VETENSKAP %
38 OCH KONST ©F

%@?

Nada dr en gemensam institution mellan
Kungliga Tekniska hogskolan och Stockholms universitet.

Developing and Evaluating Language
Tools for Writers and Learners of Swedish

OLA KNUTSSON

Avhandling som med tillstand av Kungliga Tekniska hogskolan
framlagges till offentlig granskning for aviaggande av filosofie doktorsexamen
mandagen den 17 oktober 2005 kl 14.15
i sal D2, D-huset, Lindstedtsvagen s,

Kungliga Tekniska hogskolan, Stockholm.

TRITA-NA-0530
ISSN 0348-2952
ISRN KTH/NA/R--05/30--SE
ISBN 91-7178-157-9
© Ola Knutsson, september 2005

Abstract

Writing and written language play today an increasingly important part in many
people’s lives. Written language has become more or less a prerequisite for daily
communication. This development of society leads to increased needs for tools that
can help humans in dealing with text. A technology that has a potential to aid people
with writing and written language is language technology. In this thesis, the focus is
on language tools based on language technology that can aid writers and learners of
Swedish.

A language tool that has been developed and evaluated in the thesis is the grammar
checker Granska. The thesis work on Granska includes the design of its rule language,
and the development of grammar checking rules for common error types in Swedish.
In addition, rules for phrase analysis and clause boundary detection have been
developed constituting a partial and shallow parser called GTA.

Language tools for writing can mainly be evaluated in two ways: with focus on text or
with focus on the writer. In this thesis, both types of evaluations have been carried out
both with native writers and second language writers. The first textual evaluation of
Granska showed that the genre has a strong influence on the result. In a second
evaluation, Granska was compared with a commercial grammar checker on second
language writers’ texts. Granska found more errors, but with a lower precision. A
third evaluation focused on the general text analyzers, which Granska relies on, in this
case a statistical word class analyzer and the parser GTA. These programs were
evaluated on texts where spelling errors were introduced, in order to test the
programs’ robustness. Results showed that as long as the word class analyzer is robust
the parser GTA would also be robust. In a first formative user study with Granska and
five participants, results suggested that several and competing error diagnoses and
correction proposals are not a problem for the users as long as there exist at least one
accurate correction proposal. Moreover, false alarms from the spelling checker
seemed to pose a limited problem for the users, but false alarms on more complicated
error types might disturb the revision process of the users.

In order to improve the design of language tools for second language writers a field
study was carried out at a Swedish university. Sixteen students with different
linguistic and cultural backgrounds participated in the study. The objective was to
study the use of Granska in students’ free writing. The results indicated that although
most alarms from Granska are accurate, lack of feedback and misleading feedback are
problems for second language writers. The results also suggested that providing the
students with feedback on different aspects of their interlanguage, not only errors, and
facilitating the processes of language exploration and reflection are important
processes to be supported in second-language learning environments. These insights
were used as design principles in the design and development of an interactive
language environment called Grim. This program includes a basic word processor, in
which the user can get feedback on linguistic code features from different language
tools such as Granska and GTA. In addition, other tools are available for the user to
explore language use in authentic texts and to achieve lexical comprehension through
bilingual dictionaries.

Sammanfattning

Skrivande och skrivet sprak ér idag en viktig del av manga ménniskors
liv, i datorns ordbehandlare, i e-postprogram och i chattkanaler pa
Internet. Skrivet sprak har blivit mer eller mindre en forutséttning for
minniskors dagliga kommunikation. Denna utveckling av samhillet leder
till 6kade behov av att pa olika sitt hantera text. En teknologi som har
stor potential att hjdlpa manniskor med skrivande och skrivet sprak dr
sprakteknologi. I denna avhandling ligger fokus pa olika sprakverktyg
vars avsikt dr att stodja skribenter och de som lér sig svenska bland annat
genom att skriva.

Ett sprakverktyg som har utvecklats och utvérderats i avhandlingen &r
sprakgranskningsverktyget Granska. I arbetet med Granska har fokus
legat pa utvecklingen av regelsprak, granskningsregler och generella
analysregler samt utvirdering av dessa. Granska kombinerar en statistisk
grundanalys av ordens ordklasser med regelbaserade metoder for sokning
av grammatiska fel och frasanalys. I utvecklingen av granskningsreglerna
ar dragkampen mellan felaktiga utpekningar av fel, sa kallade falska
alarm, och uteblivna utpekningar av fel, det storsta enskilda problemet.
Dragkampen uppstar genom att det dr svart att hitta manga fel utan att
ocksa gora en del felaktiga utpekningar.

Sprékverktyg for skrivande kan i stort sett utvirderas pa tva sétt: med
fokus pa texten eller pa den som skriver. I denna avhandling har bada
typerna av utvirdering utforts med savil modersmalskribenter som
skribenter med svenska som andrasprak. I en forsta textbaserad
utvirdering visade det sig att textgenre spelar stor roll for Granskas
resultat. Ett vanligt fel i en textgenre férekommer nistan inte alls i en
annan. Detta innebdr att det blir mycket svart for programmet att inte
avge nagra falska alarm i de texter dir feltypen saknas. I en andra
textbaserad utvirdering jimfordes Granska och en kommersiell
grammatikkontroll pa texter fran andraspraksskribenter. Den
kommersiella grammatikkontrollen visade sig att ha bittre tréffsikerhet,
men upptickte firre fel &n Granska.

En forsta mindre anvindarstudie utférdes med Granska och fem erfarna
skribenter. Syfte med studien var att utveckla Granska i linje med
skribenters behov vid revision av text. Resultatet indikerade att
anvindarna inte hade nagra problem med att vilja mellan olika
feldiagnoser om ett av ersittningsforslagen var korrekt. Falska alarm
verkade vara av varierande svarighetsgrad: falska alarm fran
stavningskontrollen dr mer eller mindre ofarliga, medan falska alarm fran

granskningen av mer komplicerade feltyper kan forsvara revisionsarbetet
for anvéndaren.

Granska utvecklades fran borjan for erfarna skribenter med svenska som
modersmal, men allteftersom arbetet har fortskridit har dven skribenter
med svenska som andrasprak blivit en allt viktigare anvandargrupp. I
detta arbete har diskussionen om granskningsmetod blivit mer och mer
central. Aven om gruppen andraspriksskribenter 4r mycket heterogen, s
innehaller den hir gruppens texter generellt sett mer fel, och i manga fall
fler fel i samma mening. Detta gor granskningsproblemet betydligt
svarare. For det forsta sa blir det svarare att avgora ordens ordklass och
frastillh6righet nér flera fel finns i samma mening, och ddrmed har
programmet allt mindre att hinga upp den grundldggande sprakliga
analysen pa. For det andra dr det svarare att konstruera granskningsregler
for fel vars natur ar svar att forutsdga pa férhand.

For att forbittra den grundldggande sprakanalysen utvecklades
programmet GTA, som gor en frasanalys och satsgrinsigenkénning. GTA
utvecklades ur de generella analysregler som redan fanns i Granska. GTA
designades for att klara av att analysera texter som innehaller vissa
avvikelser fran sprakets norm, t.ex. inkongruens. For att ta reda pa hur vil
programmet klarade av mindre avvikelser i form av stavfel utvirderades
GTA och dven tva program for ordklassanalys pa texter med olika andel
stavfel. GTA bygger till mycket stor del pa att identifikationen av
ordklass fungerar for att fraser och satsgrinser skall analyseras korrekt.
Detta bekriftas ocksa i utvirderingen, dér det visade sig att GTA klarar
sig bra sa linge som den underliggande ordklassanalysen klarar att
hantera avvikelser i texten. En viktig faktor for att klara sprakliga
avvikelser, i form av stavfel, dr en fungerande metod for att hantera ord
som ir okéinda for programmet.

Nya metoder for sprakgranskning har undersokts i samarbete med andra
forskare, och dér har avhandlingens bidrag varit i form av
transformationsregler i den statistiska sprakgranskaren ProbGranska.
Dessa regler visade sig vid en utvirdering avsevirt forbéttra
ProbGranskas sikerhet nir det gillde att identifiera grammatiska
problem. I utvecklingen av sprakgranskaren SnalGranska har
avhandlingen bidragit med idéer till dess grundliggande algoritm. Denna
algoritm bygger pa att trdna ett maskininldrningsprogram pa konstgjorda
fel i avsaknad av en korpus med manga uppmirkta autentiska fel.

For att komma vidare med utvecklingen av sprakverktyg for
andraspraksskribenter genomfordes en lingre féltstudie vid ett svenskt

universitet. Syftet var att studera anvindningen av Granska i autentiska
skrivuppgifter som studenterna genomforde i en avancerad kurs i svenska
som fraimmande sprak. Sexton studenter med olika spraklig och kulturell
bakgrund deltog i studien. En viktig del av studien utgjordes av
studenternas bedomningar av Granskas alarm. Bedomningarna gjordes pa
en betygsskala fran 1 till 5. Studenternas texter samlades ocksa in i tva
versioner; en version fore och en efter anvindningen av programmet.
Denna metod gjorde det mojligt att studera i vilken grad studenterna
foljde Granskas rad, och huruvida daliga eller bra rad fran programmet
fick hoga eller laga betyg. Mest alarmerande var att daliga rad angéende
ordfoljd alltid fick hogsta betyg. Andra ofta ldmpliga rad ddmdes ut for
att beskrivningen av dessa feltyper, t.ex. anmirkningar om saknade
tempusbojda verb och uteblivna subjekt, var svara att forstd samt att de
saknade erséttningsforslag.

En viktig insikt fran filtstudien var att Granska eller liknade verktyg inte
ar det enda verktyg som andraspraksskribenter behdver nér de skriver
text. Denna insikt tillsammans med andra resultat fran féltstudien
mynnade ut i flera designprinciper fér program med fokus pa
andraspraksskribenter. Dessa designprinciper anvéindes sedan i
utformningen av sprakmiljon Grim. Grim ér en ordbehandlingsmiljé med
olika interaktiva sprakverktyg integrerade: Granska, GTA, den statistiska
sprakgranskaren ProbGranska, lexikonet Lexin med atta olika spréakpar,
konkordansgrénssnitt mot stora textméangder fran korpusen Parole, och en
ordbojningsfunktion. I Grim kan anvéndaren arbeta med egna eller andras
texter, och fa aterkoppling pa sprakets former fran Granska och GTA,
undersoka ords anviandning i autentiska texter samt fa en okad forstaelse
av malspraket genom integrerade tvasprakiga lexikon.

Acknowledgements

During my thesis work I have been working in a very nice and
stimulating research group. What I have not told these people is how
much pleasure [have had together with them. Some people might think
that research project meetings are boring, but for me, they have been
moments of joy. The first person in this research group, I would like to
thank is my main supervisor Kerstin Severinson Eklundh. She has kept
me on track, and her broad perspective on writing and language tools has
made my work much more challenging and stimulating than I ever could
imagine when I started my doctoral studies. Viggo Kann has been my
second advisor, I am very grateful to him. I really enjoined our
collaborative efforts in the development of Granska, especially our
negotiations about parsing efficiency and linguistic expressive power.
The journey with Granska and its siblings seems to have no end, I am
very happy about that. My third advisor, Teresa Cerratto Pargman,
entered my research a while after my licentiate thesis. I was a bit
surprised of her interest in Granska, but I think I am starting to
understand now. I am very grateful for her view on tools, mediation and
learning which slowly removed my blinkers.

Rickard Domeij introduced the concept of grammar checking for me, and
has been a very good companion since then. Two other persons, Johnny
Bigert and Jonas Sjobergh, have played important roles in my research,
and at the right moment. When I have felt that we could not get any
further with grammar checking, they have come up with new ideas, and
most importantly, they have implemented and evaluated them. I am also
thankful to Johan Carlberger for his work with Granska, and his devoted
efforts to improve Granska’s different modules. Stefan Westlund is the
kind of Master’s student that you very seldom meet. [am very grateful
for his great contributions to Grim’s development and maintenance. [am
also happy that Petter Karlstrém came into our project about language
tools and second language learning, with new ideas and many important
and stimulating theoretical discussions. Hercules Dalianis, Martin Hassel
and Magnus Rosell have been very nice colleagues during the years, and
Martin has also been a good roommate. I have really enjoined our
discussions. Magnus Sahlgren showed me that philosophy of language is
very important in language technology, and I am very thankful for our
discussions.

I also want to thank the teachers and the students at a university in
Sweden, who really changed my view on language tools and their use.
Audur Hauksdoéttir and the researchers in the Norfa CALL Net have been

very important to me. I am very happy for our meetings. I also wish to
thank the team of runners at IPLab, IPLubbarna: Eva-Lotta, Lasse,
Staffan, Ulla-Britt, Anders, Helge and Chiara. Maria, Henrik and many
other people at IPLab have together with I[PLubbarna made my days at
IPLab much more joyful. My family with Lena, Axel, Isak, Gert, Ulla
and Anders means a lot to me. You have all supported me since I started
my doctoral studies.

KTH Nada has been a stimulating research environment, and I have had
many interesting discussions with researchers, teachers and students
through my work here. My research has been funded by KTH Nada, the
Council for Research in the Humanities and Social Sciences (HSFR), the
Swedish National Board for Industrial and Technical Development
(Nutek), the Swedish Agency for Innovation Systems (Vinnova), the
Swedish Research Council (Vetenskapsradet) and the Swedish Academy
(Svenska akademien) through the Swedish Language Council (Svenska
sprakndmnden).

Thank you all!
Ola Knutsson

Stockholm, September 2005

Contents

1 INtroducCtion.......cceeeeneeecseencsnecssanesssnnesanessnecssnesssnessssnssssessssaesssnssssane 1
1.1 Introducing 1anguage toOIScueerueiriiiriiiiieee ettt 2
1.2 How mature are 1anguage to0lS?........covuiiriiiiniiiniieniiieriee et 3
1.3 Research issues in this thesisceveriiiiriiiiniiiniienicecreesee e 3

1.3.1 Designing language tools with the aim to support writing and learning... 3
1.3.2 Developing tools that can work with texts that contain errors.................. 4
1.3.3 Evaluating language tools iN USE........covveeruiernieiniiiniieiieeeieeeieeesree e 4
1.4 Outline of the thesiscccvviiiiiiiiiiiii e, 5
1.5 LiSt Of PUDIICALIONS. ..couvveititiiieiiiieeiee ittt ettt s sate e s e s 6
1.5.1 Papers included in this thesiscccceeriiiniiiniiiiiiiiicecece 6
1.5.2 Other relevant publiCationsS...........cocuierieerieeniieeriiieeie et 7
1.6 Project framewWork.........coccuiiviieiiiienieeniee ittt 8
1.6.1 Contributions and collaborations in the included papers.........cc.c.cceueene. 10

2 Language tools and writing. .13
2.1 Defining language tools in the context of Writingcccceceeereerieenienrenenne 14
2.2 What kind of structures are language tools based on?.......c..cccecveeveriennneenane. 15

3 Designing and developing a grammar checker for Swedish 17
3.1 Designing a grammar Checkercoouieriiiriiiniiiniiieiecee e 17

3.1.1 Grammar checking and grammaticalityccoocueervueenieiinnecnneennecnnne 18
3.1.2 A problematic example: Split cOMPOUNdS........cccceerveerieeernverneeennennnne. 19
3.1.3 How to view the errors and to provide feedbackc.ccccovveriiienneenane 20
3.1.4 Different ways of providing feedback on errors..........ccccceeeveerveennecnnne 20
3.1.5 Grammaticality judgments made by the USer..........c.cceeveeivveeriieenneenane 23
3.2 Basic functionality in a grammar checker............coccoevveiiniiniiiniiniieene 23
3.2.1 Methods for error deteCtioncceeevveeerieiniiienieenieenieenreenree e 25
3.2.2 Grammaticality judgments made by the general language analyzers 28
3.2.3 Grammaticality judgments made by the error detection component 28
3.3 Developing a grammar checker for Swedish...............ccooii 29
3.4 The grammar checker Granska...........occcevcieirvieiniiiiiniiieniieniee e 30
3.4.1 A short description of Granskaccceeceeriiiniiiiniennieinieesee e 31
3.4.2 What kinds of errors to foCUS On......ccccueervuiiriiinniiiinieeniieieeeceeeeee 33
3.4.3 The partial and shallow parser GTAcccoooiieviiiinienniieniienieeeee 35

4 Using language tools in second language writing and learning ... 37
4.1 Language tools in computer assisted language learning...........ccccceveveerencenn 37
4.2 Language technology in computer assisted language-learning systems........ 38
4.3 Second 1anguage 1€arning.........ccccueerieerieeirieriieeenieeiee e sieeeieeesreeseee e 40

5 Evaluating language toolsccccveericesscranereccssssnassrccsssnsans e d3

5.1 Textual evaluations of language toolS.........ccoccveiriiiniiiniieniienieciec e, 45

5.2 What is important t0 MEASUIE?ccc.eeerureerrierrieerreeenieeerreeneeeenreeenieeesmeeennne 45
5.2.1 Defining recall and precision........cooeierieerieeinieriieenieesiieeeeee e seeeens 46
5.3 Corpora used in the evaluations of Granska and related programs 48
5.4 Studying the use of language toolsccocvvervieiriieniiiniieniceeeec e 49
5.4.1 Writing processes are difficult t0 aCCESS ...vuvvrivirriirriieriiienieerieenieee 49
5.5 Two different user studies with Granska...........cccceevviiriieniienniienicinnennnne 51
5.5.1 A formative USer StUAYcoovveiriieniiiinieeiiieiieeee ettt 51
5.5.2 A IEld STUAY.cooviiiiiiiiieitie e 52
6 Designing a language environment for second language writers of
Swedish....uecieeenseiineennseicsnecnsnnnsseeecsneessanncnnnes .55
6.1 Grim and focus on fOrmcccoeoviiiiiiiiiiiiiiii 56
6.2 The role of lexica and corpora in Grim............cccceeiiiiiiiiiiiiiii i, 59
6.3 Preliminary findings and future work with Grimcccccceeevienieiniiinnennnne. 61
7 Summary of the papers..... .63
7.1 Paper 1: The development and performance of a grammar checker for
Swedish: A language engineering PerspeCtiVe......ccocueerveerivieneeenerenreenneesneenenes 63
7.1.1 Aims and background...........cccovueerieeinieiiitinieeiee et 63
T 1.2 MethOdS ..veviiiiiiieiiiiiiiiiet ettt 63
7.1.3 EVAlUALONS. ..coitiiiiiiiiieiiiieriec ittt e 64
7.1.4 Findings and CONCIUSIONS.....c..eerurierueeiriieriiiteniieeieeeieesbeeeieeesireesieee e 64
7.2 Paper 2: Different ways of evaluating a Swedish grammar checker 65
7.2.1 Aims and background.........c.ccccoveeriiiiiniiiniiiiieeee e 65
722 Methods .c.oiviiiiiiiiiiiiiiiiiic 65
7.2.3 Findings and CONCIUSIONS. ...cccueirrieruiiiniiiiiieiieeiee ettt nereenenee e 66
7.3 Paper 3: Automatic evaluation of robustness and degradation in tagging and
PATSIIIZ ¢ttt ettt ettt et ettt et sa e et e st e ettt e s et e e eab e e sa bt e e bt e e s bt e e hteesbbeeenbee s 67
7.3.1 Aims and background............ccoooeeviiiiniiiniiiiniee e 67
7.3.2 MethOdS ..oeiviiiiiiieiiiiiiiiciceiee e 67
7.3.3 Findings and CONCIUSIONS.....c.ueeruriereeeiriieriiieeiieeiteeieesbeeeieeesireesieee e 68
7.4 Paper 4: Grammar checking for Swedish second language learners............. 68
7.4.1 Aims and background...........ccccoeuieriiiiiniiiniiiinieee e 68
742 Methods ..cooiiiiiiiiiiiiiiiic 68
7.4.3 Findings and conClusions............ccoceiiiiiiiiiiiiiniiniii 69
7.5 Paper 5: Designing and developing a language environment for second
JANZUAZE WIILETS . c..veerutitiiieetete et st e st e st e ettt e stb e ettt e sttt esbteeebaeebeeenbaeebeesenreenane 70
7.5.1 Aims and background...........cccooouieriiiiniiiniiiniece e 70
752 MethOdS ..ooiuiiiiiieiiiiiiiiciceeiet et 70
7.5.3 Findings and CONCIUSIONS.....c.ueerurierueeiriieriiiteniieeieeeieesbeeeieeesireesieee s 71
8 Discussion and conclusions73
8.1 To write rules or NOt t0 WIIE TUIES......cccueeriiiriiirieeiiiieieeiee e 73
8.2 Language tools in a language environment............coecueerveenieeenueenieeeneennnees 75

8.3 FULUIE WOTK.....ovvviiiiiriiiiiiieirittt e e e e e en e e eneneeaeeeaeaenens 76

8.3.1 The need for annotated €ITOr COIPOTA.....cccueeruriirurienueeneeenireenieenreenanes 76

8.3.2 Two perspectives on 1anguageccoceeveveeviiieniiienieenieenieeneeenneeeenes 77
8.4 Concluding remMAarkseevvieriiieriieeiieenieerte ettt seee s 77
Referencescuueeeeiieecseensneninecssennsnesssneessnnssssesssseessansssenee w79

Paper 1: The development and performance of a grammar checker for
Swedish: A language engineering perspective

Paper 2: Different ways of evaluating a Swedish grammar checker
Paper 3: Automatic evaluation of robustness and degradation in tagging
and parsing

Paper 4: Grammar checking for Swedish second language learners
Paper 5: Designing and developing a language environment for second
language writers

1 Introduction

Writing and written language play an increasingly important part of
many people’s lives, on the computer, in word processing environments,
e-mail clients and chat rooms. New technologies for text production have
emerged the last twenty years, and are used in daily life as well in
professional contexts.

Ordinary people including children, teenagers, and grown-ups with
different economical, linguistic, social and cultural backgrounds write in
the computerized world. They are using the textual form of language
more than ever before. New media for communication mediate writing;
the size of screens might constrain the length of the written messages.
The design of the keyboard, for instance the qwerty-keyboard mediates
the errors (Wertsch, 1998). Written communication enhanced by
computer networks might shape our writing activities in a more dialogic
manner (Severinson Eklundh, 1986).

The role of written communication in education cannot be
underestimated (cf. Séljo. 2000). Learning through written language is
more important than ever, with the ever-growing mass of textual
information. However, the main advantage with written language is the
same as when writing systems were first developed; we can receive and
send messages without the same constraint on time and space as in
spoken language (Moro, 1999).

In a country like Sweden people have to use written language to
communicate in many situations. For example in correspondence with
the authorities, with teachers in their children’s schools, and with the
coach in the football club, written language plays an important role.
Written language is more or less a pre-requisite for everyday
communication, and is necessary if one wants to be part of different
communities.

This development of society leads to increased needs for tools to deal
with text, both for reading and writing. Using text as a medium to

Chapter 1. Introduction

produce and take meaning in order to transform information to
knowledge leaves many people out (Séljo, 2000). This should not be seen
as if some persons have the ability and some others do not have the
ability to communicate through text in a specific language. Rather, there
exists a continuum in which people to a different extent can master
textual communication in different genres.

A technology that has a potential to aid users in some of their interactions
with written language is language technology. Language technology is a
diverse discipline, including many different areas and applications. One
potential of this technology lies in the ability to analyze and generate
authentic language, although sometimes only limited levels of linguistic
processing may be involved.

1.1 Introducing language tools

A language tool for writing is here defined as a tool, which automatically
gives the users feedback on the language they produce. In current
programs this feedback is limited. It relies on information available on
the surface of the language the users produce and in pre-programmed
language models. The programs are in many cases equipped with a
language model that is quite static, and not very adaptive.

In spite of the static view that current language tools provide, they can be
used in creative ways if users can learn how to use them. If one compares
language tools with other tools like a book, or a dictionary, they open up
new ways to interact with language. Even an on-line static dictionary
might shape a different view of language than the corresponding printed
book. An on-line dictionary with a search tool (a good one) can for
instance give the user all words that begin or end with a specific letter or
all words that include a specific stem. A hyperlinked dictionary can help
the user explore the relations between words in efficient ways.

When one compares a language tool with for instance a calculator, they
have some similarities. They are designed as tools to aid the user in
something that to some extent can be seen as a larger problem-solving
task. However, the calculator is based on algorithms and used for
problems that are algorithmic. A language tool is based on algorithms but
language use is to great extent not an algorithmic problem, it is a social
game governed by certain rules. As a social game, language has many
rules that are extremely hard for a computer program to apply; currently
only a partial use of low-level rules can be achieved. With this in mind,
an important question is: are language tools useful?

How mature are language tools?

1.2 How mature are language tools?

Word processors have been facilitated with spelling checkers for a long
time now, but still, they are not perfect. They do not find all errors in a
text, and they do not always give relevant feedback in form of correct
diagnoses and correction proposals. The problem is that even what might
look like a minor language problem such as a spelling error is dependent
on the communicational context. Grammatical cues from the adjacent
words might help in many cases, but some problems need a deeper
understanding of the text and the communicative intentions of the user.
What might look like a spelling error might be something much more
problematic. There is no chance to look into the user’s mind, to get an
advanced interpretation of an error. The clues for the interpretation of the
error rely on textual information, pre-programmed language models and
the broad setting that the program is used in.

1.3 Research issues in this thesis

An assumption for the research presented in this thesis is that language
tools at least to some degree have something to offer both native writers
and people learning Swedish through writing. The thesis is based and
focused on three research issues: designing, developing and evaluating
language tools, and in particular the grammar checker Granska. The three
research issues should not be seen as organized in a linear way, rather
they are closely intervened and dependent on each other.

1.3.1 Designing language tools with the aim to support
writing and learning

Language tools that should work in users’ writing activities must deal
with language use as a process and they must also deal with language
that is not error-free. This is even more the case for tools used by learners
of the written language. When it comes to second language writers, the
errors are more frequent, and the feedback from the program is probably
more needed. However, second language learners form a very
heterogeneous group of people, which also means that the writing and
learning processes within this group are very different.

Furthermore, grammar checking is about errors, and within second
language research error analysis has been much discussed. This focus on
learners’ errors has been very popular since the 1970s, and then for a
time very criticized. However, the learners’ need for feedback on their
errors seems hard to neglect, and a new interest in errors in recent years
can be seen in corpus oriented research as well as in research focusing on
learning and teaching activities.

Chapter 1. Introduction

1.3.2 Developing tools that can work with texts that contain
errors

A primary problem when developing tools that should deal with texts
that contain errors is how the text should generally be analyzed, i.e. how
word classes, phrases and grammatical dependencies should be correctly
identified. In order to detect errors, the words in the context of the error
must be analyzed in a predictable way, otherwise it is extremely hard to
design algorithms that diagnose and correct the errors.

The problem of which sentences that belong to the language and which
ones do not can be seen as a very important issue in this thesis. However,
the work done has a pragmatic approach, with a focus on tools that
should aid the user in writing and learning activities. In such tools
another problem arises, the problem of detecting, diagnosing and
correcting grammatical errors. Some errors will be unrecognized because
the general analysis has failed to analyze the text in such a way that the
errors are possible to detect. Other pieces of text that are correct will be
recognized as erroneous, these are called false alarms. The issue of
missed errors and false alarms are central in the development of language
tools.

1.3.3 Evaluating language tools in use

There are at least two objectives when evaluating language tools; to get
knowledge about their performance in technical terms and to find out if
users think that they get help from these language tools in their current
writing activities. High performance does not necessary lead to high
usability, which means that the more technical evaluations in terms of
number of correct error detections must be complemented with user
studies. If an error is detected with high precision, but the user does not
know how to correct the error anyway, the usability of the error detection
algorithm must be questioned. It could be the case that one error only
needs to be detected with low precision because of the fact that the error
is very important and easy for the user to detect and correct, but other
errors need to be detected with a very high performance because their
corresponding correct construction is extremely frequent. An example
could be an error detection algorithm that tries to distinguish between the
correct use of these and those in English text. Both words are frequent
and that will lead to a distressing number of false alarms, even though the
performance of the error detection algorithm is very high.

How to study writing and text production when there is a need for a
grammar checker is a complicated matter. The writing activity is not easy

Outline of the thesis

to access and to get hold on; it is an intricate web of different socio-
cognitive processes including language, genre, and problem-solving
constrained by individual, technical, social and cultural factors and
norms.

In addition, textual studies of the performance of the language tools
developed can give a complementary view of the tools. These studies
might be seen as much more straightforward, but they only constitute a
different problem space. To analyze, group and annotate errors, and other
constructions in text is very difficult, and involves many decisions that
cannot be taken from grammar books.

1.4 Outline of the thesis

The rest of the thesis is structured as follows.

Chapter 2: Language tools and writing

In this chapter the concept of computerized language tools is defined and
placed into the context of writing.

Chapter 3: Designing and developing a grammar checker for
Swedish

There exist several methods and approaches to grammar checking. A
starting point for designing a grammar checker is to evaluate current
general text analysis tools, and other resources in form of corpora and
lexica. In order to detect errors several methods have been developed
during recent years, and a spectrum of those are presented in this chapter.
In addition, the Swedish grammar checker Granska is presented. Granska
is central in this thesis, both as an object of development and as a target
of several evaluations.

Chapter 4: Using language tools in second language writing and
learning

Language tools have been used in second language writing and learning
for quite a while. Research in this area leads into a field called computer
assisted language learning. This is a broad area including research and
knowledge from applied linguistics, second language
acquisition/learning, language technology, and artificial intelligence as
well as knowledge and experience from language teachers. However, in
this chapter I will mainly focus on its relation to language technology and
second language learning.

Chapter 1. Introduction

Chapter S5: Evaluating language tools

Evaluating language tools involves several methodological
considerations. The writers’ activities are hard to access, and this raises
questions on methods for studying the use of language tools. In this
chapter two user studies that have been carried out are presented and
discussed. In addition, the textual evaluations of Granska and related
technology are presented.

Chapter 6: Designing a new environment for writing and learning

One result of the development and evaluations of language tools
presented in this thesis is a language environment called Grim. In this
chapter Grim is briefly presented.

Chapter 7: Summary of papers
The five papers that the thesis is based on are summarized in this chapter.

Chapter 8: Discussion and conclusions

In this chapter I return to the research issues pointed out as central in this
thesis. Reflections on methodology and ideas about future work are
discussed.

1.5 List of publications

1.5.1 Papers included in this thesis

Paper 1:

Carlberger, J., Domeij, R., Kann, V., & Knutsson, O. (2004, submitted).
The development and performance of a grammar checker for Swedish: A
language engineering perspective.

Paper 1 is partly based on the paper:

Domeij, R., Knutsson, O., Carlberger, C., & Kann, V. (2000). Granska —
an efficient hybrid system for Swedish grammar checking. In proceedings
of the 12" Nordic Conference in Computational Linguistics,
Nodalida’99, Trondheim, Norway.

Paper 2:

Domeij, R., Knutsson, O., & Severinson Eklundh, K. (2002). Different
ways of evaluating a Swedish grammar checker. In the proceedings of
the 3" International Conference on Language Resources and Evaluation
(LREC 2002), Las Palmas, Spain.

List of publications

Paper 3:

Bigert, J., Knutsson, O., & Sjobergh, J. (2003). Automatic evaluation of
robustness and degradation in tagging and parsing. In the proceedings

of the Recent Advances in Natural Language Processing 2003 (RANLP
2003), Borovets, Bulgaria.

Paper 4:

Bigert, J., Kann, V., Knutsson, O., & Sjébergh, J. (2004). Grammar
checking for Swedish second language learners. In P. J. Henrichsen
(Ed.), CALL for the Nordic languages. Tools and methods for computer
assisted language learning. Copenhagen, Denmark: Samfundslitteratur.

Paper 5:

Knutsson, O., Cerratto Pargman, T., Severinson Eklundh, K., &
Westlund, S. (2005 accepted). Designing and developing a language
environment for second language writers. Computers and Education. An
International Journal. Elsevier.

1.5.2 Other relevant publications

Sjobergh, J., & Knutsson, O. (2005). Faking errors to avoid making
errors: Very weakly supervised learning for error detection in writing.
In the proceedings of Recent Advances in Natural Language Processing
2005 (RANLP 2005), Borovets, Bulgaria.

Bigert, J., Sjobergh, J., Knutsson, O., & Sahlgren, M. (2005).
Unsupervised Evaluation of Parser Robustness. In the proceedings of
CICLing 2005, Mexico City, Mexico.

Knutsson, O., Cerratto Pargman, T., & Severinson Eklundh, K. (2003).
Transforming grammar checking technology into a learning environment
Jfor second language writing. In the proceedings of the HLT/NAACL
2003 workshop: Building Educational Applications Using NLP,
Edmonton, Canada.

Knutsson, O., Bigert, J., & Kann, V. (2003). A Robust Shallow Parser
for Swedish. Paper presented at 14™ Nordic Conference in Computational
Linguistics, Nodalida’03, Reykjavik, Iceland.

Bigert, J., & Knutsson, O. (2002). Robust error detection: A hybrid
approach combining unsupervised error detection and linguistic
knowledge. In the proceedings of RObust Methods in Analysis of Natural
language Data, ROMAND 2002, Frascati, Italy.

Chapter 1. Introduction

Knutsson, O., Cerratto Pargman, T., & Severinson Eklundh, K. (2002).
Computer support for second language learners’ free text production —
Initial studies. In M. Valcke and A. Bruce (Eds.), European Journal of
Open and Distance Learning (EURODL). Also in the proceedings of
ICL2002, 5™ International Workshop on Interactive Computer Aided
Learning, Villach, Austria.

Knutsson, O. (2002). Inkongruens i predikativ — bdde rditt och fel. In the
proceedings of Svenskans beskrivning 25, Abo, Finland.

Knutsson, O. (2001). Automatisk sprakgranskning av svensk text.
Licentiate thesis, TRITA-NA-01-5, ISBN 91-7283-052-2, Department of
Numerical Analysis and Computer Science, Royal Institute of
Technology, Stockholm, Sweden.

Domeij, R., Knutsson, O., & Ohrman, L. (1999) Inkongruens och felaktigt
sdrskrivna sammansdttningar — en beskrivning av tvd feltyper och
mdojligheten att detektera felen automatiskt. In the proceedings of
Svenskans beskrivning 24, Link&ping, Sweden.

1.6 Project framework

Development of large-scale language technology systems is to my
knowledge always based on teamwork. A system that is presented in this
thesis is the grammar checker Granska', and other applications developed
from this system. In addition, several evaluations of Granska have been
carried out. Granska has evolved through the years and a lot of people
have been working with the system. In a first phase during the years
1996-1997 a first prototype, a writing environment called Granska was
developed by a project group led by Kerstin Severinson Eklundh.
Rickard Domeij and Stefan Larsson worked in the project. I participated
in this project through my Master’s thesis and as a part-time worker in
the project.

In 1998 a new project was formed called “Integrated Language Tools for
Writing and Document Handling” also led by Kerstin Severinson
Eklundh. This project was a collaboration project between KTH Nada
and a group at the Department of Linguistics at Géteborg University and
a group at the Swedish Language Council. Vinnova funded this project.
In 1999 I started my doctoral studies within this project.

' The word Granska means in Swedish to scrutinize.

Project framework

At KTH Nada the work focused on the design and improvement of
writing environments through user studies and a new grammar-checking
engine also called Granska. In the following when I refer to Granska it is
this version of Granska I mean. Viggo Kann led the smaller research
group focusing on the development of the grammar-checking engine. The
group at KTH Nada consisted of me, Johan Carlberger, Rickard Domeij
and Annika Hansén-Eriksson. Apart from the software developed this
work also resulted in my licentiate thesis (Knutsson, 2001). The work
with Granska is presented in Paper 1. Improvements and evaluations of
Granska made after this project have been added to the same paper. A
user study and a textual study carried out by me in this project are
presented in Paper 2.

In 2001, a project called CrossCheck with a special focus on grammar
checking for second language writers of Swedish was started, funded by
Vinnova. This project, headed by Viggo Kann, was a collaboration
project between KTH Nada and Department of Linguistics at Stockholm
University. The project consisted of two parts; the first focused on
methods for developing and evaluating tools that should analyze and also
detect errors in second language writers’ texts. The second part of the
project focused on learner corpora and the collection of such material.
Project members at KTH Nada were Kerstin Severinson Eklundh, Teresa
Cerratto Pargman, myself, Johnny Bigert and Jonas Sjobergh.

Important improvements were made on Granska, and a server version of
the program was also an important contribution, which made it possible
to develop different user interfaces to the same grammar checking
engine. The development of two new methods and programs for
grammar checking called ProbGranska and SnalGranska were also
carried out in this project. In connection to the development of
ProbGranska a partial and shallow parser was developed, called Granska
Text Analyzer (GTA). The evaluation of GTA is presented in Paper 3.
The two new methods for grammar checking are presented in Paper 4.

In the corpus part of the project, a corpus called the CrossCheck corpus
was collected, compiled and made available for research purposes. A
subset of the CrossCheck corpus was collected by me in a sister project
called “The use of language tools for writers in the context of learning
Swedish as a second language”. This subset was used in a comparative
evaluation of Granska and the Swedish grammar checker in Microsoft
Word carried out by me and presented in Paper 1.

Chapter 1. Introduction

Teresa Cerratto Pargman leads the project mentioned above which is
funded by the Swedish Research Council (Vetenskapsradet). Other
project members are myself, Kerstin Severinson Eklundh, Petter
Karlstrom and Stefan Westlund. This project focuses on the use of
computer language tools for writers in the context of learning Swedish as
a second language. We study how learners develop their writing practices
in the context of learning Swedish as a second language, how they use
available writing tools and how these tools shape learners’ understanding
of the new language. An important contribution of this project is the
language environment Grim. Grim is a program based on design
principles identified through field studies with Granska and second
language learners participating in an advanced course at a Swedish
university. Grim is also to a great extent based on the results and the
different language tools developed in the projects described above. The
field study and the design of Grim are presented in Paper 5.

Through the projects I have supervised bachelor and master students, and
their work have of course contributed a lot to my work. Lena Ohrman
studied split compounds, and the use of Granska on the second language
learners’ texts. Anna Staerner made a study on grammar checkers in
learning environments with special focus on how to detect word order
errors within the Granska framework. Jens Eeg-Olofsson studied error
annotation and the use of prepositions in second language learners’ texts
and grammar checking. Magnus Johansson took the first steps on
machine learning and error detection, and built annotation and evaluation
tools. Victoria Johansson evaluated the phrase detection capacity of the
first embryo of the partial and shallow parser GTA. Henrik Hahne
evaluated the clause boundary detector in GTA. Ola Karlsson studied the
use of Granska by second language writers at work places. Anna Tyndall
investigated how language technology could be used in editing tools.
Ylva Stenervall developed a more interactive web-based interface to
Granska. Stefan Westlund developed the web-based language
environment Grim as his Master’s project. However, Westlund’s work
continued on voluntary basis and resulted in a robust application running
on most operating systems, and with many users all around the world.

1.6.1 Contributions and collaborations in the included
papers

Paper 1

Main contribution of the paper: The design and development of the
grammar checker Granska and its evaluations. A limited number of
grammar checking rules covers quite a few error types. The language

10

Project framework

engineering perspective is well represented and is shown in a fast
grammar checker, which can handle a lot of error detection rules. The
integration of the spelling checker Stava (Kann et al., 2001) in the
grammar checker was a good design decision according to the
evaluations made.

The design of the Granska grammar checker engine is based on
teamwork, with competence from computational linguistics represented
by myself and Rickard Domeij and competence from computer science
by Viggo Kann and Johan Carlberger. I designed the rule language. The
implementation of the Granska system including the part-of-speech
tagger, rule language, and word form generator were work carried out by
Viggo Kann and Johan Carlberger. I wrote the linguistic rules in
Granska. I also made the two evaluations in this paper. I, Rickard Domeij
and Viggo Kann wrote the paper.

Paper 2

Main contribution of the paper: The main idea is to show how different
methods for evaluating the Swedish grammar checker Granska broadens
the understanding of its performance. An important argument put
forward is that both user studies and textual evaluations are needed when
evaluating language technology.

I carried out the first two studies presented in this paper. Rickard Domeij
carried out the third study. Kerstin Severinson Eklundh supervised all
three studies. Viggo Kann supervised me in the textual evaluation. I,
Rickard Domeij, and Kerstin Severinson Eklundh wrote the paper.

Paper 3

Main contribution of the paper: An automatic method for evaluation of
parsers’ and taggers’ robustness against ill-formed text. The experiments
presented showed a graceful degradation in performance for both taggers
and the partial and shallow parser GTA.

I carried out the corpus annotation for the parser evaluation. Johnny
Bigert and I developed the parser GTA that is presented and evaluated in
this paper. I wrote the linguistic rules and Johnny Bigert programmed the
disambiguation algorithm, and the interface to Granska as well as the
XML-generator for the parser output. Jonas Sjobergh ported the different
taggers to Swedish and connected them to the GTA parser in the Granska
framework. Johnny Bigert and Jonas Sjobergh carried out the practical
work with all different data sets used in the evaluations. Johnny Bigert
and I wrote the paper.

11

Chapter 1. Introduction

Paper 4

Main contribution of this paper: Three different methods for grammar
checking are presented and compared: Granska, ProbGranska and
SnéalGranska. An ensemble of these grammar checkers will increase both
recall and precision. When all three grammar checkers agree on error
detection, precision will be extremely high. Granska is based on
mainstream language technology, but with special focus on language
engineering. ProbGranska and SnalGranska are methods which are more
novel, but not totally unique. In the evaluation, the Swedish grammar
checker in Microsoft Word was used for comparison.

The development of Granska has been presented in the description of
Paper 1, but Granska has been improved by all four writers of this paper.
Johnny Bigert developed the main algorithms in ProbGranska. I
developed the transformation rules used in ProbGranska, which are
important in order to get rid of false alarms. I and Jonas Sjobergh
developed the original idea of SnalGranska, and Jonas Sjobergh
implemented it. Jonas Sjobergh also carried out the comparative
evaluation of the three grammar checking methods. Johnny Bigert, Viggo
Kann, myself and Jonas Sjobergh wrote the paper.

Paper 5

Main contribution of this paper:

The study of the use of Granska in second language writers’ free text
production, and its role in their writing and revisions are important
contributions of this paper. A new method for these kinds of studies was
developed, which focused on the users’ judgments and comments of the
feedback from the language tool. In addition, several design principles
for second language learning environments based on language
technology were developed, and which were realized in Grim.

The field study was designed and carried out by me and Teresa Cerratto
Pargman. The method for studying writers’ free text production when
using Granska was developed by me, and supervised by Teresa Cerratto
Pargman and Kerstin Severinson Eklundh. I carried out the analyses of
the data collected. The design of Grim was teamwork, but the influence
from its programmer Stefan Westlund is very strong. I, Teresa Cerratto
Pargman and Kerstin Severinson Eklundh wrote the paper.

12

2 Language tools and writing

Written language has a long history, and is far from being transcribed
speech (Olson, 1995). Written language is instead a model of spoken
language; it brings many linguistic concepts, like words, into awareness
(Lantolf, 2000). The model is provided by the writing system and the
conventions of written text (Olson, 1994; Wertsch, 1998). This spin-off
effect of written words has according to Lantolf (2000) many similarities
with models of cognition that would not have existed without the advent
of the computer. The point is that writing and computer systems were not
designed as models for language and cognition; they have become
models, and they can be good or bad models. Lantolf gives examples of
many linguistic features that are not represented in written form, for
instance intonation and stress. This is important when building tools for
written language, and Kéllgren (1979) has put it very well: “what makes a
text complicated, is not only what actually is written, it is also what is not
written” (my translation). Language tools for writing do not deal directly
with the user’s language, but with its written form.

Learning to write in a first or a second language should thus be seen in
the light of learning the model of the specific language through its writing
system. From this point of view we might also see the potential of writing
when learning a language — as a tool that turns language into objects of
reflection and analysis (Olson, 1995). Studies of novice writers have
shown that cognitive work has spilled into the text (DiCamilla & Lantolf,
1994). Different kinds of grammatical forms are written in the text not for
communicative purposes but for the writer’s own control of thoughts and
the text, so called private writing. This means that writing and language
are not only used for communication, they are also used as cognitive
tools.

Tools for written language have been developed through the years, and
have been competing but also replaced, where the computer’s
replacement of pen and paper must be seen as revolutionary. This process
cannot be seen through a simple replacement model (Haas, 1999). The
pen and the computer still co-exist, but are used for different purposes.

13

Chapter 2. Language tools and writing

The tools that are developed are filled with cultural and social
features/structures as well as individual practices. Haas embraces
Vygotsky’s focus on the mediational role of tools and puts it:

“Because literacy technologies are mediational, they stand in a central
position within the conduct of literacy, mediating in a sense between the
individual actor and the cultural and historical milieu within which that
actor works” (Haas. 1999. p. 212).

According to Wertsch (1991), Vygotsky saw the limit of the analogy
between psychological tools (e.g. language) and technical tools (e.g. tools
to write with), but Wertsch (1991) argues in the other direction, by saying
that Vygotsky did not push the analogy far enough. Wertsch (1991)
focuses on the diversity of tools, and that the mediational means should
not be seen a single whole, but as a tool kit. Thus, language should not be
viewed as a homogenous essence, and language development should not
be seen as single unified process. This is important to consider when we
try to understand how language tools interact with real language use and
learner’s language development. To be more concrete, current language
tools are more or less static, and cannot adapt to different text genres, or
different levels and ways of language development.

2.1 Defining language tools in the context of writing

Language tools designed as writing aids are in fact a quite diverse set of
tools. They can be viewed along several dimensions, but the distinction
between active tools and passive tools might be one of the most
important. Active tools are tools that do something with the language and
this includes simple tools like for instance word counting and
hyphenation in word processors. In order to count words or hyphenate
them a computer program needs to transform the sequence of characters
into words. This is a first step in the automatic processing of written
language, which must also be seen as an active one. The program carries
out a linguistic task for its user.

Spelling checkers are more advanced, although most of them include only
a model of word composition in isolation and no language model. More
advanced language tools like grammar checkers, text summarizers and
machine translators may give an impression of having very active
language properties, but their “understanding” of language is still very
limited.

Passive tools like a digital grammar book or an on-line dictionary are
more or less used as ordinary books, but the computer can change the

14

What kind of structures are language tools based on?

way users can interact with them. Digital corpora can also be used as
tools if they are used with efficient search programs and if they are
integrated with the linguistic task at hand.

If these tools are integrated with linguistic material on the user’s
computer, they can take a more active role. Users can interact with
language through language tools, not necessarily mediated by language
but through a “dialogue” involving a meta-language, examples of
language use, graphical representations or through other users. The
distinction between active and passive is thus not only a question of the
language tools’ ability to “understand” language; it is also a design issue
concerning interaction and dialogue.

2.2 What kind of structures are language tools based
on?
If we assume that language tools have a mediating role in users’ writing,
we must also try to uncover the structures and knowledge “embodied” in
these tools. This is a part of what Haas calls “The historical-genetic
method” based on Vygotsky’s ideas (Haas, 1996, 1999), which includes
the historical study of how the tools were developed. The other parts of
this method include how the tools are transformed by use, and the
transformative power of tools on consciousness.

Language tools do not differ from many other tools in that they are
products of science, and social, cultural and technological development.
And as with many other tools the developers of the tool have a specific
user and activity in mind when developing the tool. In our case it is
writing and the writing processes that have been more or less modeled.
This concerns the user interface, and more deeply the interaction between
the user and the language tool, and the kind of language the developers of
the tools assume that writers use.

In order to make the language tool more concrete we will in the following
focus on spelling and grammar checking. In this context several questions
arise concerning a tool’s design, its surface, its possibility to interact, and
the language engine inside the tool. MS Word’s grammar checker can be
used as an example. When this tool is analyzed, questions about its design
can be asked; for instance if the design is based on research on human
computer interaction and writing processes or if the design is
implemented because it is now possible through more efficient algorithms
and faster personal computers?

15

Chapter 2. Language tools and writing

In the Swedish versions of the Microsoft Word’s grammar checker errors
violating several features are treated in a step-like fashion, feature by
feature. An agreement error like: “Jag séag ett lilla hund” (Eng. I saw a
little dog) is proposed to be changed to “Jag sag en lilla hund” which
therafter is proposed to be changed to the correct sentence Jag sag en
liten hund”.

The question arises whether this way of designing the user’s interaction
with the grammar checker is a product of knowledge about writing
processes, or is it just a design constrained by limitations of the current
technology?

The developers’ view of language tools is constrained by factors like the
specific kind of language technology used, and what it is based on. The
developers’ own beliefs of language use also play a part. In the Swedish
case, a very well recognized word list of what is considered as the main
vocabulary of Swedish is the Swedish Academy’s wordlist (SAOL,
1986). This wordlist mediates to a great extent the correct phonological
mapping of words in Swedish. If an item does not exist in this list it
might create doubt in a person using the wordlist for checking spelling.

When it comes to language tools, in this case a spelling checker, several
new layers (or functions) mediate the act of spelling checking. The
spelling checker has to fulfill the tasks normally carried out by humans
when they use a wordlist for checking or are required to. In this Swedish
case, it concerns for instance to add inflections to words in the wordlist
(which normally associates two inflections with the lemma) and “rules”
for the building of compounds.

Although we want to design language tools just as tools, and not as tutors
(Levy, 1997) there will exist some kind of user modeling. We must
assume that the writers want to get help with a specific activity and use
more or less an “ideal” form of language. In addition, we must assume
that the language tools should interact with the users’ writing processes in
limited ways. This is user modeling, but it is hopefully a weak version,
not including any techniques for user adoption of for instance error
catalogue, genre, and personal preferences about explicit or implicit
feedback. To conclude, designing and developing language tools for
writing is based on several idealized conceptualization of writers’
activities, language use and preferable ways to interact with a computer.
In order to understand the role of language tools in the context of writing,
a long-term goal must be to try to uncover these idealizations.

16

3 Designing and developing a grammar
checker for Swedish

Research on grammar checking of English has a quite long history, and
how to handle ill-formed input in general NLP-systems has also been
studied for a long time (Jensen et al., 1983). Current research for English
seems to have two different areas: machine learning (Chodorow &
Leacock, 2000; Han et al., 2004; Mangu & Brill, 1997) and grammar
checking for second language learners of English (Han et al., 2004; Park
et al., 1997; Schneider & McCoy, 1998; Tschichold et al., 1997). For
other languages mostly native speakers have been in focus. Several
languages have been targeted like Dutch (Vosse, 1994), Spanish and
Greek (Bustamente & Ledn, 1996), Swedish (Arppe, 2000; Birn, 2000;
Carlberger et al., submitted; Domeij et al., 2000; Sofkova Hashemi,
2003; Sagvall Hein, 1998), Norwegian (Bondi Johannessen et al., 2002;
de Smedt & Rosén, 2000), Danish (Paggio, 2000) and German
(Bredenkampf et al., 2000) just to give some examples of European work
in the field.

Some research and software development within the field of grammar
checking has also been focused on so called controlled languages. A
controlled language is a subset of a human language with constructed
constraints on syntax and lexicon (Almqvist & Ségvall Hein, 1996).

Methods in grammar checking are also useful in many other applications
in language technology, for example machine translation, text
summarization, text generation and many other applications from OCR
error handling to text-to-speech systems (Han et al., 2004).

3.1 Designing a grammar checker

Designing a grammar checker involves many issues, but the user’s needs
must be seen as the central issue. This includes not only the user’s
language, but also how the user is going to use the grammar checker, for
what purpose and in what kind of activity. If the context is professional
writing, the grammar checker might be designed in one way; if the

17

Chapter 3. Designing and developing a grammar checker for Swedish

grammar checker is going to be used in learning a second language it
might be designed differently, i.e. learners and professionals have
different goals when they write. The way the user’s errors are analyzed is
important when designing what kinds of feedback that will be given.

However, technology imposes a lot of constraints on what kind of
grammar checker it is possible to develop. When designing a grammar
checker, current technology that the grammar checker should build on
must be evaluated. In order to detect errors the underlying linguistic
analysis must be robust against errors, which means that ungrammatical
sentences must be given some analysis and not be left without any
interpretation. For many languages, the linguistic resources, e.g. corpora
of correct language and error corpora are very limited. Tools for
analyzing text might also be underdeveloped. Therefore, cost-effective
development methods have to be chosen when developing a grammar
checker for other languages than English and a few more. The technology
chosen, or the one to be developed, must also be efficient if the grammar
checker should be used in interaction with users during writing. In
addition, the possibility of tuning the grammar checker’s level of
performance is an important requirement if it should be possible to use
the grammar checker for different writing tasks. A user might want to
find as many errors as possible with the cost of many false alarms in one
text, while in other texts it is only important to get rid of the most
annoying errors.

One central problem that arises during the design and development of a
grammar checker is how to judge grammaticality. The grammaticality
judgment has to be done by both the user and by the program and on
several levels. A user can be good at judging the grammaticality and then
false alarms and limited feedback might be of limited concern, but if the
user has problems in judging the grammaticality then false alarms and
limited feedback might be a greater problem. The ability to judge
grammaticality is what determines the program’s performance on
detecting errors.

3.1.1 Grammar checking and grammaticality

The question of grammaticality and acceptability is a research area of its
own, and has concerned linguistics for several decades. The famous
sentence by Chomsky (1957) “Colorless green ideas sleep furiously” is a
good example of a sentence that a grammar checker must pass through.
The sentence is grammatical but it is not acceptable.

18

Designing a grammar checker

A piece of language can be acceptable in one context, but unacceptable in
another context. The meaning of this piece of language has to be taken
into account to make the correct judgment. Manning proposes that we
should look at form, meaning and context (Manning, 2002) when trying
to model grammaticality. Manning seems to avoid the notion
acceptability, finding it hard to define. His view focuses on language use
and evidence from text corpora, and he does not seem to separate syntax
from meaning and context.

3.1.2 A problematic example: Split compounds

Split compounds are frequent in Swedish texts, and they also demonstrate
the critical relations between form, meaning and context. If a split
compound creates an ungrammatical structure it must be an error; but if
the construction is grammatical but for humans not acceptable, some
people think that it still should be signaled as an error. We can see that
the interaction between form, meaning and context is important when
judging grammaticality and acceptability. For current grammar checkers
the division between grammaticality and acceptability is difficult to deal
with. Four possible categories of constructions arise based on the binary
distinctions grammatical and acceptable (James, 1998):

+grammatical +acceptable: Hon dt en gron sak with the meaning She
ate a green thing. This sentence cannot be ungrammatical, but it can be
unacceptable, see next example.

+grammatical -acceptable: Hon dt en gron sak with the intended
meaning She ate a vegetable (Swe. gronsak). If the writer means or if the
context indicates a vegetable and not a green thing the sentence is
unacceptable.

-grammatical -acceptable: Hon dt inte gron saker (with the intended
meaning She did not eat vegetables (Swe. gronsaker). This sentence is
both ungrammatical and unacceptable, and it has two different
interpretations, either as a split compound or as an agreement error within
the NP “gron saker” (green things).

-grammatical +acceptable: It is hard to find a split compound that is

ungrammatical but acceptable — grammaticality is a prerequisite for
acceptability.

19

Chapter 3. Designing and developing a grammar checker for Swedish

3.1.3 How to view the errors and to provide feedback

Within the field of error analysis there seems to exist some consensus
about the fact that errors can be viewed in at least two ways; they can be
diagnosed and they can be described (James, 1998). When an error is
diagnosed its human causes are taken into account. The error description
focuses on formal aspects, what kind of structural violations the errors
causes. In grammar checking these two ways of viewing errors and giving
feedback to the user coexist. A so-called context-sensitive spelling error
refers to the user’s spelling ability, its causes. An agreement error is a
good example of an error description. This mix of feedback might be
unfortunate, but my opinion is that it is a result of developers’ and
researchers’ strive to present the programs’ functions in a comprehensive
way.

A context sensitive spelling error like “Det var en vacker fr6” (Eng. That
was a beautiful seed) with the intended meaning “Det var en vacker {6r”
(Eng. That was a beautiful prow) can in Swedish be interpreted as an
agreement error. By using the diagnose context sensitive spelling error
the assumption is that writer has made a spelling mistake, and the only
way to understand that is to examine the context. By using the feedback
based on the error diagnosis the grammar checker is making a much
stronger claim about the error than it would do using the error
description. Henceforth I will use the term error diagnosis in order to
simplify.

Less problematic than diagnosis and description is error detection, which
means to signal that a sentence or segment is erroneous. More
problematic is error location. Some errors are easier to locate for instance
disagreement within a noun phrase. More difficult to locate are
constituents that are missing in the sentence, like a missing verb or
subject. In grammar checkers the two concepts are used together, but in
the following I will use only the term error detection.

The last step in this feedback process on errors is error correction. A
teacher might give error correction, but I think that providing correction
proposals is what a grammar checker should do.

3.1.4 Different ways of providing feedback on errors

There exist at least three different ways to provide the user with feedback
in current grammar checkers:

20

Designing a grammar checker

* Batch mode. The user gets an error report on all errors found in the
text, i.e. an output file with all errors in the text described, see
Figure 1.

* Sequential mode. The user gets reports on errors from a certain
point in the text, one error report at a time, sentence by sentence. A
user that uses this mode of interaction will get feedback on all
errors from point A to point B, see Figure 2.

* Continuous checking mode. The program marks all errors that it
encounters. The user can choose between the different markings in
the whole text in order to get diagnoses and correction proposals
using the mouse, see Figure 3.

- Besuliat av pranshoing
] T e
Padjelanta ligger 1 Norra Lapland med Sarek 1 Oster och Sulitelma 1 viister. Om vi bediiar friin norr s stiger
Akkaupp i en fanmstisk majestit och gor skl for namnet Lapplands drotninge Z
Lapplands 4
Ett flertal Zee) 3 hidy mussiven.
dr det

.
= |

Figure 1. Getting feedback on errors in batch mode. This is the output from a web
interface to Granska called WebbGranska.

For different activities, different modes of interaction might be suitable.
A journalist might want an error report resembling the one from a
proofreader. A second language writer might want immediate feedback
on the errors using the continuous checking mode, because using the
correct forms is important when formulating the rest of the text. Another
user might want to be sure that she has judged all alarms from the

21

Chapter 3. Designing and developing a grammar checker for Swedish

grammar checker, and scrutinizing them in a sequential mode might be
the best way to do that.

o Spelling and Grammar: Swedish

Cenuskongruens: adlektiy och substanthy.

Oy heijar frin norr-sh-stiger Akkzupp bt fan tastisg] i} % lgnare }
reabestdt- och-giv skl namne Lapplands drotiningen. v
. lgnore All

a

v Mext Sentence s

Sugnestions:

Kortrofiera ordformen Tantastiek. Om et adiekty Destimmer . Change
ety subatantiv med tgemus, ey Ml ., biir ookad -
adishtivet ha by,

Tantastiokt

W Check grammar [Options... Lt { Cancel

Figure 2. Getting feedback on errors in a sequential way. Dialog box from the
Microsoft Word’s grammar checker.

22

Basic functionality in a grammar checker

oA BE e wEldlan

47 Word Fie Edit View Insert Format Fomt Tools Table Window Work Help
B o e 9 b
 Documenty

1o # I E e

Padielanta-ar det hoga landet som ar osannolikt-tantastiskt
vacker och mjukt i formerna. Sarek dr brutalt och alpin, bist
darfér att balansera pa griinsen. Padjelanta ligger i Norra
Lapland med Sarck i 6ster och Sulitelma i véister.=

Om vi brdjar fran norr s& stiger Akka upp 1 ett fntastisk
maiestit och gbr skil for namnet Laoplands drottningen. Ett

tep n. Fallhoiden &r
fantastiske

ignore Serdency

a sinnebilden

Lrammar..
ereotackta

bcrg‘ dor.

uru}tilge finns dcl mg,u} an]ednmg att g1 wdau, mlen du ﬂcsla
gbr det. Kanks

Som l;dllmndmrcw \112 man dllixd ldnvlL in i kiirnan av ordrda
fialinatur. Ménniskans ingrepp doljs dock bittre vinter tid och
kan rekomenderas till den kiinslige naturviinnen. Dimningen av
Akkajaure @r en, enligt ménga naturélskare, fruktansvért ingrepp

i 11E R TRs ey ove

Figure 3. Getting feedback in continuous checking mode in Microsoft Word. Errors
are underlined with red and green. Diagnoses and correction proposals are invoked
by using the mouse and pop-up menus.

3.1.5 Grammaticality judgments made by the user

The user has to judge the grammaticality of the language fragment that
program gives an alarm on in order to decide what to do with the current
alarm. The ability of the user to judge grammaticality is important for the
user’s benefit of using the grammar checker. If the user has problems in
the judgment process, many alarms from the program demand heavy
work with revision (Domeij 2003; Paper 5). The ability to judge
grammaticality seems to be much stronger in first language learning than
in second language learning (Ellis, 1997). In the following focus will be
on how grammaticality judgments are made by the different modules in a
grammar checker and how they are communicated to the user. In order to
discuss this matter the basic functionality in a grammar checker first has
to be described.

3.2 Basic functionality in a grammar checker

The main functions of a grammar checker are to detect, diagnose, and
propose corrections on errors (Domeij 2003; Paper 5). In order to detect,
diagnose and propose corrections on errors in a text some basic
functionality is needed. The first linguistic analysis that has to be carried

23

Chapter 3. Designing and developing a grammar checker for Swedish

out is tokenization, which means to divide the text, a sequence of
characters, into sentences and words. This process might seem trivial, but
it is actually not a trivial task (Grefenstette & Tapanainen, 1994) and is a
source of errors when processing text. Examples of problems when
tokenizing Swedish are the interpretation of abbreviations and
hyphenation. Current programs for text analysis include a so-called
tokenizer, and most of them are rule-based (Grefenstette & Tapanainen,
1994). Some systems contain an idiom matcher (Birn, 1998) in order to
analyze multi-word expressions as one token, e.g. “i dag” (Eng. today).

The next processing step in many systems is some kind of morphological
analysis. One exception to this is an approach based on Latent Semantic
Analysis (Jones & Martin, 1997), in which the only “general” linguistic
analysis is tokenization. The morphological analyzer assigns possible
word classes to the words together with corresponding morphological
information e.g. number, gender and species for Swedish nouns. This
analysis is in most cases based on a lexicon together with rules such as in
two-level morphology (Koskenniemi, 1983) or by a lexicon and statistics
like in Carlberger and Kann (1999). For unknown words not in the
lexicon, heuristics or statistics is used to determine one or several word
classes of the unknown word (Carlberger & Kann, 1999).

From this point in the pipeline of linguistic processing some systems have
a separate module for disambiguation of word classes, i.e. deciding which
word class a word belongs to in the current context. A so-called part-of-
speech tagger carries out this disambiguation using statistics (Brants,
2000) or by using rules (Karlsson, 1990). In other systems all syntactic
analysis is taken care of in the same module, which is called a syntactical
parser. When it comes to the syntactic analysis carried out by a
syntactical parser there exist two main perspectives: systems identifying
the phrase structure of the sentence and systems identifying the
dependency structure of the sentence. Both methods have been used in
grammar checking, phrase structure in for example the English grammar
checker Critique (Ravin, 1993; Richardson & Braden-Harder, 1993) and
dependency structure in another grammar checker for English described
by Bourdon (1998).

A module for some kind of semantic analysis is very rare in grammar
checking systems, and has only been used in a very limited way under
certain conditions (Heidorn, 2000). Statistical lexical semantics has been
tried in very limited domains of error detection (Jones & Martin, 1997).
More advanced linguistic processing has to my knowledge not been

24

Basic functionality in a grammar checker

attempted in the field of grammar checking. To conclude, most
approaches are purely syntactic, and quite partial and shallow.

3.2.1 Methods for error detection

So far only methods for general language analysis and their application in
grammar checkers have been discussed. However, almost all systems
need some modules that detect errors in the sense of pointing out the
errors’ positions in the text. Methods for error detection can as well as
many other methods for language technology be divided into three
groups: rule-based, statistical and hybrid.

The first group contains rule-based methods, which are the traditional
way to deal with grammatical problems. The most ambitious approach is
to try to test if a sentence is generated by a grammar or not. This is a full
and deep parsing approach based on hand-crafted rules and could have
been the ultimate solution to grammar checking. If a system could divide
sentences into grammatical and ungrammatical ones very much would
have been gained. However, current methods do not seem to have the
ability to deal with this problem. In a system like Critique (Richardson &
Braden-Harder, 1993) the deep analysis which includes semantic analysis
is left out, and replaced with heuristics. When the full analysis fails, e.g.
when it is not possible to build a complete syntax tree, a technique called
relaxation is used. Relaxation means to loosen up some constraints in
order to let for instance an agreement error through. If this also fails so
called parse fitting is used, which means to build a syntactic structure
from the longest constituent (Jensen et al., 1983). Relaxation can be seen
as a phenomena-based approach, because the grammarian needs to
program which constraint should be relaxed. If the constraint on
agreement with the noun phrase is relaxed, the error (the phenomenon)
must be an agreement error within the noun phrase. To get hold on word
order errors the fitted parse must be examined with special rules, which
must also be sorted in under the paradigm of phenomena-based grammar
checking. The Swedish grammar checker Scarrie (Sagvall Hein, 1998,
1999) is based on a relaxation technique and local error rules. This
system parses as much as is needed and then searches the output from the
parser Uppsala Chart Parser (Sagvall Hein, 1981) for errors.

Phenomena-based approaches to grammar checking are also the most
frequently used ones. Systems with the aim to give a diagnosis or a
description must in some way focus on specific phenomena in order to
give the user a diagnosis and a correction proposal. Many of these
systems do not try to parse the whole sentence, instead they search for the
error with help of the information from part-of-speech tagging and partial

25

Chapter 3. Designing and developing a grammar checker for Swedish

parsing. An attractive exception, although belonging to this group, is a
technique called positive error detection, where the difference between
one broad positive rule and the union of two narrow positive rules forms
the search expression for an error (Sofkova Hashemi ez al., 2003).

The second main group contains statistical methods where statistics plays
an important role in the decision of grammaticality. One of the first
experiments with statistical methods to detect errors in text was proposed
by Atwell (1987). He proposed the use of the probabilities calculated
within a part-of-speech tagger. Part-of-speech transitions with a very low
probability were considered as errors. The results of his experiments are
hard to judge because of a very limited evaluation. A different approach
was proposed by Bigert et al (Paper 4) and Bigert & Knutsson (2002), in
which the basic error detection algorithm uses part-of-speech tag trigram
frequency information gathered from a corpus of proofread language.
When checking a new text, unseen trigrams according to the corpus are
considered as erroneous.

Statistical methods can also be characterized as supervised or
unsupervised methods. This distinction is made to tell if the errors are
explicitly pointed out for the machine learning algorithm. This is denoted
supervised learning, in contradiction to unsupervised where no
information about the errors is given to the system. Using annotated
errors from a learner corpus is supervised learning (Izumi et al., 2003).
Using corpora without annotations of errors and methods for comparing
different data sets must be considered as unsupervised (Bigert &
Knutsson, 2002; Chodorow & Leacock, 2000). Between these two poles,
work has been carried out where the errors are created by rules, and
thereby automatically annotated, and this approach can be seen as weakly
supervised (Sjobergh & Knutsson, 2005).

Within the field of machine learning there is an extreme case of
phenomena-based grammar checking, with a focus on the problem of
choosing the correct word in a set of words that are commonly confused,
so called confusion sets (e.g. Swedish: dem, dom, de, English: to, too,
two). This is commonly called context-sensitive spelling error detection
and correction.

Most research has dealt with around 20 confusion sets (in total
approximately 40-50 words), and reports an accuracy of around 90%.
However, the targeted forms might be frequent, and important in
converging to the written norm of a genre. When a new confusion set is
added to “the checker” this might sink the whole approach. I have not

26

Basic functionality in a grammar checker

found any research trying to answer if such a limited set of error forms is
useful. Carlson et al (2001) show how the method could be scaled up, and
they also point out that accuracy must increase up to 98-99% in order to
be useful, because of the fact that the words in the confusion sets are very
frequent, and frequent false alarms on these words will be annoying for
the users.

There are at least two scaling problems in this paradigm, automatic
scaling of the number of confusion sets (Huang & Powers, 2001), and
scaling the learning methods to handle a large amount of confusion sets
(Carlson et al, 2001).

I have not found any work on Swedish and disambiguation of confusion
sets. However, for Danish some research has been carried out (Hardt,
2001)

The third group is hybrid methods that combine several methods to make
decisions on grammaticality and error detection, such as the program
ProbGranska. This program combines statistical methods with partial
parsing and transformation rules to achieve better performance in error
detection, and is presented in Paper 4.

Hybrid methods could also be seen on a system level, where different
modules in the grammar checker are based on different frameworks. One
example of this is the system Granska, using a statistical method for part-
of-speech tagging and a rule-based method for error detection (Paper 1).

A grammar-checking program can be based on several methods, both in
making general grammatical judgments and in pointing out the specific
error. In addition, modules that diagnose and provide corrections of the
errors are also necessary. In phenomena-based grammar checking the
detection, diagnosis and correction are very closely related, in many cases
parts of the same rule. In a grammar checker such as SnalGranska (Paper
4), where grammar checking is seen as a tagging problem, an error tagger
for each error type is built. A tagger designed for only one error type can
certainly diagnose errors belonging to that error type. In order to provide
the user with correction proposals, special error modules have to be built.
They can be quite easy for the error type split compounds by combining
the word parts to one word, and more complicated for e.g. agreement
errors, where the generation of the correct forms have to be made.

Most research has focused on methods for error detection and diagnosis,
and to a limited extent on error correction. This does not mean that error

27

Chapter 3. Designing and developing a grammar checker for Swedish

correction is trivial, instead it is in many times quite difficult. The
correction proposal must be automatically generated, and the proposal
should make the sentence grammatical. In addition, it is possible to
correct an error in several ways. One example is the agreement error “en
bilar” (Eng. a cars), which for instance can be corrected to “en bil” (Eng.
a car) and “nagra bilar” (Eng. some cars).

3.2.2 Grammaticality judgments made by the general
language analyzers

The program’s components for general language analysis have to judge
the grammaticality of each sentence when they disambiguate between a
possible grammatical interpretation and an ungrammatical interpretation.
Without a semantic component grammatical but unacceptable
constructions will pass the process of grammar checking. Regardless of
whether the language model is rule-based or statistical, grammatical but
unacceptable constructions will in many cases be ranked higher than
ungrammatical constructions. The Swedish sentence “Jag sag det man”
(Eng. I saw the man) might work as a simple example. The error cannot
be detected partly because of the fact that “det” (Eng. the/it) is quite
common as a pronoun in the SUC corpus (Ejerhed ez al., 1992) 16311
times as pronoun, 4420 times as determiner. The word “man” (Eng.
man/one) on the other hand is quite common as a pronoun (4599 times),
and 2600 times as a noun. A plausible tagging of “det” and “man” is
therefore as pronouns, such as in the sentence “Jag sag det man behovde
se” (Eng. I saw what one needed to see). Language models are nearly
always based on correct language. Ungrammatical sentences are neither
the base for the grammarian nor existent in the corpus used for the
statistical processing. This means that many words that are ambiguous
with respect to part-of-speech, will get a higher ranking as grammatical
compared with an ungrammatical interpretation.

This disambiguation process sets the limit of which errors a grammar
checker can detect. An erroneous phrase can get an ungrammatical
interpretation in one context, but a grammatical one in another context.
This can make the user confused, especially if the user tries to learn the
“behavior” of the program.

3.2.3 Grammaticality judgments made by the error
detection component

If we assume that the general language analyzers in the grammar checker
have let the ungrammatical interpretation go through to the error
detection component, then the error can be detected, diagnosed and

28

Developing a grammar checker for Swedish

corrected, otherwise it is very hard to identify the error. However, all
errors will not be detected even though they are in the set of targeted
errors. New constraints on the grammaticality judgments are found in the
error detector. An error could be very similar to a grammatical
construction, e.g. “ett gatans parlament” (Eng. a parliament of the street)
vs. “ett hunds mat” (Eng. a dog’s food), which both at the local level
could be viewed as agreement errors, but only the latter example is
erroneous.

To write a rule that finds e.g. a split compound in Swedish text is not very
difficult, it is basically to search for a noun followed by another noun in
the text, which has been generally analyzed. This could for example be
the nouns in “Jag stod pa en bergs topp” (Eng. I was standing on a
mountain summit) which forms a true split compound, an error. However,
such rule will generate a lot of false alarms, e.g. the nouns in “Jag stod
vid ett bergs skuggsida” (Eng. I was standing on the shadow side of a
mountain) will be detected with the same rule. The difficult part is to
formulate constraints on the context of the general error pattern. Current
error detection components can thus make use of form and local context.
However, analysis of words’ or phrases’ current meaning should be very
useful in a grammar checker, but this has been rarely used in grammar
checkers as discussed above.

When it comes to the generation of correction proposals, new judgments
of grammaticality should preferably be made on the sentence with the
results of the correction. One way to do this is to check the new sentence
with the grammar detection module as made in Granska (Paper 1). Other
tools like a full parser or a statistical measurement of grammaticality
could be used in a similar way (Bigert, 2005).

3.3 Developing a grammar checker for Swedish

It is currently hard to see that a method for grammar checking will be
developed that does not have to rely on some kind of grammatical
analysis. Statistical methods and a billion-word corpus might work to
some extent, but only future research can reveal this. However, current
methods rely heavily on grammatical analysis, even though it is not very
deep. All approaches have at least in common an analysis of word classes
and inflectional information. The only exception is research on
disambiguation of so-called confusion sets, where at least some
experiments have been carried out without a part-of-speech tagger (Jones
& Martin, 1997).

29

Chapter 3. Designing and developing a grammar checker for Swedish

Early research on syntactical analysis of Swedish focused on knowledge
poor methods (Brodda, 1983; Killgren, 1992). The Uppsala Chart Parser
(UCP) (Sagvall Hein, 1981) accomplishes a more full syntactic analysis.
UCP has been used in several applications, for instance in machine
translation (Sagvall Hein et al., 2002). Experiments with parsing and so-
called field grammars has also been carried out (Ahrenberg, 1990). A
deep parsing approach came from Gambick’s work on the Swedish
version of the Core Language Engine (Gambick, 1997). This knowledge
rich approach focused on a full and deep syntactical analysis within
limited domains.

With the advent of the manually tagged corpus called Stockholm Umea
Corpus (SUC) (Ejerhed et al., 1992) there was an increased interest in
methods exploiting this resource, and in particular morphosyntactic
analysis, so called part-of-speech tagging. There exist several systems for
morphosyntactic analysis of Swedish using different methods;
handcrafted rules e.g. those found in the Swedish Constraint Grammar
(Birn, 1998), and statistical approaches (Carlberger & Kann, 1999;
Astrém, 1996). Even though it is hard to compare the different
evaluations made, they all achieve an accuracy of around 95%. This
means that every 20™ word is assigned the wrong tag. This has of course
consequences for the later stage of grammar checking, which is built on
this initial analysis.

Recent Swedish research on part-of-speech tagging has focused on
smoothing methods (Nivre, 2000), ensemble methods (Megyesi, 2002a;
Sjobergh, 2003) and how the tag set size and training size matters for the
performance of the tagging method (Megyesi, 2002a). Three parsers have
been developed recently. Two of them use machine learning (Megyesi,
2002b; Nivre et al., 2004) while the other is based on finite-state
cascades, called Cass-Swe (Kokkinakis & Johansson-Kokkinakis, 1999).
Furthermore, two commercial parsers also exist, developed in the
frameworks of Constraint Grammar (Birn, 1998) and Functional
Dependency Grammar (Voutilainen, 2001) respectively. The Functional
Dependency Grammar parser actually builds a connected tree structure.

3.4 The grammar checker Granska

Central in this thesis is the grammar checker Granska. Although it is
carefully described in Paper 1 in this thesis, it will be briefly described
below. Also, some decisions made regarding its design are important to
elaborate on here.

30

The grammar checker Granska

Due to the limitations of other approaches we decided to base Granska’s
general language analysis on part-of-speech tagging. At that time, most
parsers described above were not developed, and one design decision was
therefore to build a partial and shallow parser inside Granska. This later
evolved to GTA. Off-the-shelf taggers existed (Brill, 1995), but they
were not considered fast enough for a grammar checker to be used in an
interactive mode. Faster part-of-speech taggers arrived with the TnT-
tagger (Brants, 2000) and faster implementations of Brill’s tagger, but
that was some years after the Granska project had started. Instead, the
research group decided to develop their own tagger, called the Granska
tagger, which was seamlessly integrated with a specially designed rule
language, and a rule matcher. The rule language and the rule development
have been described in detail in (Knutsson, 2001).

3.4.1 A short description of Granska

The modular structure of Granska is presented in Figure 4. The user’s text
is first processed in the tokenizer. This module divides the text’s
sequence of characters into sentences and words. The sentence is then
used as the unit for analysis. In the next step, a part-of-speech tagger is
used to assign disambiguated part-of-speech and inflectional form
information to each word. The rule matcher then applies error rules and
general rules for phrase analysis and clause boundary detection on the
tagged text. The error rule component can get correction proposals from a
word inflector as well as using the general phrase analysis and clause
boundary detection as contextual information in the error rules. Granska
also includes the spelling checker Stava (Kann et al., 2001). This design
solution makes it possible to use the general language analyzers in
spelling checking, and to use Stava for checking split compounds, which
have been compounded to a new word by the error rules. In a last step
before presenting the result to the user, the rule matcher applies all rules
again on the sentence with the results of the correction, in order to
determine if another error was introduced by the correction proposal. In
such cases, the correction alternative is discarded. Finally, the errors that
Granska have detected in the text are pointed out to the user in a graphical
user interface. All errors are diagnosed, and the program provides
correction proposals on most of them.

Granska includes a statistical part-of-speech tagger (Carlberger & Kann,
1999), called the Granska tagger. This tagger is based on a lexicon and
statistics gathered from the Stockholm Umeé Corpus (Ejerhed et al.,
1992). The error rules have been written in an object-oriented rule
language constructed especially for Granska. About 350 rules have been
manually constructed, and about half of these are error detection and

31

Chapter 3. Designing and developing a grammar checker for Swedish

correction rules. The rest of the rules are used for phrase analysis, clause
boundary detection and to accept constructions that are quite similar to
errors.

An example of a rule written in Granska’s rule language detecting
agreement errors in a noun phrase is the following. The rule will find an
error such as “Jag ség en gula bilen” (Eng. I saw a yellow car) and
propose a correction to “Jag sag den gula bilen” (Eng. I saw the yellow
car”).

cong22@disagreement

{
X (wordcl=dt),
Y (wordcl=3j7j) *,
Z (wordcl=nn & (gender!=X.gender | num!=X.num |
spec!=X.spec))
-—>
mark(X Y Z)
corr (X.form(gender:=7.gender, num:=Z.num, Spec:=Z.spec))
info ("The determiner" X.text "does not agree with the
noun" 7Z.text)

action (scrutinizing)

The first part of the rule detects the agreement error. The second part tells
what should happen after a matching. The mark statement specifies that
the erroneous phrase should be marked in the text, the corr statement
that a function is used to generate a new inflection of the article from the
lexicon, one that agrees with the noun. This correction suggestion is
presented to the user together with a diagnostic comment (in the info
statement) describing the error.

The rules are compiled and optimized using statistics of words and tag
bigrams in Swedish. This means that each rule is checked by the matcher
only at the positions in the text where the words or tag bigrams of the
least probable position in the rule occur. This design allows a fast rule
matching and relieves the grammarian from the constraint to write very
few and efficient rules.

32

The grammar checker Granska

Text to be
scrutinized

Lexicon Tokenizer
and statistics
Word
inflector Part-of-speech tagger

Error rules _> Rule matcher

RN

Phrase analysis The spelling
and clause checker
boundary detection Stava

Graphical

user interface

Figure 4. An overview of the Granska system.

3.4.2 What kinds of errors to focus on

When developing a phenomena-based grammar checker like Granska an
error catalog has to be defined. This error catalog is first of all
constrained by the limitations of the current technology. With this
technology constraint as a point of departure the catalog can be based on:

* Frequent errors as pointed out by teachers or other experts.
* Books or lists of errors.

33

Chapter 3. Designing and developing a grammar checker for Swedish

e Possible correct constructions that can be identified and their

counterparts.

* Error corpora, both of native and second language writers’ texts.

Granska is based on all four of the sources, and the core of Granska’s
error catalog is presented in Table 1. If there would have existed larger
amounts of annotated errors in different kinds of corpora, Granska might
have focused on other types of errors.

Table 1. Granska’s error catalog with examples of targeted errors.

Error type Example Carefully developed
in Granska

Agreement NP Jag sag en glador (Eng. I | Yes
saw a Kites)

Predicative Mannen var glada. (Eng. | Yes
The man was happy)

Split compounds Gladan tog en aker sork. | Yes
(Eng. The kite caught a
field vole)

Verb chains Jag har spana pa glador | Yes
en lingre tid. (Eng. [have
watch kites for a long
time)

Miscellaneous Jag visade gladan for Yes
hon. (Eng. I showed she
the Kite)

Spelling Jag sdg en galda. (Eng. I | Yes
saw a kiet)

Missing X Jag en glada. (Eng. I a Limited
kite)

Word order Jag stannade hemma Limited

eftersom glador flyger
inte i detta vider. (Eng. |
stayed home because
kites do fly not in this
weather)

As pointed out in Paper 1, the focus in the development of the error rules
in Granska has been on three error types: agreement errors in noun
phrases (NP), agreement errors in predicative and split compounds.
Agreement errors within the NP and split compounds are frequent errors
in Swedish texts, and they have also been studied by Domeij et al (1999).

34

The grammar checker Granska

Agreement errors in the predicative were chosen as they challenge the
types of errors that are possible to detect with the methods used in
Granska (Knutsson, 2002). In order to detect this type of error, almost the
whole clause must be analyzed and disambiguated on the phrase level.
However, Granska targets several other errors, such as missing subject or
finite verb (Missing X), verb chain errors, and a group of minor error
types such as subject form after preposition (Miscellaneous). Word order
errors are very complex, and in Granska there are only a few rules, which
try to detect the wrong placement of adverbs in subordinated clauses.

3.4.3 The partial and shallow parser GTA

A subset of the rules of Granska constitutes a starting point for a partial
and shallow parser for Swedish, called GTA (Knutsson et al. 2003).
Inside Granska the rules for phrase identification are used in many of the
error detection rules. The rules became a “stand-alone” parser with
improved disambiguation when ProbGranska was developed, and plays
an important part in its error detection algorithm, see Paper 4. The parser
has been carefully evaluated in Paper 3. It is also used to identify
grammatical categories in Grim, see Paper 5 and Chapter 6.

GTA is rule-based and relies on hand-crafted rules written in a formalism
with a context-free backbone, i.e Granska’s rule language (Knutsson,
2001). The rules are augmented with features. It is quite often claimed
that the grammars of shallow parsers are quite large, containing
thousands of rules (Hammerton et al., 2002). This is not the case with
GTA. In total GTA contains 260 rules. 200 of these rules identify
different kinds of phrases, 40 rules are disambiguation rules that select
heuristically between ambiguous phrase identifications. Clause
boundaries are identified with 20 rules quite similar to Ejerhed’s
algorithm for clause boundary detection (Ejerhed, 1999). However, the
number of rules is not the only aspect of grammar complexity. Interaction
between rules and recursion are also important.

The rules in the grammar are applied on part-of-speech tagged text, either
from an integrated tagger (Carlberger & Kann, 1999) or from an external
source. GTA identifies constituents and assigns phrase labels. However,
no full trees with a top node are built. The disambiguation of phrase
boundaries is in a first phase done within the rules, and secondly using
heuristic selection. In a third phase, a disambiguation and selection
algorithm called the Tetris algorithm is applied to the remaining
ambiguities (Bigert, 2005). The analysis is surface-oriented and identifies
many types of phrases in Swedish. The basic phrase types are adverb
phrases (ADVP), adjective phrases (AP), infinitive verb phrases (INFP),

35

Chapter 3. Designing and developing a grammar checker for Swedish

noun phrases (NP), prepositional phrases (PP) and limited verb phrases
and verb chains (VC). The internal structure of the phrases is parsed
when appropriate and the heads of the phrases are identified.

The identification of the head of the phrases are used as transformation
rules in ProbGranska, e.g. a phrase like “den glada mannen” (Eng. the
happy man) is transformed to its head “mannen” (Eng. the man). The
clause boundary detection is also important in ProbGranska, defining the
unit of error analysis (Bigert & Knutsson, 2002). The same rules are also
used in the detection of for example split compounds in Granska.

36

4 Using language tools in second language
writing and learning

Using language tools to support second language writing and learning is
not a new area of practice or research. Writing aids like Writer’s
workbench have been used for more than 20 years (Reid et al., 1983), and
more advanced grammar checkers (Brock, 1993) for about fifteen years.
With the advent of widespread network technologies and the Internet,
students are not only using word processors for composition; they are
using computers when writing in computer assisted classroom
discussions, Internet Relay Chat, and e-mail environments (Matsuda et
al., 2003). Second language writing is a field on its own, but two
important and related fields are Computer Assisted Language Learning
(CALL) and Second Language Learning/Acquisition (SLL/SLA?). It is
also a field where writing research meets applied linguistics, and where
the insight seems to be that both perspectives are necessary in order to
study second language writing (Matsuda et al., 2003).

The individual process-oriented view of writing has been criticized for
not taking into account how language is used to construct meaning in
sociocultural contexts (Hyland, 2003). Language is just not only a part of
the editing phase of writing as in process oriented models of writing
(Hyland, 2003). Language is central in writing. How to analyze and
interpret a genre where the written communication should fit is
constrained by social and cultural factors. These sociocultural factors,
which are necessary to know in order to construct meaning in written
communication, have to be learned by second language writers.

4.1 Language tools in computer assisted language
learning

Computer assisted language learning (CALL) is a broad field, including
many different theoretical and technical approaches to language learning

? The terms Second Language Learning (SLL) and Second Language
Acquisition (SLA) are used more or less as synonyms in this thesis.
However, they are grounded in different traditions with different
theoretical backgrounds. The acronym SLA is more frequently used.

37

Chapter 4. Using language tools in second language writing and learning

(Chapelle, 2001; Levy, 1997). The activities that are to be supported are
hearing, speaking, reading and writing. The main component in CALL is
that the computer is used in some way to facilitate language learning. The
computer can be used as a means for mediated communication, for
instance between native speakers and learners using chat or e-mail.
Common CALL applications also include functions for automated
language exercises, games, digital audio, video and hypermedia. The
motivation for using CALL is according to (Nerbonne, 2002) especially
strong whenever teachers are unavailable, such as in distance learning but
also in regular teaching when there is not enough time and energy to help
all students. There is also a great need for CALL outside schools and
universities, for self-studies, in order to maintain language competence.

This individual ideology of learning has been criticized, pointing at the
fact that how to use language in a genre is in many cases based on a
intuitive basis, which in second language writing is very problematic
when the writers have different social and cultural backgrounds (Hyland,
2003). The teacher is very important to aid the learner in understanding
how different texts have different purpose, audience and message.

Language skills can also be supported in daily activities (work, education
and leisure/social life) not necessarily including teaching, for instance
special dictionaries for a second language or a grammar checker in a
word processor designed for second language writers.

The degree of development of computer technology has always had a
strong influence on which learning theories that have been used in CALL
(Levy, 1997). However, technology has not been working on its own,
theoretical findings about language learning have had a strong influence
on the design of CALL activities.

4.2 Language technology in computer assisted
language-learning systems
Most computer assisted language learning systems that are in use include
no “intelligence” (Borin, 2002). However, in the following we will focus
on applications where computer programs take a limited but active part in
the process of language learning. Applications with strong focus on the
control of pedagogy, so called intelligent language tutors will be left out
in the following. Instead, focus is mostly on the feedback that a computer
program can give on unconstrained language. Feedback can be given on
the learner’s own production or on some other language material and
media. One technology that has a potential for a task of this kind is
language technology. Language technology or computational linguistics

38

Language technology in computer assisted language-learning systems

has been only scarcely treated in mainstream CALL (Borin, 2002). In
Levy (1997) and Chapelle (2001) computational linguistics seems to
concern mostly syntactic parsing; this is a very limited scope of this
interdisciplinary field. Instead language technology is a broad field,
which can support different levels of language and different processes in
language learning.

Nerbonne (2002) presents a good overview on how language technology
is used today in CALL and how it can be used in the future. The
following are some examples on applications based on language
technology useful in CALL. Morphological analysers and generators can
support both reading and writing. Concordances aid in advanced searches
in large corpora, and for the exploration of bilingual texts. Dictionaries
can be more accessible with a lemmatizer especially for language with
strong inflection systems. Syntactic analysers can aid in error diagnoses
or to visualize syntactic constructions in the target language. Language
generators can help in text construction or reformulation. Pronunciation
training can be done using speech recognition. Speech synthesis can be
used for hearing exercises.

Many more applications are possible, and one main factor for the slow
integration of language technology in CALL is the strong dividing line
between the two disciplines (Borin, 2002). Nerbonne (2002) points out
another important issue: there already exist successful CALL
applications, so why bother about language technology with the
uncertainty of these “intelligent” programs? Programs based on language
technology are not perfect, and will not be in the near future. However, as
Nerbonne argues, other tools like grammar books and dictionaries are not
very well fitted to the learner’s situation and activity. Language
technology can provide an interactive link into this kind of “knowledge”.
Language technology can also help when the learner explores natural
language data, or when teachers and learners collect relevant learning
material based on these data.

Evaluating applications is an important part of research in CALL. But
even more important is to evaluate activities rather than just the
application, since it is what teachers and learners do with the application
that matters. According to Chapelle (2001) a program or activity has high
language learning potential if it involves the pedagogy focus on form (see
below). Not all researchers in second language learning agree that this
pedagogy increases the level of learning, and hence the evaluation of
CALL systems in Chapelle’s way cannot be done without a theory or
method based in second language learning research or other relevant

39

Chapter 4. Using language tools in second language writing and learning

disciplines. Chapelle’s conclusion on the choice of pedagogy is based on
her interpretation of current research results in second language research,
but Chapelle also argues that what is considered to be the most suitable

language learning pedagogy might change as research results change. To
conclude, CALL must be based on research on second language learning.

4.3 Second language learning

An important issue in second language acquisition/learning research is
the question about whether language learning is something different than
other learning processes. The term acquisition indicates that many believe
that. These beliefs have their origins in how the first language is acquired
according to Chomsky’s theories. Learning a language is said to be an
unconscious process. Many researchers use the term language acquisition
for acquired knowledge/skills on how to use language and language
learning for learned knowledge about language (Ellis, 1997).

Within second language learning research there seems to be a consensus
that behaviorist theories cannot explain second language learning; the
second language learner does not simply reproduce the language from
input. One example is that the errors made by second language learners
quite often violate many constraints of the target language and without
any resemblance of target language input. The second language learners
seem to have their own linguistic system with its own rules — an
interlanguage. The term interlanguage comes from Selinker (Selinker,
1972) and is based on the mentalist theory on first language acquisition.
An interlanguage has its own grammar, and can be close to the target
language on some forms, but have a gap or a hole on other forms.
Whatever one thinks of the theoretical grounding of interlanguage, it is a
useful metaphor when discussing second language development.

A theory that has had a strong influence on SLA is Krashen’s Input
Hypothesis (Krashen, 1982, 1994) in which the main component in
language acquisition is receiving comprehensive input. According to this
theory, reading and hearing comprehensively the target language is
enough for learning a second language. A learner goes from one language
level to another by understanding the message of the above level using
the context and extra-linguistic information. In this way the interlanguage
is developed. Chomsky’s language acquisition device (Chomsky, 1965) is
important in the input hypothesis, partly because of the “complexity
argument” — all rules and words cannot possibly be learned consciously.
Krashen strongly argues against all hypotheses that emphasize the
importance of output and feedback on output, and one argument is that
many learners become very good language users with very little training

40

Second language learning

and practice in language output (Krashen, 1994). Krashen’s conclusion is
that the effect of oral and written output is minimal for the acquisition of
a second language in educational environments.

As with many other strong hypotheses there is sooner or later a reaction
to the proposed hypothesis. In second language learning this reaction
emphasizes a focus on interaction, output and feedback. Long proposes
an interaction hypothesis (Long, 1981) and Swain formulates what she
calls “the output hypothesis” (Swain, 2000). Long has observed that the
most common way to make input comprehensive, is not to make input
itself more comprehensive, instead it is common to adapt the interaction
through negotiation to make input comprehensive (negotiation of
meaning). In other words, input gets comprehensive through
communication.

Swain puts forward that hypothesis testing (i.e. the learners test their
hypotheses about how the target language works) is important in second
language learning, based on the “noticing the gap principle”, and more
simply put: hypothesis testing gives the learners the opportunity to use
language. According to Swain the focus on output sets the learner in
control, and in speaking or writing, learners are pushed to use language
more deeply, not only focusing on semantic aspects of language.

These perspectives focus on learner interaction and communication, but
influential researchers like Long and Swain also work with a
complementary concept called “focus on form”. Focus on form (Long &
Robinson, 1998) is based on the insight that communication is not a
panacea — in order to use language in a target-like fashion form matters.
Focus on form means to draw the learner’s attention to linguistic code
features while conducting meaningful tasks (i.e. achieving
communicational goals). What kind of form to focus on and what kind of
feedback that is most appropriate is a question for debate (Doughty &
Williams, 1998), see also Chapter 6 in this thesis.

Studies focusing on form draw the attention to important issues in second
language learning like how the interlanguage should keep developing,
how “holes” in the interlanguage should be made conscious to the
language learner, and how the gap between the interlanguage and the
target language should be made salient to learners. Many researchers
have emphasized that language consciousness and meta-linguistic
reflection are fruitful for comprehensive and dynamic interlanguage
development (Lindberg & Skeppstedt, 2000). Focus on form also pays

41

Chapter 4. Using language tools in second language writing and learning

attention both to input and output, but many questions are still open, see
Doughty & Williams (1998).

A perspective that has reached an increased attention in recent years is
sociocultural approaches to learning. This field has its origins from the
works of Vygotsky (Lantolf, 2000), but important extensions of the
theory has been made (Wertsch, 1991). These extensions also have
impact on theories of second language learning. From a sociocultural
perspective, learning a language is much more than “cracking the code”
(Lindberg, 2001). Rather, learning a new language also includes to learn
and understand the sociocultural setting in which the language is spoken
and written. Second language learning is from this perspective based on
social interaction, where the learner is interacting with people through
language mediated by social and cultural contexts, and different kinds of
tools, psychological as well as technical.

It is currently hard to see any alternatives to focus on form without
returning back to pure communicative approaches, which according to
many leading researchers within the field of second language learning is
not enough in order to learn a language. Furthermore, sociocultural
studies of grammatical form give us something different (DiCamilla &
Lantolf, 1994; Lantolf ez al., 1997). In these studies grammatical features
are seen as psychological tools for organizing and guiding mental
activity. If we connect this tool metaphor with focus on form, the concept
gets another grounding; it provides us means to visualize the tools also
called grammatical forms, see also Nunn (2001).

42

5 Evaluating language tools

Computer programs including language technology have mostly been
evaluated with narrowly defined tasks inside the laboratory, and recently
critical voices have been heard against the studies of systems and not the
systems’ roles in human activity (Sparc Jones, 2001). The measurements
used in these evaluations are good when testing and comparing the
performance of different algorithms, but it is very unclear what they tell
us about the systems’ performance when users are using the systems in
different activities (Karlgren, 2000).

What kinds of programs that are to be evaluated is also important. There
is no need for including users when for instance evaluating the syntactical
parser used as one module in a grammar checker. But when it comes to
the study of the use of the grammar checker the users’ activities in
realistic settings are of utmost importance. Thus, two different
approaches are necessary to apply: technical evaluations using different
evaluation corpora and user studies to get an understanding of the role of
language technology in the human activity, e.g. writing a text.

The two fields language technology and human-computer interaction
have as one of several goals to use evaluations as a means to improve the
design of the systems. The outcome of the different evaluations in many
cases leads to proposals for a new design or redesign of the current
systems. The following studies all have such an aim to inform the core
algorithms as well as the design of user interface and interaction.

When it comes to the evaluation of a grammar checker it is necessary to
evaluate the programs’ performance on texts with errors in them. The
processes that should be focused on are the program’s capacity of
detecting, diagnosing and making correction proposals on texts. These
three subprocesses are of different complexity, and should also be treated
as three different evaluation tasks. A program can still be useful if the
error detection capacity is good but the ability to diagnose the errors is
low. This depends on what kind of feedback the user wants or needs in a
specific activity.

43

Chapter 5. Evaluating language tools

Two evaluations that are based on Granska’s performance on the product,
the text, are presented in Paper 1 and Paper 2. The first evaluation is
based on 201 019 words from five different genres. The second
evaluation is smaller, but the texts are written by second language
learners and collected within the field study presented in Paper 5. In
Paper 4 there was also a textual evaluation made, but not by me. It also
uses text written by second language learners, and can be used as a
comparison to my evaluation on second language learners’ text in Paper
1.

We also need to know how the general text analyzers used inside the
grammar checker perform on texts with errors in them. The error
detection algorithm relies heavily on the output from the general
analyzers’ capacity to analyze; hence this step is critical for the
performance of a grammar checker. It is hard to see that the checking
module will find many of the errors “hidden” by the general analyzers,
like part-of-speech taggers and parsers. An evaluation focusing on this
issue is presented in Paper 3. The errors that violate the textual norm are
spelling errors introduced in the texts.

Evaluations of the design of the user interface and interaction are
important parts of the user studies. A grammar checker can in many cases
return a lot of linguistic information as output. However, only a limited
amount of this information is relevant for the user at a certain time of
interaction with the system. What kind of information should be
presented and what kind of meta-language that should be used are
important questions to study. The grammar checker engine can also be
used in different modes of interaction with the user. Which mode or
which modes that are preferable for the users are central questions to
study. These questions have been studied in the formative user study in
Paper 2, and in the field study in Paper 5.

When studying writers and learners, the understanding of the context, for
example the learning activity or pedagogy is also very relevant to get hold
on, and this lies mainly outside the computer environment. A grammar
checker can be used in different ways, and with different levels of success
depending on how the users are instructed. A novel writer, for instance,
might need to learn how to use the feedback from the grammar checker
through a teacher. These questions played an important role in the study
presented in Paper 5.

44

Textual evaluations of language tools

5.1 Textual evaluations of language tools

An important part of developing language tools in research environments
is to have the possibility to make different evaluations of the tools.
Without a detailed understanding of the different algorithms and
linguistic databases used, the evaluation might be shallow, resulting in
limited insights about the causes of the “behavior” of the language tool
under investigation. In addition, the possibility to change different
options in the programs is also very important when conducting
evaluations.

Granska and related technology was developed to be used in evaluations.
To achieve this, a language engineering perspective was necessary to
make the language tools robust enough for realistic and large scaled
evaluations.

The growing interest in statistical and empirical methods in
computational linguistics based on different kinds of corpora has made
the evaluation procedure an obvious and important part of research. In
several sub disciplines annual events have evaluation as main focus, e.g.
TREC (information retrieval), MUC (information extraction), DUC (text
summarization), and for Europe CLEF (cross linguistic information
retrieval). But research on grammar checkers and other writing tools has
been lacking such an event. However, the same evaluation procedures can
be used to some extent, but of course reinterpreted in the context of
grammar checking and writing tools. Recall and precision are the well-
established measurements in many evaluation procedures, e.g.
information retrieval (Karlgren, 2000) and are also applied in the
evaluations of grammar checkers.

5.2 What is important to measure?

An obvious and most relevant question posed by many people is: How
many errors will the program find? This question is addressed by the
measurement called recall. However, in order to measure recall we need
to find all errors in texts that give a broad picture of language use. This is
much harder than it might look for several reasons. To start with, a
representative text collection is not easy to define. In addition, what types
of errors should the program find? Another obvious question posed is
how many false alarms will a user get using your program? This is
measured with the measurement called precision.

Using the measurements recall and precision all error types are normally
treated as having the same value, which can make a system look much

45

Chapter 5. Evaluating language tools

better than it is. For a writer it might be more important to find word
order errors that change the meaning of a sentence than for instance
detecting a verb chain error.

Precision is easier to measure than recall. The evaluator has only to
scrutinize all alarms in the texts; all errors do not have to be identified. To
mitigate the problem of recall, we have in some of the evaluations used
something called maximal recall, which can only be used when two or
more grammar checkers are evaluated on the same texts. When using
maximal recall the errors found by the different grammar checkers are
considered to be all errors that exist.

5.2.1 Defining recall and precision

In evaluation terminology the variables true/false positives and true/false
negatives, are commonly used. These variables can be used in many areas
where a system that tries to detect different things should be evaluated,
like for instance a grammar checker searching for instances of errors. If a
system does something correctly it is true, otherwise false.

Looking for errors in texts can be compared with looking for mushrooms
in the woods. There are a lot of mushrooms in the woods, and some are
edible and some are not. We want to find the edible mushrooms, which in
the textual case would mean the errors. We call these for true positives.
The non-edible mushrooms that we found but which we believe are
edible are called false positives. All edible mushrooms that we do not
find or ignore because we are not sure are called false negatives. The non-
edible mushrooms that we ignore are called true negatives. In Table 2 the
distinctions are translated to the case of a grammar checker.

46

What is important to measure?

Table 2. Truel/false positives and negatives used in context of grammar checking. The
table is adapted from (Manning & Schiitze, 1999).

Grammar checker Actual
target (language not target
errors) (grammatical
language)
detected true positives (tp) are | false positives (fp) are
correct detections of false detections also
errors. called false alarms.
not detected false negatives (fn) are | true negatives (tn)
missed errors. correct misses of
grammatical language.

True positives and true negatives are the detections and non-detections
respectively that are made correctly by the grammar checker. True
positives are correctly identified errors and true negatives are bits of
grammatical language that are correctly ignored by the grammar checker.
False positives are bits of grammatical language that are signaled as
errors, these are also called false alarms. False negatives are real errors
that have not been detected as errors by the grammar checker. The
numbers of each variable are counts of detections, possible detections and
non-detections. These variables are used in the calculations of precision
and recall. A combination of the two can be made using a formula called
F-score’, where f is used as a weight either for recall or precision. When
[is greater than 1, precision is favored, and when f is less than 1, recall
is favored. p = 1 is normally used, meaning that recall and precision is
equally weighted.

p
ip+ fp

Precision def: P =

Recall def: R=—P
i+ fn
(1 +B?)PR

F-score def: F =-—
B°P+R

3 The term F-measure is also used for the same measurement.

47

Chapter 5. Evaluating language tools

5.3 Corpora used in the evaluations of Granska and
related programs

Corpora can be used for various things. In language technology they are
often used as training material for the development of different
algorithms, and for the evaluation of these algorithms. In this thesis one
corpus has played significant role in both development and evaluation:
the Stockholm-Umea Corpus (Ejerhed et al., 1992), also called SUC.

The evaluation of Granska presented in Paper 1 and Paper 2 was based on
a compilation of different texts from various sources, forming five genres
of 201 019 words. The text genres were sport news, international news®,
public authority text, popular science and student essays. The texts from
international and sport news were taken from the KTH News Corpus
(Hassel, 2001). To use different genres for evaluation is essential in order
to get an understanding on the program’s performance on different
language use. In this evaluation all errors were manually searched for,
which made it possible to measure both recall and precision. More details
on this evaluation is also found in (Knutsson, 2001).

The evaluation of Granska on second language learners’ texts presented
in Paper 1 was made on 32 452 words from the CrossCheck corpus’
(Lindberg & Eriksson, 2004). To manually search and analyze all errors
in these texts written by second language learners is a complicated task,
and therefore maximal recall and precision were measured. The
evaluation made in Paper 4 was carried out on 10 000 words from the
SSM-part in the CrossCheck corpus. The CrossCheck corpus has not
been manually annotated with error tags.

The SUC corpus has been used in the evaluations carried out in Paper 3.
In this evaluation, about 15 000 words from SUC were annotated with
basic phrase tags and clause boundary tags, forming a small and flat
treebank. To mitigate the lack of annotated Swedish error corpora, we
have used artificial errors created by error generating rules. Artificial
errors were automatically introduced in the annotated texts from SUC. In
this procedure, errors can also be automatically annotated, since we know
which error types the program is generating. The annotated resource with
artificial errors was used in the experiments carried out on tagger and
parser robustness against spelling errors as presented in Paper 3.

> The CrossCheck corpus has also been denoted the SVANTE corpus.

48

Studying the use of language tools

5.4 Studying the use of language tools

Evaluating language tools in the context of writing and learning is a
complex task. Studying writing must involve the study of the writing
activity and not only the written text.

Trying to answer the question if language tools are good or bad for the
resulting text is very hard, but more problematic is that this question only
focuses on the result, the final text, and not the writing processes. On the
one hand, if this is the only question to study, we both view the writer and
the language tools as black boxes. On the other hand, the question is
relevant if it is combined with questions focusing on the process and
writing context. Dicamilla and Lantolf (1994) argue for the importance of
the interplay between grammatical forms and cognitive functions. Thus,
we need to study both the textual form and the language used for
controlling writing. In addition, the process and the activity, the social
and cultural context and the mediation of tools are necessary aspects to
study in order to achieve an understanding of the role of language tools in
writing. The big question is then: how do language tools mediate such
processes?

In the studies conducted in this thesis we will only touch upon these
questions; the main aim of the user studies was to get an understanding of
the role of language tools in writing and to contribute to the improvement
of the design of existing tools for writing in writing and learning
environments. The first objective was to improve the design of Granska.
The second objective was to develop a new language environment based
on design principles, which were identified during field studies with
Granska. However, the view of writing and learning a second language
through writing activities is very important in the design of studies
focusing on writing.

5.4.1 Writing processes are difficult to access

Writing processes have been studied from several perspectives, based on
different views of human mind and cognition. Domeij (2003) discusses
three main perspectives: the text-oriented perspective with a focus on the
product — the text; the cognitive perspective, with focus on the individual
and internal representations (Flower & Hayes, 1981), and the third
perspective is the ethnographical perspective, with a focus on writing in
real contexts outside the laboratory. However, all studies carried out
outside the laboratory cannot be called ethnography. Instead, ethnography
is one of several ways of conducting field studies.

49

Chapter 5. Evaluating language tools

Ethnography focuses on skills and practices conducted by people during
authentic activities, and the researcher’s role is to study the setting, and
the participants and interact with them in order to get an understanding of
the activity. This research in not driven by hypotheses, and the result is a
descriptive written text (Normark, 2002). Studies within the paradigm of
sociocultural theory are also focusing on authentic activities (Lantolf,
2000), but the activities are approached with theoretical grounding in the
works of Vygotsky, Luria, Leont’ev and Bakhtin and their followers
(Wertsch, 1991). This kind of research is based on theory-guided
observation and interpretation of people involved in different kinds of
activities (Lantolf, 2000).

Within the cognitive perspective, think-aloud protocols have been a quite
common method to acquire knowledge about the writing process
(Smagorinsky, 1994). The method is based on the collection of verbal
data: the researcher instructs the participants to talk about their own
writing process while writing. Some studies with special focus on the role
of language tools on the revision process have also employed thinking
aloud protocols (Domeij, 2003). Think-aloud protocols have been
criticized by several scholars, for example researchers within the
sociocultural theory tradition (S&ljo, 2000). The main argument against
the method from a sociocultural perspective is that the “thinking
processes” that the think-aloud method makes accessible are constrained
by rules of communication. The utterances are produced in order to be
understandable for the researcher and the information the researcher gets
is the participants’ analyses of their own thinking (Sélj6, 2000).

While think-aloud methodologies are focusing on verbal data, methods
based on logging collects what the users are doing with the computers by
collecting for instance the users’ keystrokes, mouse movements and
pauses using special computer logging programs (Kollberg, 1998). An
attractive thing with logging methods is that the writers will hardly notice
that they are studied. One problem with the method might be that the
researcher gets the result of the writer’s decision when composing text,
and not the decision itself, which is the one that the think-aloud protocol
tries to capture.

Much work in this thesis has focused on errors, and that is also the case in
the two user studies conducted. The focus on errors is not only motivated
by the study of a grammar checker; there are several other good reasons
for this perspective. Errors are part of the writers and learners’ writing
practices, and can be viewed as the expression of a conflict between the
between the writer’s conceptions of what is correct use of the written

50

Two different user studies with Granska

language and what is really correct use of the written language. The
studies are not focusing on the origins of the errors, neither their
psycholinguistic interpretation, instead focus lies on how to support and
give feedback on the errors that the grammar checker can detect.

5.5 Two different user studies with Granska

In the papers, which this thesis is based on two user studies are presented.
The first study was a so-called formative study (Paper 2) and the second
study was a field study (Paper 5). The two studies are different, although
one question is still the same: how do the users deal with the feedback
from Granska? The main difference between the studies is the context in
which the studies were carried out. In the first study the users worked
with an already written text, but in the second study the participants used
only their own texts when interacting with Granska. The time variable is
also very different; the first study took about two hours per user, whereas
in the second study the users used Granska during two to four months of
time. The first study focused on a kind of “traditional” use of a grammar
checker, whereas the second aimed to study the use of a grammar checker
in learning environments.

5.5.1 A formative user study

The first study was conducted inside the laboratory. Five users
participated in the study and they were all experienced writers and had all
to some extent, used spelling and grammar checkers before.

The questions raised in the study concerned both the core of the grammar
checker and the user interface design. The grammar checker in MS Word
and the grammar checker Granska were used in the study. The study
focused on false alarms, wrong diagnoses and multiple suggestions from
the programs. These issues all address the trade-off between recall and
precision. If the program is designed for high recall false alarms, wrong
diagnoses and multiple conflicting suggestions will be the result. If high
precision is the main design objective a lot of alarms will be missed and
alternative interpretations of an error will not be given. Results suggest
that several conflicting diagnoses and proposals seem to be a limited
problem, and that false alarms were to a variable extent difficult for the
users to handle. A concrete design decision from this study was to
continue with multiple diagnoses on the errors, and leave the decision of
which alternative that is correct to the user.

51

Chapter 5. Evaluating language tools

5.5.2 A field study

While the former study was conducted inside the laboratory we wanted in
this second study to get out into a more realistic context. When it comes
to learning through writing, and second language learning in particular,
we cannot isolate the process of learning when we view the learner as
being part of a whole (van Lier, 2000). The learning environment is the
social world.

We chose an advanced university course in Swedish as second language
as the context for our study. A major concern was to study the use of
Granska in learners’ free writing. This raised several implications for the
design of the study. First of all the tool has to be introduced in this new
context. The first step was to establish and develop a relationship with the
teacher, which was necessary in order to study the learners’ use of
Granska in connection to the teaching.

The next step was to gain the learners’ confidence and make them
participate in our study on a voluntary basis, outside class. In a first
meeting at the university we carefully explained the tool Granska and
emphasized that Granska is a computer tool with limited knowledge of
language. Those who wanted to participate were encouraged to use
Granska outside class and the instruction was the following “use Granska
whenever you want and when you feel it will help you”.

The next question was: how should we study the use of Granska both in
the university computer labs as well as in the homes of the participants?
We chose a web interface to Granska as it made it possible for the
participants to use Granska in different computer environments. The
participants’ texts were important and we collected two versions of each
text; one before the use of Granska and one after the use. The idea was to
compare the two texts in order to study if the participants have followed
the advices from Granska.

A judgment procedure was also developed to get detailed information on
what the participants thought about Granska’s feedback in form of error
detections, diagnoses and correction proposals. We instructed them to
judge every alarm from Granska on a scale from 1 (incomprehensible) to
5 (excellent). This method has a resemblance to the more well-known
method called grammaticality judgment, frequently used in second
language research (Gass, 1994). In order to judge and grade Granska’s
alarms the participants have to more or less judge the whole sentence’s
grammaticality, to find out if Granska’s feedback is right or wrong.

52

Two different user studies with Granska

In addition, we encouraged the participants to write comments about all
their interactions with Granska. All this material was sent to us by e-mail.
These correspondences were also a good way to keep the contact with the
participants and encourage them to continue to deliver data.

This way of collecting data depends a lot on the participants’ willingness
to take part in the study, which results in different amounts of data from
every participant. Some of the control of the data collection is thus left to
the participants. We used direct observations, pre-questionnaires, and
post-interviews as complementary methods for data collection in the
study.

The results from this study have been used in the design and development
of Grim, which is presented in the next chapter.

53

6 Designing a language environment for
second language writers of Swedish

The first seed of the design and development of a new language
environment for writers of Swedish, called Grim, was the idea of
visualization of grammatical categories in texts. The insight was achieved
through user studies with Granska (Paper 5) and that feedback on errors
provided by for example a grammar checker is not all that is needed in
order to write correctly or target language-like.

First of all, the ideal grammar checker is out of scope of current
technology and it is in fact hard to see its birth. Although current
technology is quite robust it is also to a great extent superficial. In
addition, there are many other skills that must be developed in order to
learn a second language. Other tools might fill some gaps of the grammar
checker, but indeed not all. However, during the user studies as presented
in Paper 5, we found that a second-language learning environment should
at least support:

* Focus on form, providing the learner with explicit lexical and
grammatical feedback.

* Focus on authentic language use, providing the learner with
implicit linguistic knowledge.

* Language exploration and reflection, for instance by visualizing
grammatical categories and concordances.

* Different and competing views of the learner’s interlanguage and
the target language.

Grim builds on Granska, but also integrates other tools into a flexible user
interface. The functionality in Grim is based on independent programs
running on different servers; the program on the user’s computer is just a
client, with basic word processing functionality, and with interactive user
interfaces to the independent programs to give immediate feedback.
However, for the users, Grim appears as one single program with a

55

Chapter 6. Designing a language environment for second language
writers of Swedish

seamless integration of language tools. The users can work with their own
texts as well as text on the target language.

6.1 Grim and focus on form

The understanding that the grammatical forms are complex having both
cognitive and communicative dimensions is important (DiCamilla &
Lantolf, 1994). This is also manifested in the concept “focus on form”
(Long & Robinson, 1998). Swain (Swain, 1998) argues for focus on form
based on insights from her studies:

“More than 2 decades of research in French immersion classes suggests
that immersion students are able to understand much of what they hear

and read even at early grade levels. And, although they are well able to

get their meaning across in their second language, even at intermediate

and higher grade levels they often do so with nontargetlike morphology
and syntax” (Swain, p.65, 1998).

In other words, you need to know how to spell words and produce more
or less grammatical and acceptable sentences in order to communicate
above the most basic communicative levels. The concept focus on form is
established through several studies in classroom environments (Doughty
& Williams, 1998). One important feature of focus on form in
contradiction to focus on forms is that the learner’s attention should be
drawn to linguistic code features when the learner already is involved in
meaningful tasks or communication. The traditional focus on forms is
exercises with no focus on meaning or communication. In focus on form
the learner’s attention should be drawn to morphemes, words,
collocations, grammatical categories and structure, agreement, anaphora,
pragmatic patterns and so forth. Thus, focus on form is both forms and
rules (Doughty & Williams, 1998).

In the field study presented in Paper 5, focus on form was quite central in
the language course, which we were studying. The teacher scrutinized all
texts written by students and gave them feedback on their errors. The
teacher also discussed common and significant errors. Using the terms of
Doughty and Williams (1998) this must be seen as reactive focus on
form. When it comes to the design of a computer environment including
language technology, a grammar checker can be viewed as supporting
reactive focus on form — the learner has to produce an error in order to get
some feedback. In the language environment Grim the grammar checkers
used are Granska and ProbGranska, see Figure 5. Using these two

56

Grim and focus on form

grammar checkers with two different perspectives on errors provides the
user with the opportunity to compare their results.

S viad - Melin Baiak oh Fag

w0

<
<

6 F

Times New Roman

< e B . infuration
Som Hillvamdzarew vill man lltid Bagre in { kiman av ordeda Gallosu.

Minniskans ingrc;yp déljs dock bisre yinter tid och kan mkomenderas till den Grammatik
kinslige namrviinnen. Dimai av Akkajaure 3 gu, onligt ming il Ovd plazsen
fodkansvan ingropp och eesar en Jites daliy smuden 1 munnen ndr mig passerar, Lemima plass

men berget Akka pir ot all kinms bt igen ocl snik ook isen 8i¥lier si mycket Kiass Subatantic

Form Hemm

Med endasst en SI macka | magen nidde jgg blod sorker fanis ¢ con ymrddet Strgabar

adra Akkastugan. Jag hade kommet med eftermiddagsbussen €l Ritsem, dir mitte Dokiniv

D ocg § app, de hade vark wie pi en yoeko fy frén Katterat, Bnsattvar det 35 C Haminatiy

s de vaknade 1 tilket, Fras Nominalfrsshu
hata bata

S ke om all jobbe: och O fetsatse med mig. efiersom ndtler var andngen
kylslagna bestdmde vi oss fr att ligga turen mittemellan Sarck och Padjclanta far Aneariningas s
at kunna ha g vigar dll stugorna Jipgs Padizlania loden.

B IRt xlga ol stuge Alternativ 1

Den forse Hlnksenbley pd Bapligt avstnbd frin o Ky ¥ Pel 141% nlatsen hisy
fing, een kallt, riporng kerede ety filtet ook svag vind lekte 1 illbjdckasma, Infn Missrosie futbanstadtion

Akka toppama vaz imponcrad och en dag borde vi ta 938 uon i

P OB Bokude ponis aniass ook v Xanvade o bog och mi av all vazs, Med

an pé var det ganska belaglig, och s8 fanns i allid den varma gygs hoien
ken. En bt sag v folk 1 stegen, men v Kngtade tate dit, dos hag i eotts,
all biwwe, 1 diliex och den Svrige (Al uausimingen vilar iy g heten och fram iy
allt frifieten.

Alternativ 2
Fal talr slstsen
Info Misstlidy sasskevaing
Favalag riitptasen

Boiningaformer
Viken gd vart v vill, st var vi vill, blir det oviider sméaller vi bara wpp diliee
och gy Bger t0r natien. Tret Bngs okl ef nackdelams med tilning, piaxome
mdste | sov sicken B att inge krympa fhop av kylen ook a2 man mdsie Tmoa,
sovsacks varmen 10 att bivla g gy dagen.

Vivicks av diporags ke och saan pilserar foiosen kikel homiredding. 5 dlsab. "
sopp och ovh poriones hivinaryns gt d on bra sue pd dagen. TV kisomakufle pja;w,
Loy st vi vakner] innan dogens slit. Vi har sikiet insallt pd Kiseis stgen eller piatsens
kanske lingre. . platser

plarsema

Figure 5. Granska and ProbGranska in Grim. ProbGranska is hidden behind the
error type “Sannolika” in the left column. On the split compound “tdlt platsen”
Granska and ProbGranska agree, which is seen in the right column by the two
diagnoses “Misstinkt felkonstruktion” (ProbGranska) and “Misstdinkt sdrskrivning”
(Granska). Only Granska can provide the user with the correction proposal

“taltplatsen”

A tool which is included in Grim is the partial and shallow parser GTA,
and together with the part-of-speech tagger in Granska, these two tools
can aid the user with what Doughty and Williams call “proactive” foucs
on form”. This more general text analysis on word classes and phrases in
Grim can be used in a proactive manner — the teacher can instruct the
learner’s to highlight for instance all verbs and all noun phrases in the
text analyzed in the language environment, see Figure 6.

57

Chapter 6. Designing a language environment for second language
writers of Swedish

fnterjektion
Konjunktion
Particip
Farsiket
Passessiy
Prepositian
Pronoren
Rakreord
Subfunktion
Substantiv

B

Frazer
Adisktiviras
Advest bfras

Verbfeas

Simivi 24 Malian Sael sl P

b .

Times New Rosian

1 i Kisan av oebnda Glllnane.
Manniskans ingrepp B dock birre vinter td och Kl B A A des

Yhnshioe narirvingen. Dinninsen av Akkuanie B on. enligt mdage a&t&mkm
Trukuaain ingrepp och BB on tiet dilip smaken | mvannen nér mman
e berget Ak 88E an ol BREE hiree igen och sabn och isen S8HEE 4 anod kc;

Med endasst en SF macka | magen BRI g Blod socher fateig Bnplicen conider
ndrs Akkastupan. Jog BEEE kommet med clcamiddapshussen il Ritsen, ot S8HE
rocn B upp, do HEHE BRI wie pd on vocko tue foin Katorst. Enonan 88 ot 350
iy de VERHEHE |t

jobhetach O 18 med Ang, eftersom aotioe B8 sninoin

yislag 8 viss (v on BBEE ien mivemelian Sanck och Padielun 10r
art SEHAE Y roriin v il Sapoeny langs Padichanta leden.

T3en torste 1ok platsen BIE pd Henpls avsthodhd frhn ST suzan, Koallen 58

fin, e kallt, vipowis SRR vanfor siier ook seag vind B | giibindana,
Akka tpparns B8 imponerad och g day BEEEE o B O upp din

Pa Ok BBREHE potati moser ovh v B8
do jackan plh 988 det panske behagli. och 88
1 sovaticken, Babit 588 vi bolk i stapan, men i
allt bifgee, 1 Bher ok i{i}i‘i Svriga Gl cromingen
alle b

i ron bog ook B av Al von, Mcd

CRLE
S5 vaemen i au BBEHE w0 oy dugen.
B3 SRR av viporsas Karren och shuet BEBREE Totogon Roket hentevligt. 3 dlsuit

mp;tz ook tva ponicner Bavrognns peli B b sts;;i m dugen. Toa kisoeng kalle
E it Tersan clapens it ¥ B sikier BREEHE pa Kisarls wtugan eller

S SR Gron o, D O et e R

“taformation

CrammAtk
Ord platsen
Lemms plats
Kass Substanny
Foom Ut
Staguiac
Definit
Mominativ
Fras Nominalfrasaiut
Sats Sas

Baiingafonner

Lesima plats

Béjningar

pi asema
platsernas
plarsers

Figure 6. All verbs and all simple noun phrases are highlighted in Grim. In the right
information column linguistic information about the word “platsen” is presented.

A delicate question is to choose the right form to focus on for the current
group of learners. A smorgasbord of different forms to choose from is
what a computer program ideally should be able to make salient for the
learner. However, technology gives at the same time a lot of forms to
focus on, but also strong limitations on what kinds of forms to focus on.
Using all tags from the part-of-speech tagger in Grim, it is possible to
provide the user with about 145 different forms. High-level forms like
subject and object can only to a very limited extent be highlighted in

Grim.

These possibilities and limitations of technology also raise design
questions for the user interface, where too many alternatives, both of
forms and rules, are hard to get an overview of. In addition, the forms,
which can only be to a limited degree highlighted, might not have a
natural place beside more full-fledged analyzed forms.

Focus on form is as already mentioned, both forms and rules. A flexible
teaching strategy is using both explicit and implicit approaches, and that
must also be the case in computerized learning environments. However,

58

The role of lexica and corpora in Grim

the underlying technology might not give access to both forms and rules
at the same time. An example pointed out by one of the participants in the
field study in Paper 5 concerned the spelling checker. It can find errors
(erroneous forms), but it can hardly “explain” the current spelling rule
that has been violated, or at least, the spelling checkers have not been
designed to output spelling rules. The participant wanted to learn the rule,
not only the form.

6.2 The role of lexica and corpora in Grim

One design principle, which Grim is based on, is to provide the user with
different and competing views on the learners’ interlanguage and the
target language. One view of the target language is mediated by different
lexica. This view has in some cases a competing view on language based
on information taken from corpora.

The spelling checker Stava for instance is based on the dictionary from
the Swedish Academy version 11, which can be contrasted to the
statistical processing by Granska’s part-of-speech tagger, which has
collected statistics on word forms and word form suffixes from
Stockholm-Umeé Corpus. This has the effect that a word like “arsverke”
(Eng. amount of work carried out by one person during one year) which
is identified by Stava as a spelling error, will still get an analysis from
Granska’s part-of-speech tagger as a noun in neuter and singular form,
which is correct. Another effect is that a noun phrase that contains a
disagreement error like “en arsverke” will be highlighted as a
disagreement error, but it will still be interpreted as a noun phrase. The
correction proposals are also competing which can be seen in the right
column in Figure 7 (Alternativ 1 vs. Alternativ 2).

59

Chapter 6. Designing a language environment for second language
writers of Swedish

Celmivi b Wity

nformation

Oy mian villjer den Astliga grenen av Padiclantaloden kanner mn fianden fia Grammatk
Urd draverke

kb aussivets branter. el i och imponerad, oo med den stan Hesen has - :

Ay dets samehilden sy Lappland - htz;{;x berg, brosande forse ovh sadacke Lemima srsverke

Bergesidir. Klass sgbstantiv
Fornn beutning

Tiein fir sonnerlig o8 Mokl tie EllEEseren. ol finns hitr, epeniline finns doz ‘ Singular

et anledning att g vidare, men de Hesta odr des Kapse & detsd i tndefinit

dinwringen av Akkajane ol it givilsaistionen ks i Nominativ
Som f; adrarey vill miss alltid lingre in i Kirman av g ::'ﬁ :m?m‘ﬁmﬁm
Sddnmiskans ingrepp dilis dack birre vinter i och kan s

verbfras kztfsskgx sanuvinnen. Dinmingon av Akkajane & Anmnarkringar

tepp voh Bmnm

Alternativ 1
B ﬁmmtt Akka gor o allt Kanees bades 1wen och sulin och Isen doljer 8 nrecket

Pl drsverke

Med endasst o0 $1 macka | nagcs nidde Jug Mad secker fanig Snulion camhdet info Misstanks staviel

nira Abkasupan. Fog hade kommet med cheamddapshussen tll Ritsem, dir mote Fovsiag 4

(i el S upp, de hade varit gie pd ey o Tl Watiort Biopadl var deg 350
e de vaknade 1 Giliet. Jag skelle gliong odvn oy amverke 1 gnnan 10 st slippa gp.

ol

Pl un Arsverke
B &k hem dll Jobbet ock £ fortsats: med aiig. eftersom snitter var subigen tifo Om e syftar pa drsvecke ar dit
kylslagne bestdmde vioss [0 ant lgga s mittemelion Sacek ooh Padicdanss for kongraensiel

A kunna ha sl viga dll stagonr lings Padiclanis leden. Forsing et arsverke

Pren Basen talt platsen blev pi Bplict wostinbd rin ST smpsn. Ky ¥
fing, eert kalls, siporna lonvade wranilr Bler ool svag vind leks (?ﬁil&gkfkams
ARk o nerad och e dag borde vi ta oss app gl

P OF1 kokade posatis muset nob 34 karvade ren bog och)i av all yapar A
dhun Jackan pd var det ganaka behugliy, och si fanns ju alliid descvarma g
ispvsichen. Erbi shp v Bl | stapan, men ¥ lingiade tnte din, dis Bl &r wots

Anatyserat Kt

Figure 7. Several diagnoses and correction proposals are quite often given as

Jfeedback to the user. The word “drsverke” has incorrectly been detected as a spelling
error (Alternativ 1 in the right column). But, Granska has found an agreement error
between the determiner “en” och “darsverke” (Alternativ 2 in the right column).

So far, the language tools in Grim have provided an active and automatic
view of language. However, two other tools in Grim are more static, but
their use has been smoothed by language technology and user interface
integration. The first tool is Lexin (2003) that is accessed by the user’s
click on a word in the current text, which is analyzed by Granska’s
tagger. The lemma form is then used to get more hits when searching the
Lexin dictionary, which like many other dictionaries does not contain all
inflections of a word.

The second tool can be used for language exploration of word use in
authentic written language. This tool contains an interface to the Parole
corpus (Gellerstam ez al., 2000), see Figure 8. The user can search for
every word in her text, just by clicking on the current word, and choosing
“Parole” from the tool-menu. No search expression has to be written,
which is often the case in standard concordance expressions. If a user
wants to search for all forms of a word, the same tool that is used to
generate inflections for correction proposals in Granska is used.

60

Preliminary findings and future work with Grim

Lexin and concordances in Parole provides complementary views of
language, but can also be used together. Lexin can work as a tool to
connect the learner’s first language with the second language. Parole can
be used to explore how target language forms provided by Lexin are used
in authentic texts. Lexin translates “new” words that are made salient for
the user through the concordances in the Parole interface.

PARGLE

. Folk springer ombring , dérvar st |, frimmands hiiga roster . Nin ropar --- akla dej for glasskirvorns |
dom . Atminstone - fir Det blaste kallt nér den hiiga postgula frjan stampade sef fram dver lvens by

P var det affarens srrals trdngs skyltfinster och hiiga stenteappa med fanwicks | B rostigt oylkelstall
det t hennes i Bg fadern . Han grit | grit med hiiga torra snyfiningar | Dch modern talade H honom
ret . Langt ner { backen skymtade idrotisplateens hiiga gula plank i vkiskenet | Lennart stannade och di

arfarhallanden och acoeptera de rikaz rikedom och héga mivata bonsumtion . Obs 1" Detdrintetra ¢

zstol § vardagerummet och staller den framfor det hiiga fristiende homekdpet | Hon stiger upp pé stolen
oskdckligh upphruten med plitsay och mejsel | Dien hiiga tunnan & (il 3 trediedelar flild med en dlaln
anvandbara prydnadsforeml | mystik och kedngel | hiiga hattar och uniformsmdzsor av papp i taket | mye
terna storlek 45 lindade § andligs trasor men den higa anden daruti alltid Hka koleett formanskligad | o
rasse , med Prastmons samvetskval f5r det allifir hfga rumsprisel och med st kort brev frén * pojken

fonster , och vlanfér fondftnstret stadionparkens héga trad och svirrande figlar . Attribut | okte Lot

Figure 8. Concordances on the word “hoga” (Eng. high) made in the Parole corpus
Jfrom the user interface in Grim.

6.3 Preliminary findings and future work with Grim

No formal evaluation of Grim has yet been finished, but experiences so
far suggest that Grim has new and interesting qualities as a writing and
learning environment. According to Skeppstedt (2005) who made an
informal study of Grim, it has potential for second language learning.
Skeppstedt sees learning potential not only for advanced students, but
also for learners at intermediate levels. She also points out that the
program can be used for reading and not only for writing, and that the
teacher must instruct and help the learners when they use Grim.

61

Chapter 6. Designing a language environment for second language
writers of Swedish

In a small formative user study with Grim results showed that the
program’s functions for explicit and implicit feedback complement each
other (Pihl et al., 2003). Results also suggest that the feedback from the
different tools in Grim should be more integrated. A design proposal is
suggested in which all possible feedback on a word is presented in the
same view. The current version of Grim has moved towards this design,
but the design proposal requires immediate feedback not only from
Granska and GTA but also from all tools. In order to accomplish that,
faster server solutions have to be built for all tools included in Grim.

In an ongoing user study in which students use Grim in a collaborative
language learning task, a first preliminary result suggests that the learners
focus to a great extent on the feedback on errors given in Grim, although
they are aware of the limitations of the grammar checkers in Grim
(Karlstrom & Cerratto Pargman, forthcoming). This result suggests that
explicit feedback on errors has a strong influence on the learners’ writing
activities.

Even though Grim is a program with many users around the world,
Grim’s role in second language writing and learning must be further
studied. The program opens up possibilities to use focus on form in
teaching. However, user studies with teachers and students using Grim as
a means in this pedagogy remain to be done. In addition, the language
tools integrated in Grim, such as Granska has not been dramatically
improved since the field study (Paper 5), and therefore more effort has to
be put in these tools, and the way their feedback is presented to the user.
The question on how to support the user’s judgments of the feedback
from the different tools in the program has to be seriously addressed in
future studies with Grim.

62

7 Summary of the papers

In this chapter the included papers are summarized.

7.1 Paper 1: The development and performance of a
grammar checker for Swedish: A language
engineering perspective

7.1.1 Aims and background

Grammar checkers for English have been developed since the 1980s. For
the Scandinavian languages, including Swedish, advanced tools have
been lacking. In the late 90s several programs were built for grammar
checking of Swedish.

In this paper a project with the aim to build a fast, robust and accurate
grammar checker for Swedish called Granska is presented. In addition to
the computational linguistic aspects of building a grammar checker,
engineering aspects of such a project are also treated, as well as research
with focus on interaction design of a tool like a grammar checker.

7.1.2 Methods

Granska combines statistical and rule-based methods. A statistical
method is used in the general analysis of the words in the sentences; the
general judgment of grammaticality is made by a statistical part-of-
speech tagger based on a second order Hidden Markov Model. The
statistics of tag unigrams, bigrams and trigrams and word-tag pairs are
extracted from the SUC corpus.

Unknown words are treated by statistical means, based on the relative
counts of word types ending with the same 1 to 5 letters. Compounds are
analyzed by identifying the last word in the compound, and using its tag
as the tag for the whole word. Words with an initial capital letter got an
increased probability as proper nouns.

Phenomena based-rules are written to detect, diagnose and provide

correction proposals on errors in text. This means that pre-selected error
types are searched for with handcrafted rules written in a powerful rule

63

Chapter 7. Summary of the papers

language. The rules are quite general, and have a special focus on three
error types: split compounds, agreement errors within the noun phrase
and agreement in predicative. However, other errors types are also
searched for.

The rules are compiled and optimized using statistics of word and tag
bigrams by a rule matcher. This means that the rule matcher checks the
rules only at the positions in the text where the words or tag bigrams of
the least probable position in the rule occur.

In the design of Granska we have integrated the spelling-checking
program, Stava, into the grammar checker. By doing this, Stava can use
Granska’s information about the words when checking spelling, like
proper names. The rules in Granska can also use Stava as a filter when
checking for instance possible split compounds. Spelling corrections that
cause errors according to Granska’s grammar checking are stopped.

7.1.3 Evaluations

Two evaluations of Granska were carried out. The first evaluation of
Granska was based on a compilation of different texts from various
sources, forming five genres on totally 201 019 words. The text genres
were sport news, international news, public authority text, popular
science and student essays. To use different genres for evaluation is
essential in order to get an understanding on the program’s performance
on different language use. In this evaluation all errors were manually
searched for, which made it possible to measure both recall and precision.
The overall recall on the five genres was 52% and the precision was 53%.

The second evaluation was made on 32 452 words from the CrossCheck
corpus. The texts were written by advanced learners of Swedish. The
spelling and grammar checker in Microsoft Word were used as a
comparison to Granska. The grammar checker of MS Word has better
precision, but much lower recall that Granska. For the spelling checkers,
it is the opposite; the spelling checker of Word has a very high recall, but
quite low precision, mostly due to bad performance on compounds and
proper names. The spelling checker of Granska has quite a low recall,
especially when it comes to erroneous compounds, which still seem to be
a problem for Swedish spelling checkers.

7.1.4 Findings and conclusions

Granska is a fast grammar checker that has a good or better performance
than comparable grammar checkers for Swedish. The rule language of
Granska is also powerful enough to implement most of the rules from

64

Paper 2: Different ways of evaluating a Swedish grammar checker

other grammar checkers, and can therefore take advantage of good
handcrafted and well-tested rules from other systems. The optimized rule
matching used in Granska will make it possible to scale Granska to large
amounts of rules. The integration of the spelling checker Stava in
Granska might look like a simple design solution, but it is a fruitful way
to improve spelling and grammar checkers.

7.2 Paper 2: Different ways of evaluating a Swedish
grammar checker

7.2.1 Aims and background

The major aim of this paper is to demonstrate the strength of using
several different methods when evaluating NLP-systems. This is
especially important in the light of the heterogeneous group of users who
are using writing tools based on NLP. One claim in the paper is that
standard methods for evaluations within language technology based on
recall and precision only address the issue of usability to a limited extent.
The struggle and trade-off between recall and precision is a well-known
problem in NLP, and there is no single answer what is preferable for most
users. On top of that, aspects such as user abilities and needs, variability
of writing task, text genre and user group, and the complexity of error
types and error presentations must also be taken into consideration.

Most studies have so far focused on the results from the writers — the final
text. However, in the paper we argue that grammar checkers are very well
worth studying with methods focusing on users in process.

7.2.2 Methods

This paper presents three different methods used for evaluating tools like
the grammar checker Granska. The first evaluation is based on an
analysis of Granska’s alarms on texts, which by the author or the media
are assigned a genre, in these cases sport news, international news, public
authority texts, popular science and student essays. This evaluation
corpus comprised 201 019 words. The texts were manually scrutinized
and this result was compared with Granska’s alarms using the
measurements recall and precision.

The second study is a so-called formative study of two grammar
checkers: Granska and the Swedish grammar checker in Microsoft Word.
The aim was to use the study as a part in the on-going design process of
Granska. The study focused on users’ responses to false alarms, wrong
diagnoses and multiple suggestions from the programs.

65

Chapter 7. Summary of the papers

The last study focused on cognitive revision processes in computer-aided
editing. This study is mainly qualitative and focuses on how well users’
revision processes are supported by a language tool like Granska. Think-
aloud protocols were used to track revision processes. The difference
between revision when using a grammar checker and revision without a
grammar checker was studied.

7.2.3 Findings and conclusions

In the textual evaluation, we found that the overall recall on the five
genres was 52% and the precision was 53%. This result can be compared
with the evaluation on the Swedish grammar checker in Microsoft Word.
However, this grammar checker was only evaluated on news papers texts,
and it showed higher precision (70%) but much lower recall (35%).

An error type like split compounds is detected with quite low precision in
most genres by Granska, except in the student essays. This is due to the
fact that student essays actually contain split compounds, which is not
always the case in the other genres.

Results from the second study suggest that several conflicting diagnoses
and correction proposals seem to be a limited problem for the users if one
of the proposals is correct. False alarms from the programs seem to be of
variable difficulty for the users. False alarms signaling spelling errors are
easier to deal with than more complicated error types.

In the third study, subjects made further changes in the text when using
the grammar checker. It helped them in defining and diagnosing problems
that they had problems in diagnosing manually. They also corrected more
problems that they failed to correct without the grammar checker. When
subjects choose not to change, it was often on style problems.

No single evaluation method gives an exhaustive answer to all important
research questions. The studies made in this paper were all conducted
inside the laboratory. Considering the social nature of revision and
writing future studies must consider methods that study writing in more
realistic settings outside the laboratory.

66

Paper 3: Automatic evaluation of robustness and degradation in tagging
and parsing

7.3 Paper 3: Automatic evaluation of robustness and
degradation in tagging and parsing

7.3.1 Aims and background

The aim of the study was to evaluate how general text analyzers like part-
of-speech taggers and surface syntactical parsers deal with ungrammatical
sentences. In addition, the study tried to bring some light on how different
text analyzers degrade when more and more errors are introduced in the
text.

In the study the TnT PoS-tagger, the Brill PoS-tagger and a partial and
shallow parser for Swedish called Granska Text Analyzer (GTA) were
used. Part-of-speech taggers are used in many applications, and many
applications have to deal with authentic language, which to some extent
contains different kinds of errors.

7.3.2 Methods

In the absence of a Swedish treebank we annotated about 15 000 words
from SUC. We used the output from GTA as a staring point for
annotation of basic phrase types and clause boundaries. The analysis of
GTA is surface-oriented and identifies several types of phrases in
Swedish: adverbial phrases, adjective phrases, infinitive verb phrase,
noun phrases, prepositional phrases, and limited verb phrases. The
internal structure of phrases is parsed when appropriate. In addition,
clause boundaries are identified. This output was manually corrected.

To prepare the experiments, we were not only missing a treebank, a
corpus with annotated errors would also have been a good resource for
this kind of evaluation. To mitigate this, we used artificial errors to build
up an error corpus. A program called Misplel was used to introduce
artificial errors. Spelling errors were chosen, as they are belonging to an
error type, which is existent in many written languages.

Furthermore, automatic spelling correction is not a reliable means to
correct errors in authentic texts. Hence, general text analyzers must deal
with spelling errors. Artificial spelling errors will also always result in an
invalid word, while another error type might introduce a not necessarily
ungrammatical sentence, but one with a different interpretation. Even
though the error results in an ungrammatical sentence, the surrounding
words might form a different interpretation.

67

Chapter 7. Summary of the papers

In the experiments, we also used a baseline tagger and a baseline parser.
The part-of-speech annotations from the SUC texts were also used as a
kind of tagger. Different combinations of the taggers and the parser were
used on texts with different levels of errors introduced (0%, 1%, 2%, 5%,
10% and 20%), in an n-iteration test.

7.3.3 Findings and conclusions

In the evaluations, the robustness of the different taggers and the parser
have been shown. They are all quite robust with regard to sentences
where spelling errors occur. They degrade gracefully, with no dramatic
drop in performance. In the taggers, unknown words are analyzed with
statistics of frequent suffixes, which seem to be a key factor when
handling spelling errors. If the spelling error is introduced in the first or
middle part of a word, the taggers can still analyze it properly.
Experiments also showed that the parser’s performance relied heavily on
the performance of the taggers.

7.4 Paper 4: Grammar checking for Swedish second
language learners

7.4.1 Aims and background

The aim of this study was to present and then compare three different
methods for grammar checking on a Swedish learner corpus. Initial
studies on smaller corpus samples with the grammar checker Granska
showed that the main problem is low recall. The conclusion drawn was
that is was not possible to change Granska to meet the requirement of
higher recall. Hundreds of hours of work have been spent on fine-tuning
the rules of Granska, and increasing recall by rebuilding Granska was out
of the question. Initial evaluations of Granska showed that several error
types are unpredictable and very hard to detect with rules, especially in
second language writers’ texts. Instead, two new statistical methods were
developed; ProbGranska (Bigert & Knutsson, 2002) and SnalGranska
(Sjobergh & Knutsson, 2005).

7.4.2 Methods

Granska is based on handcrafted rules for error detection. Granska
consists of a spelling checker, a statistical part-of-speech tagger, and
about 350 manually constructed rules. Granska must be considered as a
state-of-art grammar checker, with fast and accurate algorithms for
detection, diagnosing and correction of several frequent error types in
Swedish texts.

68

Paper 4: Grammar checking for Swedish second language learners

ProbGranska looks for errors by comparing the scrutinized text with
known correct texts from the SUC corpus. ProbGranska detects
improbable sequences of part-of-speech tags, using frequencies collected
from SUC. However, suffering from data sparseness, this procedure
produced too many false alarms. To mitigate this problem phrase
transformations were developed in the Granska rule language. When a
rare trigram occurs, possible phrase transformations are applied in order
to eliminate the rare trigram, which quite often occurs as result of more
complex phrases. Longer phrases like “this lovely fast machine” is
transformed to “the machine”. In addition, the clause boundary detector
of GTA is used to eliminate the problem with rare trigrams crossing
clause boundaries. These two actions limit the complexity of the
sentence, and the amount of possible tag trigrams.

SnalGranska is based on a different approach, which treats grammar
checking as a tagging problem. Artificial errors are introduced in the data
set used for training. Again SUC is used, but this time twice; first as a
corpus of correct language, and second as a corpus containing a lot of
errors. The combinations of these two are used for the training of
SnalGranska. The correct corpus is necessary in order to avoid
overtraining on errors. The FnTBL classifier (Ngai & Florian, 2001) was
used in our experiments as an error tagger. The tagging task is to
disambiguate words that have two possible interpretations; as correct or
as erroneous. Simple rules for generating the artificial errors are used, in
this case split compounds and agreement errors are introduced in the
corpus. This method for building a grammar checker can be used for any
language that has a corpus, which is annotated with part-of-speech tags,
and where the errors can be generated with simple rules.

7.4.3 Findings and conclusions

In the evaluation of the three different methods 10 000 words from the
SSM-corpus part of the CrossCheck corpus were used. The Swedish
grammar checker in MS Word 2000 was also used as a kind of baseline.
The results show that the different grammar checkers detect different
errors.

One finding is that an ensemble grammar checker would be very useful,
if higher recall is required. High recall can be achieved by relying on only
one detection from one of the grammar checkers as an indication of an
error.

A bottleneck for all the methods used is that the same kind of treatment of
the part-of-speech tagging problem is used. How to tag ungrammatical

69

Chapter 7. Summary of the papers

sentences seems to be an important problem to focus on in future research
on grammar checking.

7.5 Paper 5: Designing and developing a language
environment for second language writers

7.5.1 Aims and background

The aim of the study was to get an understanding on how language
technology can be used in computer assisted language-learning
environments. The grammar checker Granska was used as an example on
language technology, with the objective to aid second language writers in
their free text production. In addition, the design of a new learning
environment based on the findings from the field study was an important
objective.

In the study the computer is viewed as a tool, and two of the questions
addressed were how the participants in study use available language tools
and how these tools mediate the learner’s understanding of the new
language. One focus in the study was the participants’ errors; the errors
are a rich source when one wants to get an understanding of the learner’s
current perspective of the target language. Using a grammar checker can
help the participants to notice the gap between their interlanguage and the
target language. Awareness of errors is also one part of the pedagogical
concept called focus on form (Long & Robinson, 1998). Focus on form
means to draw the learner’s attention to grammatical form while
conducting meaningful tasks, i.e. communicative tasks.

7.5.2 Methods

The participants of the study were instructed to use Granska whenever
they wanted in their course assignments. Granska was used with a web
interface, which enabled the participants to use their ordinary word
processors, of course with the cost of a quite static interface to the
grammar checker.

The method for data collection was based on questionnaires, interviews,
text collection, and a judgment procedure. The judgment procedure was
conducted by the participants on the alarms from the grammar checker on
their own writing. The participants task was to judge every alarm from
the grammar checker, and also the three parts of its feedback; detection,
diagnosis, and correction proposals. The participants’ texts were collected
in two versions; a version written before the session with Granska, and a
version after the session with Granska. This procedure made it possible to

70

Paper 5: Designing and developing a language environment for second
language writers

investigate to what extent the participants followed the advice from
Granska, and how this was related to the judgments they made on
Granska’s alarms. In addition to the judgments, which were on a scale
from 1 to 5; the participants made 150 comments on Granska’s alarms in
total. The data collection was based on the participants’ willingness to
take part in the study. This resulted in different levels of commitment to
the given instructions.

7.5.3 Findings and conclusions

Observing what happens when a false alarm occurs is complex. The
participants have followed Granska’s advice on some false alarms, while
other false alarms have been clearly rejected. Unfortunately, false alarms
indicating word order errors seem to be extra hard to judge for the
participants. However, the true alarms from Granska were in majority,
and the participants seem to be satisfied with them. An interesting
observation is that active participants gave higher grades than participants
that had used Granska only a few times. Another important result is that
the grammar checker is not the only tool the participants need; other
language tools might also be useful in free text production.

Based on the results from the study, design principles for a language
environment for second language writers were identified. These design
principles were used in the development of the prototype Grim. Grim was
designed for focus on form using the both grammar checking and
visualization of grammatical categories. Another design principle was to
provide the user with different tools to gain linguistic information, for
instance lexical information and examples of language use through
concordances.

71

8 Discussion and conclusions

The grammar checker Granska is central in this thesis work. Although its
method for error detection is not unique, it has several features that must
be considered as strong contributions to the field. The work with Granska
has an important perspective of language engineering, where robustness
and efficiency of the linguistic algorithms are central in the design and
development processes.

Granska has been invaluable in the different evaluations conducted in this
thesis. The possibility to change, improve and develop Granska has
driven much research both on the integration of language tools in writing
and learning environments and on the development of methods for
grammar checking.

8.1 To write rules or not to write rules

The work on the linguistic rules in Granska must be seen as an
investment for realistic evaluations with a robust language tool, and in the
development of new language tools such as many of the tools in Grim. As
discussed elsewhere in this thesis, to construct the general error pattern is
not the hard part in the development of error rules; it is the fine-tuning of
the rules that matters. It is a delicate work, with intricate linguistic
considerations and grammar engineering. The struggle between recall and
precision is one of the main problems in this work.

While the rules of Granska are the result of much iteration on evaluation
material like error collections and proofread text collections, the parser
GTA is a stand-alone application that is more or less an application
coming out for free from Granska. My conclusion is that it is much easier
to write rules when the main task of the rules is not to determine if the
language fragment at hand is grammatical or not.

Constructing rules for different tasks in natural language processing has
for long been a dominant approach to tackle NLP-problems. However,
machine learning has become an important competitor during the last ten
years. In the line of this evolution several questions arise. To start with,

73

Chapter 8. Discussion and conclusions

which method is the most cost-effective? Is it cheaper to annotate a
corpus, and then train a machine learner on it, or is it more effective to
construct rules manually in a powerful rule language?

There exist some studies trying to answer this question (Brill & Ngai,
1999; Ngai & Yarowsky, 2000). Ngai and Yarowsky found that
annotation and machine learning is more efficient and more successful
than rule writing. Brill and Ngai’s conclusions are that unskilled human
rule writers can quickly write rules that perform quite close to learned
rules. The problem is that humans have problems in formulating rules that
identify less frequent constructions. Both studies are based on computer
science students (not linguists) and the linguistic phenomena to annotate
or formulate rules for were noun phrase chunks. Studies with linguists
and more complex tasks, like error detection, might give different
answers.

From my own experience, | draw the conclusion that annotations are
easier to discuss with other researchers, while rules are much more
personal, and harder for others to understand. My opinion is also that
some problems are suitable to use rules for while other are hard to capture
with rules, and statistical and machine learning methods seem to be an
attractive alternative in many cases (cf. Manning 2002). Writing rules for
the basic phrases in a sentence or for checking the agreement within the
noun phrase seem to be a suitable work for the grammarian, while writing
rules for a problem like split compounds can be more questioned. The
context and the meaning are much more important when searching for
split compounds than for noun phrase agreement or verb chain errors,
which I consider as much more isolated errors than split compounds,
word order errors or predicative disagreement.

This is also clear in the evaluations that have been carried out with
Granska. The evaluations showed much better results on noun phrase
disagreement and verb chain errors than on the other error types. If the
part-of-speech tagger identifies the correct sequence of word classes, the
error detection rules will find most errors on these error types. This also
uncovers the fact that the scope of the general analyzers (i.e. part-of-
speech taggers and parsers) is to a great extent the scope of the error
detection rules. In order to find more complex error types with error
detection rules, the grammaticality must be controlled with a broader
view not only based on the analysis of forms, but also including more of
context and meaning, the two factors that according to Manning (2002)
also have to be considered when judging grammaticality.

74

Language tools in a language environment

The comparison of Granska, ProbGranska and SnalGranska in Paper 4
showed that the quality of handcrafted rules on some error types cannot
be ignored. The precision of Granska’s rules is higher than the other two
methods. On the other hand, the three methods complement each other,
and an ensemble of different error detection methods is promising. This
together with better general methods for handling grammaticality might
be the way to improve grammar checking systems in future.

8.2 Language tools in a language environment

Granska is central even in the language environment Grim. It was the
studies with Granska that influenced much of the design of Grim.
However, it was also the lack of adequate feedback and misleading
feedback from Granska that made us start thinking of other tools that
could support writing and learning.

In the field study in Paper 5, we saw that it was problematic for the
participants that Granska gave feedback on some texts, and nearly none
on other texts. For the participants, the fragmentary feedback contributed
to a general lack of trust in the program’s language possibilities. To meet
this question of trust, the integration of other tools might help as well as
improvements of the grammar checking algorithms. A tool that analyzes
word classes and phrases will nearly always give the user some feedback.
From the study, it was apparent that it was quite natural for the second
language users to use different sources of linguistic information. They
used dictionaries, asked the teacher and friends, and consulted books
when writing their texts. Adding different kinds of language tools, and
integrating them in an interactive language environment is the foundation
of Grim.

Grim is not pedagogically neutral. The tools that are important in Grim
are included in the system with the purpose to support different forms of
learning. However, the learners can use them as they like, Grim is not
controlling how, when and if the user is using them. When teachers want
the learners to use Grim, they must invent their own instructions and
pedagogical settings for the usage of the program.

Second language acquisition/learning and pedagogy is a field with no
straight answers to questions related to the most effective way to teach
and study a second language. Evaluation of learning effects of a specific
pedagogy, or even a computer program, is a difficult task; the variables
and factors are many. A current learning activity cannot be isolated from
other activities that are not necessarily focusing on learning, but have
learning effects. Even though not all teachers embrace language-learning

75

Chapter 8. Discussion and conclusions

environments, the learners will probably use them, if they are available.
And who will stop the learners from using tools that they believe will
help them when using the second language?

8.3 Future work

One of the leading researchers in computer assisted language learning and
second language writing is Mark Warschauer. His famous last words in
(Matsuda et al., 2003) is “Researchers investigating technology and
second language learning writing will have plenty to keep them busy”. I
have to agree with him. The advent of computers and communicational
networks like Internet have increased the complexity of second language
writing, but also increased the possibilities for both writers and
researchers. Writers have now many new opportunities with for instance
tools like the ones presented in this thesis, and also many new ways to
communicate with other second language learners and native speakers.
However, technology is still immature, and studies of language tools in
both individual and collaborative activities are important in order to get
an understanding of their mediating role in language learning as well as
improving current learning environments.

8.3.1 The need for annotated error corpora

Researchers can use new technology in many ways both for data
collection and to analyze data in the field of second language learning
(Grant & Ginther, 2000). In this interface between corpus linguistics and
language technology many new possibilities for research open up (Borin
& Priitz, 2004). However, for a language like Swedish there is an urgent
need for annotated resources, and for the development of language tools
in particular there is a need for corpora where errors are identified and
classified. Error analysis is a complicated task, and every tag set for error
annotation can be criticized, but some critique can be avoided be trying to
collect naturalistic data and error descriptions rather than error diagnoses.
Dagneaux et al (1998) argue that computer-aided error analysis is the way
forward in order to produce better grammar checkers:

“Before one can hope to produce ‘L2 aware’ grammar and style checkers,
one needs to have access to comprehensive catalogues of authentic
learner errors and their respective frequencies in terms of types and
tokens” (Dagneaux et al, 1998, p. 165).

A first step to language tools that are more “aware” of Swedish as a
second language (L2) is the collection of material of second language
writers’ texts compiled in the CrossCheck corpus. However, a lot of work
remains to be done in annotating the errors in this corpus.

76

Concluding remarks

It is hard to see that we will get enough annotated errors in a reasonable
time, and an attractive alternative is therefore to use artificial errors to
develop better language tools. In addition, to use an ensemble of all
available spelling and grammar checkers developed for Swedish might be
the best starting point for a Swedish annotated error corpus, including
texts from both native and second language writers.

8.3.2 Two perspectives on language

In this thesis, two perspectives on language are employed. The
perspective used when designing the study on using language tools in
second language writing and the resulting design of a learning
environment (Paper 5) is based on focus on form for second language
learning and a more general perspective on writing and learning based on
sociocultural theory. Focus on form as well as sociocultural theory
emphasize a view of language as a social activity, and that language is
best learned through communication, in tasks that make sense for
humans. However, when it comes to developing the algorithms for the
language tools, this is an unrealistic perspective, and the dominating
perspective in this thesis is a view of language as an object, in one sense
only as a collection of data that are processed by linguistic algorithms.
Language tools cannot participate in a social activity, they cannot
negotiate and they do not understand written communication. They have
to focus on the product and its surface. One important objective for the
future is to develop a design of language tools that communicates this
two-fold view of language.

8.4 Concluding remarks
The work in this thesis leads to the following conclusions:

* A hybrid grammar checker like Granska based on a general
statistical language analysis and handcrafted error detection rules
stands strong against both commercial and methodological
alternatives.

* Language tools seem to be useful in a second language writing.
The tools seem to fit into the pedagogical method called focus on
form.

* An ensemble of methods seems to be a strong alternative in future
language tools, both as combined algorithms and as competing
tools in a language environment like Grim.

* Different ways of evaluating language tools are fruitful, but still
many studies have to be carried out to get an understanding of the
mediation of language tools in language learning. The design of

77

Chapter 8. Discussion and conclusions

learning environments based on language technology has to be
improved through new evaluations.

The issue of grammaticality is crucial both for general language
analyzers, methods for error detection and for the users of language
tools. The question of how to support the user’s judgments of
grammaticality has to be seriously addressed in the design and
development of writing and learning environments.

False alarms and missed errors are still essential problems to deal
with, and the need for annotated Swedish error corpora as a base
for the development of better methods for error detection,
diagnosis and correction is urgent.

78

References

Ahrenberg, L. (1990). A grammar combining phrase structure and field
structure. In the proceedings of the 13th International Conference
on Computational Linguistics (COLING 1990), Helsinki, Finland.

Almgvist, 1., & Sagvall Hein, A. (1996). Defining ScaniaSwedish - a
controlled language for truck maintenance. In the proceedings of
the 1st International Workshop on Controlled Language
Applications, CLAW 96, KU Leuven, Belgium.

Arppe, A. (2000). Developing a grammar checker for Swedish. In the
proceedings of the 12th Nordic Conference in Computational
Linguistics, Trondheim, Norway.

Atwell, E. S. (1987). How to detect grammatical errors in a text without
parsing it. In the proceedings of the 3rd EACL, Copenhagen,
Denmark.

Bigert, J. (2005). Automatic and unsupervised methods in natural
language processing. Ph.D. thesis, Royal Institute of Technology,
Stockholm, Sweden.

Bigert, J., & Knutsson, O. (2002). Robust error detection: A hybrid
approach combining unsupervised error detection and linguistic
knowledge. In the proceedings of the RObust Methods in Analysis
of Natural language Data, ROMAND 2002, Frascati, Italy.

Bim, J. (1998). Swedish Constraint Grammar. A short presentation.
Retrieved December 12th, 2000, from
http://www.lingsoft.fi/doc/swecg/intro/

Bim, J. (2000). Detecting grammar errors with Lingsoft's Swedish
grammar checker. In the proceedings of the 12th Nordic
Conference in Compuational Linguistics, Trondheim, Norway.

Bondi Johannessen, J., Hagen, K., & Lane, P. (2002). The performance of
a grammar checker with deviant language input. In the
proceedings of the 19th International Conference on Computational
Linguistics (COLING), Taipei, Taiwan.

Borin, L. (2002). What have you done for me lately? The fickle alignment
of NLP and CALL. In the proceedings of the EuroCALL 2002 pre-
conference workshop on NLP in CALL, Jyviskyl4, Finland.

79

References

Borin, L., & Priitz, K. (2004). New wine in old skins? A corpus
investigation of L1 syntactic transfer in learner language. In G.
Aston, S. Bernardini & D. Stewart (Eds.), Corpora and language
learners (pp. 67-87). Amsterdam: John Benjamins.

Bourdon, M., Sylva, L. D., Gagnon, M., Kharrat, A., Knoll, S., &
Maclachlan, A. (1998). A case study in implementing dependency-
based grammars. In the proceedings of the Workshop on the
Processing of Dependency-based Grammars, COLING-ACL'98,
Montreal, Canada.

Brants, T. (2000). TnT - a statistical part-of-speech tagger. In the
proceedings of the 6th Applied NLP Conference, ANLP-2000,
Seattle, USA.

Bredenkampf, A., Crysmann, B., & Petrea, M. (2000). Looking for
errors: A declarative formalism for resource-adaptive language
checking. In the proceedings of the 2nd International Conference
on Language Resources and Evaluation (LREC 2000), Athens,
Greece.

Brill, E. (1995). Transformation-based error-eriven learning and natural
language processing: A case study in part of speech tagging.
Computational Linguistics, 21(4), 543-565.

Brill, E., & Ngai, G. (1999). Man [and woman] vs. machine: A case study
in base noun phrase learning. In the proceedings of the 37th
Annual Meeting of the Association for Computational Linguistics,
Maryland, USA.

Brock, M. N. (1993). Three disk-based text analyzers and the ESL writer.
Journal of Second Language Writing, 2(1).

Brodda, B. (1983). An experiment with heuristic parsing of Swedish. In
the proceedings of the First Conference of the European Chapter of
the Association for Computatlonal Linguistics (EACL), Pisa, Italy.

Bustamente, F. R., & Leon, F. S. (1996). GramCheck: A grammar and
style checker. In the proceedings of the 16th International
Conference on Computational Linguistics, Copenhagen, Denmark.

Carlberger, J., Domeij, R., Kann, V., & Knutsson, O. (submitted). The
Development and Performance of a Grammar Checker for
Swedish: A Language Engineering Perspective.

Carlberger, J., & Kann, V. (1999). Implementing an efficient part-of-
speech tagger. Software Practice and Experience, 29, 815-832.

Carlson, A. A., Rosen, J., & Roth, D. (2001). Scaling up context-sensitive
text correction. In the proceedings of the Innovative Applications
of Artificial Intelligence Conference, Seattle, WA, USA.

Chapelle, C. A. (2001). Computer Applications in Second Language
Acquisition. Foundations for teaching, tesing and research.
Cambridge, Great Britain: Cambridge University Press.

80

Chodorow, M., & Leacock, C. (2000). An unsupervised method for
detecting grammatical errors. In the proceedings of the
NAACL'01, Seattle, USA.

Chomsky, N. (1957). Syntactic structures. The Hague: Mouton & Co.,
Publishers.

Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA,
USA: The M.L.T. Press.

Dagneaux, E., Denness, S., & Granger, S. (1998). Computer-aided error
analysis. System, 26, 163-174.

de Smedt, K., & Rosén, V. (2000). Automatic proofreading for
Norwegian: The challenges of lexical and grammatical variation.
In the proceedings of the 12th Nordic Conference in Compuational
Linguistics, Trondheim, Norway.

DiCamilla, F. J., & Lantolf, J. P. (1994). The linguistic analysis of private
writing. Language Sciences, 16(3/4), 347-369.

Domeij, R. (2003). Datorstodd sprakgranskning under skrivprocessen:
Svensk sprakkontroll ur anvindarperspektiv. Ph.D. thesis,
Stockholm University, Stockholm, Sweden.

Domeij, R., Knutsson, O., Carlberger, J., & Kann, V. (2000). Granska -
an efficient hybrid system for Swedish grammar checking. In the
proceedings of the 12th Nordic Conference on Computational
Linguistics, Trondheim, Norway.

Domeij, R., Knutsson, O., & Ohrman, L. (1999). Inkongruens och
felaktigt scirskrivna sammansdttmingar - en beskrivning av tva
feltyper och maojligheten att detektera felen automatiskt. In the
proceedings of the Svenskans beskrivning 24, Link&ping, Sweden.

Doughty, C., & Williams, J. (1998). Pedagogical choices in focus on
form. In C. Doughty & J. Williams (Eds.), Focus on Form in
Classroom Second Language Acquisition (pp. 197-261). New
York, USA: Cambridge University Press.

Ejerhed, E. (1999). Finite state segmentation of discourse into clauses. In
A. Kornai (Ed.), Extended Finite State Models of Language.
Cambridge: Cambridge University Press.

Ejerhed, E., Killgren, G., Wennstedt, O., & Astrom, M. (1992). The
linguistic annotation system of the Stockholm-Umea Corpus
project. Umed, Sweden: Department of General Linguistics,
University of Umea.

Ellis, R. (1997). Second Language Acquisition. Oxford, Great Britain:
Oxford University Press.

Flower, L. S., & Hayes, J. R. (1981). A cognitive process theory of
writing. College Composition and Communication, 37(1), 365-387.

81

References

Gambick, B. (1997). Processing Swedish sentences: A unification-based
grammar and some applications. Ph.D. thesis, Royal Institute of
Technology, Stockholm.

Gass, S. M. (1994). The reliabilty in L2 grammaticality judgments. In E.
E. Tarone, S. M. Gass & A. D. Cohen (Eds.), Research
Methodology in SLA (pp. 303-322). Hillsdale, NJ, USA: Lawrence
Erlbaum.

Gellerstam, M., Cederholm, Y., & Rasmark, T. (2000). The bank of
Swedish. In the proceedings of the Second International
Conference on Language Resources and Evaluation (LREC 2000),
Athens, Greece.

Grant, L., & Ginther, A. (2000). Using computer-tagged linguistic
features to describe L2 writing differences. Journal of Second
Language Writing, 9(2), 123-145.

Grefenstette, G., & Tapanainen, P. (1994). What is a word, What is a
sentence? Problems of tokenization. In the proceedings of the The
3rd International Conference on Computational Lexicography,
Budapest, Hungary.

Haas, C. (1996). Writing technology. Studies on the materiality of
literacy. New Jersey, USA: Lawrence Erlbaum Associates.

Haas, C. (1999). On the Relationship Between Old and New
Technologies. Computers and Composition, 16(2), 209-228.

Hammerton, J., Osborne, M., Armstrong, S., & Daelemans, W. (2002).
Introduction to special issue on machine learning approaches to
shallow parsing. Journal of Machine Learning Research, Special
Issue on Shallow Parsing, 2, 551-558.

Han, N., Chodorow, M., & Leacock, C. (2004). Detetcting errors in
English article usage with a maximum entropy classifier trained on
a large diverse corpus. In the proceedings of the 4th International
Conference on Language Resources and Evalauation (LREC
2004), Lisbon, Portugal.

Hardt, D. (2001). Transformation-based learning of Danish grammar
correction. In the proceedings of the Recent Advances of Natural
Language Processing 2001 (RANLP-2001), Tzigov Chark,
Bulgaria.

Hassel, M. (2001). Internet as corpus: Automatic contruction of a
Swedish news corpus. In the proceedings of the 13th Nordic
Conference on Computational Linguistics (Nodalida'01), Uppsala,
Sweden.

Heidorn, G. E. (2000). Intelligent writing assistance. In R. Dale, H. Moisl
& H. Somers (Eds.), Handbook of Natural Language Processing
(pp. 181-207). New York, NY, USA: Marcel Dekker.

82

Huang, J. H., & Powers, D. (2001). Large scale experiments on
correction of confused words. In the proceedings of the 24th
Australasian Conference on Computer Science, Gold Coast,
Queensland, Australia.

Hyland, K. (2003). Genre-based pedagogies: A social response to
process. Journal of Second Language Writing, 12(1), 17-29.

[zumi, E., Uchimoto, K., Saiga, T., Supnithi, T., & Isahara, H. (2003).
Automatic ervor detection in the Japanese learners' English spoken
data. In the proceedings of the ACL-03 Interactive Posters and
Demonstrations, Sapporo, Japan.

James, C. (1998). Errors in Language learning and Use: Exploring Error
Analysis. London, Great Britain: Longman.

Jensen, K., Heidorn, G. E., Miller, L. A., & Ravin, Y. (1983). Parse
fitting and prose fixing: Getting hold on ill-formedness. American
Journal of Computational Linguistics, 9(3-4), 123-136.

Jones, M. P., & Martin, J. H. (1997). Contextual spelling correction using
latent semantic analysis. In the proceedings of the Sth Conference
on Applied Natural Language Processing, Washington, DC, USA.

Kann, V., Domeij, R., Hollman, J., & Tillenius, M. (2001).
Implementation aspects and applications of a spelling correction
algorithm. Quantitative Linguistics, 60, 108-123.

Karlgren, J. (2000). Stylistic experiments for information retrieval. Ph.D.
thesis, Stockholm University, Stockholm, Sweden.

Karlsson, F. (1990). Constraint Grammar as a framework for parsing
running text. In the proceedings of the 13th International
Conference on Computational Linguistics, COLING-90, Helsinki,
Finland.

Karlstrém, P., & Cerratto Pargman, T. (forthcoming). Mediating role of
language tools in learners’ dialogic interaction. Unpublished
manuscript.

Knutsson, O. (2001). Automatisk sprdkgranskning av svensk text. Ph.Lic.
thesis, Royal Institute of Technology, Stockholm.

Knutsson, O. (2002). Inkongruens i predikativ - bade rditt och fel. In the
proceedings of the Svenskans beskrivning 25, Abo, Finland.

Kokkinakis, D., & Johansson-Kokkinakis, S. (1999). 4 cascaded finite-
state parser for syntactic analysis of Swedish. In the proceedings of
the 9th European Chapter of the Association of Computational
Linguistics (EACL), Bergen, Norway.

Kollberg, P. (1998). S-notation - a computer-based method for studying
and representing text composition. Ph.Lic. thesis, Royal Institute of
Technology, Stockholm, Sweden.

83

References

Koskenniemi, K. (1983). Two-level morphology: A general
computational model for word-form recognition and production.
Ph.D. thesis, University of Helsinki, Helsinki.

Krashen, S. (1982). Principles and practices in second language
acquisition. Englewood Cliffs, NJ, USA: Prentice Hall.

Krashen, S. (1994). The input hypothesis and its rivals. In N. Ellis (Ed.),
Implicit and explicit learning of languages. London, Great Britain:
Academic Press Limited.

Killgren, G. (1979). Innehall i text. Ph.D. thesis, Stockholm University,
Stockholm, Sweden.

Killgren, G. (1992). Making maximal use of morphology in large-scale
parsing: the MorP parser. Stockholm, Sweden: Department of
Linguistics, Stockholm University.

Lantolf, J. P. (2000). Introducing sociocultural theory. In J. P. Lantolf
(Ed.), Sociocultural Theory and Second Language Learning (pp. 1-
26). Oxford, Great Britain: Oxford University Press.

Lantolf, J. P., DiCamilla, F. J., & Ahmed, M. (1997). The cognitive
function of linguistic performance: Tense/Aspect use by L1 and L2
speakers. Language Sciences, 19, 153-165.

Levy, M. (1997). Computer-assisted Language Learning: Context and
Conceptualization. Oxford, Great Britain: Oxford University press.

Lexin. (2003). Lexin - ett lexikon for invandrarundervisning. Retrieved
2005-09-13, from http://www-lexikon.nada. kth.se/

Lindberg, 1. (2001). Nagra forskningsperspektiv pa interaktionens roll i
andraspriksinlirning. In U. B. Uhlmann, B. Séderman & A.
Vikstrom (Eds.), P.S. Postscriptum. Sprakliga studier till minnet
av Elsie Wiijk-Andersson. Uppsala, Sweden: Hallgren & Fallgren.

Lindberg, 1., & Skeppstedt, [. (2000). Ju mer vi ldr tillsammans -
rekonstruktion av text i smigrupper. In H. Ahl (Ed.), Svenskan i
tiden - verklighet och visioner. Stockholm, Sweden: HLS Forlag.

Lindberg, J., & Eriksson, G. (2004). CrossCheck-korpusen - en
elektronisk svensk inldrarkorpus. In the proceedings of the ASLA
Conference 2004, Sodertérns hogskola, Sweden.

Long, M. H. (1981). Input, interaction, and second language acquisition.
In H. Winitz (Ed.), Native language and foreign language
acquisition (Vol. 279, pp. 259-278): Annals of the New York
Academy of Sciences.

Long, M. H., & Robinson, P. (1998). Focus on form: Theory, research,
and practice. In C. Doughty & J. Williams (Eds.), Focus on Form
in Classroom Second Language Acquisition (pp. 15-41). New
York, USA: Cambridge University Press.

84

Mangu, L., & Brill, E. (1997). Automatic rule acquisition for spelling
correction. In the proceedings of the 14th International Conference
on Machine Learning, Nashville, TN, USA.

Manning, C. (2002). Probabilistic syntax. In R. Bod, J. Hay & S. Jannedy
(Eds.), Probabilistic Linguistics. Cambridge, MA, USA: MIT
Press.

Manning, C., & Schiitze, H. (1999). Foundations of statistical natural
language processing. Cambridge, MA, USA: MIT Press.

Matsuda, P. K., Canagarajah, A. S., Harklau, L., Hyland, K., &
Warschauer, M. (2003). Changing currents in second language
writing research: A colloquium. Journal of Second Language
Writing, 12(2), 151-179.

Megyesi, B. (2002a). Data-driven syntactic analysis: methods and
applications for Swedish. Ph.D. thesis, Royal Institute of
Technology, Stockholm.

Megyesi, B. (2002b). Shallow parsing with PoS taggers and linguistic
features. Journal of Machine Learning Research, Special Issue on
Shallow Parsing, 2, 639-668.

Moro, Y. (1999). The expanded dialogic sphere: Writing activity and
authoring of self in Japanese classrooms. In Y. Engestrom, R.
Miettinen & R.-L. Punaméki (Eds.), Perspectives on Activity
Theory (pp. 165-182). Cambridge, United Kingdom: Cambridge
University Press.

Nerbonne, J. (2002). Computer-Assisted Language Learning and Natural
Language Processing. In R. Mitkov (Ed.), The Oxford Handbook of
Computational Linguistics: Oxford University Press.

Ngai, G., & Florian, R. (2001). Transformation-based learning in the fast
lane. In the proceedings of the 2nd Meeting of the North American
Chapter of the Association for Computational Linguistics
(NAACL-2001), Pittsburgh, USA.

Ngai, G., & Yarowsky, D. (2000). Rule writing or annotation: Cost-
efficient resource usage for base noun phrase chunking. In the
proceedings of the 38th Annual Meeting of the Associations for
Computational Linguistics (ACL'2000), Hong Kong.

Nivre, J. (2000). Sparse data and smoothing in statistical part-of-speech
tagging. Journal of Quantitative Lingustics, 7(1), 1-17.

Nivre, J., Hall, J., & Nilsson, J. (2004). Memory-based dependency
parsing. In the proceedings of the Conference on Computational
Natural Language Learning (CoNLL-2004), Boston, USA.

Normark, M. (2002). Using technology for real-time coordination of
work; A study of work and artifact use in the everyday activities of
SOS Alarm. Ph. Lic. thesis, Royal Institute of Technology,

Stockholm.

85

References

Nunn, B. (2001). Task-based methodology and sociocultural theory. The
Language Teacher Online Retrieved 2005-07-28, from
httpi//Itse.ph-karlsruhe.de/Nunn.pdf

Olson, D. R. (1994). The world on paper: The conceptual and cognitive
implications of writing and reading. Cambridge, USA.

Olson, D. R. (1995). Writing and the mind. In J. V. Wertsch, P. d. Rio &
A. Alvarez (Eds.), Sociocultural studies of mind (pp. 95-123). New
York, USA: Cambridge University Press.

Paggio, P. (2000). Spelling and grammar correction for Danish in
SCARRIE. In the proceedings of the 6th Conference on Applied
natural language processing, Seattle, Washington, USA.

Park, J. C., Palmer, M., & Washburn, G. (1997). 4An English grammar
checker as a writing aid for students of English as a second
language. In the proceedings of the 5Sth Conference on Applied
Natural Language Processing, Washington, DC, USA.

Pihl, E., Rastas, H., & Rockberg Tjernberg, A. (2003). Betydelsen av
feedback i Grim - en interaktiv ldrmiljo med fokus pa det svenska
spraket. Unpublished manuscript.

Ravin, Y. (1993). Grammar errors and style weakness in a text-critiquing
system. In K. Jensen, G. E. Heidorn & S. D. Richardsson (Eds.),
Natural Language Processing: The PLNLP Approach (pp. 14-27).
Norwell, MA, USA: Kluwer Academic Publishers.

Reid, J., Lindstrom, P., McCaffrey, M., & Larson, D. (1983). Computer-
assisted text-analysis for ESL students. CALICO Journal, 1(3), 40-
42, 46.

Richardson, S., & Braden-Harder, L. (1993). The Experience of
Developing a Large-Scale Natural Language Processing System:
Critique. In K. Jensen, G. E. Heidorn & S. D. Richardsson (Eds.),
Natural Language Processing: The PLNLP Approach (pp. 77-89).
Norwell, MA, USA: Kluwer Academic Publishers.

SAOL. (1986). Svenska Akademiens ordlista. Stockholm, Sweden:
Nordstedts forlag.

Schneider, D. A., & McCoy, K. F. (1998). Recognizing syntactic errors
in the writing of second language learners. In the proceedings of
the 36th Annual Meeting of the Association for Computational
Linguistics and 17th International Conference on Computational
Linguistics (COLING-ACL-98), Montréal, Canada.

Selinker, L. (1972). Interlanguage. International Review of Applied
Linguistics(10), 209-231.

Severinson Eklundh, K. (1986). Dialogue processes in computer
mediated communication. A study of letters in the Com system. Ph.
D. thesis, Linkdping University, Link6ping, Sweden.

86

Sjobergh, J. (2003). Combining POS-taggers for improved accuracy on
Swedlish text. In the proceedings of the 14th Nordic Conference on
Computational Linguistics, Reykjavik, Iceland.

Sjobergh, J., & Knutsson, O. (2005). Faking errors to avoid making
errors: very weakly supervised learning for error detection in
writing. In the proceedings of the Recent Advances in Natural
Language Processing 2005, RANLP 2005, Borovets, Bulgaria.

Skeppstedt, 1. (2005). Kan deltagare som studerar svenska for invandare
(sfi) och svenska som andrasprak (sas) inom den grundldggande
vuxenutbildningen anvinda och fa hjdilp och stod av Grim?
Unpublished manuscript.

Smagorinsky, P. (1994). Think-aloud protocol analysis: Beyond the black
box. In P. Smagorinsky (Ed.), Speaking About Writing: Reflections
on Research Methodology. (pp. 3-19). Thounsand Oaks, California,
USA: SAGE Publications, Inc.

Sofkova Hashemi, S. (2003). Automatic Detection of Grammar Errors in
Primary School Children's Texts. Ph.D. thesis, G6teborg
University, Gothenburg.

Sofkova Hashemi, S., Cooper, R., & Andersson, R. (2003). Positive
Grammar Checking: A Finite State Approach. In the proceedings
of the CICLing 2003, Mexico City, Mexico.

Sparc Jones, K. (2001). Automatic language and information processing:
rethinking evaluation. Natural Language Engineering, 7(1), 29-46.

Swain, M. (1998). Focus on form through conscious reflection. In C.
Doughty & J. Williams (Eds.), Focus on Form in Classroom
Second Language Acquisition (pp. 64-81). New York, USA:
Cambridge University Press.

Swain, M. (2000). The output hypothesis and beyond: Mediating
acquisition through collaborative dialogue. In J. P. Lantolf (Ed.),
Sociocultural Theory and Second Language Learning (pp. 97-114).
Oxford, Great Britain: Oxford University Press.

Siljo, R. (2000). Ldrande i praktiken: ett sociokulturellt perspektiv (first
ed.). Stockholm: Bokforlaget Prisma.

Sagvall Hein, A. (1981). An overview of the Uppsala chart parser version
1 (UCP-1). Uppsala, Sweden: Department of Linguistics,
University of Uppsala.

Sagvall Hein, A. (1998). 4 chart-based framework for grammar
checking. Initial studies. In the proceedings of the 11th Nordic
Conference in Computational Linguistics, Copnehagen, Denmark.

Sagvall Hein, A. (1999). A grammar checking module for Swedish.
Uppsala, Sweden: Department of linguistics.

Sagvall Hein, A., Almgvist, A., Forsbom, E., Tiedemann, J., Weijnitz, P.,
Olsson, L., et al. (2002). Scaling up an mt prototype for industrial

87

References

use. Databases and data flow. In the proceedings of the Third
International Conference on Language Resources and Evaluation
(LREC 2002), Las Palmas, Spain.

Tschichold, C., Bodmer, F., Cornu, E., Grosjean, F., Grosjean, L., Kubler,
N., et al. (1997). Developing a new grammar checker for English
as a second language. In the proceedings of the ACL'97
Workshop: From Research to Commercial Applications: Making
NLP Work in Practice, Madrid, Spain.

van Lier, L. (2000). From input to affordance: Social-interactive learning
from an ecological perspective. In J. P. Lantolf (Ed.), Sociocultrual
Theory and Second Language Learning. Oxford, Great Britain:
Oxford University Press.

Vosse, T. (1994). The Word Connection. Grammar-Based Spelling Error
Correction in Dutch. Enschede, Holland: Neslia Paniculata.

Voutilainen, A. (2001). Parsing Swedish. In the proceedings of the 13th
Nordic Conference on Computational Linguistics (Nodalida'01),
Uppsala, Sweden.

Wertsch, J. V. (1991). Voices of the mind. A sociocultural approach to
mediated action. Cambridge, MA, USA: Harvard University Press.

Wertsch, J. V. (1998). Mind as action. New York, USA: Oxford
University Press.

Astrom, M. (1996). A probabilistic tagger for Swedish using the SUC
tagset. In H. Feldweg & E. Hinrichs (Eds.), Lexikon und Text (pp.
245-256). Tiibingen: Max Niemeyer Verlag.

88

Paper 1

The Development and Performance of a
Grammar Checker for Swedish: A Language
Engineering Perspective

J. Carlberger, R. Domeij, V. Kann, O. Knutsson

KTH Nada, SE-100 44 Stockholm, Sweden
E-mail: {jfc,domeij,viggo,knutsson} @nada.kth.se.

(Received 16 December 2004)

Abstract

This article describes the construction and performance of Granska — a surface-oriented
system for grammar checking of Swedish text. With the use of carefully constructed error
detection rules, written in a new structured rule language, the system can detect and
suggest corrections for a number of grammatical errors in Swedish texts. In this article,
we specifically focus on how erroneously split compounds and disagreement are handled
in the rules.

The system combines probabilistic and rule-based methods to achieve high efficiency
and robustness. The error detection rules are optimized using statistics of part-of-speech
bigrams and words in a way that each rule needs to be checked as seldom as possible.

‘We have found that the Granska system with higher efficiency can achieve the same or
better results than systems with conventional technology.

Keywords: grammar checking, part-of-speech tagging, error detection rules, optimization,
hidden Markov models.

1 Introduction

Grammar checking is one of the most widely used tools within language technology.
Spelling, grammar and style checking for English have been an integrated part of
common word processors for about twenty years now. Some well-documented sys-
tems are Epistle/Critique and the grammar checker in Word97 for English (Jensen
et al. 1983; Jensen, Heidorn, and Richardson 1993; Heidorn 2000), and the rule-
based system for Dutch by Vosse (1994) and ReGra for Brazilian Portuguese (Mar-
tins et al. 1998). Most grammar checkers are based on handcrafted rules, however
a few statistical and machine learning approaches to general error detection have
been tried during the years (see for example Atwell (1987) and Izumi (2003)).

Current research seems to focus mostly on machine learning techniques for so-
called context sensitive spelling checking, and in particular on confusions sets. (see
for example Mangu (1997), Golding (1999), and Carlson (2001)).

For languages with a smaller number of speakers, such as Swedish, advanced

2 J. Carlberger and others

tools have been lacking. Recently, the first grammar checker for Swedish, developed
by the Finnish company Lingsoft, was launched in Word 2000 (Arppe 2000). This
grammar checker is partly based on the Swedish constraint grammar SWECG.
There are also two research prototypes available for Swedish, Scarrie (Sagvall Hein
1998) which includes a advanced parser and a system using a finite state approach
called FiniteCheck (Sofkova Hashemi, Cooper, and Andersson 2003).

In this article, another grammar checker for Swedish is presented. This grammar
checker, called GRANSKA has been designed and developed with efficiency and
robustness in focus. One important goal has been to make GRANSKA robust against
texts with many errors without limiting the feedback given. Other goals have been
to develop GRANSKA in a cost-effective way, and to test and use it in user studies.

GRANSKA is a hybrid system that uses surface grammar rules to check grammat-
ical constructions in Swedish. The system combines probabilistic and rule-based
methods to achieve high efficiency and robustness, which is a necessary prerequisite
for a grammar checker that runs in real time in direct interaction with users (Ku-
kich 1992). Using error detection rules, the system can detect a number of Swedish
grammar problems and suggest corrections for them.

2 About the Errors

When developing a phenomena-based grammar checker an error catalog has to be
defined. It can for instance focus on theoretically interesting error types, or error
types which are frequent in one specific user group. It can also be based on studies
of language use in general. The error catalog of GRANSKA is partly based on studies
on frequent errors (see Wedbjer (1999) and Sofkova Hashemi (2003) for overviews of
grammatical errors in Swedish), but also on the descriptions of correct grammatical
constructions, and on decisions of which errors that are plausible to detect with the
technology chosen. Although the error catalog of GRANSKA includes many error
types, we focus on three types of errors in the following.

1. Split compounds is an error that is increasing in Swedish. It is also interesting
because of its limited description in the literature.

2. Internal NP disagreement is quite common in Swedish texts, and grammatical
Swedish NPs is also a well-studied field, and their ungrammatical counter-
parts.

3. Disagreement errors between the subject and the predicative involves long
distance dependencies, which should test the limits of current tools for text
analysis included in Granska.

2.1 Erroneously Split Compounds

Swedish is a compounding language where lexemes can be written together as a
single word with two or more components e.g. mansrost with the lexemes man
(man) and rést (voice). These constructions are called closed compounds. This
is a common way of constructing the head of an NP, but it is also possible to

The Development and Performance of a Grammar Checker for Swedish 3

construct an NP with the same lexemes with a genitive construction and with two
separated words e.g. mans rdst (eng. man’s voice). Syntactically, they are forming a
more or less equivalent NP. Semantically they differ, and that is the main problem
with erroneously split compounds — to know if the split compound can construct a
compound that is semantically plausible, and therefore should not be signalled as
an error.

If a split compound creates an ungrammatical structure it must be an error; but
if the construction is grammatical but for humans not acceptable, it should ideally
also be signalled as an error.

As well as in English (with mostly open compounds), Swedish compounds cannot
be listed — compounds are the most frequent hapax words — and a lexical approach
is thus out of question. The semantics of a compound normally constructs one
obvious interpretation, and one more rare. The last part of the compound gives the
word its word class, but not necessary its semantic interpretation. The relations
between the lexemes in the compound are complex.

2.2 Agreement Errors in Swedish

Frequent agreement errors in Swedish are located within the noun phrase. The
words in an NP can disagree according to gender, number and definiteness. Other
agreement errors appear between the subject and the predicative, which can in-
volve long distance dependencies. Even more problematic agreement errors concern
anaphoric agreements between phrases within the sentence or between sentences.
Granska as well as the grammar checker of MS Word try to find agreement errors
in NPs and disagreement between the subject and the predicative. However, both
grammar checkers focus mainly on agreement errors within NPs.

Agreement errors within the NP are more problematic to detect than one can
expect. The Swedish language is full of acceptable constructions that permit dis-
agreement. The following phenomena can illustrate how different constructions can
cause false alarms if they are not carefully treated. NPs with predicative attributes
like statsrddet ensamt (eng. the cabinet minister alone) can either be constructed
where with both words’ gender values in neuter or as a construction where the
gender value of statsrddet (cabinet minister) is based on the fact that statsrddet is
a person, and persons normally have the gender value common in Swedish. Hence,
the adjective ensam in common gender in the construction statsradet ensam is
also allowed in Swedish. Adjectives in superlative must also be carefully handled
as in Jag kan utan den storsta anstringning motstd frestelsen (eng. I can resist the
temptation without the greatest effort). The problem here is that the determiner
den is in definite form in spite of the indefinite form of the head noun. Another
complication is definiteness in the detection of disagreement in NPs with restrictive
relative clauses as in Den van som jag en ging hade fanns inte mer (eng. The friend
I once had is gone.), where the noun vin (friend) in indefinite form is grammatical
despite the definite determiner den (the).

If the rules are only using local information to detect errors, different kind of
attributes in NPs can cause false alarms, for instance Han tillhorde ett gatans par-

4 J. Carlberger and others

lament (eng. He belonged to the parliament of the street) The word gatans (the
street’s) is an attribute to the head noun parlament (parliament), and the phrase
has an obligatory agreement between the determiner ett (a) and parlament (par-
liament), and not between the adjacent words ett and gatans which is the normal
case. There are many more constructions in NPs that must be treated in a grammar
checker for Swedish, and the main problem is avoiding them without reducing the
recall of the error type more than necessary.

3 The Granska System

We will first present the structure of GRANSKA, and then in more detail describe
four important parts of the system: the part-of-speech (PoS) tagging module, the
construction of error detection rules, the algorithms for rule matching, and the
generation of error corrections. Finally, we describe the performance of tagging and
error detection.

In Figure 1, the modular structure of GRANSKA is presented. First, in the tok-
enizer, potential words and special characters are recognized as such. In the next
step, a tagger is used to assign disambiguated part of speech and inflectional form
information to each word (Carlberger and Kann 1999). The tagged text is then
analyzed by surface grammar rules that find structures such as noun phrases. This
information is then sent to the error rule matching component where error rules are
matched with the text in order to search for specified grammatical problems. The
error rule component also generates error corrections and instructional information
about detected problems that are presented to the user in a graphical interface.
In addition, the system contains a spelling error detection and correction module,
called STAVA that can handle Swedish compounds (Domeij, Hollman, and Kann
1994; Kann et al. 2001). Incorporating STAVA in GRANSKA improves both spelling
and grammar checking. For example, unknown proper names are not signalled as
spelling errors if the tagger in GRANSKA identifies them as such, and spelling cor-
rections that do not fit in the context are not proposed. STAVA can also be used
from inside the error rules, e.g. in the process of checking split compound errors,
see below.

The GRANSKA system is implemented in C++ under UNIX, and it has recently
been integrated in a language learning environment called Grim!.

4 Part-of-Speech Tagging

In PoS tagging of a text, each word and punctuation mark in the text is assigned
a morphosyntactic tag. We have designed and implemented a tagger based on a
second order Hidden Markov Model (Charniak et al. 1993; Charniak 1996). Given
a sequence of words wj. ,, the model finds the most probable sequence of tags t1. .
according to the equation

! Grim is a freely available web client that works under most operating systems. See the
web page of Grim: http://www.nada.kth.se/grim/

The Development and Performance of a Grammar Checker for Swedish 5

Text to be scrutinized

l

Tokenizer

SUC corpus

Y

/v PoS tagger
Word — > Lexicon
lists \ Y

\ Rule matcher Spelling checker

Help rules and error rules / l

Presentation of errors in

a graphical user interface

Fig. 1. An overview of the GRANSKA system.

n
(1) ’T(wln) = arg rtrllax H P(ti |ti_2, ti—l)P(wilti)~
o

Estimations of the two probabilities in this equation are based on the interpolation
of relative counts of sequences of 1, 2 and 3 tags and word-tag pairs extracted from
a large tagged corpus.

For unknown words, we use a statistical morphological analysis adequate for
Swedish and other moderately inflecting languages. This analysis is based on rel-
ative counts of observed tags for word types ending with the same 1 to 5 letters.
This captures both inflections (tense -ade in hdmtade (fetched)) and derivations
(nounification -ning in hdmtning (pick-up)). Similarly, if the first letter of the word
is upper case the probability of proper noun is increased.

We also perform an analysis that finds the last word form of compounds, which are
common in Swedish. The possible tags of the last word form indicate possible tags
(and probability estimation) for an unknown compound word. These two analyses
are heuristically combined to get estimations of P(w;|t;), which enables unknown
words to work in the model. This method combines morphological information for
unknown words with contextual information of surrounding words, and resulted in
a tagger that tags 97% of known and 93% of unknown words correctly using a tag
set of size 140. For more information, see (Carlberger and Kann 1999). We have
found that nearly all tags in the tag set are necessary in order to detect the errors
searched for.

The objective of GRANSKA is to find grammatical errors in a text, but how can
a ungrammatical text be tagged? For example, should the adjective glada (happy),
which has the same form in singular and plural in en glada dagar (a happy days) be
tagged as singular or plural, or as both? Is the disagreement with the noun dagar

6 J. Carlberger and others

(days) more important than with the determiner en (a)?. We have found that it
is almost always better to choose one of the taggings, since if glada is tagged as
singular then the error rules will detect glada dagar as an agreement error, and if
glada is tagged as plural then en glada will also be detected as an agreement error.
Thus it is better to disambiguate even when it is not clear how to do it.

5 Error Rules

The error rule component uses carefully constructed error rules to process the
tagged text in search for grammatical errors. Since the Markov model also dis-
ambiguates and tags morphosyntactically deviant words with only one tag, there
is normally no need for further disambiguation in the error rules in order to detect
an error. An example of an agreement error is en litet hus (a small house), where
the determiner en (a) does not agree with the adjective liten (small) and the noun
hus (house) in gender. The strategy differs from most rule-based systems which
often use a complete grammar in combination with relaxation techniques to detect
morphosyntactical deviations (see for example Vosse (1994) and Sagvall (1998)).

The error rules of GRANSKA are expressed in a new and general rule language
developed for this project (Knutsson 2001). It is partly object-oriented and has a
syntax resembling Java or C++. An error rule in GRANSKA that can detect the
agreement error in en liten hus, is shown in Rule 1 below.

Rule 1

cong22@incongruence {
X (wordcl=dt),
Y (wordcl=jj)*,
Z(wordcl=nn & (gender!=X.gender | num!=X.num | spec!=X.spec))
-=>
mark(X Y Z)
corr(X.form(gender:=Z.gender, num:=Z.num, spec:=Z.spec))
info("The determiner" X.text "does not agree with the noun" Z.text)
action(scrutinizing)

Rule 1 has two parts separated with an arrow. The first part contains a matching
condition. The second part specifies the action that is triggered when the matching
condition is fulfilled. In the example, the action is triggered when a determiner
is found followed by a noun (optionally preceded by one or more (*) attributes)
that differs (!=) in gender, number or (|) species from the determiner. Each line in
the first part contains an expression that must evaluate to true in a matching rule.
This expression may be a general expression (with all standard boolean and numeric
operators) and may refer to values (matching texts, word classes, or features) of
the earlier parts of the rule.

The action part of the rule first (in the mark statement) specifies that the erro-
neous phrase should be marked in the text. Then (in the corr statement) a function
is used to generate a new inflection of the article from the lexicon, one that agrees
with the noun. This correction suggestion (in the example ett litet hus) is presented

The Development and Performance of a Grammar Checker for Swedish 7

to the user together with a diagnostic comment (in the info statement) describing
the error.

In most cases, the tagger succeeds in choosing the correct tag for the deviant
word on probabilistic grounds (in the example en is correctly analyzed as an indef-
inite, singular and common gender article by the tagger). However, since errors are
statistically rare compared to grammatical constructions, the tagger can sometimes
choose the wrong tag for a morphosyntactically deviant form. In some cases when
the tagger is known to make mistakes, the error rules can be used in re-tagging the
sentence to correct the tagging mistake. An example of this is when the distance
between two agreeing words is larger than the scope of the tagger. Thus, a combi-
nation of probabilistic and rule-based methods is used even during basic word tag
disambiguation.

We use help rules (functions, possibly recursive) to define phrase types that can
be used as context conditions in the error rules. In rule 2 below, two help rules are
used in detecting agreement errors in predicative position. The help rules specify
that copula should be preceded by an NP followed by one or more (+) PPs.

Rule 2

pred2@predicative {
T(wordcl!=pp),
@p) O,
(PP) O+,
X(wordcl=vb & vbt=kop),
Y(wordcl=jj & (gender!=NP.gender | num!=NP.num)),
Z(wordcl!=jj & wordcl!=nn)
-—>
mark (all)
corr(if NP.spec=def then
Y.form(gender:=NP.gender, num:=NP.num, spec:=ind) else
Y.form(gender:=NP.gender, num:=NP.num) end)
info("The noun phrase" NP.text "does not agree with the adjective" Y.text)
action(scrutinizing)

}

NPe {
X (wordcl=dt)?,
Y(wordel=jj)*,
Z(wordcl=nn)
-—>
action(help, gender:=Z.gender, num:=Z.num, spec:=Z.spec, case:=Z.case)

}

PP@ {
X (wordcl=pp),
pP) O
-—>
action(help, gender:=NP.gender, num:=NP.num, spec:=NP.spec, case:=NP.case)

¥
The help rules in the example are specified in the subroutines NP@ and PP@ which

8 J. Carlberger and others

define noun phrases and prepositional phrases respectively. These subroutines are
called from the higher level rule for predicative agreement (pred2@predicative).
Note that the help rule PP@ uses the other help rule NP@ to define the prepositional
phrase. In the action part the help rules return the features of the phrases.

The help rules make the analysis approach the analysis of a phrase structure
grammar. Help rules make it possible for the system to perform a local phrase
analysis selectively, without parsing other parts of the sentence that are not needed
in the detection of the targeted error type. Thus, by calibrating the level of anal-
ysis that is needed for the case at hand, the system obtains high efficiency. The
possibility to call help rules makes the rule language more powerful than languages
based on regular expressions, such as XFST (Beesley and Karttunen 2003) or CG
(Karlsson 1990).

Above, we have shown how agreement errors are handled in the system. Now we
will turn to the error type of erroneously split compounds. So far, we have mainly
focussed on erroneously split compounds of the type noun+noun which stand for
about 70% of the various types (Domeij, Knutsson, and Ohrman 1999).

Detection of erroneously split compounds where the first part cannot stand alone,
forming a non-existing word, is trivial with a good spelling checker. The error
detection is done by listing those first parts in the lexicon and classifying them so
that an error rule can be made to search the text for such a first part in combination
with any other noun, as for example in pojk byxor where pojk is the first part form
of pojke (boy) which is combined with byzor (trousers).

In other cases, when both parts have the form of full words, the strategy for
detecting erroneously split compounds makes use of the fact that the first noun,
unlike the last, must be uninflected (indefinite and singular). Since the combina-
tion of an uninflected noun followed by any noun is a slightly unusual syntactical
combination in grammatically correct sentences, it can be used to find candidates
for split compound errors. Other contextual cues like disagreement and agreement
are also used. Disagreement between the preceding determiner and the first part
of the split, and agreement between the determiner and the last part are useful
hints to locate split compounds safely. Before signaling the error, the candidates
are checked against a spelling checker for compound recognition. If the spelling
checker recognizes the compound as such, the two nouns in the text are marked as
a split compound and the corrected compound is given as a suggestion alternative.

We have also found that rules for clause boundary recognition could increase
recall and precision even more, especially for split compounds. Therefore, we have
experimented with rules based on Ejerhed’s clause boundary recognition algorithm
(Ejerhed 1999). By applying the error rules for split compounds only on, for exam-
ple, clauses without ditransitive verbs (with only one NP after the verb), GRANSKA
can avoid false alarms and still detect errors in another clause within the same sen-
tence.

Many errors can be difficult to detect because of ambiguities that are irresolvable
on contextual grounds only. One example is en exekverings enhet (an execution
unit). The first noun exekvering belongs to a group of nouns that take an -s when
compounded with another noun (ezekvering-s+enhet). When the compound is er-

The Development and Performance of a Grammar Checker for Swedish 9

roneously split, the form of the first noun coincides with the genitive form (an exe-
cution’s unit), which has the same syntactical distribution as the error construction
and therefore cannot be distinguished from the split compound case.

6 Rule Matching

Presently, there are about 180 error detection rules, 60 help rules and 110 accepting
rules (rules that sort out exceptions) in GRANSKA. This could be compared to the
Swedish grammar checker of MS Word containing about 650 error rules (Birn 2000).
Each rule in GRANSKA may be matched at any position (i.e. word) in the text, and
there may even exist several matchings of a rule with the same starting position
and of different length. The rule matcher tries to match rules from left to right,
evaluating the expression of each token in the left hand side of the rule, and stopping
as soon it finds out that the rule cannot be matched.

The rule language allows the operators * (zero or more), + (one or more) and ?
(zero or one) for tokens, and ; (or) between rules. Together with the possibility of
writing possibly recursive help rules, this makes the rule language a context free
language. The results of all calls to help rules are cached (memorized) so if the
same help rule is called in several rules at the same position it will only need to be
computed once. Standard parsing techniques like LL(1) or LALR(1) (Aho, Sethi,
and Ullman 1984) cannot be used due to the complexity of the constraints that
can be formulated in the rule language and due to the fact that we want to find all
matchings, not just a single parse tree.

It is inefficient to try to match each error rule at each position in the text.
We therefore perform a statistical optimization, where each rule is analyzed in
advance. For each position in the rule, the possible matching words and taggings are
computed. In fact, the possible tag bigrams for each pair of positions are computed.
Then, using statistics on word and tag bigram relative frequencies, the position of
the rule that is least probable to match a Swedish text is determined. The least
probable position is stored in the field leastProbablePos of the rule object.

This means that this rule is checked by the matcher only at the positions in
the text where the words or tag bigrams of this least probable position in the rule
occur. For example, a noun phrase disagreement rule may require a plural adjective
followed by a singular noun in order to match. Such tag combinations are rare, and
with this optimization approach, only the small portion of word sequences in a text
containing this tag combination will be inspected by this rule.

It is important to note that this optimization does not miss any matchings and
is fully automatic. GRANSKA preprocesses the rule set by detecting the optimal
positions in each rule and stores two tables representing this information on disk.
The first table, bigramRulesToCheck, describes, for each tag bigram, which rules
that should be checked when that tag bigram occurs in the text. The second table,
wordRulesToCheck, contains the words appearing in the rules and describes, for
each word, which rules that should be checked when that word occurs in the text.
The rule matching algorithm is as follows:

10 J. Carlberger and others

FindOptimizedMatchings(AbstractSentence sen)
rulesToCheck« §)
for ¢ — 1 to sen.length—1 do
foreach Rule r € bigramRulesToCheck[sen.tags[¢],sen.tags[i + 1]] do
startPos « i—r.leastProbablePos
if startPos> 0 and startPos+r.minScope<sen.length then
rulesToCheck.Add(r,startPos)
for ¢ — 1 to sen.length do
foreach Rule r € wordRulesToCheck[sen.word[i]] do
startPos « i—r.leastProbablePos
if startPos> 0 and startPos+r.minScope<sen.length then
rulesToCheck.Add(r,startPos)
for (Rule r, int startPos) € rulesToCheck do
r.TryMatching(sen, startPos)

With the current set of error rules in GRANSKA the rule matching performs six
times faster with optimization than without. Furthermore, due to the optimization,
it is almost free (with respect to performance) to add many new rules as long as
they contain some uncommon word or tag bigram.

7 Lexicons and Word Form Generation

The lexicon of the system and the probability estimations that are needed for the
tagger are derived from the tagged Stockholm-Umea Corpus (SUC) (Ejerhed et al.
1992) in addition to morphological information from various sources.

The grammar rules require the functionality to generate alternate inflection forms
of any given word. Instead of having a lexicon containing all more or less common
forms of each base form word, we use inflection rules to derive word forms from
a base form. This approach has two advantages. Firstly, all inflectional forms of a
word can be derived as long as its base form is known, and thus a smaller lexicon
can be used. Secondly, unknown compound words can inherit the inflection rule
of its last word form constituent, which enables corrections of unknown compound
words.

8 Evaluation and Ranking of Error Corrections

It is often the case that an error rule matching generates more than one correction
alternative. There are several reasons for this: different syntactic features may be
applicable when a word form is changed, a base form may have more than one
applicable inflection rule, and an error rule may have more than one correction
field. These alternative sentences are first scrutinized and then ranked before being
suggested to the user.

As the error rules are applied locally and not to an entire clause, sentence or
paragraph, there will inevitably be false alarms. Therefore, each corrected sentence

The Development and Performance of a Grammar Checker for Swedish 11

generated from an error rule matching is scrutinized with all other error rules in
order to determine if another error was introduced. In such cases, the correction
alternative is discarded.

If one of the correction alternatives is identical to the original sentence, it in-
dicates not that the original sentence was erroneous, but that it was incorrectly
tagged. For example, the noun verktyg (tool) has the same spelling in singular and
plural. If the tagger tags verktyg as a plural noun in Ett mycket bra verktyg (eng.
A very good tool), a noun phrase disagreement error rule will correct the phrase to
Ett mycket bra verktyg, where the only difference is the tag of the last word. Thus,
when a corrected sentence identical to the original sentence is generated, the entire
error matching is regarded as a false alarm.

These two approaches of discarding correction alternatives have indeed shown to
increase precision more than they decrease recall.

There is another benefit from scrutinizing the sentences generated from error
rules. The probability given by the tagging equation is a suitable measure for rank-
ing these sentences, so that the sentence with most “common” words and syntactic
structure is given as first alternative. We believe that it is important for a spelling
and grammar checker to suggest reasonable corrections. A spelling or grammar
checker that suggests a non-grammatical correction will lose in confidence from the
user.?

If a sentence has a great proportion of unknown words, it makes little sense to
apply grammar and spelling checking rules to it, since it is probably a non-Swedish
sentence. Instead, such a sentence is either ignored, marked as suspect in its entirety,
or scrutinized anyway, according to the user’s preference.

9 Results

The tagging module has a processing speed of about 70 000 words per second
on a PC with 256 MByte memory and a Pentium I with 866 MHz. In a previously
unseen text, 97% of the words are correctly tagged. Unknown words are correctly
tagged in 93% of the cases. The whole system (with about 20 rule categories of
about 250 error rules) processes about 5 000 words per second, tagging included.
The numbers are hard to compare to those of other systems, since they are seldom
reported, but we believe that we have achieved a comparably high performance.
High performance matters in practical applications, where the grammar checker
for instance should be runned in an interactive mode, checking every new sentence
written. Memory usage is also important in practical applications, and GRANSKA
consumes about 22 MB RAM.

We conducted an evaluation of GRANSKA on a test collection comprising 200
000 words from five text genres. The text genres were sport news, international

2 The notions of trust and credibility have received increased attention in recent research
about human-computer interaction. It applies not only to language support systems, but
to all systems providing information and services to a human user. A recent overview
is presented in (Fogg and Tseng 1999).

12 J. Carlberger and others

Sport Interna- Public Popular Student All

news tional authority science essays texts
news text

Split 100/11 -/0 71/42 60/27 40/67 46/39
compounds
Noun phrase 88/39 100/11 100/25 100/37 74/72 83/44
disagreement
All error 67/52 60/25 67/47 87/46 37/66 52/53
types

Table 1. Percentages for recall/precision for two error types and all existing
grammatical error types in the texts.

news, public authority text, popular science and student essays. The test collection
contained 418 syntactic errors (only 0.2 % of the number of words) of different
complexity. The major error types were: verb chain errors (21%), split compounds
(18%), noun phrase disagreement (17%), context-sensitive spelling errors (13%) and
missing words (13%). The remaining 18% of the errors belonged to about ten broad
error types. GRANSKA tries to cover about 60% of all errors in the test collection.
The overall recall on the five genres was 52% and the precision was 53%. However,
there was an significant difference between the results on the different text genres,
see Table 1.

9.1 Comparing GRANSKA to Other Grammar Checkers

It is interesting to compare GRANSKA to other grammar checkers with respect to
grammar checking ability. However, it is hard to compare different grammar check-
ers for several reasons. Comparing an evaluation such as the one in Table 1 with
evaluations made on other systems is difficult because of e.g. different languages,
type of evaluation corpus, and error complexity. The evaluation of GRANSKA in
Table 1 seems, however, to be in line with the evaluation on the English grammar
checker Critique (Richardson and Braden-Harder 1993) on different text genres.

An obvious way to compare two or more grammar checkers is to run them on
the same text and compare the results. Since different grammar checkers may be
specialized on different types of errors and text genres the results may vary between
different evaluation texts. It is therefore important to note which text genre that
was used in a comparison and which types of errors that were studied.

Lingsoft that developed the Swedish grammar checker in Microsoft Word 2000
evaluated their grammar checker on news paper texts (Birn 2000). GRANSKAhas
also been evaluated on news papers text, but not on the same corpus that Lingsoft
used. However, a genre based comparision might give an indication of the perfor-
mance of two grammar checker on the same text genre. Such comparison shows
higher precision but lower recall for Lingsofts’s grammar checker than the overall

The Development and Performance of a Grammar Checker for Swedish 13

result of GRANSKA. The Swedish error detection rules of MS Word are expressible
in the rule language of GRANSKA, but not the other way around.

Sofkova Hashemi has developed a finite state based grammar checker called Finite
Check (Sofkova Hashemi, Cooper, and Andersson 2003). In a comparative study of
performance of four Swedish grammar checkers on texts written by primary school
children (Sofkova Hashemi 2003) GRANSKA got higher F-score (23%) than both
Scarrie (Sagvall Hein 1998) (18%) and the grammar checker of MS Word (Birn
2000) (14%). Finite Check showed the best results with a F-score of 49%. The
comparative part of the study focused on four error types which were also the ones
targeted by FiniteCheck: noun phrase agreement, finite verb form, verb form after
auxiliary verb, and verb after infinitive mark. FiniteCheck was trained on the test
material which partly explains the high F-score.

The low F-scores might also be explained by the fact that the evaluations of the
alarms are made in a quite strict manner. An example is split compounds identified
by the programs as agreement errors are counted as false alarms, in spite of the
fact that they includes agreement errors, at least at a surface level, but with the
most probable interpretation as a split compound. However, the study by (Sofkova
Hashemi 2003) shows that there is a strong need for research and development to
improve the performance of grammar checking tools for different user groups.

The rules of FiniteCheck can easily be converted into the rule language of GRANSKA,
which means that GRANSKA may be improved to find the errors found by FiniteCheck.

9.2 Comparing Granska to the Spelling and Grammar Checker of
Microsoft Word

We have evaluated GRANSKA and the spelling and grammar checker of Microsoft
Word 2000, on texts written by second language learners of Swedish, although
neither of the systems has been designed for this heterogeneous user group. The
reasons that we chose this type of evaluation text were that we wanted texts con-
taining quite a large number of real errors, and that this group of users is a growing
group needing good checking tools.

The texts comprised 32 452 words and were taken from the Svante corpus (Borin
2004). The texts were written by advanced learners of Swedish as a foreign language
at a Swedish university. The evaluation has focused on precision and the maximal
recall of the spelling and grammar checkers. With maximal recall we mean detected
errors by one program divided by detected errors by both programs. A program
cannot get better recall than this maximal recall. We have chosen to include the
performance of the style and spell checkers (including typographical errors) in the
results. For second language learners these alarms might be as hard as grammar
checking alarms to process.

The two spelling and grammar checkers have produced 787 alarms on the texts,
and 362 of these alarms (1.1 % of the number of words) were true positives. The
individual performance of each program is presented in Table 2. The specific results
on split compounds and agreement errors are reported in Table 3. Only the numbers
of error detections are measured. Error diagnosis and correction proposals are not

14 J. Carlberger and others

Error type Max. Recall Precision F-score
Word GRANSKA Word GRANSKA Word GRANSKA

Typographical 82 21 62 70 71 31
Style 0 0 0 - 0 0
Spelling 91 57 38 86 54 68
Grammar 34 84 86 80 49 82
Total 66 63 47 82 55 71

Table 2. Comparing the Swedish spelling and grammar checkers of GRANSKA and
MS Word. The figures are given in percentages for recall, precision and F-score.

Error type Max. Recall Precision
Word GRANSKA Word GRANSKA

Split compounds 0 100 - 81
Agreement in NP 54 74 92 100
Agreement in predicative 0 100 - 60
Total 38 81 92 86

Table 3. Comparing the Swedish spelling and grammar checkers of GRANSKA and
MS Word on split compounds and agreement errors. The figures are given in per-
centages.

evaluated. Especially the detections of split compounds of GRANSKA involve some
diagnosis that might be misleading for the user. However, at a surface level they
can be counted as split compounds.

The grammar checker of MS Word has better precision, but much lower recall
than GRANSKA. For the spelling checkers, it is the opposite, the spelling checker
of MS Word has a very high recall, but quite low precision, mostly due to bad
performance on compounds, and the fact that it marks many proper names as
spelling errors. The spell checker of GRANSKA has quite a low recall; it is too
liberal when judging misspelled compounds; many of them passed by undetected.
Analysis of Swedish compounds still seems to be an area that needs further work,
see Sjoberg and Kann (2004).

10 Conclusions

We have found that GRANSKA is a fast gammar checker that is as good or better
than comparable grammar checkers in detecting grammar errors. Furthermore, the

The Development and Performance of a Grammar Checker for Swedish 15

rule language of GRANSKA is powerful enough to implement the rules of other
grammar checkers, and can therefore take advantage of good handcrafted and well
tested rules of other systems. The optimized matching used in GRANSKA makes it
possible to use large sets of error rules almost without increasing the processing
time.

Moreover, we have implemented a Swedish chunker and surface parser using the
rule language of GRANSKA (Knutsson, Bigert, and Kann 2003). This proves the
rule language and the rule matching to be general enough to implement other tools
for natural language analyzing of Swedish, and probably for many other languages
as well. In order to port the system to another language besides new rules, just a
new tagger, a spelling checker and a word form generator are needed.

It is unrealistic to hope for full recall and precision in grammar checking. There-
fore, we think that it is important to develop a user friendly and instructive graphi-
cal interface and test the program on users in practice to study usability aspects as
well as the effects on writing and writing ability. Two user studies which brought
some light on these questions were conducted in different phases of the development
of GRANSKA (Domeij, Knutsson, and Severinson-Eklundh 2002). These two studies
are especially important for the next step in the development of GRANSKA, which is
to adapt it to second language learners of Swedish. These users need extended error
detection capacity and a more comprehensive feedback from the program. New user
studies (Knutsson, Cerratto Pargman, and Severinson-Eklundh 2003) with second
language learners using GRANSKA are an important guide for the directions of the
future research.

The method for detection of grammar errors that we have described uses error
detection rules, and will therefore find only predictable errors. We have also stud-
ied a statistical approach for finding unpredictable context-sensitive spelling errors
(Bigert and Knutsson 2002) and an approach based on machine learning of errors
that have been automatically inserted into a corpus (Sjobergh and Knutsson 2005).
These two approaches complement each other well, and together they find many
more errors than any single approach (Bigert et al. 2004).

Acknowledgments

The work has been funded by the Swedish research councils TFR, HSFR, Nutek and
Vinnova. Project leader of the project has been Prof. Kerstin Severinson Eklundh. We
would also like to thank Johnny Bigert and Jonas Sjobergh for their work with the
current version of GRANSKA.

Sprakdata at Goteborg University and the Swedish Academy let us use Svenska
Akademiens ordlista as a source for words in GRANSKA. Prof. Eva Ejerhed and Prof.
Gunnel Kallgren let us use SUC.

References

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools. Addison-
Wesley, Reading, Mass., 1986.

16 J. Carlberger and others

A. Arppe. Developing a grammar checker for Swedish. In Proc. 12th Nordic Conf. in
Computational Linguistics (Nodalida-99), pages 13—27, 2000.

E. S. Atwell. How to detect grammatical errors in a text without parsing it. In Proc. 3rd
EACL, Copenhagen, Denmark, pages 38—45, 1987.

K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Publications, Stanford,
CA, 2003.

J. Bigert, V. Kann, O. Knutsson, and J. Sjobergh. Grammar checking for Swedish sec-
ond language learners. In P. J. Henrichsen, editor, CALL for the Nordic Languages,
Copenhagen Language Studies, Samfundslitteratur, Copenhagen, Denmark. 2004.

J. Bigert and O. Knutsson. Robust error detection: A hybrid approach combining un-
supervised error detection and linguistic knowledge. In Proc. 2nd Workshop Robust
Methods in Analysis of Natural language Data (ROMAND’02), Frascati, Italy, pages
10-19, 2002.

J. Birn. Detecting grammar errors with Lingsoft’s Swedish grammar checker. In Proc.
12th Nordic Conf. in Computational Linguistics (Nodalida-99), pages 28-40, 2000.

L. Borin. The SVANTE project’s home page, 2004.
http://svenska.gu.se/ svelb/svante/.

J. Carlberger and V. Kann. Implementing an efficient part-of-speech tagger. Software—
Practice and Experience, 29(9):815-832, 1999.

A. Carlson, J. Rosen, and D. Roth. Scaling up context sensitive text correction. In Proc.
18th Nat. Conf. Innovative Applications of Artificial Intelligence (IAAI’01), 2001.

E. Charniak. Statistical Language Learning. MIT Press, Cambridge, Massachusetts, 1996.

E. Charniak, C. Hendrickson, N. Jacobson, and M. Perkowitz. Equations for part-of-speech
tagging. In Proc. 11th Nat. Conf. Artificial Intelligence, pages 784—789, 1993.

R. Domeij, J. Hollman, and V. Kann. Detection of spelling errors in Swedish not using a
word list en clair. J. Quantitative Linguistics, 1:195-201, 1994.

R. Domeij, O. Knutsson, and L. Ohrman. Inkongruens och felaktigt sirskrivna sam-
mansattningar — en beskrivning av tva feltyper och mdjligheten att detektera felen
automatiskt (Incongruence and erroneously split compounds), in Swedish. In Proc.
Svenskans beskrivning-99, 1999.

R. Domeij, O. Knutsson, and K. Severinson-Eklundh. Different ways of evaluating a
Swedish grammar checker. In Proc. 8rd Int. Conf. Language Resources and Evaluation
(LREC 2002), Las Palmas, Spain, 2002.

E. Ejerhed. Finite state segmentation of discourse into clauses. In A. Kornai, editor,
Ezxtended Finite State Models of Language, chapter 13. Cambridge University Press,
1999.

E. Ejerhed, G. Kallgren, O. Wennstedt, and M. Astrém. The linguistic annotation system
of the Stockholm-Umea corpus project. Technical Report DGL-UUM-R-33, Department
of General Linguistics, University of Umea, Umea, 1992. The web page of SUC is
www.ling.su.se/DaLi/Projects/SUC/.

B. J. Fogg and H. Tseng. The elements of computer credibility. In Proc. Human Factors
in Computing Systems (CHI-99), pages 80-87, Pittsburgh, PA, 1999. ACM Press.

A. R. Golding and D. Roth. A winnow-based approach to context-sensitive spelling cor-
rection. Machine Learning, 34(1-3):107-130, 1999.

G. E. Heidorn. Intelligent writing assistance. In R. Dale, H. Moisl, and H. Somers, editors,
Handbook of Natural Language Processing, chapter 8, pages 181-207. Marcel Dekker,
New York, 2000.

E. Izumi, K. Uchimoto, T. Saiga, T. Supnithi, and H. Isahara. Automatic error detection
in the japanese learners english spoken data. In Companion Volume to Proc. ACL’03,
Sapporo, Japan, pages 145-148, 2003.

K. Jensen, G. Heidorn, and S. Richardson. Natural Language Processing: The PLNLP
Approach. Kluwer, Boston, 1993.

The Development and Performance of a Grammar Checker for Swedish 17

K. Jensen, G. E. Heidorn, L. A. Miller, and Y. Ravin. Parse fitting and prose fixing:
Getting a hold on ill-formedness. Comp. Linguistics, 9(3-4):147-160, 1983.

V. Kann, R. Domeij, J. Hollman, and M. Tillenius. Implementation aspects and
applications of a spelling correction algorithm. In L. Uhlirova, G. Wimmer,
G. Altmann, and R. Koehler, editors, Text as a Linguistic Paradigm: Levels, Con-
stituents, Constructs. Festschrift in honour of Ludek Hrebicek, volume 60 of Quan-
titative Linguistics, pages 108-123. WVT, Trier, Germany, 2001. Available at
http://www.nada.kth.se/theory/projects/swedish.html.

F. Karlsson. Constraint Grammar as a framework for parsing running text. In H. Karlgren,
editor, Proc. 12th Int. Conf. Computational Linguistics (COLING-90), volume 3, pages
168-173, 1990.

O. Knutsson. Automatisk sprakgranskning av svensk text (Automatic Proofreading of
Swedish Texts), in Swedish. Licentiate thesis, Department of Numerical Analysis and
Computer Science, Royal Institute of Technology, Sweden, 2001.

O. Knutsson, J. Bigert, and V. Kann. A robust shallow parser for Swedish. In Proc. 14th
Nordic Conf. on Computational Linguistics, 2003.

O. Knutsson, T. Cerratto Pargman, and K. Severinson-Eklundh. Transforming grammar
checking technology into a learning environment for second language writing. In Pro-
ceedings of the HLT-NAACL 08 Workshop on Building Educational Applications Using
Natural Language Processing, pages 38—45, 2003.

K. Kukich. Techniques for automatically correcting words in text. ACM Computing
Surveys, 24(4):377-439, 1992.

L. Mangu and E. Brill. Automatic rule acquisition for spelling correction. In Proc. 14th
International Conference on Machine Learning, pages 187-194, 1997.

R. T. Martins, R. Hasegawa, M. Das Gragas VolpeNunes, G. Montilha, and O. N. De
Oliveira, Jr. Linguistic issues in the development of regra: A grammar checker for
Brazilian Portuguese. Natural Language Engineering, 4(4):287-307, 1998.

O. Wedbjer Rambell. Error typology for automatic proof-reading purposes. Technical
Report Scarrie del. 2.1, final version 1.1, Department of Linguistics, Uppsala University,
Uppsala, Sweden, 1999.

Available at http://stp.ling.uu.se/ matsd/thesis/arch/2000-009.pdf.

S. Richardson and L. Braden-Harder. The experience of developing a large-scale natural
processing system: Critique. In K. Jensen, G. E. Heidorn, and S. D. Richardson, editors,
Natural Language Processing: The PLNLP Approach, pages 77-89. Kluwer, Boston,
1993.

A. Sagvall Hein. A chart-based framework for grammar checking. In Proc. 11th Nordic
Conf. in Computational Linguistics (Nodalida-98), 1998.

J. Sjébergh and V. Kann. Finding the correct interpretation of Swedish compounds, a
statistical approach. In Proc. 4th Int. Conf. Language Resources and Evaluation (LREC
2004), 2004.

J. Sjobergh and O. Knutsson. Faking errors to avoid making errors: Very weakly supervised
learning for error detection in writing. In Proc. RANLP 2005, 2005.

S. Sofkova Hashemi. Automatic Detection of Grammar Errors in Primary School Chil-
drern’s texts. PhD thesis, Department of Linguistics, Goteborg University, Sweden,
2003.

S. Sofkova Hashemi, R. Cooper, and R. Andersson. Positive grammar checking: A fi-
nite state approach. In Computational Linguistics and Intelligent Text Processing. 4th
International Conference, CICLing2003, 2003.

T. Vosse. The Word Connection. Grammar-Based Spelling Error Correction in Dutch.
Enschede: Neslia Paniculata, 1994. ISBN 90-75296-01-0.

Paper 2

Different Ways of Evaluating a Swedish Grammar Checker

Rickard Domeij, Ola Knutsson and Kerstin Severinson Eklundh

Department of Numerical Analysis and Computer Science
Royal Institute of Technology
SE- 100 44 Stockholm, Sweden
{domeij, knutsson, kse } @nada.kth.se

Abstract
Three different ways of evaluating a Swedish grammar checker are presented and discussed in this article. The first evaluation
concerns measuring the program's detection capacity on five text genres. The measures (precision and recall) are often used in
evaluating grammar checkers. However, in order to test and improve the usability of grammar checking software, they need to be
complemented with user-oriented methods. Consequently, the second and the third evaluations presented in the article both involve
users. The second evaluation focuses on user reactions to grammar error presentations, especially with regard to false alarms and
erroneous error identification. The third and last evaluation focuses on problems in supporting users' cognitive revision processes. It
also examines user motives behind choosing to correct or not to correct problems highlighted by the program. Advantages and

disadvantages of the different evaluation methods are discussed.

1. Introduction

Tools for checking mechanics, grammar and style in
writing are widely used as an integrated part of common
word processors. Until recently, advanced tools have been
lacking for smaller languages, such as Swedish. However,
there are now one commercial grammar checker,
Grammatifix (Arppe, 2000), and two research prototypes
available, Scarrie (Sagvall-Hein, 1998) and Granska
(Domeij et al, 2000).

There are many reasons for further research and
development of authoring aids. First, the need for such aid
has increased, especially when the computer as a writing
tool has reached many new and different user groups, for
example high school students and second language
learners. Secondly, before adapting the grammar checkers
to new user groups, there is a need for more sophisticated
methods for evaluating the functionality and usability of
the programs and their effects on users’ ability and
practices of revision in writing.

This paper will focus on evaluations made in relation
to the development of the Swedish grammar checker
Granska. We argue that the evaluation of grammar and
style checking must go further than merely measuring the
functionality by measures of precision and recall, and thus
seriously address the issue of usability. By giving
examples of three different studies made during the
development of Granska, the advantages of using a
broader approach to evaluation are demonstrated.

2. The evaluated system

Granska is a grammar checker for Swedish developed
at the Royal Institute of Technology in Sweden. It is
together with other language tools integrated in a writing
environment supporting different aspects of the writing
process. Granska combines probabilistic and rule-based
methods to achieve high efficiency and robustness (see
also Carlberger & Kann, 1999). Using special error rules,
the system can detect a number of Swedish grammar
problems and suggest corrections for them that are
presented to the user together with instructional
information.

The interface of a grammar checker serves several
important functions. On a general level, it gives a picture
of the program's capabilities and way of working for the
user. More specifically, it communicates with the user
about the errors encountered, describing these errors as
well as giving suggestions for correcting them.

Importantly, the interface is also where the program
communicates with the user's writing process. If properly
designed, it provides for a transparent and easy switch
between the grammar checking and other processes of text
composition. Although it constitutes a part of the general
process of revision, there is no predefined place in writing
to which grammar checking can be confined. This is
because writing is a highly complex, recursive and
individual activity (Flower & Hayes, 1981). Accordingly,
the interface should provide means for invoking the
grammar checker interactively at any time, and for going
back to writing without delay or inconvenience. We have
considered these aspects of the design of the interface in
our work on the Granska system.

Granska is presently being adapted for second
language learners of Swedish. The evaluations presented
in the article have been made during different stages in the
development of Granska. The development is still an
ongoing process, involving recurrent evaluation of
functionality and usability.

3. Related research

In other research areas such as information retrieval
and information extraction, evaluation methods have been
seriously developed in relation to forums such as TREC,
MUC and, for Europe, CLEF. Notably, the grammar
checking area is short of empirical evaluative efforts of
this kind, although some efforts have been made (see the
Eagles report for an overview of different evaluations and
evaluation methods).

Earlier studies of grammar and style checking software
have involved measuring the program's error detection
capacity in terms of precision (i.e. error detection
correctness) and recall (i.e. error coverage) (see e.g.
Kukich, 1992; Birn, 2000; Richardson & Braden-Harder,
1993). The need of measuring the quality of correction
alternatives and instructions has also been recognized (see

e.g. Kohut & Gorman, 1995; TEMAA-report, 1997 pp.
34).

Richardson & Braden-Harder (1993) take different text
genres into account and report large differences in error
detection rates between for instance texts from
professional writers and freshman compositions. They
also report that professionals are more forgiving to wrong
proposals than students.

Kohut & Gorman (1995) evaluate the effectiveness of
several commercial grammar and style packages in the
writing of business students. In this study, real errors
detected by the program were further classified as
correctly identified (incorrect usage accurately classified
by the program) or incorrectly identified (incorrect usage
misclassified by the program). For the correctly identified
errors, the remedial advice was rated by experts as very
helpful, helpful or not helpful.

Other studies have investigated the impact of specific
software on the quality of produced text (see Kohut &
Gorman, 1995 for an overview). The studies have often
been conducted in pedagogical settings, comparing
improvements in text quality between two groups of
students, one group using a grammar checker, the other
not. Some studies report positive effects while others
report no measurable effects at all. The mixed results may
be due to problems in controlling the relevant variables or
not using sufficiently sensitive variables.

An advantage with the measurements of recall and
precision mentioned above is that they are well defined.
On the other hand, the results are hard to interpret. Do
users prefer high precision before high recall, or perhaps
the other way around? The truth is that we do not know
what users prefer before we study them. Therefore,
measures of precision and recall can only be a starting
point. On top of that, aspects such as user abilities and
needs, variability of text genres and user groups, the
complexity of error types and error presentations must
also be taken into consideration.

Although most of the studies mentioned above in some
sense are user-oriented in their approach, none of the
studies did study real users during computer-aided
revision. To get a deeper understanding of user related
issues in grammar checking, we decided to study users in
process.

4. Three evaluations

In the following three sections, we will present three
different evaluations performed in different stages during
the development of the Swedish grammar checker
Granska. The first evaluation concerns precision and
recall of error rules on five text genres for the Swedish
grammar checker Granska. It focuses on the functionality
of the system and aims at measuring its error detection
capacity for three error types across different genres. This
study was made during the error rule implementation
phase of the project.

The second and the third evaluations involve users in
two different ways. The second evaluation is formative
and focuses on user reactions to error presentations,
especially with regard to false alarms and erroneous error
identification. It relies on observational methods
complemented with tape recordings of users thinking
aloud. The evaluation was performed during the work
with error presentations and correction alternatives.

The third and last evaluation focuses on problems in
supporting users' cognitive revision processes. The main
research question addressed here is if a grammar and style
checker has the capacity to support the user in managing
three important steps in the revision process: detection,
diagnosis and correction. It also examines user motives
behind choosing to correct or not to correct problems
highlighted by the program. Revision processes and
motives for revising are studied by analyzing think-aloud
protocols in depth. This study was carried out early in the
design process using an experimental prototype of the
grammar checker. The work with coding and analyzing
the vast amount of data went on during later phases. The
study both served to inform and evaluate design decisions.

After the three evaluations have been presented in
closer detail in the following sections, the different
methods used will be further discussed.

5. Evaluation 1: A text analysis evaluation

Granska was evaluated on five text genres comprising
about 200 000 words (Knutsson, 2001). The detections
and diagnoses from Granska on these texts were manually
examined. The result indicates differences in the outcome
of the grammar checking between text genres. In the
following text, recall is defined as 'detected errors/all
errors' and precision is defined as ‘correct alarms/all
alarms'.

Collecting and annotating an evaluation corpus are a
demanding task, and one problem is to obtain texts that
are under revision. The texts in the material have to
varying extent been proofread, which is demonstrated in
the evaluation results on the different text genres. The text
genres were sport news, international news, public
authority text, popular science text and student essays.
The evaluation corpus contained 418 syntactic errors.

The largest groups of error types in the evaluation
material are the following: disagreement within the noun
phrase (17%), split compounds (18%), verb chain errors
(21%), missing words (13%) and so called context-
sensitive spelling errors (13%). The remaining 18% of the
errors belonged to about ten broad error types. Granska
tries to cover about 60% of all errors in the material. We
are continuously working on expanding the error coverage
of Granska, and presently focusing on errors specific for
second language learners.

The overall recall for all errors in the five genres is
52% and the precision is 53%. The results from the most
frequent error types are presented in table 1.

Error type Sport International Public Popular Student
X ; All texts

news news authority science essays
Verb chain 100/91 100/71 75/86 100/78 10076 | 97/83
errors
Split

100/11 -0 71/42 60/27 40/67 46/39
compounds
Disagreement | = gq/3¢ 100/11 100725 100/37 74172 83/44
within NPs

Table 1. Recall/precision percentages on five text genres for three frequent error types in the material.

There is a big difference between the results from the
different text genres. Granska achieves the best results on
verb chain errors (e.g. Han har spela fiollHe has play
violin). Verb chain errors got a recall ranging from 75% in
public authority texts to 100% in sport news. This may
indicate that these errors are easier to find and correct than
for instance split compounds (e.g. Jag samlar bok
madrken/I’'m collecting book marks).

The results on split compounds need further
explanations. Split compounds are very difficult to detect
without generating false alarms, and therefore there needs
to be quite a few errors in the texts in order to achieve a
precision over 50%. Student texts contain more errors than
the other texts, which results in a precision of 67% and a
recall of 40%. Looking at the same error type in public
authority texts gives a precision of 42% and a recall of
71%. Moreover, in international news, Granska only
generated false alarms and no detections, which can be
explained by the fact that there were no split compounds
occurring at all in international news text.

Comparing the results with other evaluations is
difficult because of factors such as different languages,
text types, the complexity of error types, error frequencies
in the texts and more. However, some comparisons might
be interesting despite all difficulties. The Critique system
for English has also been evaluated (Richardson &
Braden-Harder, 1993) on different text genres with lower
accuracy on texts from professional writing (about 40%)
and much higher on freshman composition (72%). The
results from the evaluation of Critique are in line with
Granska’s results on different text genres. For Swedish, an
evaluation made by Birn (2000) has been conducted on
newspaper texts, and reports a recall of 35% and a
precision of 70%. The system evaluated was the Swedish
grammar checker in Microsoft Word. The precision is
higher than Granska’s overall results, while recall is
lower, which may suggest different design choices made
during the program development in the intricate trade-off
between recall and precision. One notable difference is
that Word’s grammar checker does not address the
complex error type split compounds, which Granska does
with some loss of precision as a result.

6. Evaluation 2: A formative study of two
grammar checkers

During the development of Granska a formative
evaluation was carried out. The evaluation consisted of a
small user study involving Granska and a commercial
grammar checker (Knutsson, 2001). Five users
participated in the study. The users were all experienced

writers and had all, to some extent, used
checking tools before.

Direct observation was used complemented with tape
recordings of users thinking aloud. The tape recordings
were used as background information in the study, which
focuses on the observations. The user’s task was to use the
two grammar checkers for checking a text containing
errors possible for at least one of the programs to detect.
When an alarm from the grammar checker occurred, the
users could either accept or reject the alarm. They could
also correct the errors themselves if they found it suitable.

The study focused on users’ responses to false alarms,
wrong diagnoses and multiple suggestions from the
programs. These three problems are important to study
during the development process of a grammar checker.
They all address the problem of the trade-off between
recall and precision.

If false alarms really are a problem for the users, we
have to increase precision, which also means decreased
recall, because of the inverse relation between the two
measures. If users found multiple diagnosis and
suggestions problematic we have to implement a decision
mechanism that presents only one diagnosis and
suggestion, with the risk of presenting one erroneous
diagnosis and suggestion instead of two or more possible
error interpretations. In other words, should the user or the
program select among alternative interpretations?

One rather common example of multiple diagnoses
and suggestions are split compounds versus disagreement
within NPs. Consider for example the sentence Jag vill ha
mdnga vy kort (eng. I want many post cards). It could be
interpreted as a split compound vy kort (post card) or as a
number disagreement between mdnga (many) and vy
(post). In the study, the commercial grammar checker did
not present multiple diagnoses but Granska did in form of
a list of alternatives presented to the user. At this stage in
the development of Granska, we were seeking a metric
that could rank and possibly avoid alternative
interpretations of an error. Before implementing such a
metric, we wanted to know how users reacted to multiple
interpretations.

Results suggest that several conflicting diagnoses and
proposals seem to be a limited problem for the users if one
of the proposals is correct. It only took the users’ a
minimal amount of extra time to select the correct
alternative among several. This gave us valuable
information for the further development of Granska. Since
there seemed to be limited need for implementing a metric
for choosing only one diagnosis and suggestion, our
further efforts in the development process were

grammar

concentrated on improving the program with regard to
false alarms and missed.

Moreover, the results showed that some users seem to
need only the detection from a grammar checker, and are
able to make the correction in the text by themselves.
Surprisingly often, they corrected the text according to the
programs’ proposals, but instead of inserting them by
pressing the buttons in the interface, they typed the
correction directly into the text.

False alarms from the programs seem to be of variable
difficulty for the users. Easily judged false alarms from
the spell checker did not cause users to change the text,
but false alarms on more complicated error types
sometimes fooled users to change and follow the advice
from the two grammar checkers.

7. Evaluation 3: A study of cognitive
revision processes in computer-aided
editing

In the third evaluation, we wanted to take a closer look
at the cognitive processes behind the observed revision
behavior. The study is mainly qualitative and focuses on
how well human revision processes are supported by
writers” aids from a cognitive perspective. Think-aloud
methodology is used to track revision processes (such as
detection, diagnosis and correction) during computer
aided editing. An analysis of the think-aloud protocols
reveals how well a grammar checker manages to support
these processes; when and why the tool succeeds or fails
to support the writer in revising highlighted problems in
the text.

The research is influenced by the work of Hayes et al.
(1987) in which a detailed psychological model of the
revision process is presented and used in studying
revision. The revision process is described as being
composed of the following three subprocesses: task
definition, evaluation and strategy selection. Three stages
in the process are pinpointed as problematic, especially for
inexperienced writers, i.e. detecting, diagnosing and
revising problems in text. In Hill et al (1991) the same
theoretical framework and methodology is used to study
on-line editing.

The aim of the present study was to examine the
usefulness and effect of writers’ aids more closely in the
light of this framework. It was a further development of a
previous study using a similar design but without think-
aloud methodology (Domeij, 1998).

In the present study, 11 university students with
considerable experience in writing were asked to revise a
letter, first using pen and paper, then using computer aids.
The letter was originally a negative response from the
authorities to a young girl who had asked for permission
to marry before the age of sixteen. For the study, the letter
had been prepared to contain 37 problems in mechanics,
grammar and style, all of which could be analyzed by the
computer tool.

Think-aloud methodology was used to track the
revision process both during manual and computer-aided
editing. The design made it possible to compare the
number of changes that subjects made to planted problems
with and without computer aid. Most importantly, it made
it possible to find explanations to the observed revision
behavior by analyzing the think-aloud protocols. Thus, the
study combined quantitative and qualitative methods.

The quantitative results showed that, on average,
subjects changed 85% of all problems when using the
grammar checker, compared to 60% without it. Subjects
refrained from changing 15% of all problems although
urged to attend to them by the grammar checker. Why did
subjects sometimes change further problems when using
the grammar checker, and sometimes not? Some
interesting answers were found by analyzing the think-
aloud protocols.

Subjects made further changes when using the
grammar checker because it aided them in a) detecting
problems they had missed in the manual revision, b)
defining and diagnosing problems that they had problems
diagnosing manually, c) correcting problems that they had
failed to find corrections for manually, and d) detect,
diagnose and correct problems which they did not know
before. Negative effects were also observed, as when
subjects were fooled to change because of a false alarm.
The results also suggest that changes can be less extensive
and more surface-oriented when using the grammar
checker.

There were two reasons why subjects did sometimes
not change when using the grammar checker: a) the
reviser wanted to change but failed because of insufficient
instructional support from the grammar checker, or
because of other kinds of interactional problems such as
pressing the wrong button, b) the reviser chose not to
change because he or she did not find the response correct
or useful in the present situation. The second situation was
by far the most commonly observed.

‘When subjects choose not to change, it was most often
in response to problems in style, where some could be
seen to disagree heatedly to the advice from the computer.
For example, when one of the writers got the suggestion
from the program to consider changing “inga dktenskap”
(eng. “enter into marriage”) to “gifta sig” (eng. marry) in
order to avoid an excessively bureaucratic style, he
responded: “No, I don’t agree to that because this is kind
of alegal text!”

Interestingly, though, the influence of the tool on the
number of changes made in style varied greatly between
different subjects. While some writers made almost no
changes in style, even though they were urged to attend to
them by the computer tool, other writers changed many
problems in style such as “enter into marriage" both with
and without computer support.

Data from the think-aloud protocols suggest that these
differences are related to how different writers define the
task of revising. Those who made many changes in style
were observed to be more reader-oriented than those who
refrained from changing. Clearly, writers showed
conflicting views about which style is appropriate in a
letter from the authorities: a traditional style characterized
by high formality and intransparancy, or a less formal
reader-oriented style characterized by clarity. This
inhomogeneous nature of style even within genres, make
style checking problematic.

8. Discussion and future work

It is our hope that the three evaluative studies
presented have convincingly shown the advantages of
studying users and combining different qualitative and
quantitative methods in the evaluation of authoring aids.
While the first study contributed to evaluating the

functionality of the error detection capacity, the two other
evaluations informed us of how users reacted to different
detected problems and their presentations.

The results of the two later studies are interesting
mainly in two respects: 1) they use process-tracking
methods that shed light on the cognitive processes
involved in computer-aided revision, and 2) they pinpoint
interactional problems that must be addressed and
attended to in designing more useful grammar checking
systems. Thus they enabled us to make important design
choices based on user data, as what rules to include in the
program, what error presentations and instructions to
improve on, or how to present different correction
alternatives to the user.

The third study was indeed time consuming in its
detailed analysis of think-aloud data, but it also produced
interesting and general results concerning problems in
supporting different cognitive processes in revision. For
example, the problem of supporting different users’ task
definitions involving style decisions was seen to be very
complex because of writers” conflicting views of which
style to use within the genre. Although style checking is
an interesting problem, it needs further research along this
line before it can be effectively supported by computers.

We will pursue the cognitive perspective further in the
near future as we are adapting the program to writers with
Swedish as a second language. Similar studies as those
presented here will be performed on users from this group.

Undoubtedly, there are methodological problems
associated with using think-aloud data. There is, for
example, reason to be careful when generalizing
observations made using think-aloud methodology
because of the unnatural situation forced upon writers as
they are made to speak out their thoughts during the act or
writing. However, think-aloud methodology still remains
the most effective way of generating data of the thinking
processes involved in revision (cf. Hayes & Flower 1983).

When carrying out an evaluation of a grammar
checking system, it is very difficult from a methodological
perspective to recreate the conditions of an individual
writer, using the system as the need arises. Therefore our
evaluations have instead been carried out in a partly
simulated mode, where writers get a draft text to analyze
and correct. This means that some challenging issues of
evaluation have not yet been dealt with.

Revision is not necessarily a one-man show. We must
not let the cognitive perspective make us forget the
socially embedded nature of writing, as the before-
mentioned problems in supporting style checking remind
us of. In practice, revision, and more generally writing, is
performed in a specific social situation, e.g. in a
newspaper office or a second language class. Most often,
it also involves negotiation and cooperation between
people who may contribute to the task in different ways,
as for example in newspaper editing and peer reviewing
where someone writes a text and others take part in
reviewing and revising it.

When designing a grammar checker as an integrated
tool in a system for supporting writing, the context and the
cooperative practices of revision should be taken into
consideration. Evidently, the editor at the newspaper and
his colleagues need other support and aid for their work
processes, than the second-language student and his peers
in their class at high school. Therefore, in future

evaluations we are also considering using ethnographical
methods of studying work practices in realistic settings.

In developing and evaluating authoring aids there is
need for multidisciplinary approaches using several
complementary research methods (see Monk & Gilbert
1995 and Smagorinsky 1994 for an overview of
theoretical perspectives and research methods used within
human computer interaction and writing research
respectively). No single evaluation method gives an
exhaustive answer to all important research questions. In
this paper we have presented three different ways of
evaluating a Swedish grammar checker. In doing that we
hope to have contributed somewhat to a broader
understanding of the problems involved in evaluating
authoring aids.

9. References

Arppe, A., 2000. Developing a grammar checker for
Swedish. In Proc. 12th Nordic Conference in
Computational Linguistics, Nodalida-99. Trondheim,
pp. 13-27.

Birn, J., 2000. Detecting grammar errors with Lingsoft’s
Swedish grammar checker. In Proc. 12th Nordic
Conference in Computational Linguistics, Nodalida-99.
Trondheim, pp. 28—40.

Carlberger, J. & Kann, V., 1999. Implementing an
Efficient Part-of-Speech Tagger. In: Software - Practice
and Experience, 29 (9), pp. 815-832.

Domeij, R., 1998. Detecting, diagnosing and correcting
low-level problems when editing with and without
computer aids. In TEXT Technology, vol 8, no. 1, pp.
14-25. Wright State University, Celina, USA.

Domeij, R., Knutsson, O., Carlberger, J. & Kann, V.,
2000. Granska — an efficient hybrid system for Swedish
grammar checking. I Proc. 12th Nordic Conference in
Computational Linguistics, Nodalida-99. Trondheim,
pp. 49-56.

EAGLES Evaluation of Natural Language Processing
Systems report 1996.
http://www.ilc.pi.cnr.ittEAGLES96/browse.html. Last
updated 090696.

Flower, L. S., & Hayes, J. R., 1981. A cognitive process
theory of writing. College Composition and
Communication, 32, pp. 365-387.

Hayes, J. R., Flower, L., Schriver, K., Stratman, J. &
Carey, L., 1987. Cognitive processes in revision. In: S.
Rosenberg (Ed.), Advances in applied
psycholinguistics: Vol. 2. pp. 176-240. New York:
Cambridge University Press.

Hayes, J. R. & Flower, L., 1983. Uncovering Cognitive
Processes in Writing: An Introduction to Protocol
Analysis. In Mosenthal, Tamer & Walmsley (Eds.),
Research on Writing: Principles and Methods. New
York: Longman.

Hill, C. A., Wallace, D. L., and Haas, C., 1991. Revising
on-line: Computer technologies and the revising
process. Computers and Composition, 9(1), pp. 83-109.

Knutsson, O., 2001. Automatisk sprikgranskning av
svensk text. Licentiate thesis, Department of Numerical
Analysis and Computer Science, Royal Institute of
Technology, Stockholm.

Kohut, G. & Gorman, K., 1995. The effectiveness of
leading grammar/style software in analysing business
students’ writing. JTBC, pp. 341-361. July 1995.

Kukich, K., 1992. Techniques for automatically correcting
words in text. ACM Computing surveys, Vol. 24, No. 4,
pp- 377-439.

Monk, AF. & Gilbert, N., 1995 Perspectives on HCI:
Diverse Approaches. London: Academic Press.

Richardson, S & Braden-Harder, L., 1993. The
Experience of Developing a Large-Scale Natural
Language Processing System: Critique. In Jensen, K.
Heidorn, G. E. Richardson, S. D. (eds.), Natural
Language Processing: The PLNLP Approach, pp. 77-
89

Smagorinsky, P. (Ed.)., 1994. Speaking about Writing:
Reflections on Research Methodology. Thousand Oaks,
California: Sage Publications.

Sagvall Hein, A., 1998. A chart-based framework for
grammar checking. Initial Studies. I Proc. 11th Nordic
Conference in Computational Linguistics, Nodalida-98,
Copenhagen, pp.68—80.

TEMAA -A Testbed Study of Evaluation Methodologies:
Authoring Aids. Final report. 1997.
http://cst.dk/projects/temaa/D16/d16exp.html. Last
updated: October 1997.

Paper 3

Automatic Evaluation of Robustness and Degradation in
Tagging and Parsing
Johnny Bigert, Ola Knutsson, Jonas Sjobergh
Department of Numerical Analysis and Computer Science
Royal Institute of Technology, Sweden
{johnny,knutsson, jsh}@nada.kth.se

Keywords: automatic evaluation, robustness, spelling errors, tagging, shallow parsing

Abstract

We address the topic of automatic evaluation
of robustness and performance degradation in
parsing systems. We focus on one aspect of ro-
bustness, namely ill-formed sentences and the
impact of spelling errors on the different com-
ponents of a parsing system. We propose an
automated framework to evaluate robustness,
where ill-formed and noisy data is introduced
using an automatic tool and fed to the parsing
system. With increasing levels of noise, the per-
formance of a system will inevitably degrade,
and the question is to what extent? The ex-
periments show a graceful degradation in per-
formance for both state-of-the-art taggers used
and a Swedish shallow parser. The automated
nature of the evaluation allows easy and repro-
ducible evaluation of the individual components
of a parsing system.

1 Introduction

Comparable and reproducible evaluations and ex-
periments are important foundations for research.
Valid and comparable evaluation of NLP-systems
is often hard to achieve without a great portion
of manual work. Many languages lack resources
for evaluation and even for languages with avail-
able material, new types of evaluations based on
existing material need a lot of manual labor. Fur-
thermore, manual interference with the evaluation
material may in fact decrease the validity of the
evaluation.

In this paper we present an automatic evalu-
ation method focusing on the robustness of pars-
ers for syntactic analysis. The robustness of a
parser is defined here as robustness against ill-
formed input, which is only one aspect as pointed
out by Menzel 95. The proposed evaluation tech-
nique is fully automatic, with no need for manual
annotation or inspection. It relies on a general
tool, which introduces different kinds of errors
into a text. The errors can be spelling or gram-
matical errors, but we have focused on spelling er-
rors resulting in non-existing words to avoid some
ambiguity problems, as explained later.

To demonstrate the evaluation method, we ap-
plied it on a shallow parser for Swedish. The
experiments are presented as a glass box evalu-
ation, where the performance of the over-all sys-
tem is presented as well as the performance of
the components, such as part-of-speech taggers.
All tests are conducted with various levels of er-
rors introduced, under which the system perform-
ance degradation is measured. Since this paper
focuses on evaluation methodology, we do not ad-
dress how the introduced errors affect syntactic
structure. Nevertheless, automatic evaluation of
the effects on syntactic structure is indeed an in-
teresting topic for future work.

The main contribution of this paper is an auto-
matic method for the evaluation of robustness and
degradation in tagging and parsing. The eval-
uation method is useful for determining the per-
formance impact from individual components and
thus, is suitable for e.g. on-going development of
parsing systems. We argue that introducing noise
in text with automatic means is a valid and re-
liable technique for evaluating a system’s robust-
ness.

This paper consists of five parts. To begin
with, we discuss evaluation methods for pars-
ing and subsequently, the proposed method for
automatic evaluation is presented. In the third
part, the shallow parser used in the experiments
is briefly outlined. In the fourth section, experi-
mental methodology and the experiments are de-
scribed. Lastly, we present the results.

1.1 Parser Evaluation

Parsers have been evaluated in the parser com-
munity using different methods over the years,
from simple test suites to treebanks (for a com-
prehensive overview see Carroll et al. 98). A pre-
requisite for the evaluation method presented here
is an annotated corpus, preferably a treebank.
For Swedish, there exist small forests annotated
with functional structure (Nivre 02). Unfortu-

nately, none of these were suitable for our experi-
ments, which are based on an annotation scheme
for constituency. We adopted the IOB tag set
(Ramshaw & Marcus 95) for row-based phrase as-
signment of Swedish constituents.

Using different text genres for testing is one way
of evaluating robustness (see e.g. Li & Roth 01).
The problem with such an evaluation is the
lack of control of the differences between the
genres; is sports harder to parse than economical
news? Another way is to compare well-written
and proofread texts with more noisy texts. One
problem with such a comparison is the difficulty
in comparing the two text types without manual
analysis of the errors. In the following section we
will present a method that compares proofread
text and text with different degrees of automat-
ically introduced noise. The method is one way
of evaluating a specific kind of robustness of an
NLP-system.

2 The Proposed Method

When processing unrestricted natural language
data, rare and malformed constructions and
spelling errors occur quite frequently. We want
to assess the degree to which a parser can handle
these difficulties, and to which degree the analysis
fails for the context surrounding a deficiency. To
this end, we require a source of texts with annot-
ated language errors. One problem is that an-
notated resources containing errors do not exist
for all languages. Furthermore, the texts must
also be annotated with parse information to be
able to serve as a comparison to the output of a
parser. Where data of sufficient size exists, it is
often not sufficiently annotated in terms of parse
trees. Another problem with annotated errors is
the difficulty in determining, for a given error,
what the corrected text should be. Normally, we
do not know what the intention of the writer was,
which introduces further ambiguity in the parse
trees.

2.1 Introducing Errors

To avoid the problems mentioned, we decided to
start from correct text and from there, introduce
errors using an automated tool, MISSPLEL (Bigert
et al. 03).

MISSPLEL is a general-purpose error introdu-
cer, able to introduce most error types produced

by humans, such as spelling errors resulting in
existing and non-existing words, with or without
a change in part-of-speech (PoS) tag, competence
errors such as sound-alike errors and context sens-
itive errors such as feature agreement errors and
word order errors.

Most of these error types have the effect of al-
tering the original semantics of the sentence, es-
pecially when a word is misspelled, resulting in
an existing word. This is indeed a problem since
the parse tree of the new sentence may differ from
that of the original sentence. Thus, there is a pos-
sibility that the output of the parse system is in
fact correct even though it differs from the an-
notated parse tree. We approach this problem
by restricting the introduced errors to spelling er-
rors that result in non-existing words only. Hence,
the new sentence does not have a straightforward
interpretation. Nevertheless, the most plausible
interpretation of the new sentence is that of the
original text.

During introduction of errors, every word con-
taining alphanumeric characters has an equal
chance of being misspelled. Given a word to mis-
spell, we choose a position in the word randomly.
To simulate performance errors caused by key-
board mistypes, we choose between insertion, de-
letion and substitution of a single letter as well as
transposition of two letters (Damerau 64). When
substituting a letter for another, letters close on
the keyboard are more often mistaken than those
far apart. The situation is similar for insertion,
since this is often caused by pressing two keys
at the same time. Thus, keys closer on the key-
board have a higher confusion probability when
substituting and inserting. For further details,
see Bigert et al. 03.

The automatic introduction of spelling errors
permits us to choose the percentage of errors in
a text. It also allows us to choose any text or
text type provided that it is annotated with parse
trees. Furthermore, it allows for an n-iteration
test to determine how different phrase types de-
grade with increasing number of errors, and thus,
minimizing the influence of chance.

2.2 Evaluation

To gather the necessary data, we used an auto-
mated evaluation tool called AUTOEVAL (Bigert
et al. 03), which is a general purpose evaluation

Viktigaste (the most important) APB|NPB CLB

redskapen (tools) NPI CLI
vid (in) PPB CLI
ympning (grafting) NPB|PPI CLI
ar (is) VCB CLI
annars (normally) ADVPB CLI
papper (paper) NPB|NPB CLI
och (and) NPI CLI
penna (pen) NPBINPI CLI
B 0 CLB
menade (meant) VCB CLI
han (he) NPB CLI

0 CLI

Figure 1: Ezample sentence showing the IOB
format.

((CL (NP (AP Viktigaste) redskapen)

(PP vid (NP ympning))

(VC &r)

(ADVP annars)

(NP (NP papper) och (NP penna)))
L ,
(VC menade)
(NP han)) .)

Figure 2: The text from Figure 1 in a corres-
ponding bracketing format.

tool for structured data (e.g. row-based data or
XML) configurable using a script language.

The output from the GTA parser was given
in the so-called IOB format (Ramshaw & Mar-
cus 95). See Figure 1 and 2 for a sentence with
phrase labels and clause boundaries in the IOB
and bracketing format, respectively. As an ex-
ample, NPB|PPI means that the beginning (B) of
an noun phrase (NP) is inside (I) a prepositional
phrase (PP). Thus, the rightmost phrase is the
topmost node in the corresponding parse tree.
The phrase types are explained in Section 3.

Using AUTOEVAL, we gathered information
on tag accuracy, full row parse accuracy, clause
boundary identification accuracy as well as preci-
sion, recall and F-scores for all phrase types.

The statistics for individual phrase types were
calculated as follows. Given a phrase type to eval-
uate, all other phrases were removed. The same
was done for the correct, annotated parse, and
the results were then compared. The parser was
successful if and only if they were identical. For
example, we are looking at phrases of type NP.
If the correct parse is APB|NPB|NPI (an adject-
ive phrase in a noun phrase inside another noun
phrase), the parse NPB|APB|NPI would be correct
since the adjective phrase is ignored, while the
parse APB|NPI|NPI would be incorrect since the
leftmost NP differs.

Since many parsers rely heavily on the perform-
ance of a part-of-speech tagger, we include several
taggers with different behavior and characterist-
ics. Apart from taggers representing state-of-the-
art in part-of-speech tagging, we also include a
perfect tagger and a baseline tagger. The per-
fect tagger does nothing more than adopt the ori-
ginal tags found in the annotated resource. The
baseline tagger is constructed to incorporate little
or no linguistic knowledge and was included to es-
tablish the difficulty of the tagging task.

Parsing different texts may result in different
accuracy for the parser at hand. To provide a clue
to the inherent difficulty of a text, we require a
baseline for the parsing task. The perfect tagger,
the baseline tagger and the baseline parser are
further discussed in the experiments section.

In the experiments below, we use six error levels
(0%, 1%, 2%, 5%, 10%, 20%). For a given error
level p, we introduce spelling errors (resulting in
non-existing words only) in a fraction p of the
words. This procedure is repeated n = 10 times
to mitigate the influence of chance and to determ-
ine the standard deviation of the accuracy and
F-scores.

With increasing amounts of erroneous text, the
performance of the parser will degrade. In order
to be robust against ill-formed and noisy input,
we want the accuracy to degrade gracefully with
the percentage of errors. That is, for a parser
relying heavily on PoS tag information, we aim for
the parsing accuracy to degrade equal to or less
than the percentage of tagging errors introduced.
Of course, this is not feasible for all phrase types.
For example, when the infinite marker or verb
is misspelled, an infinitival verb phrase will be
difficult to identify.

3 A Robust Shallow Parser for
Swedish

Most parsers for Swedish are surface oriented,
and two of them identify constituency structure.
One uses machine learning (Megyesi 02) while the
other is based on finite-state cascades (Kokkina-
kis & Johansson-Kokkinakis 99). Furthermore,
two other parsers identify dependency structure
using Constraint Grammar (Birn 98) and Func-
tional Dependency Grammar (Voutilainen 01).
There is also a deep parser developed in the CLE
framework (Gambiéck 97). We recently developed

a rule-based shallow parser called Granska Text
Analyzer (GTA) (Knutsson et al. 03) and due
to availability, GTA was used in the experiments.
Unfortunately, none of the Swedish parsers could
serve as a comparison, since none of them used
a comparable constituency structure to that of
GTA.

GTA is rule-based and relies on hand-crafted
rules written in a context-free formalism. The
parser selects grammar rules top-down and uses
a passive chart. The rules in the grammar are
applied on PoS tagged text, either from an in-
tegrated tagger or from an external source. GTA
identifies constituents and assigns phrase labels.
However, no full trees with a top node are built.

The analysis is surface-oriented and identifies
many types of phrases in Swedish. The ba-
sic phrase types are adverbial phrases (ADVP),
adjective phrases (AP), infinitival verb phrases
(INFP), noun phrases (NP), prepositional phrases
(PP) and verb phrases (limited) and chains
(VP and VC). The internal structure of the
phrases is parsed when appropriate and the
heads of the phrases are also identified. PP-
attachment is left out of the analysis since the
parser does not include a mechanism for resolving
PP-attachments. The disambiguation of phrase
boundaries is primarily done within the rules, and
secondly using heuristic selection and disambigu-
ation rules.

In addition to the parsing of phrase structure,
clause boundaries (CLB) are detected, resembling
Ejerhed’s algorithm for clause boundary detection
(Ejerhed 99).

The parser was designed for robustness against
ill-formed and fragmentary sentences. For ex-
ample, agreement is not considered in noun
phrases and predicative constructions (Swedish
has a constraint on agreement in these construc-
tions). By avoiding the constraint for agreement,
the parser will not fail due to textual errors or
tagging errors. Tagging errors that do not con-
cern agreement are to some extent handled using
a set of tag correction rules based on heuristics on
common tagging errors.

4 Experiments

We used the toolbox described in Section 2 to
evaluate the rule-based parser for Swedish. We
used the Stockholm-Umea corpus (SUC) (Ejer-

hed et al. 92) and chose six random texts (aa02,
ac04, je0l, jg03, kk03 and kk09) from three differ-
ent categories, totally amounting to 15 000 words.
The text categories were press articles (a), sci-
entific journals (j) and imaginative prose (k). The
part-of-speech tag set contained 149 tags. As
there exists no constituency tree-bank for Swedish
at present, the texts were annotated for tree struc-
ture. The texts were first run through the parser
and then carefully corrected by a human annot-
ator. The tokenization and sentence boundaries
was determined by the corpus.

Since the performance of the parser depends
heavily on the performance of the part-of-speech
tagger, we compared tagged text from four dif-
ferent sources: the original corpus tags, a hidden
Markov model (HMM) tagger, a transformation-
based tagger and a baseline tagger. The tagger
CoRrPUS used the original annotations in the SUC
corpus, which we assume to have 100% accur-
acy. The HMM tagger used was TnT (Brants
00), hereafter denoted TNT. The transformation-
based tagger (Brill 92) used was fnTBL (Ngai &
Florian 01), denoted BRILL. The baseline tag-
ger called BASE chose the most frequent tag for a
given word and, for unknown words, the most fre-
quent tag for open word classes. All taggers were
trained on SUC data not included in the tests.

To determine the difficulty of the chosen texts,
we constructed a baseline parser. To this end,
we adopted the approach provided by the CoNLL
chunking competition (Tjong Kim Sang & Buch-
holz 00), i.e. for a given part-of-speech tag, the
parse chosen was the most frequent parse for that
tag. Given a PoS tagged text, the data was di-
vided into ten parts. Each part was parsed by
using the original annotation for the other nine
parts as training data. Furthermore, to determine
the difficulty of the clause boundary identification
we devised a baseline clause identifier simply by
assigning CLB to the first word of each sentence
and CLI to the other words.

Thus, we had four taggers (BASE, BRILL,
TNT and CorpuUS) and two parsers (GTA and
baseline). For each combination of tagger and
parser, we ran an n-iteration test (using n = 10)
at each error level (0%, 1%, 2%, 5%, 10% and
20%). In each test, we extracted information
about tagging accuracy, parsing accuracy, clause
boundary identification and phrase identification
for the individual phrase categories ADVP, AP,

Tagger | 0% 1% 2% 5% 10% 20%

Base | 852 844 (00) 835 (1.0) 812 (46) 77.1(95) 69.0 (10.0)
BRILL | 945 93.8 (0.7) 03.0 (1.5) 90.9 (3.8) 87.4 (7.5) 80.1 (15.2)
TNT | 955 95.0 (0.5) 043 (1.2) 92.4(3.2) 80.5(6.2) 83.3 (12.7)

Table 1:

Accuracy in percent from the tagging task. The CORPUS tagger had 100% accuracy. The

columns correspond to the percentage of errors introduced. Relative accuracy degradation compared to

the 0% error level is given in brackets.

Tagger | 0% 1% 2% 5% 10% 20%

Base | 8L0 80.2 (00) 79.1 (2.3) 76.5 (55) 72.4 (10.6) 645 (203)
BRILL | 862 85.4 (0.0) 845 (L9) 82.0 (48) 780 (9.5) 70.3 (18.4)
TNT | 887 880 (0.7) 87.2 (1.6) 85.2(3.9) S8L7(7.8) 75.1 (15.3)

Table 2: Accuracy in percent from the parsing task. Parsing based on the CORPUS tagger had 88.4%
accuracy. A baseline parser using the CORPUS tagger had 59.0% accuracy.

INFP, NP, PP and VC. Also, since some tokens
are outside all phrases, we included an outside
category (O).

5 Results

The most important aspect of the accuracy of the
GTA parser is the performance of the underlying
tagger. Most taggers were quite robust against
ill-formed and noisy input as seen from Table 1.
For example, at the 20% error level, TNT de-
graded 12.7% and BRILL degraded 15.2% relat-
ively to their initial accuracy of 95.5% and 94.5%,
respectively. The low degradation in performance
is most likely due to the robust handling of un-
known words in BRILL and TNT, where the suffix
determines much of the morphological informa-
tion. Thus, if the last letters of a word are unaf-
fected by a spelling error, the tag is likely to re-
main unchanged. The robustness of the baseline
tagger was not as satisfactory as it guessed the
wrong tag in almost all cases (19.0% of 20%). The
baseline tagging accuracy for text without errors
was 85.2%.

For the parsing task, we obtained 86.2% accur-
acy using BRILL and 88.7% accuracy using TNT,
as seen in Table 2. An interesting observation
is that the accuracy of parsing using CORPUS,
i.e. perfect tagging, was 88.4%, which is lower
than that of TNT. The explanation is found in
the way the taggers based on statistics generalize
from the training data. The CORPUS tagger ad-
opts the noise from the manual annotation of the
SUC corpus, which will make the task harder for

the parser. This is further substantiated below
when we discuss the baseline parser.

The degradation at the 20% error level seems
promising since the accuracy only dropped 15.3%
using the TNT tagger. On the other hand,
since the performance of TNT had already de-
graded 12.7% in tagging accuracy, the additional
15.3 — 12.7 = 2.6% was due to the fact that
the context surrounding a tagging error was erro-
neously parsed. This difference is the degradation
of the parser in isolation. Nevertheless, the per-
formance of the whole system is the most relevant
measure, since the most accurate tagger does not
necessarily provide the best input to the rest of
the parsing system. As stated earlier, since this
paper describes evaluation methodology only, we
do not address how the errors affected the syn-
tactic structure.

As a comparison, the baseline parser using the
CorprUS tagger had 59.0% accuracy, while the
TNT tagger obtained 59.2%. This further indic-
ates that the difference between TNT and COR-
PUS is real and not just an idiosyncrasy of the
parsing system. A system not using any know-
ledge at all, i.e. the baseline parser using the BASE
tagger, obtained 55.5% accuracy.

As seen from Table 3, the task of clause identi-
fication (CLB) was more robust to ill-formed input
than any other task with only 7.0% degradation
using TNT at the 20% error level. This may be at-
tributed to the fact that half the clause delimiters
resided at the beginning of a sentence and thus,
were unaffected by spelling errors. Of course, the

Tagger | 0% 1% 2% 5% 10% 20%

Base | 842 840 (0.2) 836 (0.7) 82.0 (15) S8LO (27) 794 (5.7)
BRILL | 87.3 87.0 (0.3) 86.6 (0.8) 85.6 (L9) 83.8 (4.0) 80.3 (8.0)
TNT | 883 87.0(04) 87.5(0.9) 86.6 (L9) 85.1(3.6) 82.1 (7.0)

Table 3:

F-score from the clause boundary identification task. Identification based on the CORPUS

tagger had an F-score of 88.2%. A baseline identifier had an F-score of 69.0%. The columns correspond
to the percentage of errors introduced. Relative accuracy degradation compared to the 0% error level

is given in brackets.

Type |0% 1% 2% 5% 10% 20% Count
ADVP [81.0 813 (0.7) 80.6 (15) 78.6 (40) 75.3 (3.0) 68.4 (16.4) | 1008
AP | 913 905 (0.8) 89.8 (L6) 87.0 (47) 83.1(8.9) 74.3 (18.6) | 1332
INFP |81.9 814 (0.6) 80.9(1.2) 79.2 (3.2) 76.0 (7.2) 70.2 (14.2) | 512
NP | 914 90.9(0.5) 90.2 (L3) 884 (3.2) 85.2(6.7) 79.3(13.2) | 6895
0 944 042 (0.2) 939 (0.5) 93.3 (L1) 92.1 (2.4) 89.9 (47) | 2449
PP | 053 048 (0.5) 043 (1.0) 93.0 (2.4) 90.0 (4.6) 858 (9.9) | 3886
Ve | 929 923(0.6) 915 (L5) 89.8 (3.3) 86.8 (6.5) 80.9 (12.0) | 2562
Total | 887 88.0 (0.7) 87.2 (1.6) 5.2 (3.0) 8L7 (7.8) 75.1 (15.3)

Table 4: F-scores for the individual phrase categories from the parse task. TNT was

text.

baseline clause identifier was also unaffected by
spelling errors and obtained a 69.0% F-score for
all error levels. Clause identification at 0% er-
ror level achieved an 88.3% F-score (88.3% recall,
88.3% precision) using TNT.

We provide the F-scores for the individual
phrase categories using TNT in Table 4. We
see that adverbial (ADVP) and infinitival verb
phrases (INFP) are much less accurate than oth-
ers. They are also among the most sensitive to
ill-formed input. In the case of INFP, this may
be attributed to the fact that they are often quite
long and an error introduced near or at the infin-
ite marker or the verb is detrimental. In the count
column, we provide the number of rows in which
a given phrase type occurs in the annotation. For
example, in the case of NP, we count the number
of rows in which at least one NPB or NPI occurs.

Standard deviation was calculated for all ac-
curacy and F-score values at each error level, by
using data from the n runs. Standard deviations
were low for all tasks and were 0.13, 0.22 and
0.22 on the average for Tables 1, 2 and 3, respect-
ively. The maximum standard deviation was 0.70
for the 20% error level for clause boundary identi-
fication using T'NT. Standard deviation was 0.49
on the average for Table 4. The only noticeable
exception was the infinitival verb phrase (INFP),
which had a 2.5 standard deviation at the 20%

used to tag the

error level using the BRILL tagger.

Note that 15 000 words may not be sufficient
for a reliable conclusion on robustness. The ex-
periments here are primarily provided to illustrate
the evaluation method. The results from the eval-
uation are based on non-tuned output from the
parser compared to the manually annotated data.
Furthermore, there are still some minor inconsist-
encies between parser output and the annotation
scheme. This is of course a source of systematic
errors and will be dealt with in a near future.

6 Conclusions

We have described an automatic framework for
testing the robustness of tagging and parsing.
We introduced spelling errors resulting in non-
existing words in order to feed the parsing system
with ill-formed and noisy data. From this, the
different components of a parsing system can be
individually evaluated. With increasing levels of
noise, the performance of the system will inevit-
ably degrade. Here, we have addressed the differ-
ence between tagging the original, error-free text
and tagging noisy text and found that state-of-
the-art tagging is quite robust against ill-formed
input. Furthermore, we have discussed the ef-
fect of tagging performance degradation on the
over-all performance of parsing systems. Experi-

ments conducted on a shallow parser for Swedish
exhibited graceful degradation in over-all parsing
performance. To conclude, we advocate the use
of the proposed automatic evaluation method to
obtain fair and reliable measures of over-all pars-
ing system performance, as well as a measure of
performance of the individual components.

References

(Bigert et al. 03) J. Bigert, L. Ericson, and A. Solis.
Missplel and AutoEval: Two generic tools for auto-
matic evaluation. In Proceedings of Nodalida 2003,
Reykjavik, Iceland, 2003.

(Birn 98) J. Birn. Swedish constraint grammar. Tech-
nical report, Lingsoft Inc, Helsinki, Finland, 1998.

(Brants 00) T. Brants. TnT — a statistical part-
of-speech tagger. In Proceedings of ANLP-2000,
Seattle, USA, 2000.

(Brill 92) E. Brill. A simple rule-based part-of-speech
tagger. In Proceedings of ANLP-92, pages 152-155,
Trento, Italy, 1992.

(Carroll et al. 98) J. Carroll, T. Briscoe, and A. San-
filippo. Parser evaluation: a survey and a new pro-
posal. In Proceedings of LREC 1998, pages 447—454.
Granada, Spain, 1998.

(Damerau 64) F. Damerau. A technique for computer
detection and correction of spelling errors. Commu-
nications of the ACM, 7(3):171-176, 1964.

(Ejerhed 99) E. Ejerhed. Finite state segmentation of
discourse into clauses. In A. Kornai, editor, Exten-
ded Finite State Models of Language, chapter 13.
Cambridge University Press, 1999.

(Ejerhed et al. 92) E. Ejerhed, G. Kaillgren,

O. Wennstedt, and M. Astrém. The Linguistic
Annotation System of the Stockholm-Umed Project.
Department of Linguistics, University of Umea3,
Sweden, 1992.

(Gambéck 97) B. Gambéck. Processing Swedish Sen-
tences: A Unification-Based Grammar and some
Applications. Unpublished PhD thesis, The Royal
Institute of Technology and Stockholm University,
1997.

(Knutsson et al. 03) O. Knutsson, J. Bigert, and
V. Kann. A robust shallow parser for Swedish. In
Proceedings of Nodalida 2003, Reykjavik, Iceland,
2003.

(Kokkinakis & Johansson-Kokkinakis 99) D. Kokkina-
kis and S. Johansson-Kokkinakis. A cascaded finite-
state parser for syntactic analysis of Swedish. In
Proceedings of the 9th EACL, pages 245-248, Ber-
gen, Norway, 1999. Association for Computational
Linguistics.

(Li & Roth 01) X. Li and D. Roth. Exploring evidence
for shallow parsing. In W. Daelemans and R. Zajac,
editors, Proceedings of CoNLL-2001, pages 38—44,
Toulouse, France, 2001.

(Megyesi 02) B. Megyesi. Shallow parsing with PoS
taggers and linguistic features. Jowrnal of Ma-
chine Learning Research, Special Issue on Shallow
Parsing(2):639-668, 2002.

(Menzel 95) W. Menzel. Robust processing of natural
language. In Proceedings of 19th Annual German
Conference on Artificial Intelligence, pages 19-34,
Berlin, Germany, 1995.

(Ngai & Florian 01) G. Ngai and R. Florian.
Transformation-based learning in the fast lane. In
Proceedings of NAACL-2001, pages 40-47, Carnegie
Mellon University, Pittsburgh, USA, 2001.

(Nivre 02) J. Nivre. What kinds of trees grow
in Swedish soil? a comparison of four annota-
tion schemes for Swedish. In Proceedings of
First Workshop on Treebanks and Linguistic The-
ories (TLT2002), pages 123-138, Sozopol, Bulgaria,
2002.

(Ramshaw & Marcus 95) L. Ramshaw and M. Marcus.
Text chunking using transformation-based learning.
In D. Yarovsky and K. Church, editors, Proceed-
ings of the Third Workshop on Very Large Corpora,
pages 82-94, Somerset, New Jersey, 1995.

(Tjong Kim Sang & Buchholz 00) E. Tjong Kim Sang
and S. Buchholz. Introduction to the CoNLL-2000
shared task: Chunking. In Proceedings of CoNLL-
2000 and LLL-2000, pages 127-132. Lisbon, Por-
tugal, 2000.

(Voutilainen 01) A. Voutilainen. Parsing Swedish. In
Proc. of Nodalida 01 - 18th Nordic Conference on
Computational Linguistics, 2001.

Paper 4

Grammar checking for Swedish second language learners

Johnny Bigert Viggo Kann Ola Knutsson Jonas Sjobergh*
KTH Nada, SE-100 44 Stockholm

Abstract

Grammar errors and context-sensitive spelling errors in texts written by
second language learners are hard to detect automatically. We have used
three different approaches for grammar checking: manually constructed
error detection rules, statistical differences between correct and incorrect
texts, and machine learning of specific error types.

The three approaches have been evaluated using a corpus of second
language learner Swedish. We found that the three methods detect different
errors and therefore complement each other.

Svensk sammanfattning

Grammatikfel och kontextberoende stavfel (felstavningar som bildar rik-
tiga ord) i texter skrivna av andraspraksinldrare &r svart att detektera au-
tomatiskt. Vi har anvént tre olika angreppssitt for granskningen: manuellt
konstruerade feldetekteringsregler, statistiska skillnader mellan korrekt och
felaktig text, samt maskininlédrning av specifika feltyper.

De tre metoderna har vi utvirderat pa en korpus bestaende av svenska
uppsatser av andraspraksinlédrare. Vi fann att metoderna uppticker olika fel
och dérfor kompletterar varandra vil.

1 Introduction

Language technology has a potential to play a major role in the process
of learning a language. Until recently, the use of language technology in
systems for language learning has been nearly nonexistent. However, this
has not been the case with grammar checkers for second language learners

*E-mail {johnny,viggo, knutsson, jsh}@nada.kth.se
This work was done in the research project CrossCheck — a grammar checker for second
language writers of Swedish funded by Vinnova and KTH between 2001 and 2004, see
http://www.nada.kth.se/theory/projects/xcheck/

learning English (see e.g. Bolt (1992), Chen (1997), Park et al. (1997),
Yazdani (1990)). The question if grammar checkers actually improve sec-
ond language learners’ language is still a question of debate (Chen 1997;
Vernon 2000). In spite of this, we see the adaptation of grammar check-
ing for Swedish to second language learners as a first step to put language
technology in computer assisted language learning environments.

Designing a grammar checker for second language learners raises sev-
eral questions. Are second language learners writing much worse (at a
grammatical level) essays than for instance native writers? Are they vi-
olating the grammatical rules of Swedish in a significant different way?
These questions are hard to answer without large scaled and fine-grained
corpus studies. In the CrossCheck project we have developed a corpus of
second language Swedish, both for studying the types of errors and testing
our grammar checkers, and as a general resource for the second language
learning research community (Lindberg and Eriksson 2004).

However, the results of our studies so far are that the native writers
and second language have many error types in common. They may not
make the same instances of errors, but the error types are in many cases the
same. Both groups make for instance agreement errors, split compounds
and violate verb chain patterns. Based on these observations, our starting
point have been to not treat second language writers as a special group
of writers according to error types. Competence errors made by a second
language writer could identical to performance errors of another writer, and
vice versa. To judge if an error is made because of lack of grammatical
knowledge, or if it was made because of typing failures, is extremely hard
to model for a computer program.

If we develop better methods for grammar checking in general, we will
develop better methods for grammar checking for second language writers
and vice versa. Therefore we started with the method for grammar checking
that we already had, namely the grammar checker Granska (Domeij et al.
1999), a state of the art grammar checker based on manually constructed
error detection rules.

Our first question was therefore, how is Granska working on texts writ-
ten by second language writers? Pilot studies were made (Ohrman 2000;
Knutsson et al. 2002) and the major problem seemed to be limited cover-
age of the errors. Granska detected only about 30 % of the errors. Would
it then be possible to increase the coverage of Granska without changing
the method and technology used? The answer is no. The rule database of
Granska was fine tuned with several hundreds of hours of work. If the goal
is to increase coverage, the precision of Granska must also be altered. This
means lower precision (more false alarms), and we did not believe that it

2

should be suitable for a user group containing language learners.

Since the error types are too many and too unpredictable we looked for
new methods for grammar checking. We developed two statistical methods,
ProbGranska and SnélGranska.

ProbGranska (Bigert and Knutsson 2002) detects errors by looking for
grammatical constructions that are “different” from known correct text. It
detects improbable language constructs using part-of-speech tag trigram
frequencies.

SnalGranska (Sjobergh and Knutsson 2004) requires no manual work,
only unannotated text and a few basic NLP tools. The method used is to
annotate a lot of errors in written text and train an off-the-shelf machine
learning implementation to recognize such errors. To avoid manual anno-
tation artificially created errors are used for training.

In the following sections we will describe these three approaches to
grammar checking and show how they perform individually and together
on second language learner Swedish texts from the CrossCheck corpus,
comparing the results to a commercial Swedish grammar checker.

2 The CrossCheck Learner Corpus

The CrossCheck Learner Corpus (or the SVANTE — SVenska ANdraspraks-
TExter — Corpus) is a corpus of written second language Swedish. This is
a kind of material that has been lacking for Swedish, where the emphasis
long has been on the collection and transcription of spoken learner mate-
rial, such as the EALA/ESFSLD Swedish component!, a corpus containing
spoken conversations and monologues of bilingual school children (Viberg
2001), the ASU (Andrasprakets StrukturUtveckling) Corpus (Hammarberg
1997), and possibly some others. Among these corpora, only ASU has a
written component (about 1/3 of the total). Swedish is somewhat unique in
this respect, since it is often remarked in the literature on English learner
corpora that spoken learner materials are so scarce in comparison to written
learner language corpora (e.g. Granger 1998a).

Like ICLE (the International Corpus of Learner English; Granger 1998b;
Granger, Hung, and Petch-Tyson 2002) and ASU, the SVANTE Corpus
also includes a native speaker part, argumentative essays written as part of
Swedish high school national examinations.

A deliberate design feature of the corpus is that it is not intended to
be “balanced”, at least not by the way we compile it. Rather, we include
as much material as we can lay our hands on, including as much relevant

'See http://www.mpi.nl/ISLE/overview/Overview ESFSLD.html

3

metadata as possible, so that users will be able at anytime to extract “’virtual
corpora’” out of the material on the basis of the metadata.

3 Granska — A grammar checker using manually constructed rules

For several years we have developed Granska, a spelling and grammar
checker for Swedish (Domeij et al. 1999). Granska consists of a spelling
checker (Domeij et al. 1994), a part-of-speech tagger (Carlberger and
Kann 1999), and about 350 manually constructed rules written in an object-
oriented rule language constructed especially for Granska. About half of
the rules are error detection and correction rules. An example of a rule
detecting agreement errors in a noun phrase is the following.

cong22@incongruence {
X (wordcl=dt),
Y (wordcl=3jj) *,
Z (wordcl=nn &
(gender!=X.gender | num!=X.num | spec!=X.spec))

mark(X Y Z)
corr (X.form(gender:=Z.gender, num:=Z.num, spec:=Z.spec))
info ("The determiner" X.text

"does not agree with the noun" Z.text)
action(scrutinizing)

The first part of the rule detects the agreement error. The second part
tells what should happen after a matching. The mark statement specifies
that the erroneous phrase should be marked in the text, the corr state-
ment that a function is used to generate a new inflection of the article from
the lexicon, one that agrees with the noun. This correction suggestion is
presented to the user together with a diagnostic comment (in the info
statement) describing the error.

The rules are compiled and optimized using statistics of words and tag
bigrams in Swedish. This means that each rule is checked by the matcher
only at the positions in the text where the words or tag bigrams of the least
probable position in the rule occur.

A subset of the rules of Granska constitutes a shallow parser for Swedish,
called GTA (Knutsson et al. 2003).

4 ProbGranska — A statistically based grammar checker

ProbGranska is a probabilistic algorithm for detection of context-sensitive
spelling errors (Bigert and Knutsson 2002). The algorithm is divided into
two parts: a statistical part and a transformation part.

4.1 Statistical information

The first, statistical part of the algorithm uses PoS tag trigram frequency
information, gathered from a corpus of the target language. The general
observation is that a grammatical construction is probably malformed if
it contains previously unseen trigrams. Unfortunately, human language is
very productive, and new, unseen grammatical constructs will arise. To
address this problem, we broaden the concept of a PoS tag trigram.

Two PoS tags that are used in similar syntactic contexts are said to be
close. We want to use this closeness, or distance, between tags to mitigate
the effect of rare trigrams due to the productivity of the language.

We calculate the distance between two tags by using the frequencies of
PoS tag trigrams obtained from the corpus. Given two tags ¢ and r, we look
up the frequencies for the trigrams (t1,¢,¢2) and (¢1,7,t2). Naturally, if
either ¢ or r is more frequent than the other, the trigram frequencies will be
higher and thus, we have to compensate for the tag frequencies. We obtain
Py(t1, t2) = freq(t1,1,12) /freq(t).

From this, we can apply a number of similarity measures from the work
of Lee (1999),e.g. the L1 norm: L1(F;, B) = >, . |Pi(t1, t2) — Pr(ty, t2)l,
where the sum is over all tag pairs #1, 2 in the tag set. We see that the dis-
tance increases when the trigrams differ in frequencies. The measure will
give us a list of similarities between every pair of tags ¢ and r. Suitably
normalized the values can be used as probabilities. Thus, if p is L1(P;, P,)
normalized (i.e. the distance between ¢ and r), p can be seen as the proba-
bility of retaining grammaticality when replacing a word having PoS tag ¢
with a word having PoS tag r.

Now, given a rare trigram (1, ¢, t2), we attempt to replace one (or more)
of the tags with another tag close in distance. For example, if replacing ¢
with r, we obtain (¢4, 7, ¢3). To penalize the tag change, we multiply the fre-
quency of the new trigram with the probability p of the tag change. Now, if
the penalized frequency is high (as defined by an arbitrary threshold e), the
grammatical construction is most probably correct and the low frequency
was originally due to a rare tag. If all attempted tag replacements result in
low frequencies, the trigram is probably not grammatical and is marked as
an error.

4.2 Phrase transformations

Most false alarms occur near the beginning or end of a phrase constituent.
There, a trigram covers two phrases and the productivity of the language
gives rise to almost any combination of PoS tags. Furthermore, rare phrase
constructions often produce rare PoS tag trigrams. Normally, the simplest
(or shortest) form of a phrase is the most common, e.g. the men is a more
common type of NP than the little green men. Thus, when faced with a
potential error as described in the previous subsection, we will identify all
adjacent phrases and try to simplify. Hopefully, the rare trigram is due to a
rare combination of phrases.

We attempt to transform a phrase to a simpler form by replacing it with
a more common phrase of the same type. To this end, we use GTA, the shal-
low parser of Granska. Since we try to retain the inflectional information
of the phrase, the new sentence will most probably be grammatical. For
example: an error is detected near the words are old are in All paintings
that are old are for sale. The NP all paintings that are old is reduced to the
paintings and the sentence becomes The paintings are for sale, avoiding
the rare construction.

The sentence resulting from the phrase transformation is fed to the al-
gorithm in the previous section. If the new sentence is not erroneous, it is
probably grammatically correct. If all phrase transformations fail (are re-
ported as errors), there is probably a grammatical error and this is reported
to the user. Rare PoS tag trigrams also occur frequently near a clause be-
ginning or end. We decided not to look for errors in trigrams that cross a
clause boundary. Hence, the largest unit is not a sentence but a clause.

4.3 Evaluation

The procedure used to evaluate the error detection algorithm is fully auto-
mated and requires no resources annotated with errors (Bigert 2004). Fur-
thermore, it is portable to any language and tag set (given a dictionary in
that language) and produces reproducible evaluations. The idea behind the
procedure is to introduce artificial spelling errors into error-free text. A
graph of precision versus recall is shown in Figure 1 where 2% errors were
introduced into the text. As seen from the figure, the proposed method
increases the precision significantly while sacrificing recall.

100 P ERRTRTRTE: S O .

g0l .1 |== transon, stat off
: A trans off, stat on
== trans off, stat off (base-line)

8Ok e [T »

precision [%]

0 10 20 30 40 50 60 70 80 90 100
recall [%]

Figure 1: Precision and recall of ProbGranska at the 2% error level.

5 SnalGranska — A grammar checker requiring no manual work

The third method, SnéalGranska (Stingy Checker), is based on machine
learning of automatically constructed errors (Sjobergh and Knutsson 2004).
The main strength of SnalGranska is that almost no manual work is required
to create it. It also has modest requirements on the NLP tools it uses. An-
other advantage is that the method is based on how correct language use
looks, though not as much as ProbGranska. This means that it is able to
detect errors that are hard to describe by manually written rules.

Currently, statistical methods are used for a wide range of tasks in the
NLP area. One way to use this approach for grammar checking would be
to treat it as a tagging task. First, collect a lot of text. Annotate all errors
with ”JERROR” and the correct text with ”OK”. When this is done, train
an off-the-shelf machine learning implementation on this annotated data. It
will now be trained to detect errors in text.

This approach has two drawbacks. These methods generally require
quite a lot of data, and finding enough text with unintentional errors in
could be a problem. The largest drawback though is that a lot of manual
work is required to find all errors and annotate them.

SnalGranska avoids this problem by using artificial errors. First, a lot
of unannotated and (mostly) correct text is collected. Then the text is cor-

7

rupted by inserting simple errors automatically. Since these errors are in-
serted automatically, they can be annotated automatically at the same time.
Then a machine learning algorithm is trained on this data and applied to
new texts as a grammar checker.

The artificial errors that are generated can be of any type. As the
strength of SndlGranska is the minimal amount of manual work required,
only very simple errors have been used. Two errors types have been tested,
split compound errors and agreement errors. Split compounds is an exam-
ple of an error type that SnalGranska is well suited for. It is easy to split
compounds, but the resulting sentence structure from split compounds is in
general hard to predict, so it is hard to write manual rules for these errors.
We use a modified spelling checker (Domeij et al. 1994; Kann et al. 2001)
and split all compounds recognized by the spelling checker.

Agreement errors is an error type which SnalGranska is less suited for.
It is the most thoroughly covered error type in current grammar check-
ers for Swedish, and it is relatively straightforward to write good rules for
these manually. To see how well the SnalGranska method works compared
to state of the art grammar checking, this was also tested. Errors were gen-
erated by randomly choosing words with gender, number or definiteness
features, and replacing them with another word with the same lemma but
another surface form, using a simple dictionary lookup.

Using more "human like” artificial errors should be expected to pro-
duce a better grammar checker, but requires more work. If a lot of time
is spent on producing a sophisticated error generation program, this time
could perhaps have been spent better by writing rules for a traditional gram-
mar checker. As long as the resulting grammar checker is useful, the sim-
pler the error generation the better. For the examples above, about 15 min-
utes have been spent on error generation. This is the only manual work
required, everything else is done automatically.

Almost any machine learning algorithm could be used for SnalGranska.
We use fnTBL (Ngai and Florian 2001), which produces rules that are eas-
ily understood by humans. As features for the machine learner we use
words and their part-of-speech, which is automatically assigned by a tag-
ger. For split compounds we also use the spelling checker to filter out
false alarms, by checking if the (suspected) errors combine into acceptable
words. No other resources are needed.

When an artificial error results in a sentence that is also correct, which
is quite possible, it will still be an error to the machine learning algorithm.
This is not a problem, since there is also a lot of examples of correct lan-
guage use in the training data. This means that (generally) only the proper-
ties of those artificially inserted errors that result in sentences that are not

8

MS Prob- Snal- Any

Word | Granska Granska Granska | Granska | Total
All detected errors 392 411 102 121 528 592
All false positives 21 13 19 19 48 -
Detected spelling errors 334 293 35 26 314 363
False positives 18 5 - - 5 -
Detected gram. errors 58 118 67 95 214 229
False positives 3 8 19 19 43 -

Table 1: Evaluation on second language learner essays, 10 000 words. Any
Granska means all errors detected by any of the Granska methods.

correct will be learned.

SnalGranska could be used on many error types, but so far only these
two have been tested. This means that many easily detectable error types,
such as repeated words or wrong verb tense after the infinitive marker azt,
are ignored by SnalGranska, which leads to low overall recall.

6 Evaluation

To evaluate the different grammar checking methods we used essays written
by people learning Swedish as a second language. These were taken from
the SSM-corpus part of the CrossCheck corpus. These texts contain a lot of
errors, which is generally good for the grammar checkers (easier to get high
precision), but it also leads to problems for the grammar checkers. Many
errors overlap, which can give unexpected results. There is also often very
little correct text to base any analysis on.

All methods were run on about 10 000 words of text from the essays.
The grammar checker for Swedish in Microsoft Word 2000 was also run
on the same text, as a comparison to other available methods. The gram-
mar checker in MS Word has been developed for high precision, while for
instance SnalGranska was developed for high recall (on the two error types
it detects). All alarms from the grammar checkers were manually checked
to see if there was a true error or a false alarm. Results are shown in Table
1. The texts were not manually checked to find all errors, but a manually
checked sample shows that many errors go undetected. Less than half of
the errors in the sample were detected.

The grammar checkers using manually constructed rules, Granska and
MS Word, show higher precision (about 95%) than the other methods (about
85%). They also detect many more errors, mainly because they also look
for spelling errors, which are common and much easier to detect. When it

Only Only Only

Pair Both Granska Prob- Snédl- Any
Granska Granska
Granska+ProbGr. Correct 17 101 50 168
False alarms 0 8 19 27
Granska+SnalGr. Correct 44 74 51 169
False alarms 3 5 16 24
ProbGr.+SnélGr. Correct 11 56 84 151
False alarms 0 19 19 38

Table 2: Pairwise overlap in detection of grammatical errors between
Granska, ProbGranska and SnalGranska.

comes to grammatical errors the recall is similar for all methods.

While the manual rules of Granska detect more errors, and with higher
precision, than the other methods, it still misses many errors detected by
other methods. ProbGranska in particular was developed explicitly to find
errors which are hard to detect using manual rules. In Table 2 the pairwise
overlap in detections of grammatical errors for the different methods devel-
oped in the CrossCheck project is shown. The three methods complement
each other and by combining them much better coverage can be achieved.

Even SnalGranska, which currently is only trained on split compound
errors and agreement errors, two error types already covered by Granska,
finds many errors that the other methods do not detect. It could also be
extended with more error types, for improved recall.

Combining the different methods could be done in many ways. One
simple method is to treat any detection from any method as an error. In
Table 1 the results using this method are shown.

7 Discussion

The evaluation of our three approaches to grammar checking in Section 6
showed that the three methods to a large extent detect different errors and
therefore complement each other well. We therefore propose that a gram-
mar checker should combine different approaches to grammar checking.
How can a grammar checker be further improved to detect even more of
the errors? All three methods described in this chapter rely on the same type
of part-of-speech disambiguation. The main problem is that grammatical
errors sometimes are misinterpreted as correct grammatical constructions.
Independent of which grammar checking method that is used after word
class disambiguation, many errors cannot be detected. Our initial studies

10

showed that word class disambiguation is necessary to limit the amount
of false alarms. What we need is a language model that is much more
rigid than the current model. This is a veritable case of Heller’s Catch
22, a rigid language model would not analyse ill-formed constructions at
all, and we are thereby back into the deep parsing dilemma — where many
sentences are not parsed either because they are ungrammatical or because
of limitations of the current grammar. The problem of the general analysis
of ungrammatical constructions is one of the main bottlenecks for further
improvements of current methods for grammar checking.

The methods for grammar checking described in this chapter are al-
ready integrated (Granska and ProbGranska) or close to be integrated (Snal-
Granska) into a language-learning environment called Grim?. Grim is a
web client with basic word processing facilities, which is connected to sev-
eral network based language tools (bilingual lexicons, a grammatical ana-
lyzer, a word inflector, a interface to a concordancer).

In the design of Grim it has been important to provide the user with
several different views of language. For the case of grammar checking,
Granska represents a rule-based view of language, ProbGranska a more
statistical view, and SnalGranska is something in between. The idea and
the contribution of using three methods for grammar checking, beside in-
creased coverage and accuracy, is to make the user aware of how different
tools can give different feedback on the user’s writing, and that different
linguistic resources will treat language in different ways. One pedagog-
ical problem is how to explain for the user that three methods are better
than one. A second pedagogical problem is how to show that the three
methods co-exist in an environment with several language tools seamlessly
integrated. One important kind of feedback that we have got from the users
of Grim so far, is that they view Grim as one program, not as an interface
to several different language tools and programs.

Acknowledgements

We are grateful to Lars Borin, Janne Lindberg and Gunnar Erikssson for
their work on the CrossCheck corpus, and to Stefan Westlund, who devel-
oped the Grim interface to Granska and ProbGranska.

2See http://skrutten.nada.kth.se

11

References

Bigert, J. 2004. Probabilistic detection of context-sensitive spelling er-

rors. In Proc. 4th Int. Conf. Language Resources and Evaluation
(LREC 2004).

Bigert, J. and Knutsson, O. 2002. Robust error detection: A hybrid ap-
proach combining unsupervised error detection and linguistic knowl-
edge. In Proc. 2nd Workshop of Robust Methods in Analysis of Nat-
ural Language Data, pp. 10-19.

Bolt, P. 1992. An evaluation of grammar-checking programs as self-help
learning aids for learners of English as a foreign language. Computer
Assisted Learning 5(1-2), 49-91.

Carlberger, J. and Kann, V. 1999. Implementing an efficient part-of-
speech tagger. Software—Practice and Experience 29(9), 815-832.

Chen, J. F. 1997. Computer generated error feedback and writing pro-
cess: A link. TESL-EJ Teaching English as a second Foreign Lan-
guage 2(3).

Domeij, R., Hollman, J., and Kann, V. 1994. Detection of spelling errors

in Swedish not using a word list en clair. J. Quantitative Linguis-
tics 1, 195-201.

Domeij, R., Knutsson, O., Carlberger, J., and Kann, V. 1999. Granska —
an efficient hybrid system for Swedish grammar checking. In Proc.
12th Nordic Conf. on Computational Linguistics.

Granger, S. 1998a. The computer learner corpus: A versatile new source
of data for SLA research. In S. Granger (Ed.), Learner English on
computer, pp. 3—18. London: Longman.

Granger, S. (Ed.) 1998b. Learner English on Computer. London: Long-
man.

Granger, S., Hung, J., and Petch-Tyson, S. (Eds.) 2002. Computer
learner corpora, second language acquisition and foreign language
teaching. Number 6 in Language Learning and Language Teaching.
Amsterdam: John Benjamins.

Hammarberg, B. 1997. Manual of the ASU corpus, a longitudinal text
corpus of adult learner Swedish. Version 1997-04—10. Stockholm
University, Department of Linguistics.

Kann, V., Domeij, R., Hollman, J., and Tillenius, M. 2001. Implemen-
tation aspects and applications of a spelling correction algorithm. In

12

L. Uhlirova, G. Wimmer, G. Altmann, and R. Koehler (Eds.), Text as
a Linguistic Paradigm: Levels, Constituents, Constructs. Festschrift
in honour of Ludek Hrebicek, Volume 60 of Quantitative Linguistics,
pp. 108—123. Trier, Germany: WVT. Available on the web from
http://www.nada.kth.se/theory/projects/swedish.html.

Knutsson, O., Bigert, J., and Kann, V. 2003. A robust shallow parser for
Swedish. In Proc. 14th Nordic Conf. on Computational Linguistics.

Knutsson, O., Pargman, T. C., and Eklundh, K. S. 2002. Computer sup-
port for second language learners’ free text production — Initial stud-
ies. In Proc. 5th Int. Workshop on Interactive Computer Aided Learn-
ing.

Lee, L. 1999. Measures of distributional similarity. In Proc. 37th Annual
Meeting of the ACL, pp. 25-32.

Lindberg, J. and Eriksson, G. 2004. CrossCheck-korpusen — en elektro-
nisk svensk inldrarkorpus. In Proc. ASLA 2004 Conference.

Ngai, G. and Florian, R. 2001. Transformation-based learning in the fast
lane. In Proceedings of NAACL-2001, Carnegie Mellon University,
Pittsburgh, USA, pp. 40-47.

Park, J. C., Palmer, M., and Washburn, G. 1997. An English grammar
checker as a writing aid for students of English as a second language.
In Proc Conf. on Applied Natural Language Process.

Sjobergh, J. and Knutsson, O. 2004. Faking errors to avoid making er-
rors: Very weakly supervised learning for error detection in writing.
In preparation.

Vernon, A. 2000. Computerized grammar checkers 2000: capabilities,
limitations, and pedagogical possibilities. Computers and Composi-
tion 17, 329-349.

Viberg, A. 2001. Age-related and L2-related features in bilingual nar-
rative development in Sweden. In L. Verhoeven and S. Stromqvist
(Eds.), Narrative development in a multilingual context, pp. 87—128.
Amsterdam: John Benjamins.

Yazdani, M. 1990. An artificial intelligence approach to second language
learning. J. Artificial Intelligence in Education 1, 85-90.

Ohrman, L. 2000. Datorstodd sprakgranskning och andraspraksinlirare.
Technical report, Institutionen for lingvistik, Stockholms Univer-
sitet. D-uppsats i datorlingvistik.

13

Paper 5

Designing and Developing a Language Environment
for Second Language Writers

Ola Knutsson™, Teresa Cerratto Pargman®, Kerstin Severinson Eklundh' and
Stefan Westlund'

Abstract

This paper presents a field study carried out with learners who used a grammar
checker in real writing tasks in an advanced course at a Swedish university. The
objective of the study was to investigate how students made use of the grammar
checker in their writing while learning Swedish as a second language. Sixteen
students with different linguistic and cultural backgrounds participated in the study.
A judgment procedure was conducted by the learners on the alarms from the grammar
checker. The students’ texts were also collected in two versions; a version written
before the session with the grammar checker, and a version after the session. This
procedure made it possible to study to what extent the students followed the advice
from the grammar checker, and how this was related to their judgments of its
behavior.

The results obtained demonstrated that although most of the alarms from the grammar
checker were accurate, some alarms were very hard for the students to judge
correctly. The results also showed that providing the student with feedback on
different aspects of their interlanguage, not only errors, and facilitating the processes
of language exploration and reflection are important processes to be supported in
second-language learning environments.

Based on these results, design principles were identified and integrated in the
development of Grim, an interactive language—learning program for Swedish. We
present the design of Grim, which is grounded in visualization of grammatical
categories and examples of language use, providing tools for both focus on linguistic
code features and language comprehension.

Keywords: adult learning; evaluation of CAL systems; human-computer interface;
interactive learning environments.

1 Introduction

Technology has the potential to play a large role in the process of learning a second
language (Warschauer, 1996; Warschauer & Meskill, 2000). However, the

* Corresponding author, knutsson@nada kth.se, fax: +46-(0)8-10 24 77.

! School of Computer Science and Communication, Royal Institute of Technology, SE-100 44
Stockholm, Sweden. {knutsson, kse, d98-swe} @nada.kth.se.

2 Computer and Systems Science, University of Stockholm, Forum 100, SE-164 40 Kista, Sweden.
tessy @dsv.su.se.

development of this potential is still in the early stages. Issues on which the
realization of this potential depends include “the shift from thinking of technology as
assisting instruction to thinking of it as supporting and facilitating learning” (Garrett,
1991, p.95). On the one hand, computer programs for learning language should be
able to understand a user’s input and evaluate it not just for correctness but also for
appropriateness. On the other hand, “the use of the computer does not constitute a
method” (Garrett, 1991. p. 75). Rather, the computer is a tool, an instrument, in which
a variety of methods, frameworks, and pedagogical philosophies may be integrated
and implemented. The usefulness of computer assisted language learning cannot
reside in the medium itself but in how it is put to use.

The work presented in this paper is part of a project focusing on the use of computer-
based language tools for language learning. In particular, we are interested in:

* studying how learners develop their writing practices in the context of
learning Swedish as a second language. How do they use available writing
tools and how do these tools shape learners’ understanding of the new
language?

* contributing to the improvement of the design and development of existing
language tools for writing in learning contexts.

We believe that the study of these questions will contribute to a better understanding
of the role of computer-based language tools in complex processes such as second
language learning and that this will help developers to better understand what is at
stake when designing for learning purposes.

1.1 Computers in second language learning

Computers have been used in second language teaching for about twenty-five years
(cf. Levy 1997). However, they have never been recognized by the majority of
language teachers as exemplifying good teaching, and still remain peripheral to the
core of classroom teaching (Laurillard and Marullo, 1993). These programs have
often been either based on behaviorist or cognitive models of learning (see
Warschauer and Meskill, 2000).

In contrast to these approaches, communicational approaches emphasize the social
aspect of language acquisition and view learning language as a process of
apprenticeship or socialization into particular discourse communities (cf. Warschauer
and Meskill, 2000). Furthermore, with the arrival of the Internet, communicational
approaches have a powerful medium for assisting language learning. According to
Warschauer and Meskill (2000), there are today many ways in which students and
teachers can use the Internet to facilitate target language interaction (cf. computer-
mediated communication in a classroom; computer-mediated interaction for long
distance exchange; accessing resources and publishing on the World Wide Web).

However, as Laurillard and Marullo (1993) argued, communicational approaches are
not a panacea. When communication breaks down it is often caused by grammatical
problems, which introduce unclear language.

Without turning back to traditional learning approaches with for instance isolated
exercises on grammatical forms to improve the learner’s grammatical knowledge a

new approach called focus on form was proposed by Long (cf. Long & Robinson,
1998). Focus on form means to draw the learner’s attention to linguistic code features
while conducting meaningful tasks (i.e. achieving communicational goals). What kind
of form to focus on and how this should be done are questions that have to be
carefully treated by developers of computer programs as well as teachers using them
in education.

We suggest that providing tools to support analysis, reflection and exploration of
learners’ writings as well as text material available in the target language, will provide
the learner with explicit’ and implicit feedback. In that respect, we agree with
Warschauer and Healey (1998) that we should not hope for human-like intelligence in
the feedback that a computer assisted language-learning program can provide. Instead
we should use the power of the computer for easy and meaningful interaction with the
learning material including feedback and guidance, supporting different learning
styles as well as enabling communication between language learners and users in
multimodal environments.

In this sense, it is essential to provide adult learners with tools for helping them to
develop understanding, progress and enjoyment when writing in the target language.
In the work presented in this paper, user studies were conducted with the purpose to
investigate the role of language technology in the development of second-language
learning and the specific activities that should be supported.

1.2 A developmental perspective on the use of language tools

Our interest in supporting writing relies on the central place that writing occupies in
the development of language and thinking processes (Vygotsky, 1962; 1978). Writing
does not only allow one to do new things but more importantly, it brings linguistic
categories into awareness (cf. Olson, 1995; Lantolf 2000). From this perspective,
writing mediated by the writing system is of utmost importance as it affects
consciousness and cognition through providing a model for language.

We regard writing as a base for hypothesis testing in the light of Swain’s output
hypothesis (Swain, 2000), that speaking and writing in the second-language push the
learner to use language more deeply and thereby become more aware of grammatical
forms and their meaning when achieving communication goals.

An important question regards the role of language tools in supporting learning, and
more in particular, in helping learners to reflect on and develop awareness of the
language they produce. According to Sélj6 (1996), the role of tools — psychological as
well as technical — and the concept of mediation play a fundamental role in the
understanding of human thinking and learning. From this perspective on language and
tools, the use of language tools may alter writing processes. Our inquiry entails
examining not only the transformative power of tools on developmental socio-
cognitive processes, but also how the computer-based language tools are developed,
and how they get transformed by the users (cf. Verillon & Rabardel, 1995; Cerratto,
1999).

? By explicit feedback we mean the feedback that is given in the form of lexical and grammatical
knowledge. By implicit feedback we mean the feedback that represents the form of evidence of
language use in the target language.

1.3 Computer language tools in language learning

Most computer-assisted language learning (CALL) systems that are used today cannot
process unconstrained language use. Computer programs being able to make some
more advanced processing in limited domains like those called intelligent language
tutors (cf. Levy, 1997) are left out in our work. We are mostly interested in computer
tools capable to some extent, to analyze learners’ written language and whose focus is
mostly on the feedback provided on unconstrained language use. In other words, our
focus is on these kinds of computer programs that can give feedback on the learner’s
free language production.

A technology that has the potential for a task of this kind is language technology.
Language technology (LT) or computational linguistics has so far not been part of
mainstream CALL. According to Levy (1997), and Chapelle (2001) computational
linguistics seems to concern mostly syntactic parsing; however we think that this
definition is very limited. We regard LT as a broad field, with the potential to support
different levels of language use and different processes in language learning.
Nerbonne (2002) presents a good overview on how LT is used to today in CALL and
how it can be used in the future.

Grammar checkers and other language tools have been designed for second language
learners (mostly for English as a second language), for some time now. There exist
commercial grammar checkers for second language writers (e.g. NativeEnglish) as
well as several research prototypes (Park et al, 1997; Bolt and Yazdani 1998;
Schneider & McCoy, 1998; Menzel & Scroeder, 1999; Izumi et al, 2003;
Vandeventer Faltin, 2003; Bender et al 2004). A language tool that includes more
functionality than just a grammar checker is presented by Cornu et al (1996). This
tool also includes a verb conjugator, a set expression translator, a French-English
bilingual dictionary, an on-line grammar and a list of difficult words for French
speakers writing in English.

1.4 Errors and grammar checking programs

At first view, our interest in learner’s language errors may seem strange: why should
we focus on what learners get wrong rather than on what they get right? We have
good reasons for focusing on errors. From a developmental perspective, learners’
errors are a rich source for understanding how they make sense of and construct a new
symbolic system. In the words of James (1998) “The learners’ errors are a register of
their current perspective of the target language” (p. 7). Errors can also be viewed as
the expression of a conflict between the learner’s conceptions of what is the correct
use of the target language and what is really correct use in the target language.
Reflecting on learners’ misconceptions is a way to understand their errors as steps in a
developmental process. From this perspective, “the pedagogic emphasis is placed
instead on enlarging the individual learner’s awareness of written English as a
resource for making meaning in the student’s particular field of study” (Scott 2001,
p-164). A developmental perspective on learners’ grammatical errors has important
implications on the way adults develop their interlanguage — the new symbolic system
— reconstructing it from their understanding, needs and already acquired language
resources. Helping the learners to notice grammatical forms (in our case errors) might
work as a “notice the gap principle”, which means that learners become aware of the
gap between their interlanguage and the target language (Swain, 2000).

Grammar checking programs are designed to detect, diagnose, and correct
grammatical errors in written texts. But the way they do it seems to be limited in the
light of James’s error taxonomy. According to James (1998), there exist different
classes of deviance:

* Grammaticality: an objective grammar of the target language “decides”
whether some bit of language is grammatical or not.

* Acceptability: native speakers (individually) “decide” whether some bit of
language is acceptable or not.

* Correctness: speakers influenced by prescriptive standards “decide” whether
some bit of grammatical and/or acceptable language is correct or not.

* Strangeness: some bit of language that is ungrammatical from the learner’s
point of view, but used and acceptable when used by for instance poets or
other language acrobats.

e Infelicity: errors or gaps of learner’s repertoire with socio-linguistic
consequences when performing different speech acts.

(James, 1998, p. 64)

This view of deviance concerns the relation between the learner’s target language
output and the grammar of the target language, its users, its prescriptive normative
standards, co-occurrence restrictions and the performance of language-specific speech
acts. The deviance can also be viewed in the opposite direction, from the learner’s
errors to the learner’s own interlanguage grammar. James (1998) makes the following
classification of what kind of errors learners may produce:

¢ Slips, are lapses of tongue, pen or fingers on the keyboard, these can quickly
be detected and self-corrected.

* Mistakes, can only be corrected by the user if the deviance is pointed out to
him or her. If a simple indication of the deviance in the text is sufficient for
self-correction, it is a first order mistake. If further information is needed, in
the form of an exact location or diagnosis, it is a second order mistake.

* FErrors, cannot be self-corrected, and involve language constructions that are
either allowed in the learner’s “grammar” or not covered by it. Errors require
further relevant learning before they can be self-corrected.

* Solecisms, break the rules of correctness as laid down by purists. An example
from Swedish is the ambiguous interpretation of prepositions and conjunctions
as in storre dn mig/jag (eng. bigger than me/l). Solecisms are easy to teach
and learn, but they are not important for the learners’ interlanguage
development or conversion to the target language norm.

This classification is important for the understanding of the functionality of a
grammar checker, and its consequences and needs to give adequate feedback. It is
also useful when deciding the content of language learning systems. Slips and
mistakes might only need implicit feedback, but errors need explicit feedback, for
instance using specially designed learning material of the current language
construction. An interesting question is: is there any point in the learner detecting and
correcting slips? Or is the program a good help to get rid of the low-level errors that
learners may produce when revising a text?

1.5 Role of written feedback

Several researchers have studied the impact of teachers’ written feedback. For
example, Laurillard and Marullo (1993) argue that explicit feedback is essential for
the learner’s language understanding. Feedback in their terms “must deal explicitly
with any diagnosed misconceptions or mal-rules, must provide help with analyzing
the gap between learner performance and target form in terms of the information
supplied, or in terms of previously mastered items” (p. 157). However, there is debate
about the role of feedback on errors. Some researchers argue that it is harmful
(Truscott, 1999) while most others suggest that feedback on errors is helpful despite
the fact that it seems to be hard to get strong scientific evidence for the relevance of
feedback (Ferris, 2004).

James (1998), presenting a six-level model of feedback on errors suggests that the
first step in error feedback is error detection. Error detection only means to signal that
the sentence or segment is erroneous. This feedback makes the learner aware of the
presence of an error. This might be enough information for the learner if the error is a
slip or a first order mistake. If it is a second order mistake, the teacher or the program
must locate the error in the paragraph. This is called error location. Error location can
be straightforward or more problematic. Some errors are easy to locate, e.g.
agreement errors in Swedish, in the sentence Jag sdg en hundar (eng. I saw a dogs).
But others are more difficult, like a missing finite verb or a missing subject, where it
is more problematic to locate where the missing word should have been placed in the
sentence.

When the error is located, it can be described in linguistic terms and the teacher or the
program makes an error description. A very important question is raised when this
kind of feedback is to be given; in which language should the error description be
written? Is it most fruitful to make the descriptions in the mother language or the
target language?

The description should be used both by the learners and the teachers. In this context,
the language has to be self-explanatory, simple and easily learned. To describe the
errors in detail we also need a system that is well elaborated and powerful in its
description, because all language users make advanced errors (James, 1998, p. 97).
Therefore, a framework for error classification and categorization is needed. The next
step is error diagnosis, to explain why the learner has produced the error. Closely
related to error diagnosis is error explanation —how the construction in the
interlanguage differs from the correct construction in the target language.

The last part of the feedback on the learner’s errors is error correction, proposing
specific corrections. Is error correction relevant feedback? James’ conclusion is that
error correction works (James, 1998). Correcting grammar errors both improves the
grammar and the content in the rewritten text (Fathman and Whalley, 1990).
Moreover, several studies show that students want to be corrected, and as James
points out: why neglect what the learners want?

2 Empirical studies on the use of a Swedish grammar
checker by second-language learners

We initiated our studies with a pilot study, the aim of which was to develop methods
for the study of the use of a Swedish grammar checker, Granska, in second language
learners’ free text production (Knutsson et al, 2002). After this, a field study at a
Swedish university was carried out with the same tool and methodology. Its first part
was reported in (Knutsson et al, 2003), and its entirety is reported in the following
text.

The aim of the studies was:

* to understand the impact of the spell- and grammar checker Granska on the
users’ texts, as well their way of adapting the grammar checker to their writing
purposes.

* to guide the redesign of the grammar checker Granska and the design of a new
language-learning environment.

2.1 Granska — a grammar checker for Swedish

Granska is a grammar checker for Swedish developed at the Royal Institute of
Technology in Sweden (Domeij et al, 2000). Granska combines probabilistic and rule-
based methods to achieve high efficiency and robustness. Using special error rules,
the system can detect a number of Swedish grammar problems and suggest
corrections for them that are presented to the user together with instructional
information. The core of the Granska system is a statistical word class analyzer, a
collection of phenomena-based grammar checking rules, and a robust shallow parser.
Granska was designed for writers with Swedish as a first language. However,
although first and second language writers might make very different kinds of errors,
they also have many error types in common. Therefore we decided to study the use of
Granska in second language writing.

In the studies presented in this paper, Granska was used with a simple web interface
running in a batch mode. The user interface allowed the students to use the word
processor they preferred on any platform for writing, but on the other hand, they had
to switch between two screen windows in order to use the feedback from Granska
when revising their text in the word processor.

Granska has been textually evaluated on five different text genres including mostly
texts from native speakers of Swedish (Domeij et al, 2002). The accuracy of Granska
depended much on the text genre. A recent comparison with the Swedish grammar
checker in Microsoft Word 2000 (Birn, 2000) showed that Word’s grammar checker
caused fewer false alarms, but also missed more errors than Granska (Bigert et al,
2004). A false alarm is when the program incorrectly points out a grammatical piece
of language as ungrammatical. The spelling checkers of each program showed the
opposite results. The evaluation was made on 10 000 words written by second
language learners of Swedish taken from the SSM-corpus part of the CrossCheck
learner corpus (Lindberg & Ericsson, 2004). A manually checked sample showed that
more than 50% of all errors were undetected by both grammar checkers.

2.2 Participants in the study

We observed a group of second-language learners having resided in Sweden from 3
months to 10 years. The group consisted of 16 students who participated voluntarily.
They were in their third and final semester of the language-learning program
”Svenska som frimmande sprak” (Swedish as a foreign language). This program
prepares learners to pass the Tisus test, which they have to pass in order to be
qualified for entering Swedish university courses.

The participants wrote several texts as part of the writing course in Swedish as a
second language. The texts represented different genres: argumentative texts, letters,
descriptions, and essays, and they covered different topics. Participants composed all
texts at home and discussed them at the university. The teacher reviewed their texts
and graded them.

Participants came from different parts of the world, with mixed backgrounds, and had
different degrees of familiarity with the Swedish language. Eleven mother languages
were spoken in the group: Belrussian, Dutch, Farsi, Finnish, Hungarian, Japanese,
Polish, Quechua, Romanian, Russian and Spanish. Two participants were bilingual.
Only one participant was male. The participants were between 20 and 40 years old.

2.3 Methodology

To study the use of a language technology tool in a real setting entails, first of all to
introduce the tool into the new context, establishing and developing a relationship
with the teacher and the students, and gaining the confidence of all participants. We
started our study by presenting the study to the students together with the teacher.

In a first meeting at the university we carefully explained the tool Granska and
emphasized that Granska is a computer tool with limited knowledge of language. We
gave them both oral and written instructions describing their role and tasks in the
study. The instruction mostly concerned how they should work with Granska, how
they should deliver and save their texts and in what form.

Participants were encouraged to use Granska outside the class. The instruction for the
participants was the following: “use the Granska whenever you want and when you
feel it will help you”. Some of the control of the data collection was thus left to the
participants. We arranged several meetings with the participants to secure that they
understood their tasks.

2.4 Data collected

After the first meeting we introduced Granska in the computer laboratory, with the
purpose to make sure that participants had understood our instructions and to make
observations of their interaction with the computer, Granska and their teacher in this
new setting. These observations were made on group basis, and were documented by
note taking.

An important part of our study is the collection of the participants’ original text
versions and the final versions after the use of Granska. One purpose of this collection
was to make it possible for us to trace the effects of Granska’s alarms. One question
was: In what way did the participants change their text according to the feedback

from Granska? We were especially interested in what happened when a false alarm
occurred, i.e. did the participants understand the false alarms as a false alarm or not?

We conducted interviews with the participants after they had used Granska on their
own. The questions asked during were based on an interview guide. The users were
interviewed in small groups in a semi-structured way. The interview guide contained
questions about the use of other grammar checkers, and their opinion about them.
Other questions focused on the use of Granska and its current interface, its meta-
language, and if they thought that Granska is useful for someone learning Swedish as
a second language. We also asked questions about new possible functionality (e.g.
new language tools, or detection of other error types), and what the students thought
is important in a program for someone learning Swedish.

In order to get detailed information about specific alarms from Granska we instructed
the users to judge the alarms from Granska. They were instructed to judge the
feedback components of every alarm. To make the procedure easier for the users we
had used a three-level model for the feedback to be judged, namely the detection,
diagnosis and the correction proposal(s) from Granska, see Figure 1. The term
detection covers both James’ (1998) terms error detection and error location, the
term diagnosis covers James’ terms error description and error diagnosis. The term
correction is the same as James’ term error correction.

This judgment procedure has some similarities with the method “grammaticality
judgment” frequently used in SLA research (cf. Gass 1994; Goss et al 1994). One
difference is that the users only judge their own language that has been pointed out as
ungrammatical by Granska. The procedure involved judgments of Granska’s view of
grammaticality, acceptability, and correctness. We used a graded scale because we
believed that Granska’s feedback could be judged useful/not useful on a continuum.

The users were instructed to use the following grading scale for their judgments:

¢ Grade 5. Excellent — I understand exactly what Granska suggests.

* Grade 4. Good — Granska is quite a good help for me.

¢ Grade 3. Acceptable — It is hard for me to make up my mind on what Granska
says, but I take a chance that Granska is right.

¢ Grade 2. Bad — It is hard for me to make up my mind on what Granska says, 1
have to look in my grammar book. With the help of the book I can decide if I
should follow Granska or not.

¢ Grade 1. Incomprehensible — I do not understand what Granska says. I have to
ask the teacher or some other competent person for help.

% ./ shrutten. nada kih.se/ogi-bin/grans

En natt var det -35C nér de vaknade i tiltet. S dkte hem till jobbet och O fortsatte med mig.
eftersom nétter var aningen kylslagna bestdmde vi oss foor att ligga turen mittemetlan Sarek
och Padjelanta for att kunna ha wr till stugorna lings Padjelanta leden.

retrBi rrtastiinky sdrskeivaing evee mara

refeiity

i) §(§ {}3« it ord vens detection
EEad /1
gl platsen odsstinkt soskeivalng it s
Giliplatsen

Boyilion var fint, men kallt | riporna kurrade utanfor tiltet och svag vind lekte i fjillbjorkarma. diagnosis
Kvillon var fing O finr syftar pd Kviddien wr det kongruensfel o
Kviillen var fin

Akka topparma var imponerat och en dag borde vitaoss
iy Ol ovd sonigsurmeg Slava .
dir . correction

—

topparng var ungonerad Om Smponerad sy pa sopparnn i det kongroenstel meaapes
topparna var mmnponerade

P& OFt kokade potatis moset och vi karvade ren bog och njit av il varon.
varon Oklint ord owsoing: Stava

Figure 1. The output from Granska as an html-page viewed in a web browser. The
arrows point out what was meant with the feedback components detection, diagnosis
and correction in the instruction to the users. Colors were used to separate the
feedback components from each other. The screenshot was used in the instruction to
the users.

The participants could make their judgments electronically by editing an html page
generated by Granska, but judgments on printouts was also possible. We also
instructed them to make free text comments when they felt that the grades were not
enough or if they wanted to make more general comments about Granska’s behavior.

3 Results

In order to capture the users’ free writing and interaction with Granska the data
collection was partly unsupervised. The collection of texts, final versions and
judgments was based on the users willingness to take part in the study. This resulted
in different levels of commitment to the given instructions. Table 1 shows the
participants that made judgments when using Granska.

10

Table 1. Overview of the participants that made judgments when using Granska. The
data is sorted according to the participants’ activity in the study. Participant F is the
only male participant in the study.

Participant No-of sessions with No. of words in the original texts
Granska that included judgments

A 13 14901
B 13 7147
C 11 5810
D 7 2193
E 5 1953
F 2 503
G 2 824
H 1 517

Total 54 33848

3.1 Results of the judgment procedure

The judgment procedure was a hard task for the users and some of them did not judge
any sessions with Granska. However, six participants delivered data exactly according
to the instructions, and their judgments of Granska’s alarm are presented in Table 2.
These participants were more active than the others and delivered more text material
and made quite a few judgments. In addition to the judgments, many of the
participants commented on Granska’s alarms or general behavior. They made 150
comments in total. An example of one judgment and one comment is presented in
Figure 2.

11

Participant’s
sentence Granska’s

feedback
Ordf6rande inleWn och
uppgift och ett dnffet &r.

agarna hade plika uppfattning om vad en
ett imnet O
det dmnet:

7 syftar pa dmnet ér det kongruensfel

(M5,D3,E2) Hiir borde det vara ett imne

AN AN

AN

Participant’s Participant’s
judgment comment

Figure 2. Example of judgments made by participant A (written in bold within
parenthesis). The letters M (detection), D (diagnosis), and E (correction) are followed
by the grades. This means that the detection got a 5, the diagnosis a 3, and the
correction got a 2 grade. Granska has correctly detected an agreement error (ett
dmnet) with the correct diagnosis but with an erroneous proposal for correction (our
analysis). Participant A made one comment in bold ” Hdr borde det vara ett imne”
(eng. Here it should be: a subject). This comment points out the correct correction
proposal (our analysis).

Diagnoses and correction proposals received lower grades of the detections of the
errors, see Table 2. Diagnoses and corrections include much more information about
the errors than the detection does, and are therefore scrutinized more during the
judgment process.

Active participants gave higher grades than participants that had used Granska only a
few times.

Table 2. Mean values from the judgments made by participants that graded each of
the three components of Granska’s alarm (according to the given instruction).
N=number of judgments.

Participant | N | Detection mean | Diagnosis mean | Correction mean
A 98 49 4,0 4,5
B 37 4,7 4,2 3,8
D 29 49 4,0 35
E 14 43 4,1 4,0
F 8 4,0 3,5 35
H 5 2,6 2.4 2,0
Total 191 4,7 4,0 4,0

12

When looking at specific error types there are three error types that received lower
grades than the others (see Table 3). The error type that points out that something is
missing in the clause (Missing X in Table 3 and 4) is the lowest rated one with a mean
value below 3 on the diagnosis part, and even worse on the correction part with a
mean of 2.0. Diagnoses and correction proposals of split compounds (Split in the
tables) and disagreement between the predicative and the subject (Predicative) got
grades around 3. Notable is that the judgments of the error type Spelling got lower
mean values than more grammatical error types like form problems in the verb chain
(Verb Chain) and disagreement within NPs (Agree NP). We will return to these issues
in the discussion below.

The judgments of false alarms suggest that around half of them were not recognized
as false alarms (see Table 4). This is based on the number of false alarms that got a
grade lower than 3 on the diagnoses and corrections from Granska. When looking at
the judgments in detail we found only 5 false detections that were judged with a grade
below 3, but 11 false diagnoses and 12 false corrections, which were judged with a
grade below 3. From that information and from Table 4 we can also see that the
participants seemed to notice the false alarm as a false alarm when they are looking at
the diagnoses and the correction proposals. Most problematic were Granska’s alarms
on word order problems (Word order) where all false alarms got the grade 5.

Table 3. Judgments of all alarms that are judged individually according to detection,
diagnosis and correction. N=number of judgments.

Error type | N Detection | Detection | Diagnosis | Diagnosis | Correction | Correction
mean Std. dev. mean Std. dev. mean Std. dev.

Agree NP | 31 49 0.72 4.7 0.86 4.6 1.04
Mechanics | 8 5.0 0.00 3.8 1.48 3.0 1.41
Misc 4 5.0 0.00 4.0 1.73 4.0 1.73
Missing X 14 3.7 1.62 2.9 1.39 2.0 1.41
Predicative | 6 4.7 0.47 3.7 1.89 37 1.89
Spelling 90 4.8 0.81 39 1.17 4.2 1.37
Split 15 4.1 1.59 3.5 1.71 3.1 1.84
Verb chain | 13 5.0 0.00 4.7 1.07 4.7 1.07
Word order | 10 5.0 0.00 5.0 0.00 5.0 0.00
Total 191 4.7 0.95 4.0 1.32 4.0 1.54

13

Table 4. Judgments of ”genuine” false alarms that are judged individually according
to detection, diagnosis and correction.

Error type | N Detection | Detection | Diagnosis | Diagnosis | Correction | Correction
mean Std. dev. | mean Std. dev. | mean Std. dev.

Agree NP 1 |5 0 2 0 2 0
Mechanics |5 |5 0 34 1.62 3.4 1.62
Misc 1 |5 0 1 0 1 0
MissingX |3 |23 1.89 1.7 0.94 1.7 0.94
Predicative | 1 | 4 0 1 0 1 0
Spelling 8 |40 1.73 33 1.64 2.6 1.58
Split 3 |37 1.89 3 1.63 2 1.41
Word order | 4 | 5 0 5 0 5 0

Total 26 | 4.2 1.57 3.1 1.72 2.8 1.71

The participants made many more comments when judging Granska’s alarms than we
expected; in total 150 comments. The tendency was that participants that made many
judgments also wrote many comments. Many of the comments contain information
about the error types that were not detected by Granska, and especially those errors
that the teacher had found but Granska had not. Some comments contain the user’s
motivation for a certain judgment. The comments also gave us information on how
the participants reflect on Granska’s behavior and its feedback. A few of them used
quite advanced grammatical language in their reflections on Granska’s “reasoning”,
like for instance the term “ellipsis”, while others used a language close to speech.

3.2 Results from observations and interviews

Tracking what happens when a false alarm occurs is complex. We compared the
judged text versions and the final text versions as a means to follow the users’
decisions. In our material there are cases where the users followed the false alarms,
indicated by a high grade in the judged text version and a change in the final text
version. There are also other cases where the false alarm got a high grade but when
looking in the final version they have not followed Granska’s false advice. Granska is
observably not the only tool the learners use in their text revision; other resources and
tools, internal as well as external, must have been used. We will return to this issue in
the discussion below.

We observed that the teacher is very important as a mediator of the feedback from the
program. The learners asked many questions of the teacher on problematic alarms
from Granska. Naturally it was hard for the teacher to answer questions on Granska’s
internal reasoning. Instead the teacher focused on grammaticality, acceptability and
correctness. Some of the participants thought that Granska should be an interactive
environment where correction proposals could immediately be put into the original
text. Some others had problems using Granska beside the word processor, and they
also had problems with attaching texts to mails or saving files in different formats.
Others were keen about using computers and showed no problem in shifting from one
program to another using several windows, and transferring text between them.

As a part of their revision process some of the participants first used Microsoft
Word’s grammar checker and then Granska. The participants appreciated the meta-

14

language used in Granska, although they did not understand all terms. They had
problems with false alarms and also choosing between different proposals for
correction, and some of them used external resources for this process such as friends
and dictionaries. On the other hand, other students liked the fact that one error could
get several diagnoses. A few of the users did not believe that Granska could be useful
for students on lower levels; to use Granska they said, one needs to be at the same
level as the users in the study. Some participants appreciated the colors used in
Granska for the indication of detection, diagnosis and correction proposals. Our
questions about new functionality (i.e. other tools than grammar checkers) were hard
for them to answer. However, they wanted Granska to find more errors, give better
diagnoses, be interactive and that examples should be used in user dialogues.

4 Discussion

The studies helped us to gain insight into the problems that can arise when using
grammar checkers as well as the kind of support second-language learners need.

4.1 Lack of adequate feedback and misleading feedback

The fragmentary feedback that current grammar checkers provide is a well-known
problem (cf. McGee & Ericsson, 2002). Grammar checkers can give valuable
feedback on some constructions, but none or only confusing feedback on other
constructions similar to the ones that were detected and diagnosed. For participants, it
was problematic that Granska gave feedback on some texts, and nearly none on other
texts. A consequence of the latter could have been that participants thought they had
written an error-free text. For the participants, the fragmentary feedback contributed
to a general lack of trust in the program’s possibilities. This was shown in the
comments made in addition to the judgment procedure.

The interviews, and the comments made during the judgment procedure, showed that
there was a lack of specific feedback regarding certain error types, and a lack of
correction proposals. For example, one frequent wish was to get a better coverage of
word order phenomena from the program. Granska generally does not cover word
order phenomena. A comment from a participant may illustrate the need for a more
comprehensive detection of such errors: “it does not matter how many grammar
books I read, I will always make these word order errors”.

Solecisms can occasionally be the only problem that Granska detects in a text. Some
solecisms initiated discussions between the teacher and the students about the content
and behavior of Granska. Other solecisms got high grades from the participants in
their judgments. The solecisms steal attention from more important error types, and
are a problem for both learners and the teacher. However, learners will get comments
on solecisms from people around them. One lesson that we have learned about
solecisms is that they should not be pointed out as errors, except on the user’s demand
and as what they are: comments on correctness.

The inventory of error types must be enlarged, and more qualified. But it is also
important to always give the user some kind of feedback. Even though the coverage
of the grammar checker can be improved, it will never be complete. We must find
other ways to provide the users with relevant feedback, to increase the possibilities for
reflections on how the target language works.

15

4.2 Use of different sources of linguistic information

Participants having written long texts and using Granska for revision were all misled
by the program — they followed erroneous advice from the program. This happened
only a few times for each participant, but helped us understand that providing the user
with other sources of information than just the spelling- and grammar checker is
necessary. One example that illustrates the need for different sources of linguistic
information is the correction proposals from the spelling-checking module, which are
sometimes hard to judge for the participants. In the participants’ judgments, we can
see low grades on both the diagnosis and the correction proposals. The spelling
checker is often the only knowledge source available for the user (a least on the
computer). In the studies, we observed that some of the participants used a dictionary
when the program could not provide a correction proposal on a suspected error.

The interviews together with the judgments of Granska’s alarms showed that during
writing, participants were using different sources of linguistic information. For
instance, some of the participants first used Word’s grammar and spelling checker,
and then they used Granska. They also asked friends for solutions on their language
problems. Incorporating several sources of knowledge into their decision-making
seems to be natural, and Granska worked as one of the sources. Participants seemed to
view the teacher as the only language expert. The programs, friends or books are
resources that are available when writing at home, and they were using them in
parallel.

4.3 Focus on form

During the course, the teacher scrutinized all the students’ writing assignments and
corrected them by providing writing feedback on their language errors. The teacher
also discussed common and significant errors. The errors cannot be neglected and one
wish from the teacher in connection with the students’ use of Granska, was to get rid
of low-level errors. If the students’ texts were free from most low-level errors, the
teacher could focus on high-level errors and work with important questions in
composition, like adaptation to text genre. Therefore a program like Granska, seems
to be an important part of a language learning system.

Despite the important problems that a tool like Granska presented during its use in a
second-language learning context, the teacher and the students welcomed Granska.
That was probably due to the fact that Granska can in many cases limit the amount of
repeated low-level errors.

4.4 Trusting the program

The teacher and the students were worried about false alarms produced by the
program, and how students could deal with them. In the annotated texts, many alarms
from Granska were compared with the teacher’s comments and error annotations.
This was mostly done in the users’ initial sessions with Granska. Participants who had
used Granska three or four times seemed to be aware of the pros and cons of the
program, and to know how to ignore irrelevant repeated alarms. Irrelevant alarms in
this context are alarms that the users did not know what to do with. Error types that
were frequently ignored were finite verb missing and subject missing. Unfortunately, a
majority of these alarms were relevant, but the meta-language used in the program’s
diagnoses was difficult to understand. We observed that without any proposal for

16

correction, all these alarms were neglected. On these matters, the teacher played an
important role, s/he functioned as a learner’s partner in the revision of the text,
“translating” the grammar checker’s feedback and its behavior. The teacher is
essential in the relation that learners can develop with a language tool, as the teacher
represents the reliable and external source of linguistic knowledge.

4.5 Meta-language and grammatical knowledge

When participants were asked about the diagnoses, most of them said that they
appreciated grammatical terminology although they did not fully understand it. They
also said that all grammatical terms should be explained within the program’s help
system, and the descriptions should be concise and short. These texts should also be
illustrated with examples on grammatical constructions based on common words that
are easy to understand.

One of the learners seemed to have extraordinarily good grammatical knowledge,
which was important when judging the alarms from Granska. She could analyze her
own sentences, using a proper grammatical language, and thereby reason and
understand when the program was wrong. In many cases, she used only the program’s
detection of the error when revising her text. Another learner, with better writing
skills, and more fluent Swedish, but without the first user’s grammatical knowledge,
deployed a similar strategy for judging Granska’s alarms. From her judgments and
comments, we can see that she expected more general grammatical knowledge from
the program, as a complement to Granska’s specific alarms. An example of this is that
she wanted to know the spelling rules and not only the correct word form when
interacting with the spelling checker. She wanted to learn the rules of the language,
and she wanted the program to explain and provide them. That the program gave her a
solution on a specific language problem was not enough for her; she obviously
wanted to learn at an explicit level, not only to produce correct Swedish sentences.

Other learners did not use grammatical terminology when reasoning about Granska’s
alarms. They mentioned in the interviews that without correction proposals it was
hard to understand the program’s alarms.

To conclude, one group of well-motivated students sought for strategies to analyze the
program’s alarms, and to learn from that process. Another group did not have the
determination to search for what the program was pointing at. For them it was more
important to judge the usability of the program’s alarms in accomplishing the writing
task.

4.6 Transparency

Frequent questions posed by the students and the teacher were: Why does not the
program detect this error that is so obvious? Nothing in the interface showed them
how the program had analyzed the construction. The only information available was
the part-of-speech tags from Granska’s underlying analysis. The tags were not
informative to either students or teacher. One important design issue was raised; how
should we make the interface to Granska’s analyses and reasoning more transparent?

From the judgments and the comments made by the users, we understood the
importance of that question for the users; in other words, the importance of relating

17

their own reasoning about language to the program’s reasoning and analysis. As we
mentioned before, the teacher is an important guide in this process, and the program’s
knowledge should at least be accessible to the teacher.

A program in a language learning system should try to explain how it analyzes
language, and on what grounds it gives feedback. Every level in the analysis and
generation of language seemed to be relevant for those learners wanting to learn
something from the program.

4.7 Interaction and integration

Many of the learners hoped that Granska would be more interactive. They started to
click on the web page generated by Granska. When using Granska’s web interface it
was necessary to edit the text in another program, and at the same time to look at the
feedback from Granska. We had to instruct them about the use of the different
windows open on the screen, one for Granska, and one for their usual word
processing program.

When instructed, learners thought it was double work to cut and paste the correction
proposal from the web page into their texts. They also felt frustration when wanting to
use Granska a second time on the revised version of the text. In our instructions to the
users, we encouraged them to use an on-line dictionary (Lexin), which was accessible
through a web interface. Thereby they had three different windows to handle. For the
well-motivated learners having good computer literacy, the management of the
windows was quite easy, but for the others, that was extra and demanding work
resulting in a loss of concentration on the task at hand.

A language learning system must give interactive feedback, and the different tools
should be integrated, so that the learners do not lose attention when using them in
parallel. It is also preferable that the feedback is immediate, and integrated in their
writing process.

S Designing a language environment focused on learning
Swedish

One conclusion from our studies was that a spell- and grammar checker (even if it is
powerful and robust) is not enough. The learners did not only want feedback on their
mistakes, they also wanted explanations going beyond the capabilities of a grammar
checker (at least the standard behavior of a grammar checker), as well as more
possibilities for language production. They did not want only one proposal from the
spelling checker; they wanted information about e.g. other word forms from the same
lemma, meta information about the word chosen, and which spelling rule they had
violated. Another important insight of the studies was that a tool is not good enough
on its own, but together with other tools and the teacher’s guidance, it can become a
useful toolkit for the user. By using different sources for language analysis and
understanding, the users can more easily make their own decisions on their own
language production.

18

To meet some of the learners’ needs, we have recently developed an interactive
language environment for Swedish called Grim®*. Grim builds on Granska, but also
integrates other tools into a flexible user interface. The functionality in Grim is based
on independent programs running on different servers; the program on the user’s
computer is just a client, with basic word processing functionality, and with
interactive user interfaces to the independent programs to give immediate feedback.
However, for the user, Grim appears as one single program with a seamless
integration of several language tools.

The design of Grim is grounded in insights gained during the user studies. In short,
the user studies helped us understand that second-language learning environments
should support:

¢ Focus on form, providing the learner with explicit lexical and grammatical
feedback.

¢ Focus on authentic language use, providing the learner with implicit linguistic
knowledge.

* Language exploration and reflection, for instance by visualizing grammatical
categories and concordances.

¢ Different and competing views of the learner’s interlanguage and the target
language.

According to Chapelle (1998) it is important to support the learner’s apperception and
comprehension of target language input. A computer-aided language learning
program can make these processes salient by highlighting important aspects in the
target language, for instance grammatical categories that are important for the
learner’s linguistic system to develop. However, the learner’s production must also be
given relevant feedback, for example by making the learners aware of errors in their
language production, and how to correct those. It is especially important that these
processes are made salient in activities that include a communicational goal.

Five tools based on language technology and aiming to support these processes have
been integrated into Grim. The tools are:

1. The grammar checker Granska, which also is the most developed tool,
a surface syntactic parser, called GTA, which has grown from the work with
Granska,

3. aconcordance interface to the Swedish version part of the Parole corpus (19
million words from novels, newspapers, and journals),

4. adictionary with eight language pairs called Lexin containing 28 500 words
and

5. an interface to a tool for automatic word inflection.

5.1 Supporting focus on form

According to Long, focus on form refers to how focal attentional resources are
allocated. “Although there are degrees of attention, and although attention to forms
and attention to meaning are not always mutually exclusive, during an otherwise

* Grim is freely available at www.nada kth.se/grim. Grim is written in Java and works under most
operating systems.

19

meaning-focused classroom lesson, focus on form often consists of an occasional shift
of attention to linguistic code features — by the teacher and /or one or more students —
triggered by perceived problems with comprehension or production” (Long and
Robinson, 1998, p. 23). From the user studies, we observed that focus on form was
important for the learners and the teacher. Furthermore findings on second-language
acquisition suggest that when second language learning is entirely experiential and
meaning focused, some linguistic features do not ultimately develop to target-like
levels (Doughty & Williams, 1998; Harley, 1992).

When designing the interface to Granska in Grim, we focused particularly on the
interaction between the user, the text and Granska. The feedback should be
immediate, and the text should be easily updated with the correction proposals from
Granska. Another important feature in the interface design was to put the preferences
and options for the selection of error types on the surface of the user interface. As
default, all errors are underlined with red. However, the user can change the color of
the highlighting of every error type by using a color palette. As default, the error types
are visible in the left column of Grim (see Figure 4). The error diagnoses and the
correction proposals are on the demand of the user visible in the right column of Grim
(see Figure 4).

BElorim vi 24 - mielian Savek och Padislanta
Aildv Redigers Visa Fomst Yeidva Hisp

Alernaty |

i Bl :

Sannolika Mellan Sarck och. Padiclanta, ...
[ldemrs | Padielanta ar dethogalandst som i osamnolt Fanastikt yacker och mikt i i O ok e o ot
Yerb formerna. Sarek ar brutalt och alpin, bast darfor att balansera pd gransen. 5t det kongruensfel,

[Ovriga Padjelanta ligger i Notra Lapland med Sarek i éster och Sulitelma 1 vaster. Frrslag ett Fantastiskt majestat

Om vi brgjar frén norr s stiger Akka upp 1 enfamaﬂizlcmx}ﬁzﬁt och gor skal
for namnet Lapplands. droftningen. Ett flertal glagierer letar sig ner frén de hog,
massiven Falhoiden ar stora, storst i sverige faktiskt.

Om man valjer den 6stliga grenen av Padjelantaleden kanner man tygnden frén
Akka massivets branter. Det 4r hég och imponerad, och med den stora forsen
brus ar detta sinnebilden av Lappland - héga berg, brusande forsar och snétackta
bergssidor.

Detta g sannerhis ett Mekka for figllalksaren, allt finns har, egentlige finns det
ingen anledning att g vidare, men de flesta gér det. Kankse ar det 54 att
damningen av Akkajaure gor att civilsuiationen kanns nara oxch pataglig.

Som figllyandrarew vill man alltid langre in i kéaman av grérda falnatur.
Iylanniskans ingrepp doljs dock battre yinter tid och kan rekomenderag till den
kanslige naturvannen. Damningen av Akkajaure ar go,, snligtmanganamralskars..
fruktansvartingrepp och lamnar gy fitet diliz smaken i munnen nar man passerar,
men berget Akka gor att allt kéanns battre igen och snén och isen déljer s&
mycket.

Med endasst en ST macka i magen nidde jag bl
omridet nara Akkastugan. Jag hade kommet
Ritse te.0.060 £ hade war

sher.faime anghizen
rmiddagsbussen till

" Ritsem...d

Figure 4. Errors in a text processed in Grim, highlighted by the grammar checker
Granska. The error types that Granska can detect are visible in the left column. The
colors of the underlinings can be changed or made invisible. Feedback on an error is
presented in the right column of Grim.

20

5.2 Visualization of grammatical categories

Grammatical knowledge and reasoning about this knowledge are important processes
during different phases of writing, and are important in the concept focus on form. In
our studies, we observed that learners reasoned in order to determine and correctly
use the alarms from Granska. Therefore, beside Granska in Grim, we developed a tool
to visualize grammatical categories in text, based on the output from the surface
oriented parser GTA (Knutsson et al, 2003). The parser is designed for robustness
against ill-formed natural language data, and it has been carefully evaluated on this
task (Bigert et al, 2003).

When interacting with this tool, the user can select grammatical categories that should
be highlighted in their texts. Thereby, the program does not spell out the grammatical
rules of Swedish, instead the application of the grammatical rules are shown to the
user. As an example, all Swedish noun phrases in the text can be highlighted
(according to the parser’s view of Swedish), and it can be explained how words in a
Swedish noun phrases are grouped together. In addition, by using this function
together with Granska, the Swedish agreement system within noun phrases can be
visualized. The idea can be illustrated by a citation from Warschauer and Healey
(1998) “Having discovered the linguistic rules themselves, students are more likely to
remember them”. The highlighted words are examples of how grammatical categories
and rules are connected to the user’s own words. The tool can be used to facilitate
implicit focus on form tasks.

Hloim viza mellan Sarek och padislants

Adjektiv
:,dtﬂb Mellan Sarek och Padjelanta.

Egennarn Padjelanta ar det hoga B#8# som ar osannolikt fantastiskt vacker och mijukt 1

Infinitivmérke
Interjekkion FEPRIEE. Sarek ar brutalt och alpin, bast darfor att balansera p3 BEsHEEE
gor\tiy!'\ktinn Padjelanta ligger i Norra Lapland med Sarek 1 88 och Sulitelma 1 #5588
articip
Partikel Om vi bréjar frin &5 o4 stiger Akka upp 1 ett fantastisk F#EHE och gor 58t
Ef:;:;st'i‘;n for BEEE Lapplands HMEIEES Eir BEHA BIEHEE letar oig ner frén de hog
Pronomen s, PR ar stora, storst i sverige faktiskt. Fias Nominlfrasdel
Rakneord Zats Satsdel
Subjurkion Om man valjer den Gstliga ##88 av Padjelantaleden kanner man $481884 fran
5'335’38’3 . Akka SAYSEEE VESHE Det ar hog och imponerad, och med den stora Bé8H

B ar detta BEEBIAEE av Lappland - hoga 888, brusande 88888 och snotackta
BRG

Detta ar sannerlig ett Mekka for 4, allt finns har, egentlige finns det
ingen BB att o4 vidare, men de flesta gér det. BB ar det 58 att
G av Akkajaure gor att ERASHIEERA kanns nara B89 pataglg,

% vill man alltid langre in 1 BSHEH av ororda GEIERHE
TR BEEEBE doljs dock battre ¥ B8 och kan rekomenderas till den
kanslige WAGARIER THARGEEAN av Aklcajaure & en, enligt minga BAGERSISIARE
fruktanswvart BEEEE och lamnar en litet 8l SEAMIR | HAIHEY nar man passerar,

en BEEEEE Alkka gor att allt kanns battre igen och $888 och B8 doljer s4
mycket.

Med endasst en ST BiA#RE 1 S¥8HE nadde jag BISH BEBURE fathg angligen
W nara W Jag hade kommet me 1ill

Figure 5. Nouns are highlighted with red in Grim. 16 different word classes can be
highlighted using the palette in the left column.

21

The language tools implemented in the program Grim contain fine-grained
information about grammatical categories and error types. There is a problem with
representation here, when for instance only information about word classes and
different inflections give 145 possible choices for the user. In the first phase of the
development of Grim, we chose not to include all these possible types in the user
interface for highlighting grammatical information in a whole text. Instead, we
represented 16 basic word classes in Swedish, see Figure 5. There is also a mismatch
between what the computational linguist defines as a word class and what is taught in
Swedish as a second language. We have tried to adapt the terminology to what is
taught in second language courses. In the right column (see Figure 5), fine-grained
grammatical information can be presented on the user’s demand by pointing with the
mouse on a word in the text. In this way, the feedback goes two ways, one way on the
demand from the user, and highlighted with colors, and the second way through the
information in the information column to the right.

5.3 Focus on authentic language use

Swedish is an inflection language. That means that learners have to learn different
inflections of nouns, adjectives, verbs and pronouns. From the studies, we observed
that some of students expected more information on inflections, especially when the
spelling checker proposed error correction. By clicking on a word and selecting the
word inflection function, the user obtains all inflections of a word in the information
column to the right (see Figure 6).

EdGrim »1.24 Mellan Sarele och Padiclont =i
G Reles Ve Fond Vb b 2

Mellan Sarek och Padjelanta.

Padjelanta ar det héga 1an|det somn &r osannolikt fantastiskt vacker och mjukt i formema. Sarek ar
brutalt och alpin, bast darfor att balansera pd gransen. Padjelanta ligger i Norra Lapland med
Sarek i oster och Sulitelma i vaster.

Om vi bréjar ffén norr 8 stiger Akka upp 1 ett fantastisk majestat och gor skal for namnet
Lapplands drottningen. Ett flertal glacierer letar sig ner frin de hég massiven. Fallhgjden ar stora,
stérst 1 sverige faktiskt.

landets
Jands
land
Jander
landerna
Jandernas
landers

Om man valjer den éstliga grenen av Padjelantaleden kanner man tygnden frén Akka massivets
branter. Det ar hég och imponerad, och med den stora forsen brus ar detta sinnebilden av
Lappland - héga berg, brusande forsar och snétackta bergssidor.

Detta ar sannerlig ett Mekka for fjallalksaren, allt finns har, egentlige finns det ingen anledning att
gé vidare, men de flesta gor det. Kankse ar det s att damningen av Akkajaure gér att
civilsuiationen kanns nira oxch pitaglig.

Sotn fjallvandrarew vill man alltid langre in i kéaran av ordrda fjallnatur. Manniskans ingrepp déljs
dock battre vinter tid och kan rekomenderas till den kanslige naturvannen. Damningen av
Akkajaure 4r en, enligt manga naturalskare, fruktansvart ingrepp och lamnar en litet dilig smaken 1
munnen nar man passerar, men berget Akka gér att allt kanns battre igen och snén och isen doljer
s& mycket.

Med endasst en ST macka i magen nddde jag blod socker fattig angligen omradet nara
Akkastugan. Jag hade kommet med eftermiddagsbussen till Ritsem, dér métte O ocg 5 upp, de
hade varit ute pé en vecko tur frin Katterat. En natt var det -35 C néar de vaknade 1 taltet.

S fkte hem till jobbet och O fortsatte med mig. eftersom nétter var aningen kylslagna bestamde i

Figure 6. Information about a word’s inflection is presented in the information
column in Grim. The user places the mouse pointer at a word, and all inflections of
the word are presented in the right information column.

22

So far, the tools in Grim have focused on grammatical feedback, but semantically
oriented feedback is also important in second language acquisition (Chapelle, 1998;
Salaberry, 1999). The comprehension of meaning can partly be supported by a look-
up of isolated words using a dictionary. In Grim, this dictionary is called Lexin and
includes eight language pairs (see Figure 7). For the users in the study present above,
that is not enough because of their heterogeneous background. However, an easily
accessible dictionary will hopefully encourage both the comprehension of target
language input, as well as target language production.

Grab Rl Edi PERRRE window Help o4 5w nioossy

B ow

s Blew Roman

7
%ok
7

“nformation
Mellan, Sarek oo Padiclania, Grammatik
: Padjclants b o iy osannoliks faswstiske y o miuks Qrd hdga
D;;Tsk;;fn:n a forroerna. Sarek oh alpin, béist diirfir ot balansera pi grinsen, Lemma fisg
Bvers Padjelamta lgger | Nogra Lapland sued Surek i dster och Sulisebma 1 visty, Blase Adiskrn
B Gvriga N . 3 b Forn Pasity
Omy L kil for Urpm Meutruny
AR nag Lexikon Svanck-Engeisks Stnguar
e Definst
o Nominatie
B -y n i ot
ity hig higar S, higre héiga adp. . Fraz Adiebtiviiashoranstut
Ak Srsen bus Narainatincdel
dr d som ricker Yngt ovanfor marken, Heg Kt Saps Sans
berg? -
sl Andrkningar
ot
Dai : % i det

O Prcisk Brers N Alternativ i
L Erigels rsattaing _
i high, clevated, tall, Infty i Pl det hoga landet L. dr L vacker
info Um vacker syftar od des Boga landet
& det konargenstel
Farslag det hoga lander som ar osannakikt
fantastiskt vackert

Exempel

® oif g fe--a tall building

omgadi
0 midte

aittr de vaknude i et
& ke hent ll jubbet ook O forsaite med mig. eftersom niitter var aningen
kvlslagna bestimde vi oss £ at lgga weren mittemellan Swrek och Padjelanta fir
wit kunna ha perdt iz Al stgena Jings Padiclint Joden.

Den fiwsta 1l plusen blex pd Wmplict pysinhid frdn STF-swpan. Kyilllon var,

Figure 7. Dictionary look-up of the word “hdg” (eng. high) in the lexicon Lexin. This
screenshot also shows how Grim looks on Mac OS X.

5.4 Examples of language use

Many researchers have point out the importance of target input in second language
acquisition (Breen, 1987; Candlin, 1987; Chapelle,1998; Long and Crookes, 1992).
In Grim, the user can have important grammatical categories highlighted in any text.
However, the user has to select and load the texts into the environment. Also, as target
language input is important, and so is the quality of the learning material, to add a
selection of language material seems to be an important part of a language
environment. From our studies, we know that doing a corpus search using a
concordance program is one lesson in the Swedish course. Therefore, it was important
to add a selected language source that is searchable and can be used as an important
tool for the exploration of language use in Grim.

23

The solution chosen was to make an interface to the Parole corpus, which contains
about 19 million words (see Figure 8). The user can search for every word in her text,
just by clicking on the current word and, choosing “Parole” from the tool-menu. No
search expression has to be written, which is often the case in standard concordance
programs. However, if the user wants to specify more details about the search, it is
also possible to create more advanced search expressions.

R

O [E S T SO TS T O,
. Folk sptingsr omlring | dirrar st | Farmande hbga dster | Man ropar —-- akla dej f6r ghsskireonm |
dom . Atminstong - for Det bliste kallt nér den héga postgula farjan stamapade sef fram dver abvens br
Mu var det affarens smala tringa skyltfinster och hilga stentrappa med frordcke | Fit rostigh oykelstall
det | ennes kod g fadern . Han gedt | oot med hiiga torra enyfiningar | Och moedern talade tl honoms
ret . Langt ner i backen skymtade idrotisplateens higa gula plank i Iykiskenst . Lennart stannade och de
arfirhilfanden och accepters de rikas rikedom och hiiga privata konsumtion . Obs 1 *Detérinte bra ¢
sstoli vardagsnurenet och staller den framfSr det hiiga Bistiende homskdpet | Hon stiger upp pd stolen
oskickligt upphbrutsn med platsax och megsel . Dien hiiga tunnan & till 194 tredisdelar Blld med en dlaiu
anvinidbara prydiadafiremdl | mystik och kedngel | hiiga hattar och uniformemdszor av papp 1 taket | oy
terng storlek 45 Undade { andliga trasor men den hiiga anden ddat slitid ks kokielt frménskligad | me
ragse , med Prastmons samveiskval for det allifor hiiga rumspriset och med st kot brev frdn * pojlen *
fanster , och utanfiy fondfonstret stadionpatkens hiiga trad och svirrande faglar . Attribut | tankte Lott

f detalier Sterstdr att finclipa | Nagra alltftr biga t4d |, nhgra alitfr svivrande fBglar | Lotta var

Figure 8. The user interface to the concordance engine. Concordances for the word
“hoga” (eng. high) in the Parole corpus.

6 Conclusions

The user studies as well as the experiences from the development and design of the
language environment Grim can be summarized in the following observations.

Grim is not pedagogically neutral. The tools that are important in Grim are included
in the system with the purpose to support both deductive and inductive learning.
However, the learners can use them as they like, Grim does not control how, when
and if the user is using them. When teachers want the learners to use Grim, they must
invent their own instructions and pedagogical settings for the usage of the program.
Second language learning and pedagogy are fields with no straight answers to
questions related to the most effective way to teach and study a second language.
Evaluation of learning effects of a specific pedagogy, or even a computer program, is
a difficult task; the variables and factors are many. A current learning activity cannot
be isolated from other activities that do not necessarily focus on learning, but have

24

learning effects. Even though not all teachers embrace language-learning
environments, the learners will probably use them, if they are available. And who will
stop the learners from using tools that they believe will help them when using the
second language?

In the field study, we focused on second-language learners’ needs and writing activity
and therefore not on the teacher’s role. However, we observed that the teacher played
an essential part in the relation that learners can establish and develop with the
language program; when introducing the tool, and subsequently when the learners
started to use and learn how to use the tool. The teacher’s role in language learning
systems has to be further explored. When the systems become more complex, and
include more language technology, they become more difficult to understand. In the
teaching situation, it is natural that the teacher can explain and recognize the system’s
behavior.

From the developer’s perspective, missing alarms are a problem of nearly the same
dignity as false alarms. The decision between flagging, and not flagging an error, is
one of the major internal design issues. But the teacher and the learners in the studies
do not seem to have worried about this problem, they seem to be certain that a
grammar checking program will find some errors in the learners’ texts, and that the
teacher will find the rest. The major trouble for them was the false alarms. As Vernon
(2000) suggested, it is important to learn about the capability and limitations of a
grammar-checking program. In our studies we observed that learners learned about
the tool by comparing the teacher’s comments with the program’s alarms. All
language learning environments, including language technology, will have problems
with the program’s accuracy. A crucial issue is how to design a system which enables
the user to understand its limitations.

Acknowledgements

We want to thank the students and the teacher in our field study. We are also grateful
to different users from the outside world that are using Grim, and suggesting valuable
comments on the program. We are thankful to Jonas Sjobergh, Johnny Bigert, Johan
Carlberger and Viggo Kann at KTH Nada for the development and maintenance of
the servers running important language tools in Grim. We are indebted to Sprékdata
in Gothenburg for letting us connect to the concordance engine. The work has been
funded by the Swedish Research Council (VR).

References

Bender, E. M., Flickinger, D., Oepen, S., Walsh, A., & Baldwin, T. (2004).
Arboretum: Using a precision grammar for grammar checking in CALL. Proceedings
of the InSTIL/ICAL Symposium: NLP and Speech Technologies in Advance Language
Learning Systems.

Bigert, J., Knutsson, O. & Sjobergh, J. (2003). Automatic evaluation of robustness

and degradation in tagging and parsing. Proceedings of the International Conference
on Recent Advances Natural Language Processing, 51-57.

25

Bigert, J., Kann, V., Knutsson, O. & Sjobergh, J. (2004). Grammar checking for
Swedish second language learners. In P. J. Henrichsen, CALL for the Nordic
Languages, Copenhagen, Denmark: Samfundslitteratur.

Birn, J. (2000). Detecting grammar errors with Lingsoft’s Swedish grammar checker.
In T. Nordgard, Proceedings of 12th Nordic Conference on Computational
Linguistics, 28-40.

Bolt, P. & Yazdani, M. (1998). The evolution of a grammar-checking program:
LINGER to ISCA. Computer Assisted Language Learning, 11(1).

Breen, M. (1987). Learner contributions to task design. In C. Candlin, & D. Murphy,
Language learning tasks, Lancaster practical papers in English language education,
Vol. 7, Englewood Cliffs, NJ: Prentice Hall.

Candlin, C. (1987). Towards task-based language learning. In C. Candlin, & D.
Murphy, Language learning tasks, Lancaster practical papers in English language
education, Vol. 7, Englewood Cliffs, NJ: Prentice Hall.

Cerratto, T. (1999). Activite” collaborative sur re“seau. Une approche instrumentale
de I’e’criture en collaboration. (Collaborative networked activities. An instrumental
approach to collaborative writing) Ph.D. thesis. University of Paris VIII- St. Denis.

Chapelle, C. A. (1998). Multimedia CALL: Lessons to be learned from research on
instructed SLA. Language learning & Technology. 2(1), 22-34.

Chapelle, C. A. (2001). Computer applications in second language acquisition.
Foundations for teaching, testing and research. Cambridge: Cambridge University
Press.

Cornu, E., Kiibler, N., Bodmer, F., Grosjean, F., Grosjean, L., Léwy, N., Tschichold,
C. & Tschumi, C. (1996). Prototype of a second language writing tool for French
speakers writing in English. Natural Language Engineering 2 (3): 211-228.

Domeij, R., Knutsson, O., Carlberger, C & Kann, V. (2000). Granska — an efficient
hybrid system for Swedish grammar checking. In Proceedings of 12th Nordic
Conference on Computational Linguistics, 49-56.

Domeij, R., Knutsson, O. & Severinson Eklundh, K. (2002) Different ways of
evaluating a Swedish grammar checker. Proceedings of The Third International
Conference on Language Resources and Evaluation (LREC 2002), 262-267.

Doughty, C. & Williams, J. (1998). Focus on form in classroom second-language
acquisition. Cambridge: Cambridge Applied Linguistics.

Fathman, A.K. & Whalley, E. (1990). Teacher response to student writing: Focus on

form versus content. In B. Kroll, Second Language Writing. Cambridge: Cambridge
University Press.

26

Ferris, D. R. (2004). The “grammar correction” debate in L2 writing: Where are we,
and where do we go from here? (and what do we do in the meantime...?). Journal of
Second Language Writing, 13, 49-62.

Garrett, N. (1991). Technology in the service of language learning: Trends and issues.
Modern Language Journal, 75, 74-101.

Gass, S. M. (1994). The reliability in L2 grammaticality judgments. In E. E. Tarone,
S. M. Gass & A. D. Cohen, Research methodology in SLA. Hillsdale, NJ: Lawrence
Erlbaum, 303-322.

Goss, N., Z. Ying-Hua & J. P. Lantolf. (1994). Two heads may be better than one:
mental activity in L2 grammaticality judgments. In E. E. Tarone, S. M. Gass & A. D.
Cohen, Research methodology in SLA. Hillsdale, NJ: Lawrence Erlbaumm, 263-286.

Harley, B. (1992). Patterns of second-language development in French immersion.
Journal of French Language studies, 2(2), 159-183.

Izumi, E., Uchimoto, K., Saiga, T., Supnithi, T & Isahara, H. (2003). Automatic error
detection in the Japanese learners' English spoken data. In Companion Volume to the
Proceedings of the 41st Annual Meeting of the Association for Computational
Linguistics (ACL '03), 145-148.

James, C. (1998). Errors in Language Learning and Use: Exploring Error Analysis.
London: Longman.

Knutsson, O., Cerratto Pargman, T. and Severinson Eklundh, K. (2002). Computer
support for second language learners’ free text production — Initial studies. In M.
Valcke, & A. Bruce, European Journal of Open and Distance Learning (EURODL).

Knutsson, O., Cerratto Pargman, T. and Severinson Eklundh, K. (2003).
Transforming grammar checking technology into a learning environment for second
language writing. Proceedings of the HLT/INAACL 2003 workshop: Building
Educational Applications Using NLP, 38-45.

Knutsson, O., Bigert, J. & Kann, V. (2003). A robust shallow parser for Swedish.
Proceedings of 14th Nordic Conference on Computational Linguistics.

Lantolf, J.P. (2000). Introducing sociocultural theory. In J.P. Lantolf, Sociocultural
Theory and Second Language Learning, Oxford: Oxford University Press.

Laurillard, D. & Marullo, G. (1993). Computer-based approaches to second language
learning. In P. Scrimshaw, Language, classrooms and computers. London: Routledge.

Levy, M. (1997). Computer-Assisted Language Learning: Context and
Conceptualization. New York: Oxford University Press.

Lindberg, J. & Eriksson, G. (2004). CrossCheck-korpusen — en elektronisk svensk

inldrarkorpus. In Proceedings of ASLA-konferensen 2004. Sodertorn University
College, Sweden.

27

Long, M. & Crookes, H. (1992). Three approaches to task-based syllabus design,
TESOL Quarterly, 26(1), 27-56.

Long, M. & Robinson, P. (1998). Focus on form: Theory, research, and practice. In C.
Doughty & J. Williams, Focus on Form in Classroom Second Language Acquisition,
15-41. New York: Cambridge University Press.

McGee, T. & Ericsson, P. (2002). The politics of the program: MS WORD as the
invisible grammarian, Computers and Composition, 19(4), 453-470.

Menzel, W. & Schroeder, 1. (1999). Error diagnosis for language learning systems.
Special edition of the ReCALL journal, 20-30.

Nerbonne, J. (2002) Natural language processing in computer-assisted language
learning. In R. Mitkov, Handbook of Computational Linguistics, Oxford University
Press, 670-698.

Olson, D. (1995). Writing and the mind. In J. Wertsch, P. Del Rio, & A. Alvarez,
Sociocultural Studies of Mind. Cambridge University Press, Cambridge. 95-123.

Park, J. C., Palmer, M., & Washburn, G. (1997). An English grammar checker as a
writing aid for students of English as a second language. In Proceedings of 5"
Conference on Applied Natural Language Processing.

Salaberry, R. (1999). CALL in the year 2000: Still developing the research agenda.
Language Learning and Technology, 3(1), 104-107.

Schneider, D. & McCoy, K. (1998). Recognizing syntactic errors in the writing of
second language learners. In Proceedings of Coling-ACL’98, 1198—-1204, Montreal.

Scott, M. (2001). Written English, Word processors and Meaning Making. A semiotic
perspective on the development of adult students’ academic writing. In L. Tolchinsky,
Developmental Aspects in learning to write. Dordrecht: Kluwer.

Swain, M. (2000). The output hypothesis and beyond: Mediating acquisition through
collaborative dialogue. In J. P. Lantolf, Sociocultural Theory and Second Language
Learning, Oxford: Oxford University Press.

Séljo, R. (1996). Mental and physical artifacts in cognitive practices. In P. Reimann &
H. Spada, Learning in humans and machines. Towards an interdisciplinary learning

science. London: Pergamon.

Truscott, J. (1999). The case for *‘the case for grammar correction in L2 writing
classes’’: A response to Ferris. Journal of Second Language Writing, 8, 111-122.

Vandeventer Faltin, A. (2003). Syntactic error diagnosis in the context of computer
assisted language learning. Ph.D. thesis, University of Geneva.

28

Verillon, P. & Rabardel, P. (1995). ‘Cognition and artefacts : A contribution to the
study of thought in relation to instrumented activity’. European Journal of
Psychology of Education, Vol. X:77-103.

Vernon, A. (2000). Computerized grammar checkers 2000: Capabilities, limitations,
and pedagogical possibilities, Computers and Composition, volume 17(3), 329-49.

Vygotsky, L. (1962). Thought and language. Cambridge, MA: MIT Press.
Vygotsky, L. (1978). Mind and Society: The development of higher psychological
processes. In M. Cole, J. Steiner, S. Scribner, S. & E. Souberman, Cambridge, MA:

Harvard University Press

Warschauer, M. (1996). Computer-assisted language learning: An introduction. In S.
Fotos, Multimedia language teaching, 3-20. Tokyo, Japan: Logos International.

Warschauer, M., & Healey, D. (1998). Computers and language learning: An
overview. Language Teaching, 31, 57-71.

Warschauer, M. & Meskill, C. (2000). Technology and second language learning. In

J. Rosenthal, Handbook of undergraduate second language education. New Jersey:
Lawrence Erlbaum.

Vitae

Ola Knutsson, Computational Linguist, Ph.D. student in Human-Computer
Interaction.

Teresa Cerratto Pargman, Ph.D. in Cognitive Psychology, Lecturer in Human-
Computer Interaction.

Kerstin Severinson Eklundh, Ph.D. in Communication Studies, Professor in Human-
Computer Interaction.

Stefan Westlund, Research Engineer and Programmer.

29

