 86 (84)
20 16 9.1 - 18 (14) 74 - 82 (78)

Table 6: Estimated robustness of the Earley parser
on 100 000 words. All figures are given in per cent.
Estimated accuracy on error-free text: 90%.

Error Parse Estimated Estimated
level differs degradation accuracy

1 2.1 1.2 - 2.3 (1.7) 88 - 89 (88)
2 4.2 2.3 - 4.6 (3.5) 86 - 88 (87)
5 10 5.5 - 11 (8.3) 80 - 85 (83)

10 19 11 - 21 (16) 71 - 81 (76)
20 34 19 - 37 (28) 56 - 73 (65)

Table 7: Estimated robustness of the FDG parser
on 100 000 words. All figures are given in per cent.
Estimated accuracy on error-free text: 90%.

Error Tag Estimated Estimated
level differs degradation accuracy

1 0.7 0.4 - 0.7 (0.6) 95 - 96 (95)
2 1.4 0.7 - 1.5 (1.1) 95 - 95 (95)
5 3.6 1.9 - 3.7 (2.8) 92 - 94 (93)

10 7.2 3.7 - 7.5 (5.6) 89 - 92 (91)
20 14 7.5 - 15 (11) 82 - 89 (85)

Table 8: Estimated robustness of the PoS tagger
TnT on 100 000 words. All figures are given in per
cent. Estimated accuracy on error-free text: 96%.

manually annotated resources were available. The
experiments on these are reported in the next sec-
tion.
To see how the parser behaves with increasing

amounts of errors, n = 1%, 2%, 5%, 10% and 20%
of all words were randomly misspelled. To reduce
the influence of chance, 10 different misspelled files
were created for each error level. Using these, we
calculated the mean for the degradation, the accu-
racy and so forth. To simplify the evaluation, a
freeware program called AutoEval (Bigert et al.,
2003a) was used for input and output handling and
data processing. The variance between different files
was low.
The degradation estimates for a particular file

were obtained by calculating acr0n, that is, by com-
paring how many of the parses in the 0 file that
corresponded to the parses in the n file. From acr0n

we calculated the upper and lower bounds as well as
estimates on the degradation and accuracy, as seen
in the summary in Table 2.
The results for the five parsers are presented in

Tables 3 through 7, which also present the accu-
racy acr on error-free text. The first column re-
ports on the amount of errors in the text. The sec-
ond is the amount of parse output that differs be-
tween the rows of the 0 file and the n file. This
value is 1 − acr0n. The third column presents the
degradation of the parser. The first value is the
lower bound degrnlower and the second is the up-
per bound degrnupper. The figure in parentheses is
the estimated degradation degrnestim. The fourth
column contains the estimations on the accuracy:
lower bound acrmnlower, upper bound acrmnupper

and estimated value acrmnestim.
The proposed method evaluates the robustness on

one row at the time. For example, if the first col-
umn says 5%, we have introduced errors in 5% of the
words (with one word per row). Similarly, if we re-
port 11% in the second column (parse differs), then
11% of the parse output (with one parse per row) is
different between the two files.
In the experiments, any deviation from the correct

parse was considered an error, even if it was “al-
most” correct (though the evaluation method could
just as easily use a more sophisticated analysis).
Hence, parsers that provide richer information will
generally be less robust than parsers that return less



Err Parse Estimated Real Estimated Real
lev differs degradation degr. accuracy accur.

1 1.2 0.7 - 1.4 (1.0) 0.9 88 - 88 (88) 88
2 2.3 1.3 - 2.6 (1.9) 1.8 87 - 88 (87) 87
5 5.1 2.9 - 5.7 (4.3) 4.2 84 - 86 (85) 85

10 9.9 5.5 - 11 (8.3) 8.1 79 - 84 (81) 82
20 19 10 - 21 (16) 16 70 - 80 (75) 75

Table 9: Estimated and actual robustness of the GTA
parser on 14 000 words of manually annotated text.
All figures are given in per cent. Parser accuracy
with no errors inserted was 89%.

Err Parse Estimated Real Estimated Real
lev differs degradation degr. accuracy accur.

1 0.7 0.4 - 0.8 (0.6) 0.6 82 - 82 (82) 82
2 1.7 1.0 - 2.0 (1.5) 1.4 81 - 82 (81) 81
5 4.0 2.5 - 4.9 (3.7) 3.2 78 - 80 (79) 80

10 8.3 5.0 - 10 (7.6) 6.6 74 - 78 (76) 77
20 16 9.6 - 19 (14) 13 67 - 74 (71) 72

Table 10: Estimated and actual robustness of the
MCD parser on 4 000 words of manually annotated
text. All figures are given in per cent. Parser accu-
racy with no errors inserted was 82%.

information, since there are more possibilities for er-
rors.
Parsers base much of their decisions on the part-

of-speech information assigned to a word. Since
part-of-speech taggers often guess the correct tag
for regularly inflected unknown words, the part-of-
speech tagger is responsible for a large part of the
robustness. In Table 8, the estimated degradation of
the part-of-speech (PoS) tagger TnT (Brants, 2000)
is shown. TnT was used for all parsers but FDG,
which includes its own tagger.
Comparing the output of FDG on different ver-

sions of the same text is non-trivial, since the tok-
enization may be altered by a misspelled word. Here,
any tokens without a directly corresponding token in
the other text were ignored. All other tokenization
difficulties were interpreted to give FDG as many
“correct” parses as possible. The 90% accuracy for
FDG is our estimation. Malt and MCD are similar
in their construction but their results are not really
comparable since Malt assigns function labels and
MCD does not. On unlabeled output, Malt is more
accurate than MCD.

3.3 Evaluating the Evaluation Method
Text with correctly annotated parse output was
available for some of the parsers, though only in
small amounts. By using these, we wanted to as-
sess the accuracy of the proposed method.
For the GTA parser and the TnT part-of-speech

tagger, we had a 14 000 word file of manually cor-
rected parse and tag data. For the MCD parser, we
had a 4 000 word file and for Malt we had 10 000
words. We used the text from the files and carried
out the same procedure as in the previous subsec-
tion, that is, introduced errors and evaluated. We

Err Parse Estimated Real Estimated Real
lev differs degradation degr. accuracy accur.

1 1.8 1.1 - 2.3 (1.7) 1.3 77 - 78 (77) 78
2 3.4 2.2 - 4.3 (3.2) 2.4 75 - 77 (76) 77
5 8.7 5.5 - 11 (8.3) 6.1 70 - 74 (72) 74

10 16 11 - 21 (16) 12 62 - 70 (66) 69
20 30 19 - 38 (29) 23 48 - 64 (56) 60

Table 11: Estimated and actual robustness of the
Malt parser on 10 000 words of manually annotated
text. All figures are given in per cent. Parser accu-
racy with no errors inserted was 79%.

Err Parse Estimated Real Estimated Real
lev differs degradation degr. accuracy accur.

1 1.1 0.6 - 1.1 (0.9) 0.9 95 - 95 (95) 95
2 1.9 1.0 - 2.0 (1.5) 1.6 94 - 95 (94) 94
5 3.9 2.0 - 4.1 (3.1) 3.6 92 - 94 (93) 92

10 7.3 3.8 - 7.6 (5.7) 6.7 88 - 92 (90) 89
20 14 7.4 - 15 (11) 13 82 - 89 (85) 83

Table 12: Estimated and actual robustness of the
TnT part-of-speech tagger on 14 000 words of manu-
ally annotated text. All figures are given in per cent.
Tagger accuracy with no errors inserted was 96%.

also had the correct answers from the annotated re-
source. From this, we calculated the real degrada-
tion and accuracy.
The results are provided in Tables 9 through 12.

As guaranteed by the proposed method, the real
degradation and accuracy are always between the
lower and upper bound. We see that the estimated
degradation and accuracy are close or equal to the
real degradation and accuracy, as indicated in the
discussion about γ in Section 2.3 and λ in Sec-
tion 2.4. Hence, there is strong reason to believe
that the estimations on the 100 000 word files in
Section 3.2 are also accurate. Furthermore, by using
the results from a small annotated resource (if avail-
able), we obtain a good estimate on the relation γ
between the real and the estimated degradation for
the 100 000 file.
We note that rich information is a liability for at

least two of the parsers, FDG and Malt. Thus, com-
paring the robustness figures between two parsers
is not entirely fair. Nevertheless, if the objective is
reluctancy to change the output when facing unre-
stricted and noisy text, the figures are accurate.
We also note that the proposed method could eas-

ily be adapted to other types of output besides the
row-based used here. This might require a small ad-
justment of the estimations in the theory section.

4 Conclusions

We have presented a method to estimate the robust-
ness of an NLP system. The method provides lower
and upper bounds as well as estimates on the ac-
tual robustness. The main strength of the evalua-
tion is that no manual work or annotated resources
are required. The only requirements are an arbitrary



(unannotated) text and an estimate of the accuracy
of the parser on error-free text. Thus, we have elim-
inated the need for expensive and time-consuming
manual labor.
The proposed method is applicable to any lan-

guage and most annotation schemes and NLP sys-
tems. Using annotated resources, we have assessed
the reliability of the unsupervised evaluation and
found that the estimates were very accurate. We
conclude that the proposed method is a reliable and
highly time-saving tool for the evaluation of NLP
system robustness.
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A Conditions
We want to determine the circumstances under which
the restriction on δ holds, that is, when

δ =
xaab − 3xaba − xabc

2acr
≥ 0, (23)

as discussed in Section 2.2. Furthermore, we will estab-
lish the requirements for γ to be small, i.e. when

γ =
7xaba + 3xabc − xaab

4acr
≈ 0. (24)

A few assumptions are required. We know from Equa-
tions (1) and (4) or Table 1 that

xaab + xaba + xabc = 1 − acr0n. (25)

We are interested in an approximation of xaab. We will
assume that xaab/(1−acr0n) = acr . That is, we assume
that xaab compared to the three cases xaab + xaba + xabc

is about the same as the accuracy acr compared to one
(the sum of all cases). By using Table 1, we see that
this is not an unreasonable estimation. We rearrange
the above approximation and obtain

xaab = acr(1 − acr0n). (26)

From this and Equation (25), we get

xaba + xabc = (1 − acr)(1 − acr0n). (27)

Our second assumption is that

xaba ≤ xabc. (28)

The two cases aba and abc originate from a grammat-
ical construct that could not be parsed by the system.
When an error is introduced, the parser changes its out-
put. The most probable is that the change results in
something erroneous, as in abc.

We use the assumptions with δ in Equation (23):

δ = (xaab − 3xaba − xabc)/2acr ≥
(xaab − 2(xaba + xabc))/2acr ≥ 0

⇐⇒ acr − 2(1 − acr) ≥ 0.

Hence, the inequality in Equation (23) is satisfied if
acr ≥ 2/3. If we have an accuracy of more than 67%,
the lower bound for the degradation is valid.

We repeat the above process with γ in Equation (24)
and obtain

γ = (7xaba + 3xabc − xaab)/4acr ≤

(5(xaba + xabc) − xaab)/4acr ≤ 0

⇐⇒ 5(1 − acr) − acr ≤ 0.

Hence, γ in Equation (24) is negative if acr ≥ 5/6 =
83.3%. On the other hand,

γ = (7xaba + 3xabc − xaab)/4acr ≥
(3(xaba + xabc) − xaab)/4acr ≥ 0

⇐⇒ 3(1 − acr) − acr ≥ 0.

Now, γ is positive if acr ≤ 3/4 = 75%. Thus, for parsers

with reasonable accuracy, γ will be small and the ap-

proximation of the degradation will be accurate.
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