
Epistemic Temporal Logic for Information Flow Security

Musard Balliu Mads Dam Gurvan Le Guernic
Royal Institute of Technology

Stockholm, Sweden
{musard,mfd,gurvan}@kth.se

Abstract
Temporal epistemic logic is a well-established framework
for expressing agents knowledge and how it evolves over
time. Within language-based security these are central is-
sues, for instance in the context of declassification. We pro-
pose to bring these two areas together. The paper presents a
computational model and an epistemic temporal logic used
to reason about knowledge acquired by observing program
outputs. This approach is shown to elegantly capture stan-
dard notions of noninterference and declassification in the
literature as well as information flow properties where sen-
sitive and public data intermingle in delicate ways.

Keywords Security, Information Flow, Epistemic Logic,
Noninterference, Declassification

1. Introduction
Information flow analysis and language-based security has
been a hot topic for well over ten years now. A large array of
specification and validation techniques have been proposed,
involving security properties (multi-level security, manda-
tory access control), semantical modeling techniques (trace
conditions, simulations and bisimulations/unwinding condi-
tions), and analysis and enforcement techniques (type sys-
tems, dependency analyses of various forms). A critique that
may be leveled at much of the past work, our own included,
is that it has not always managed to separate concerns very
clearly. In particular, constraints in specification techniques,
programming language features, and details and limitations
in the enforcement/analysis mechanisms have been interde-
pendent in such a way that it has often been unclear exactly
what properties are enforced and how the various approaches
relate to each other. Also, as pointed out by several authors
[3, 24], the policy specification mechanisms have often been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS ’11 June 5, San Jose, CA, USA.
Copyright c© 2011 ACM [to be supplied]. . . $10.00

interwoven with the object (the program) on which the pol-
icy is to be enforced in a manner that makes it hard to sepa-
rate policy concerns from enforcement concerns.

A common feature in much recent work on information
flow analysis, cf. [1, 3, 24], has been the appeal to the con-
cept of knowledge as a fundamental mechanism to bring out
what security/confidentiality property is being enforced (the
“revealed” knowledge) and compare it with the knowledge
allowed by the policy. This appeal to knowledge, typically as
equivalence relations on initial states (or partial equivalence
relations [27]), has been important to produce clear, external
reference conditions on which e.g. soundness arguments can
be based. Knowledge, as it happens, is at the root of an entire
branch of logic, namely the logic of knowledge, or epistemic
logic. In this paper we aim to show that the epistemic logic
account of knowledge is compatible with the knowledge no-
tion which has emerged within language-based security, and
can have a valuable role to play for policy specification.

Temporal epistemic logic is a well-established framework
[12] which can be used in distributed systems to reason about
knowledge and how it evolves over time. Temporal epis-
temic logic adds epistemic connectives K and L to famil-
iar temporal connectives such as G (always) and U (until).
Those epistemic connectives relate agents local state to the
possible global states that are consistent with the agents lo-
cal observations. The property Kφ expresses that an agent A
observing a program “knows” φ in the sense that φ holds in
all states that are possible given A’s past observations. Du-
ally, Lφ expresses that some observationally equivalent state
exists for which φ holds. Thus, as an example, the property
φ = G(C → ∀v . L(h=v)) expresses that whenever some
condition C holds then, as far as the attacker can tell, any
value of h is possible (and so the value of h is unknown and
not released to the attacker).

In this study we apply temporal epistemic logic to stan-
dard sequential while programs augmented with a public
output statement, in order to allow a program to ”gradually
release” [1] information concerning its initial state. The pro-
gram model is turned into a model for temporal epistemic
logic in the style of interpreted systems [12]. This is done by
defining an S5 perfect recall epistemic accessibility relation
using the simple and intuitive idea that two execution states

should be regarded as being epistemically the same if they
have been reached by identical traces of publicly observable
output, i.e. such that an observer cannot tell the two states
apart. In particular, if there exists an execution sequence pro-
ducing a trace τ and ending in a state refuting property φ
then the attacker is forced to hold ¬φ for possible.

Our main objective with this paper is to show that tempo-
ral epistemic logic is an interesting and natural device with
which to express information flow policies for imperative
programs. We show this partly by example, and partly by
demonstrating how various state-based security conditions
related to noninterference [15, 16] (absence of “bad” infor-
mation flows) and declassification [28] (intended release of
information) can be characterized using the logic.

We are not the first to apply epistemic logic in the context
of computer security. The concrete link between language-
based security and temporal epistemic logic which we point
out in this paper appears, however, to be new. BAN logic
[7] and successors use epistemic concepts to model agents
changing knowledge and belief in security protocols. BAN
logic, however, suffered from a lack of an intuitively accept-
able semantics (the problem of logical omniscience), some-
thing that has only been remedied recently [11]. Post-BAN
work in security protocol verification has to a large extent
focused on Dolev-Yao types of direct knowledge extraction.
This approach works well for many concrete protocols, but
it is not adequate to capture the types of indirect channels of
high importance in language-based security. For formal anal-
ysis of distributed protocols and multi-agent systems, epis-
temic logic and various extensions have extensive histories
[12]. Much recent work in the area has focused on model
checking [13, 23]. Applications of epistemic concepts have
been made in process calculi such as the applied π-calculus
[8] and CCS [20] and to model protocols for instance in the
area of electronic voting [5]. A precursor of our approach
is Askarov and Sabelfeld’s gradual release model [1] where
attackers knowledge is modeled as equivalence relations on
initial states. In the paper we look into this relationship in
more detail and show how gradual release and a number
of other possibilistic state-based security conditions can be
characterized using temporal epistemic logic.

In Section 2 we set up the underlying computational
model. Section 3 introduces the syntax and semantics of
linear time temporal epistemic logic on these models, and
shows how the model relates to the standard interpreted sys-
tems model [12]. We then turn to various well known secu-
rity conditions from the literature, including noninterference
and different flavors of declassification along the dimensions
considered by [28] in Sect. 4 to 7. We finally point out some
open issues and directions for future work.

2. Computational Model
In this section we set up our language’s basic computational
model. We study a simple while language extended with a

synchronous output statement that, over the course of a com-
putation, causes information to be leaked to an observer.
Besides the output statement “out(e)”, the features of our
while language are commonplace: assignments, condition-
als, while loops, a primitive data type of values belonging
to a finite set Val . The grammar of the language is given
in Fig.1. Programs are ranged over by P , identifiers by x ,
values by v , and expressions by e .

P ::= skip | out(e) | x :=e | P1 ;P2

| if e thenP elseP | while e doP

Figure 1. Programming language grammar

A store is a finite map σ : x 7→ v , and σ(e) is the
value of e in store σ. An execution state is a pair (P , σ).
The execution of a program generates observable actions
(or events) belonging to Act and ranged over by α (Act =
{out(v) | v ∈ Val}). The transition relation (P , σ) α−→
(P ′, σ′), or (P , σ) −→ (P ′, σ′), states that by taking one
execution step in the execution state (P , σ) the execution
generates the visible event α, if it is present, and the new

execution state is (P ′, σ′). We write (P , σ)
(α)−−→ (P ′, σ′)

where α is optional.

DEFINITION 2.1 (Execution).
An execution is a finite or infinite sequence of execution
states.

π = (P0, σ0)
(α0)−−−→ · · · (αn−1)−−−−→ (Pn , σn)

(αn)−−−→ · · · (1)

The execution π is maximal if π is a prefix of the execution
π′ only if π = π′.

We write len(π) for the length (number of transitions)
of the execution π. An execution point, or simply point,
is a pair (π, i) where 0 ≤ i ≤ len(π). An execution
point (π, i) represents the state of the execution π after i
steps. We write trunc(π, i) for the prefix of π up to, and
including, execution state (Pi , σi), the i th execution state
of π. We extend the notations as follows: π(i) = (Pi , σi),
P(π, i) = Pi and σ(π, i) = σi .

In our model, the power of the attacker is modeled by pro-
viding a function trace mapping execution points to traces
that represent what the attacker has been able to observe so
far. In particular, trace(π, i) can span from the truncation
function trunc(π, i) for the strongest attacker able to see
all the internal computation, to the function returning the
last event generated for a weak memory-less attacker. For
the standard noninterference attacker able to observe a set
of identifiers X during the execution, trace is the function
returning the sequence of stores σj (0 ≤ j ≤ i) restricted
to the domain X and where identical consecutive stores are
collapsed. In the remaining of this paper, we use the func-
tion trace given in Def. 2.2. This definition corresponds to

the perfect recall attacker, i.e. only able to observe outputs
and having memory of past observations.

DEFINITION 2.2 (Trace).
A trace τ is an element of Act∗. trace(π, i) is the sequence
of events αj such that 0 ≤ j < i and αj exists. The defini-
tion of trace is trivially extended to executions, such that
trace(π) = trace(π, len(π))

The trace of the execution (1) is: (α0)(α1) · · · (αn) · · ·
A modelM is a set of maximal executions. Normally we

take as a model the set of all maximal executions originating
from some designated set of initial states, for instance of the
shape (P0, σ0) where P0 is a fixed initial program. We write
M(P) for the set of all maximal executions started at all
initial states (P , σ0) for all initial value stores σ0. An epoch
is a set of points reachable by observing a given trace, i.e.
M is implicit,

epoch(τ,M) =

{(π, i) | π ∈M, 0 ≤ i ≤ len(π), trace(π, i) = τ}

The epoch of a trace τ precisely captures the knowledge
obtained by observing τ (in the present possibilistic set-
ting, and ignoring lower level features induced by compil-
ers and run-time systems). For instance, if all points (π, i) ∈
epoch(τ,M) have the property that the store at that point
assigns to x a value between 3 and 5, say, then this fact is
known to the observer once she has observed the trace τ . In
other words, epoch induce a relations of ”equivalent knowl-
edge”. Indeed, epochs induce on points a standard epistemic
S5 modal accessibility relation ∼ by the condition:

(π, i) ∼ (π′, i ′)

⇔ (π, i) ∈ epoch(τ,M) implies (π′, i ′) ∈ epoch(τ,M)

⇔ trace(π, i) = trace(π′, i ′)

3. Linear Time Epistemic Logic
Reflecting the temporal and epistemic structure of models,
we propose to use temporal epistemic logic to express dy-
namic information flow properties of programs. Many such
logics have been considered in the literature [12]. Here we
propose to work with a standard, very general and expressive
logic in the family of temporal epistemic logics, namely the
linear time temporal epistemic logic KL1 without the Next
operator, in this paper referred to as LKU .

DEFINITION 3.1 (Syntax of LKU).
The language LKU of formulas φ, ψ in linear time temporal
epistemic logic is given as follows:

φ, ψ ::= e1 = e2 | initx (e) | φ∧ψ | ¬φ | Kφ | φUψ

Besides boolean identities (e1 = e2), the language contains
additional atomic propositions initx (e) expressing that the
value x in the initial state is identical to the value of e in

the current state. The operator K is the epistemic knowl-
edge operator. Kφ holds if φ holds in any state equivalent
to the current state. In our setting, two states are considered
equivalent if the same sequence of outputs has been gener-
ated before reaching them. The operator U is the standard
(strong) until operator. The formula φUψ holds if ψ holds
in a future state and φ holds until reaching that state.

Various connectives are definable in LKU including stan-
dard derived boolean operators such as ∨ and →, the truth
constants tt and ff , universal ∀x and existential ∃x quan-
tifiers over the finite set of values, the epistemic possibility
operator Lφ meaning that φ holds for at least one epistem-
ically equivalent state, the future operator Fφ requiring φ
to eventually hold in the future, the “always” operator Gφ
meaning that φ holds in any future state, and the weak un-
til φWψ which does not require ψ to eventually hold. In
the remainder of the paper, we use the above connectives as
syntactic sugar with the following definitions.

DEFINITION 3.2 (Syntactic sugar ∀, ∃, L, F , G and W).
∀x . φ =

∧
v∈Val

φ[v/x] ∃x . φ =
∨

v∈Val

φ[v/x]

Lφ = ¬K (¬φ) Fφ = ttUφ Gφ = ¬(F¬φ)

φWψ = (φUψ) ∨Gφ

Since there is no input statement in the programming
language, the only way for secrets to enter a computation
is through the initial state. This, and also the lack of past-
time temporal connectives which would in a more general
setting of reactive programs be a natural device to record
past inputs, explains the purpose of the initial state predi-
cate initx (e) which plays a critical role in capturing what
is known ”now” of the initial store. It has to be noted that
if e is independent from the current state then, as the initial
value of x does not change over time, the majority of tem-
poral variations of initx (e) do not change its semantics as
long as the computation has not terminated yet (initx (e) =
F initx (e) = Ginitx (e) = φU initx (e)).

Noteworthy, also, is that outputs are not reflected in the
syntax of the logic by corresponding operators or constants.
The reason is that output events are of no intrinsic interest to
us; they are relevant only in terms of their effect on observer
knowledge, of which states are considered equivalent with
regard to operators K and L.

DEFINITION 3.3 (Satisfaction).
Fig. 2 defines the satisfaction relation M, (π, i) |= φ
between points in a modelM and formulas. If the modelM
is clear from the context, we write (π, i) |= φ or π, i |= φ
for M, (π, i) |= φ. Satisfaction relative to model M or
program P is:

M |= φ iff ∀π ∈M, M, (π, 0) |= φ

P |= φ iff M(P) |= φ

M, (π, i) |= e1 = e2 iff σ(π, i)(e1) = σ(π, i)(e2)

M, (π, i) |= initx (e) iff σ(π, 0)(x) = σ(π, i)(e)

M, (π, i) |= φ ∧ ψ iff (π, i) |= φ and (π, i) |= ψ

M, (π, i) |= ¬φ iff (π, i) 6|= φ

M, (π, i) |= Kφ iff ∀π′ ∈M,∀(π′, i ′) ∈ π′ such that trace(π, i) = trace(π′, i ′), (π′, i ′) |= φ

M, (π, i) |= φUψ iff ∃j : i ≤ j ≤ len(π) such that (π, j) |= ψ and ∀k : i ≤ k < j , (π, k) |= φ

Figure 2. Formulas satisfaction at execution point

In terms of epochs the formula Kφ expresses that φ holds
for all points in the current epoch; and, dually, Lφ expresses
that φ holds for at least one point in the current epoch, or in
other words, that the observer is unable to rule out ¬φ on the
basis of the outputs received so far.

EXAMPLE 3.1 (Basic example). If the point (π, i) satisfies
the formula G(x = 5) then, in all future execution points
of π, variable x has value 5. If (π, i) satisfies the formula
F (Kφ) then there exists a point (π, j) (with j ≥ i) for
which φ holds for all points (π′, j ′) (including (π, j)) having
the same trace as (π, j) (trace(π, j) = trace(π′, j ′), i.e.
execution π′ after j ′ steps has generated the same output
sequence as execution π after j steps). Combining both
previous formulas, if (π, i) satisfies the formula FKG(x =
5) then there exists a trace τ of a future point (π, i) for which
x equals 5 in every future point of any point having trace τ .

EXAMPLE 3.2 (It is always possible to lose). At the pro-
gram level, if GLF (lost = tt) for program P then, for
all potential traces τ of P , there exists an execution of P
which at one point has generated the trace τ and for which
lost will be equal to tt at some point in the future. In other
words, if the initial state of an execution of P is unknown,
whatever output sequence is observed, it is impossible to
rule out the fact that losing in the future is still possible.

EXAMPLE 3.3 (Eventually, the initial value is deducible).
Still at the program level, if ∃v . FK initx (v) holds for pro-
gram P then for all executions π of P there exists a value v
and a point (π, i) which generates a trace τ for which, for
any execution π′ of P , all points (π′, i ′) generating the same
trace τ (including (π, i)) are such that the initial value of x
is v . In other words, any execution of P will, at some point,
have generated an output sequence from which it is possible
to deduce the initial value of x .

3.1 Relation to Standard Models of Knowledge
Kripke structures are commonly used to give semantics to
modal logics, and hence by extension to epistemic logics
as well [12]. A Kripke structure (for a single agent) is a
triple (S , T ,K) where S is a set of states, T is a valuation
assigning to each atomic proposition a predicate on S , andK

is a binary accessibility relation on states such that (s1, s2) ∈
K if from the observations made by the observer while in
state s1, it is equally possible to be in state s2. For a given
modelM, let SM be the set of all the execution points (π, i)
of the executions π ofM; let TM be the function taking each
atomic proposition of the shape “e1 = e2” or “initx (e)” to
the set of points for which the proposition holds according
to Def. 3.3; and finally, let KM be the binary relation ∼
defined at the end of Sect. 2. Then (SM, TM,KM) is a
Kripke structure for which the standard definitions of the
knowledge operators have the same semantics as the one
provided in Def. 3.3.

Interpreted systems are a refinement of Kripke structures
used to define the semantics of epistemic logics [12, 23]
in terms of multi-agent systems. Roughly, an interpreted
system is a pair (R, T), where R is a set of runs r as
functions from time to global states. A global state is a
tuple composed of an environment state and one state for
every agent in the system. Similarly as in the case of Kripke
structures, T is a function stating if a state formula holds
on a given global state. For a given model M, let RM be
the set of runs rπ such that π ∈ M and r(i) is the pair
composed of the environment state trunc(π, i) with actions
removed and the agent/attacker state trace(π, i). Let T be
defined for formulas of the shape “e1 = e2” or “initx (e)”
according to Def. 3.3, as a predicate on global states. The
semantics of the knowledge operators provided in Def. 3.3
is equivalent to their standard semantics over the interpreted
system (RM, TM).

4. Noninterference
We now discuss how the logic applies to information flow
security properties, adapted to the present setting of output-
only imperative programs. We first consider the concept
of noninterference [16]. In a language-based setting and
considering a two-level security lattice only, noninterference
in a relational (initial-final state) setting requires that no
information about initial values of high identifiers (which we
want to protect) can flow to final values of low identifiers
(which the attacker can observe). This condition is easily

adapted to the present setting of output-only programs by
instead prohibiting high flow to the public outputs.

Write σ1 ≈~x σ2 if the two stores σ1 and σ2 are equivalent
with regard to a set of identifiers ~x , i.e. ∀x ∈ ~x . σ1(x) =
σ2(x). Fix now a set of low identifiers ~l , and let ~h be its
complement, the high identifiers.

DEFINITION 4.1 (ONI).
A program P satisfies output-only noninterference iff:

∀π1, π2 ∈M(P).

σ(π1, 0) ≈~l σ(π2, 0)⇒ trace(π1) = trace(π2)

Intuitively, the definition states that there is no information
flowing from ~h to the attacker if for any maximal execu-
tion having trace τ , all maximal executions started with the
same values for~l produce the same trace. In other words, all
initial secret values (~h) might have given rise to the output
sequence that an attacker is observing. It is worth noting that
this definition subsumes standard noninterference. Indeed,
we only need to modify program P by outputting the values
of low identifiers (~l) whenever they are observable. Termina-
tion sensitivity can also be added by a final dummy output.
We now show how ONI can be encoded in our epistemic
framework.

DEFINITION 4.2 (ESP).

ESP
def= ∀~v . (init~l(~v)→ ∀~u. L(init~l(~v) ∧ init~h(~u)))

The formula ESP is satisfied at a given execution point if ev-
ery initial secret is possible among the execution points hav-
ing the same trace and initial public values. In our epistemic
framework, we claim that a program does not reveal any se-
cret if all its execution points satisfy ESP, i.e. every initial
secret is possible for every trace and public inputs generat-
ing such trace.

DEFINITION 4.3 (AK).
A program P satisfies absence of knowledge iff:

P |= G(ESP)

We first give some examples to show how the logic applies
to programs wrt. standard noninterference and afterwards
prove the equivalence of the above definitions.

EXAMPLE 4.1. Let P ::= x := y ; out(y) be a program
over booleans with x ∈ ~h, y ∈~l . Then P satisfies ONI since
the initial value of y never changes. We show that P satisfies
AK. Consider a modelM associated with program P where
the store is a pair (x , y). Then

M ::=

π1 = (tt , tt)→ (tt , tt) tt→ (tt , tt)

π3 = (tt ,ff)→ (ff ,ff)
ff→ (ff ,ff)

π2 = (ff ,ff)→ (ff ,ff)
ff→ (ff ,ff)

π4 = (ff , tt)→ (tt , tt) tt→ (tt , tt)

One can verify, by case analysis, that M |= G(ESP).
Consider for instance π4. Then v = tt and π4, i |=
inity(v) holds for all 0 ≤ i ≤ 2. We show that π4, i |=
∀u.L(inity(v) ∧ initx (u)) for all i . For i ∈ {0, 1},
trace(π4, i) = ε, so we can find (π1, 0) and (π2, 0) if u = tt
and u = ff , respectively. If i = 2 and u = tt , then (π1, 2)
has the same trace and initial value; otherwise, if u = ff , we
pick (π4, 2). Similarly, the condition holds for other cases.
Let now P ::= x := y ; out(y) with x ∈ ~l , y ∈ ~h . Then, P
falsifies ONI since we output the secret value y to public out-
put. We show for modelM thatM 6|= G ∀v .(initx (v) →
∀u.L(initx (v)∧inity(u))) i.e. ∃π.∃i .∃v .initx (v)∧∃u.∀π′.
∀i ′.trace(π, i) = trace(π′, i ′) then π′, i ′ 6|= (initx (v) ∧
inity(u))). In particular, π3 is a counterexample. Set v = tt
and u = tt; the only executions having the same trace as
π3 are π2 and π3. However, σ(π2, 0)(x) = ff 6= v and
σ(π3, 0)(y) = ff 6= u .

LEMMA 4.1 (Initial values stability). For all vectors of
values ~v and identifiers ~x :

π, 0 |= init~x (~v) implies ∀(π, i) ∈ π : π, i |= init~x (~v)

PROOF. Immediate. By definition of satisfaction relation
π, i |= init~x (~v) iff σ(π, 0)(~x) = ~v . 2

PROPOSITION 4.1 (Equivalence of ONI and AK). For all
programs P :

P |= ONI iff P |= AK

PROOF. (⇒) Assume P satisfies ONI. By definition, given
π1, then for all π2. σ(π1, 0) ≈~l σ(π2, 0), trace(π1) =
trace(π2). In particular any two equal traces have equal
prefix traces of same length. We show that π ∈ M. π, 0 |=
G ∀~v .(init~l(~v) → ∀~u.L(init~l(~v) ∧ init~h(~u))). Pick any
π ∈ M and ~v ∈ Val ; then we show for all 0 ≤ i ≤ len(π).
π, i |= (init~l(v)→ ∀~u.L(init~l(v)∧init~h(~u))). Namely, as-
sume π, i |= init~l(~v) then for any ~u ∈ Val there exists π′, i ′.
trace(π, i) = trace(π′, i ′) ∧ (π′, 0) |= init~l(~v) ∧ init~h(~u).
Let nowMa ⊆M be such that ∀π ∈ Ma . σ(π, 0)(l) = a .
Then M =

⋃
a∈ValMa . By ONI condition, for all π ∈

Ma . trace(π) = τ for some trace τ and any initial ~h . Then,
using Lemma 4.1 and chopping off execution π we get the
result for all (π, i). The same argument can be used for any
Ma , so we are done.
(⇐) Suppose now ∀π ∈ M. π, 0 |= G ∀~v .(init~l(v) →
∀~u.L(init~l(v)∧ init~h(~u))). We show ONI holds. By hypoth-
esis, pick π ∈ M with σ(π, 0)(l) = v , then we show that
for all π′ such that σ(π′, 0)(l) = v , trace(π) = trace(π′).
By hypothesis, given π, in particular it is always possible to
find π′ with same initial values ~v , for any ~u having the same
trace. 2

EXAMPLE 4.2. Let P be a program manipulating two pri-
vate variables h1, h2 over boolean domain.

P ::= if h1 then out(¬h2) else out(h2)

The program is not secure since it reveals whether the secrets
are equal or not i.e. h1 = h2. In fact, for all input states
where h1 = h2 i.e. (tt , tt), (ff ,ff), P outputs ff , otherwise
it outputs tt and this is captured by Def. 4.3.

On the other hand, we will see in the following section that
if one agrees to declassifies φ := h1 = h2 then Def. 5.3 will
deem the program secure.

5. Declassification: What
Noninterference guarantees an end-to-end confidentiality
policy, namely as soon as a program conveys 1 bit of se-
cret information, it is ruled out by the condition. In real
applications this policy turns out to be restrictive, as in many
scenarios partial information leakage is considered admis-
sible. Declassification policies handle those acceptable, or
even desired, information leakages [28]. For example, a cus-
tomer may be allowed to access a scientific article (secret
data) once she has paid the registration fee to some on line
provider. In this case, an intentional release of secret infor-
mation is needed. Declassification has been recognized as
one of the main challenges in information flow security [25].
The main concern is to prove that declassification is safe and
the attacker is unable to compromise the release mechanism
and disclose more sensitive information than stated in the
policy. Many authors have addressed the problem from dif-
ferent points [1, 2, 4, 10, 19, 26]. In particular, in [28], the
authors present a classification of different flavors of declas-
sification. In this section and the following ones, we show
how our temporal epistemic framework captures in an ele-
gant way those dimensions.

One way of modeling declassification is by means of a
predicate φ over initial values which expresses the prop-
erty one intends to declassify. In that case, one has to make
sure that states having the same property φ can not be dis-
tinguished by the attacker. This idea originates from selec-
tive dependency [10] and corresponds to the What dimension
[28]. In particular, the programmer should specify a global
declassification policy φ and the enforcement mechanism
has to ensure that no information other than what is speci-
fied in the policy can be disclosed by the attacker. For ex-
ample, the information system of a company can release the
average salary of an employee, but it shouldn’t be possible
to reveal, for instance, the salary of a certain employee. Let
σ1 ≈φ σ2 denote equivalent states according to the declassi-
fication policy φ i.e. σ1(φ) = σ2(φ).

DEFINITION 5.1 (NID).
Let φ be a global declassification policy. A program P sat-

isfies noninterference modulo declassification φ iff:

∀π1, π2 ∈M(P).

(σ(π1, 0) ≈~l σ(π2, 0) ∧ σ(π1, 0) ≈φ σ(π2, 0))

⇒ trace(π1) = trace(π2)

The definition of NID specifies that any initial state having
the same public values and agreeing on φ should produce the
same output trace.

Let us now see how global declassification policies can
be expressed in our model. We first introduce the formula
ESPM. An execution point satisfies ESPM(Φ) where Φ is a
set of declassification policies iff, among the other execution
points having the same trace and initial public values, every
initial secret agreeing on Φ is possible.

DEFINITION 5.2 (ESPM).

ESPM(Φ) def=

∀~v1. ∀~u1. init~l(~v1) ∧ init~h(~u1)→

∀~u2. (
∧
φ∈Φ

φ(~v1, ~u1) = φ(~v1, ~u2))→

L(init~l(~v1) ∧ init~h(~u2))

PROPOSITION 5.1 (Equivalence of ESP and ESPM(∅)). For
all execution points (π, i):

(π, i) |= ESP iff (π, i) |= ESPM(∅)

PROOF. This proposition follows directly from the fact that if
Φ is empty then

∧
φ∈Φ is vacuously true and init~h(~u1) holds

for at least one vector of values ~u1. 2

PROPOSITION 5.2 (Monotonicity of ESPM). For all exe-
cution points (π, i) and sets of declassifications Φ and Ψ:

(π, i) |= ESPM(Φ) implies (π, i) |= ESPM(Φ ∪Ψ)

PROOF. This proposition follows trivially from the second
implication in the formula of ESPM. Whenever the left part
of the implication

∧
φ∈Φ∪Ψ holds then

∧
φ∈Φ also holds; and

the right part of the implication is the same in both cases, so
if the L formula holds with Φ it still holds with Φ ∪Ψ. 2

COROLLARY 5.1 (ESP subsumes ESPM). For all execu-
tion points (π, i) and sets of declassifications Φ:

(π, i) |= ESP implies (π, i) |= ESPM(Φ)

PROOF. This is a direct corollary of Prop. 5.1 and 5.2. 2

DEFINITION 5.3 (AKD).
Let φ be a global declassification policy. A program P sat-
isfies absence of knowledge modulo declassification φ iff:

P |= G(ESPM({φ}))

o1 o2 o3

~l

~l + φ
Insecure
Secure

Time

K
no

w
le

dg
e

Figure 3. Knowledge and Declassification

Figure 3 illustrates the intuition behind our security con-
dition. The graphic presents the knowledge about initial se-
crets that an attacker gains by observing a certain trace
τ = o1o2o3 as function of time elapsed from the begin-
ning of computation. The black solid line shows the evolu-
tion of attacker knowledge at each output point and in par-
ticular how it can possibly increase in each epoch. Initially
the attacker has knowledge about public identifiers. On the
other hand the red dotted line shows the global declassifi-
cation policy represented by a predicate φ. As long as the
solid line remains below the dotted line the declassification
is safe, namely the attacker knowledge is smaller than the in-
formation released intentionally prior to program execution.
In this case, one can see that after the second observation
point o2 the attacker learns more than the policy allows, thus
the program becomes insecure.

PROPOSITION 5.3 (Equivalence of NID and AKD). For all
programs P :

P |= NID iff P |= AKD

PROOF. The proof is similar to the one for Prop. 4.1. 2

It is worth noting that if the declassification policy states
“No secret information can be leaked”, then the property
becomes φ = tt and AKD will correspond to AK. We
illustrate the above condition by means of an example.

EXAMPLE 5.1. Consider the program P with h ∈ ~h .

P ::= if (h = 0) then out(1) else out(2)

One can spot an implicit flow due to dependence on a condi-
tional on secret h . LetM be a model of P . To falsify Def. 4.3,
pick π such that σ(π, 0)(l) = σ(π, 0)(h) = 0. Then, pick π′

such that σ(π′, 0)(l) = 0 and σ(π′, 0)(h) 6= 0. It is easy to
see that trace(π) 6= trace(π′). Suppose now we declassify
the zeroness of h i.e. φ := (h = 0). All executions originat-
ing from h = 0 produce the same trace i.e. output 1. On the
other hand, all executions originating from ¬φ := (h 6= 0)
also produce the same trace, i.e. output 2. Hence, the pro-
gram is secure. It is worth to noting how Def. 5.3 rules out
programs that reveal more than what is allowed by the de-
classification policy. Suppose we want to declassify the sign
of identifier h , namely φ := (h ≥ 0). Then, P becomes in-
secure since the attacker is now able to distinguish between

values having the same property φ. In particular let h1 = 0
and h2 = 1, so φ(h1) = φ(h2). In that case P outputs 1 and
2, respectively, so it is deemed insecure.

Abstract Non-Interference Abstract Non-Interference (ANI)
is an abstract interpretation based approach for modeling and
certifying information flow properties[14]. This framework
characterizes different qualitative aspects related to global
declassification policies and attacker observational power.
In particular, using the notion of abstract domain, the au-
thors give an extensional model of what an attacker is al-
lowed to see of public data (attacker power) and of what she
is allowed to disclose of secret data (declassification). For
example, let P be a program with l ∈~l , h ∈ ~h .

P ::= if (h ≥ 0) then l := 2l ∗ h else l := 2l ∗ h + 1

Clearly, there is an direct flow to public identifier l which
conveys the value of secret h . However, if one is interested
in releasing only the sign of secret identifier h in input and
considers a weaker attacker who is able to observe only the
parity of identifier l in output then P will be secure. Indeed,
fix the initial value of low identifier l and consider initial
values of h in input having the same sign, say h < 0. It can
be easily seen that the final value of l will have the same
parity; in this case it will correspond to an odd value. This
definition is called Narrow ANI via allowing [21]. Let η, φ, ρ
be the abstract domains for public input, declassified private
input and public output, respectively.

DEFINITION 5.4 (NANI).
A program P satisfies Narrow ANI, (η)P(φ⇒ ρ), iff:

∀l1, l2 ∈~l ,∀h1, h2 ∈ ~h :

η(l1) = η(l2) ∧ φ(h1) = φ(h2)

⇒ ρ([[P]](h1, l1)) = ρ([[P]](h2, l2))

Basically it states that for any initial public values having
property η and for any private initial values having property
φ, the result of the computation has property ρ over public
outputs. In particular the previous example corresponds to
checking (Id)P(Sign ⇒ Par).
There is a nice relation between NANI and our epistemic
framework. One can look at the abstractions over public in-
put domain and public output domain as abstractions over
channels receiving and releasing these values, respectively.
More concretely, suppose one wants to check NANI for
(η)P(φ⇒ ρ). In order to model the attacker power in output
we can use the output actions out(e) and check the follow-
ing formula wrt. a model M of the program P ; out(ρ(l)).
Given a pair (~u, ~v) we denote by fst and snd , respectively,
the first and the second component of such a pair.

DEFINITION 5.5 (AAK).
A program P satisfies abstract absence of knowledge w.r.t.
abstractions ρ, η and φ iff:

P ; out(ρ(~l)) |= G(ESPM({η ◦ fst , φ ◦ snd}))

On the other hand, the public input abstraction η deserves
some explanation. It can happen that Def. 5.5 fails because
the attacker is able to distinguish two input states having
the same property η. Consider a model M of the program
P ::= l := 2l ∗ h2; out(Sign(l)) where η = Par and
φ = Id . Let π be a maximal execution originating from ini-
tial state σ such that σ(π, 0)(l) = 2 and σ(π, 0)(h) = 1.
Then one can find another maximal execution π′ such
that σ(π′, 0)(l) = −2 and σ(π′, 0)(h) = 1. Clearly
Par(σ(π, 0)(l)) = Par(σ(π′, 0)(l)) and φ = tt , while the
sign of the outputs are different i.e. Sign(4) 6= Sign(−4).
In [14] this is called deceptive flow, since it only depends
on variations of public inputs. However, if one interprets the
public input abstraction η as secret knowledge that should
not be controlled or disclosed to the attacker then it is reason-
able to rule out the program above. Indeed, here the attacker
is disclosing a property stronger than Par since she observes
variations of the sign for inputs of even parity.
We now show the equivalence of these definitions and post-
pone a further investigation of relation to abstract non-
interference as future work.

PROPOSITION 5.4 (Equivalence of NANI and AAK). For
all programs P :

P |= NANI iff P |= AAK

PROOF. It is enough to observe that the abstract domain ρ
in NANI can be considered as a predicate over public output
states. In that case the output action in AAK models the same
property. 2

We conclude this section by discussing an interesting exam-
ple.

EXAMPLE 5.2. Let P be a program that manipulates a se-
cret variable h ∈ ~h , initially known to range over non-
negative numbers up to some constant max . We express this
fact by a declassification policy φ = 0 ≤ h ≤ max . Then
P is secure since it outputs the same sequence of numbers in
every run.

P ::=

 x := 0;
while (x < h) do out(x); x + +;
while (x < max) do out(x); x + +;

Program P satisfies Def 5.3. Too see this, consider a model
M of P , a maximal execution π originating from σ0 =
(max0, x0, h0) and any point i . 0 ≤ i ≤ len(π). Assume
φ(h0) holds, then for all values hi such that φ(hi), it is pos-
sible to find an execution π′ originating from (max0, x0, hi)
and a point i ′ such that trace(π, i) = trace(π′, i ′). In
fact, all executions produce a increasing trace of numbers
of length at most max0. If φ(h0) does not hold then all exe-
cutions produce the empty trace.

6. Declassification: Where
Another well-studied form of declassification regards where
in the system sensitive information can be released. In our
framework, the only way to leak secret information is by
means of output operations. In particular, any flow of infor-
mation from a high identifier h to a low identifier l is per-
fectly fine as long as secret data is not being output. It is ir-
relevant at which point of a certain epoch the declassification
occurs. For this reason, assume that declassification takes
place together with the output actions. We model the release
points in the code by special boolean flags re initially false
and once set to true the program can release the value of ex-
pression e . Moreover, the flag can no more be updated once
it is set to true. Assume we are given a set of release points
interspersed in the program, say Rp = {re1 , · · · , ren}, and
the corresponding release expressions R = {e1, · · · , en}
then the goal is to check whether program P leaks more in-
formation that what the programmer has already allowed to
be disclosed by means of the release points encountered so
far. It is worth recalling that our model intends to protect
the initial value of secret data, not the current ones. This ob-
jective is in line with most other work on noninterference.
Let P(R) be the power set of R and Ē be the complement
of E in R. The formula expressing the absence of attacker
knowledge is given next.

DEFINITION 6.1 (AKR).
Let {re1 , · · · , ren

} be the boolean variables, initially false,
serving as flags for the release policy R. A program P
satisfies absence of knowledge modulo releaseR iff:

P |= G
∨

E∈P(R)

(
ESPM(E) ∧

∧
ei∈E

rei ∧
∧

ej∈Ē

¬rej

)
Note that the conditions above are mutually exclusive with
respect to release points, namely given π and i , only one
formula in the disjunction holds and that corresponds to the
one with release points set to true in execution trunc(π, i).

EXAMPLE 6.1. Consider program P with h1, h2 ∈ ~h and
l ∈~l .

l := h1; rh1 := tt; out(l); l := h2; rh2 := tt; out(l);

Stores are vectors (l , h1, h2) and ~h is the high store (h1, h2).
Intuitively P is secure since the value of a secret is always
declassified before being output. Pick π ∈ M(P). We show
that Def. 6.1 holds for (π, 0). Initially E = ∅ is the only
candidate such that

∧
ei∈E rei

∧
∧

ej∈Ē ¬rej
. It remains to

prove that π, 0 |= ESPM(∅). This trivially holds until the
first release point as the trace of any execution up to this
point is empty and any execution generates an empty trace
at some point. Then, we move on to (π, 2) which is the first
execution point after setting the first release flag. At this
point, ESPM({h1}) is required to hold. For the same reason
as above, ESPM(∅) holds and by Prop. 5.2 ESPM({h1})
also holds. The trace of (π, 3) is “h1”, where h1 is the initial

value of h1, and ESPM({h1}) is still the formula required to
hold. Among all the execution points whose trace is h1 and
whose execution has started with the same initial values for
l and h1, there is at least one point whose execution has
started with h2 = h2 for any h2. Hence, (π, 3) satisfies
ESPM({h1}). Similarly, (π, 4) |= ESPM({h1}), (π, 5) |=
ESPM({h1, h2}) and (π, 6) |= ESPM({h1, h2}). Hence, P
satisfies AKR.

We now show how Def. 6.1 relates to a similar security
condition called gradual release [1]. Although gradual re-
lease considers a slightly different computational model, the
basic idea is that the attacker knowledge is constant between
release points. In the same spirit, we compute the attacker
knowledge for a given trace and compare it with the infor-
mation released over that trace. In particular, if the attacker
knowledge is greater than what has been declassified so far,
there is an insecure leakage. Given a program P , an initial
store σ0 and a trace τ originating from that store, we define
the knowledge over the trace K(P , σ0, τ) as the set of initial
stores that could have led to that trace.

K(P , σ0, τ) =

{σ(π, 0) | ∃(π, i) : σ(π, 0) ≈~l σ0 ∧ trace(π, i) = τ}

As pointed out by Askarov and Sabelfeld [1], this set corre-
sponds to the uncertainty of an attacker observing trace τ .

When reaching a point whose trace is τ and execution
started in σ0, a certain number of release point rφ have been
executed. Let Dσ0,τ be the set of common release points
that have been executed when reaching any point whose
trace is τ and execution started in σ0 and Φσ0,τ = {φ |
rφ ∈ Dσ0,τ}. Moreover, let R(P , σ0, τ) be the maximum
knowledge authorized, or minimum uncertainty required, at
a point whose trace is τ for an execution started with the
value store σ0.

R(P , σ0, τ) = {σ | σ ≈~l σ0 ∧
∧

φ∈Φσ0,τ

σ0(φ) = σ(φ)}

Then, a program is secure if the information disclosed by
observing a given trace is less than the information released
over that trace; or if the required uncertainty is a subset of
the attacker uncertainty.

DEFINITION 6.2 (ER).
A program P satisfies epistemic release iff:

∀σ0, τ : R(P , σ0, τ) ⊆ K(P , σ0, τ)

EXAMPLE 6.2. Consider the program in Example 6.1 over
a boolean domain and (l , h1, h2) a triple corresponding to
a store. Take σ0(l) = tt . Then, for the empty trace ε, we
have K(P , σ0, ε) = R(P , σ0, ε) = {(tt , ,)}. Now we pick
τ = tt and K(P , σ0, tt) = R(P , σ0, tt) = {(tt , tt ,)}
since we release h1. Proceeding in this way it is easy to prove
that P satisfies ER. Suppose that we don’t release h1 at the

first output. Then we have R(P , σ0, tt) = {(tt , ,)} which
is clearly not contained in K(P , σ0, tt).

PROPOSITION 6.1 (Equivalence of AKR and ER). For all
programs P :

P |= AKR iff P |= ER

PROOF. (⇒) Assume P |= AKR. Let π ∈ M(P). We
show that for all prefixes τ of trace(π),R(P , σ(π, 0), τ) ⊆
K(P , σ(π, 0), τ). Consider (π, i) such that trace(π, i) = τ
and release points rφ1 , · · · , rφk

being active. By Def. 6.1,
π, i |= ESPM(E) where E = {φ1, · · · , φk}. Basically, it
says that for all (π′, 0) such that σ(π, 0) ≈~l σ(π′, 0) and∧
φ∈E σ(π, 0)(φ) = σ(π′, 0)(φ) (i.e. (π′, 0) ∈ R(P , σ0, τ)),

there exists (π′, i ′) such that trace(π′, i ′) = τ (i.e. (π′, 0) ∈
K(P , σ0, τ)). This is exactly ER.
(⇐) Assume P |= ER, we show that P |= AKR. Pick
any π ∈ M(P) and (π, i) ∈ π. Let σ0 = σ(π, 0), τ =
trace(π, i) and E = {φ1, · · · , φk} the set of release whose
flag has been set. By Def. 6.1, AKR requires only ESPM(E)
to hold at (π, i). By hypothesis and Def. 6.2,R(M, σ0, τ) ⊆
K(M, σ0, τ); therefore, for all π′ such that σ0 ≈~l σ(π′, 0)
and

∧
φ∈Φσ0,τ

σ0(φ) = σ(π′, 0)(φ), there exists (π′, i ′) such
that trace(π′, i ′) = τ . As Dσ0,τ ⊆ E , it implies ESPM(E).
2

r1 r2 r3 r4o1 o2 o3

~l

Insecure
Secure

Time

K
no

w
le

dg
e

Figure 4. Knowledge and Release

Figure 4 explains the epistemic release wrt. the attacker
knowledge. As before, the graphic corresponds to the knowl-
edge about initial secrets that program semantics releases by
means of the output trace τ = o1o2o3. The black solid line
shows how the knowledge can possibly increase in each out-
put point by disclosing information about the secrets. The
red dotted line shows the secret information declassified in
each epoch by release points ri . Since the dotted line remains
above the solid line, the attacker knowledge is less than what
the programmer releases by means of these points. Hence the
program will satisfy the security condition.

EXAMPLE 6.3. Consider a program P (variation of [17])
with secret , x , y ∈ ~h and in, l ∈~l . P allows a local release
point rφ with declassification policy φ = hash(h) mod 264 =
in i.e. private variable secret can only be leaked comparing

the least 64 bits of his hashed value to public input variable
y .

P ::=

 x := hash(h); y = x mod 264;
if y = in then l := 0 else l := 1;
rφ; out(l);

Applying Def. 6.1, one can see that for any fixed initial value
of identifiers in, l , for all initial values h having property φ
the output value is 1 and all initial h having property ¬φ the
output value is 2. However, if we append to P the following
lines of code (where z ∈~l), it becomes insecure.

P ′ ::= P ; z := x mod 3; out(z)

Indeed, pick h1, h2 satisfying φ and hash(h1) mod 3 6=
hash(h2) mod 3, then it violates the release policy.

7. Declassification: When
The last dimension of declassification addressed in this pa-
per is the “when” dimension [28]. Following an approach
similar to the one of Chong and Myers [9], a temporal de-
classification is a pair (φC , φD) composed of a declassified
property φD and a time predicate φC which specifies when
to declassify φD . During any execution, as soon as φC holds,
outsiders are allowed to learn φD now and in the future. Let
Φ be a set of temporal declassifications, ΦC denotes the set
of time predicates of Φ (ΦC = {φC | (φC , φD) ∈ Φ})
and ΦD denotes the set of declassified properties of Φ. It
has to be noted that there are two types of temporal declas-
sifications. If φC applies to values which are constant dur-
ing the execution (such as the initial value of a given vari-
able) or are expressed using init in our model, (φC , φD)
describes for which executions an information can be out-
put. A policy stating that a salary can be output only if it is
lower than a given constant is an example of such an inter-
execution temporal declassification. On the other hand, if φC

applies to variables whose value vary during the execution
then (φC , φD) describes after which event an information
can be leaked. An intra-execution temporal declassification
is for example a policy stating that an information can be
provided only after it has been paid for.

Following the standard definitions of NI (Def. 4.1) and
NID (Def. 5.1), Def. 7.1 formally defines noninterference
modulo temporal declassifications. It states that at any point
(π1, i1) of any execution π1, for any execution π2 started
with the same initial public values (σ(π1, 0) ≈~l σ(π2, 0))
and agreeing on declassifications (σ(π1, 0) ≈ψD σ(π2, 0))
activated so far (∃j : 0 ≤ j ≤ i1 ∧ σ(π1, j)(φC)), there
should exists a point (π2, i2) which has the same trace as
(π1, i1).

DEFINITION 7.1 (NITD).
Let Φ be a a set of temporal declassifications, i.e. a set

of pairs (φC
i , φ

D
i). A program P satisfies noninterference

modulo temporal declassifications Φ iff:

∀π1, π2 ∈M(P),∀(π1, i1) ∈ π1 :
σ(π1, 0) ≈~l σ(π2, 0) ∧∧
(φC ,φD)∈Φ

{ (
∃j : 0 ≤ j ≤ i1 ∧ σ(π1, j)φC

)
⇒ σ(π1, 0) ≈φD σ(π2, 0)

⇒ ∃i2, trace(π1, i1) = trace(π2, i2)

In our framework, this complex predicate can be natu-
rally expressed using once again the ESPM formula. Defini-
tion 7.2 provides the complete epistemic temporal formula
that has to hold in order for a program P to satisfy absence
of knowledge modulo temporal declassifications Φ.

DEFINITION 7.2 (AKTD).
Let Φ be a set of temporal declassifications. A program P
satisfies absence of knowledge modulo temporal declassifi-
cations Φ iff:

P |=
∧

Ψ∈P(Φ)

 ESPM(ΨD)W

 ∨
φ∈(Φ\Ψ)C

φ

For any subset of declassification policies Ψ ⊆ Φ, non-

interference modulo declassifications ΨD (ESPM(ΨD)) has
to hold until the condition φC of an information not declassi-
fied by ΨD holds (φD /∈ ΨD). In particular, noninterference
(ESPM(∅) by Prop. 5.1) has to hold until the first informa-
tion is declassified. Generally, if ΨC is the set of all declas-
sification conditions which have been triggered so far, non-
interference modulo ΨD and all superset of ΨD has to hold
(∀ΨD

2 : ESPM(ΨD ∪ ΨD
2)). However, by Prop. 5.2, non-

interference modulo ΨD subsumes noninterference modulo
any superset of ΨD , and is therefore the real policy enforced
when the set of conditions triggered so far is ΨC .

PROPOSITION 7.1 (Equivalence of NITD and AKTD).
For all programs P :

P |= NITD iff P |= AKTD

PROOF. Let Φ(π,i) ⊆ Φ be the set of all temporal declassi-
fications (φC , φD) which have been triggered at execution
point (π, i) (∃j : 0 ≤ j ≤ i ∧ σ(π, j)φC).
(⇒) For all execution points (π1, i1) and initial stores σ0

2

which have the same public values as the initial store of
(π1, i1) (σ(π1, 0) ≈~l σ

0
2) and agree on ΦD

(π,i) (σ(π1, 0) ≈ΦD
(π,i)

σ0
2), there exists an execution π2 started in the initial state σ0

2

which has the same trace as (π1, i1) at some point (π2, i2).
This follows from Def. 7.1, the fact that for all φC not in
ΦC

(π,i) there is no execution point preceding or equal to
(π1, i1) such that φC holds, and σ1 ≈ΦD

(π,i)
σ2 implies

σ1 ≈φD σ2 for all φD in ΦD
(π,i).

The above statement corresponds to: ESPM(ΦD
(π1,i1)) holds

for all point (π1, i1) (Def. 5.2). All the rest of the proof fol-
lows from it. First showing that for any subset Ψ of Φ and
execution point, either ESPM(Ψ) holds (1) or there exists
φ ∈ (Φ \Ψ) such that φ holds in the current execution point
or a preceding one (2). Then, AKTD is proved by contra-
diction. If AKTD does not hold then there exists a subset
Ψ of Φ and an execution point (π, i) such that ESPM(Ψ)
does not hold at (π, i), which would contradict (1), and no
φ ∈ (Φ \ Ψ) is such that φ holds in (π, i) or a preceding
point, which would contradict (2).
For any Ψ, Prop. 5.2 implies that ESPM(ΦD

(π1,i1)∪Ψ) holds
at (π1, i1). Hence, for any Ψ ⊇ ΦD

(π1,i1), (1) holds, and
a fortiori (1) or (2). For any Ψ ∈ P(Φ) not superset of
Φ(π1,i1), there exists φ ∈ Φ(π1,i1) \ Ψ) such that φ belongs
to Φ \ Ψ and holds at (π1, i1) or a preceding state. Hence,
for any Ψ 6⊇ ΦD

(π1,i1), (2) holds, and a fortiori (1) or (2).
Therefore, NITD⇒ AKTD.
(⇒) The proof follows in the reverse order the same equiv-
alence relations as above; relying on the fact that for any
point (π1, i1) ESPM(ΦD

(π,i)) has to hold. 2

EXAMPLE 7.1. Let P , whose code is provided below, be a
program that outputs a data after payment of its cost .

while paid < cost do {paid := paid + note};
if cost > max then out(”ok”) else out(paid);
out(data)

Initial value stores (paid ,note,max , cost , data) are of the
shape (0, n, m, c, d) where n, m, c and d are integers. The
intended security policy is that the initial values of paid ,
note and max are public and everything else should be
kept secret, except for the cost which can be revealed
only if it is not greater than max (note that if cost is
not lower than max then the final value of paid must not
be revealed either) and data which can be output after
payment. In our framework, this policy is formalized by
paid ,note,max ∈ ~l and Φ = {(tt , cost > max), (cost ≤
max , cost), (paid ≥ cost , data)}. The first declassification
of cost > max may seem unnecessary, however in order
to reveal the cost only if cost ≤ max it is required to de-
classify cost > max . Possible traces of P are: “” while
still paying, “ok” and “ok d” if c > m, otherwise “x”
and “x d” where x = n × dc ÷ ne. Obviously, any execu-
tion point of P before the first output satisfies noninterfer-
ence and ESPM(Ψ) for all Ψ (Prop. 5.1). However, as the
time predicate of cost > max is tt , AKTD never requires
ESPM(∅) to be satisfied. Only ESPM({cost > max}) is
required to be satisfied at the beginning of the execution if
c > m, otherwise ESPM({cost > max , cost}) which is
equivalent to ESPM({cost}) as max contains a public data
(any executions started with the same public data and cost
have to agree on cost > max). After the loop, payment has
been made and paid ≥ cost implies that AKTD only re-

quires ESPM({cost > max , data}) to be satisfied if c > m,
and otherwise ESPM({cost > max , cost , data}) which is
equivalent to ESPM({cost , data}). If c > m then next traces
are “ok” and “ok d”. For any initial value store differing
only on cost but such that cost > max , there exist an ex-
ecution point whose trace is “ok” and another for “ok d”.
For executions where c ≤ m and after the loop, AKTD only
requires that executions started with the same initial value
store can generate the same trace. Hence, P satisfies AKTD.

8. Conclusion and Future Work
We have pointed out a strong connection between temporal
epistemic logic and several security conditions studied in the
area of language-based security, including (state-based) non-
interference and various flavors of declassification. We claim
that temporal epistemic logic appears to be a well suited log-
ical framework to express and study information flow poli-
cies. There have been other attempts at building such gen-
eral frameworks in the past, including McLean’s selective
interleaving functions [22] and Mantel’s modular assembly
kit [18]. These approaches are quite different, and focus
more on the modular construction of security properties than
their extensional properties. Other notable attempts include
Banerjee, Naumann and coauthors work on information flow
logics (cf. [3] involving various specialized constructs to
constrain data flow and dependencies between variables. An
interesting feature of the epistemic account of information
flow is that indirect flows are handled completely indirectly:
it is never necessary to explicitly talk about variables on dif-
ferent executions being in agreement, or depending on each
other; information flow is fully captured in terms of the ef-
fects of these dependencies on agents knowledge.

Our approach is not yet general enough to handle general
trace-based conditions. This paper considers programs with
output events only, whereas most work on trace-based secu-
rity conditions address traces consisting of both output and
input events. There is no problem in principle to extend our
approach to programs with both inputs and outputs, e.g. the
interactive programs considered by Bohannon et al [6]. Ex-
tending the study in this direction to better understand the
role and limits of temporal epistemic definability in security
modeling is an important line of inquiry for future work.

The reader will have noticed that we actually use only a
very small fragment of the logic we set out to study. For in-
stance, we only use the epistemic possibility operator L and
never its dual K (epistemic necessity, knowledge), and never
use nesting of epistemic connectives. The former is due to
our focus on confidentiality rather than integrity properties.
Temporal epistemic logic in its standard form may be richer
than needed for the application domain; computational or
proof-theoretical gains may be made by considering sparser
languages. Related to this is the general problem of tractabil-
ity, and if the temporal epistemic setting can be used to de-
velop techniques for more precise information flow analysis.

References
[1] A. Askarov and A. Sabelfeld. Gradual release: Unifying

declassification, encryption and key release policies. In IEEE
Symposium on Security and Privacy, pages 207–221, 2007.

[2] M. Balliu and I. Mastroeni. A weakest precondition approach
to robustness. Transactions on Computational Science, 10:
261–297, 2010.

[3] A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive
declassification policies and modular static enforcement. In
IEEE Symposium on Security and Privacy, pages 339–353,
2008.

[4] G. Barthe, S. Cavadini, and T. Rezk. Tractable enforcement
of declassification policies. In CSF, pages 83–97, 2008.

[5] A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-
based modelling of voting protocols. In Proceedings of the
11th conference on Theoretical aspects of rationality and
knowledge, TARK ’07, pages 62–71, New York, NY, USA,
2007. ACM.

[6] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and
S. Zdancewic. Reactive noninterference. In ACM Confer-
ence on Computer and Communications Security, pages 79–
90, 2009.

[7] M. Burrows, M. Abadi, and R. M. Needham. A logic of
authentication. ACM Trans. Comput. Syst., 8(1):18–36, 1990.

[8] R. Chadha, S. Delaune, and S. Kremer. Epistemic logic for
the applied pi calculus. In D. Lee, A. Lopes, and A. Poetzsch-
Heffter, editors, Formal Techniques for Distributed Systems,
volume 5522 of Lecture Notes in Computer Science, pages
182–197. Springer Berlin / Heidelberg, 2009.

[9] S. Chong and A. C. Myers. Security policies for downgrading.
In Proceedings of the 11th ACM conference on Computer
and communications security, CCS ’04, pages 198–209, New
York, NY, USA, 2004. ACM.

[10] E. S. Cohen. Information transmission in sequential programs.
Foundations of Secure Computation, pages 297–335, 1978.

[11] M. Cohen and M. Dam. A complete axiomatization of knowl-
edge and cryptography. In LICS, pages 77–88, 2007.

[12] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning
about knowledge. MIT Press, Cambridge, Mass., 1995.

[13] P. Gammie and R. van der Meyden. Mck: Model checking the
logic of knowledge. In CAV, pages 479–483, 2004.

[14] R. Giacobazzi and I. Mastroeni. Abstract non-interference:
Parameterizing non-interference by abstract interpretation. In
Proc. of the 31st Annual ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages (POPL ’04), pages
186–197, New York, 2004. ACM-Press.

[15] J. A. Goguen and J. Meseguer. Unwinding and inference
control. In Proc. IEEE Symp. on Security and Privacy, pages
75–86. IEEE Computer Society, Apr. 1984.

[16] J. A. Goguen and J. Meseguer. Security policies and security
models. In Proc. IEEE Symp. on Security and Privacy, pages
11–20, Los Alamitos, Calif., 1982. IEEE Comp. Soc. Press.

[17] P. Li and S. Zdancewic. Downgrading policies and relaxed
noninterference. In POPL, pages 158–170, 2005.

[18] H. Mantel. The framework of selective interleaving functions
and the modular assembly kit. In FMSE, pages 53–62, 2005.

[19] H. Mantel and D. Sands. Controlled declassification based on
intransitive noninterference. In APLAS, pages 129–145, 2004.

[20] R. Mardare and C. Priami. Decidable extensions of hennessy-
milner logic. In E. Najm, J. Pradat-Peyre, and V. Donzeau-
Gouge, editors, Formal Techniques for Networked and Dis-
tributed Systems - FORTE 2006, volume 4229 of Lecture
Notes in Computer Science, pages 196–211. Springer Berlin
/ Heidelberg, 2006.

[21] I. Mastroeni. On the role of abstract non-interference in
language-based security. In In The Third Asian Symposium on
Programming Languages and Systems (APLAS’05)., volume
3780 of Lecture Notes in Computer Science, pages 418–433.
Springer-Verlag, 2005.

[22] J. McLean. A general theory of composition for a class of
“possibilistic” properties. IEEE Trans. Software Eng., 22(1):
53–67, 1996.

[23] F. Raimondi and A. Lomuscio. Automatic verification of
multi-agent systems by model checking via ordered binary
decision diagrams. Journal of Applied Logic, 5(2):235 – 251,
2007.

[24] B. P. S. Rocha, S. Bandhakavi, J. den Hartog, W. H. Winsbor-
ough, and S. Etalle. Towards static flow-based declassification
for legacy and untrusted programs. In IEEE Symposium on
Security and Privacy, pages 93–108, 2010.

[25] A. Sabelfeld and A. Myers. Language-based information-flow
security. IEEE J. on selected ares in communications, 21(1):
5–19, 2003.

[26] A. Sabelfeld and A. C. Myers. A model for delimited informa-
tion release. In N. Y. K. Futatsugi, F. Mizoguchi, editor, Proc.
of the International Symp. on Software Security (ISSS’03),
volume 3233 of Lecture Notes in Computer Science, pages
174–191, Berlin, 2004. Springer-Verlag.

[27] A. Sabelfeld and D. Sands. A per model of secure information
flow in sequential programs. In ESOP, pages 40–58, 1999.

[28] A. Sabelfeld and D. Sands. Declassification: Dimensions and
principles. J. of Computer Security, 2007.

