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Abstract

In this thesis I present novel mechanisms for certain com-
putational capabilities of the cerebral cortex, building on the
established notion of attractor memory. A sparse binary cod-
ing network for generating efficient representation of sen-
sory input is presented. It is demonstrated that this net-
work model well reproduces receptive field shapes seen in
primary visual cortex and that its representations are effi-
cient with respect to storage in associative memory. I show
how an autoassociative memory, augmented with dynami-
cal synapses, can function as a general sequence learning
network. I demonstrate how an abstract attractor memory
system may be realized on the microcircuit level — and how
it may be analyzed using similar tools as used experimen-
tally. I demonstrate some predictions from the hypothesis
that the macroscopic connectivity of the cortex is optimized
for attractor memory function. I also discuss methodological
aspects of modelling in computational neuroscience.

Keywords: Attractor memory, cerebral cortex, neural networks, se-
quence learning, generative models, serial order, computational neuro-
science, connectionism.
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Chapter 1

Introduction

Attractor memory is an essential model for understanding information
processing and computation in the cerebral cortex of the primate brain.
Based on a very simple, yet elegant, mathematical construction, an at-
tractor memory is a natural way of embedding arbitrary information
content in the vast network of neurons and synapses that is the brain.
Today we have a solid theory of the basic properties of attractor mem-
ory. There is also a mounting body of evidence that cortical circuitry
does indeed implement attractor memory function, even though details
remain to be determined. But a memory mechanism in itself is of little
evolutionary value, unless coupled with the ability to interact with the
external world. Sensory impressions need to be processed into a form
suitable for storage. The information stored must be retrievable in a
controlled fashion and ultimately used for producing motor output.

In this thesis I will investigate some questions related to how an
attractor memory system in the cerebral cortex may work and interact
with its environment. Under the constraints of known properties of the
cortex, and certain optimality conditions, this will lead to very specific
propositions about cortex as an attractor memory and about these in-
teractions. For the domains under study, these can be thought of as
part of the set of primitive computational operations available to the
brain.

1.1 Structure of the thesis

The thesis begins with a critical look at some of the methodology em-
ployed in the field of computational neuroscience, appearing in chap-
ter 2. In particular, I discuss the use of realistic models, when under-
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2 Chapter 1. Introduction

constrained by empirical data. In chapter 3, I review some relevant as-
pects of the cerebral cortex and explain how and why it may implement
an attractor memory system. This chapter also contains an introduc-
tion to attractor memory models and the tools used to analyze them.
The thesis then, in chapters 4-5, discusses how attractor memory fits
into a larger picture of the brain; how it receives its input and how it
may be extended with the ability to perform temporal tasks, including
cognitive processing and the production of motor output. Next, in chap-
ter 6, I describe a biophysically detailed attractor memory model; its
differences and similarities to the abstract models so far employed and
how to translate between high level models and more detailed ones.
Moving from the small to the big, chapter 7 describes global aspects of
attractor memory functionality; it deals with scaling such a model over
several orders of magnitude, to the size of the human brain, and what
constraints this imposes on the topology of the system. The thesis con-
cludes in chapter 8 with a summary and discussion of the results and
an outlook on further work.

1.2 Contributions

e I critically examine the methodology of modelling as used in the-
oretical neuroscience.

e I present the sparse assembly coding network (SACN); a novel
principle for representational learning in a cortical region.

e I show that the SACN is more efficient in generating a binary
sparse code than a pruned graded model.

e I demonstrate that receptive fields produced by the SACN match
experimental observations fields in V1 better than previous mod-
els.

e I show that the SACN generates a code that is efficiently pro-
cessed by an associative memory.

e I present a model for sequence learning (SL), based on attractor
memory.

¢ I demonstrate that the SL model reproduces data from free recall
experiments.
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e I show how the SL model may form a basis for generic sequence
processing in the cortex.

e I analyse a realistic model of a cortical circuit, extracting mea-
sures directly comparable to experimental data.

¢ I demonstrate topological constraints on scalable attractor mem-
ory.
¢ I mathematically analyse an attractor memory model, demon-

strating the advantage of a certain form of connection structure
("patchy connectivity”).

1.3 Articles

This thesis is based on the following articles, which also appear as ap-
pendices, numbered as below.

I. Martin Rehn, Anders Lansner, "Sequence memory with dynami-
cal synapses”, Neurocomputing 58—60 (2004), 271-278.

II. Martin Rehn, Friedrich T. Sommer, "Early sensory representation
in cortex optimizes information content in small neural assem-
blies”.

III. Martin Rehn, Friedrich T. Sommer, "A network model for the
rapid formation of binary sparse representations of sensory in-
puts”.

IV. Christopher Johansson, Martin Rehn, Anders Lansner, "Attractor
Neural Networks with Patchy Connectivity”. (ESANN 2005, oral
presentation)

e Christopher Johansson primarily contributed to the simula-
tion experiments.

e I primarily contributed to the mathematical analysis.

V. Mikael Lundqvist, Martin Rehn, Anders Lansner, "Attractor dy-
namics in a large-scale modular network model of neocortical lay-
ers 2/3”.

e I primarily contributed to the model analysis.



Chapter 2

On modelling

Several areas of research strive to increase our understanding of the
operational principles of the brain and the nervous system. Some theo-
retical approaches, in order of increasing level of abstraction are neuro-
physiological modeling, computational neuroscience and artificial neu-
ral networks. But why study the brain? One general reason is that the
brain has impressive abilities, unmatched by any other system; nat-
ural or artificial. Three specific goals, or objectives, for studying the
brain, all motivated by this observation, are:

1. Understanding the biological system
2. Investigating its mathematical properties

3. Incorporating its principles into technological systems.

These three objectives correspond to scientific, mathematical and en-
gineering approaches, respectively. We expect different methods and
different success criteria to characterise the pursuit of these goals. The
work described in this thesis falls under the first objective; the goal is
to understand the brain, not to prove theorems or to build machines.
Even though the overall goal is thus clear, it turns out that subgoals
and methods from the other approaches also figure. In this chapter
I will further clarify methodological issues concerning the work pre-
sented here.

One tool that is used regardless of the ultimate research goal is
modelling. Specifically, one may model parts of the system under study,
at different scales. In the case of the brain, models range from sub-
parts of individual neurons, such as ion channels, to networks of neu-
rons, to psychological models of the whole organism. Some models may

4



2.1. Modelling objectives 5

be structurally very unlike what they model; for instance a nerve cell
may be modeled using an information theoretic construct (Bell and Se-
jnowski, 1995). On the other hand, many models in this field share key
structural aspects of what they are modelling; they will incorporate
the geometry of a nerve cell or the topology of a network of cells. Such
models are known in the methodological literature as realistic (Lloyd,
1998). In computational neuroscience, the term realistic is sometimes
used in a narrower sense, meaning biophysically detailed (Durstewitz
et al., 2000).

2.1 Modelling objectives

Three separate objectives for studying brain-like models were listed
above; one scientific, one mathematical and one technological, each
having its own motivation. Of course, this classification is in part an
artificial one; one researcher may well be motivated by more than one
cause and contribute to more than one objective. Nevertheless I will
introduce the different motivations in their pure forms below.

2.1.1 Scientific objective

Under the first of the three objectives, the scientific goal of understand-
ing the brain, we will judge a model according to how well it ”corre-
sponds to” biology. Models are motivated by empirical data and should
be experimentally testable. Occam’s razor applies in that when two
models explain known facts equally well, the simpler one (such as the
one with fewer parameters) should be preferred, as it most likely has
the strongest predictive power. Sometimes simplicity will conflict with
realism; making a model share structural properties of biology may in-
cur a cost of additional complication, so we may face a tradeoff between
structure and parsimony.

In practice, for realistic models, the immediate value of constructing
the model is often that it provides hints on which further experiments
might be the most crucial, namely the ones that would decide on un-
certainties in the model. In this sense, these models become heuristic
tools (Ekeberg, 1992, p. 19).

Determining ”correspondence” between a model and reality is an
interesting problem in itself. We do not have immediate access to the
inner workings of nature; all we can do is to perform experiments and
observe the outcomes. For a model that we ourselves have constructed,
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on the other hand, we do know the details of its inner structure. This
presents us with an apparent asymmetry between model and reality;
for the former we can directly read off parameters; for the latter ex-
periments must be performed. In the case of realistic models, this is
sometimes indeed the end of the story; some of the model parameters
directly correspond to ion channel parameters, physical constants or
other things that we believe also to be basic aspects of reality. In gen-
eral, however, matters are not so simple. More on this latter case in
section 2.2.1.

2.1.2 Mathematical objective

The second purpose of studying models based on the brain, such as arti-
ficial neural networks, is to discover their mathematical properties. In
mathematics we may choose to study whatever formal systems we pre-
fer; there is no requirement that it be rooted in reality. Nevertheless,
the power of the biological brain may indicate that interesting mathe-
matics lies hidden therein, motivating the study of related models. But
once a model has been chosen, it is treated by the mathematician as a
purely abstract entity (Whitehead and Russell, 1927). The mathemat-
ical approach to the brain has been a fruitful one; very general results
have been obtained for some of the most abstract models, regarding
e.g. representational ability, learning properties and memory capac-
ity (Amit et al., 1987; Minsky and Papert, 1988; Hertz et al., 1991).!
From a mathematical point of view, simple models are often the
best to work with, since proving general theorems may otherwise be
prohibitively difficult. Theoretical work surrounding a model is judged
according to conventional criteria for mathematics or indeed science in
general; a good theory makes specific statements about a general class
of circumstances (Kuhn, 1970). If we want to put the mathematics to
use, another criterion should be added; that the mathematical model
be applicable to a real world problem. In fact, one does not apply math-
ematical tools directly to reality, but to yet another model, derived from
biology or from an engineering application. It is to this model that the
mathematical theorems developed should, at least approximately, be
applicable. Therefore, this will impose a competing constraint on the
choice of a mathematical model; while it still needs to be simple in or-

IImportant contributions have been made by physicists and computer scientists,
as well as mathematicians. I refer to as mathematical all efforts that do not lean on
empirical data.
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der to be tractable, it also must be similar enough to the more detailed
model that results carry over.

2.1.3 Engineering objective

The third reason why one might be interested in building models imi-
tating the brain is to create technological artifacts. Noting the superi-
ority that natural systems hold over current technology in many fields,
such as pattern recognition and interaction with natural environments,
the hope is to reduce this gap by borrowing some operational princi-
ples from the brain. There is no reason to copy all of the brain, nor to
discard traditional engineering approaches altogether. Therefore, the
brain-like models chosen need not be biologically plausible, in the sense
that they could reasonably be implemented in the brain itself. Thus
un-biological features, such the “backpropagation” learning rule (that
is unlikely to be realized in the brain) may well be used in the brain-
like construction. That in turn becomes just one of several engineering
building blocks. The ultimate goal is a well functioning technical sys-
tem; that may perform data analysis, control a robot or carry out some
other task. At least in the short run, therefore, the engineering and
scientific projects may well not make substantial contributions to each
other. The models preferred for first purpose do not qualify as models
of the brain — and the models painstakingly developed to be faithful
to the brain are often outperformed by existing engineering software,
optimized for serial computers.

2.1.4 Craftsmanship

Constructing a neural network model is often a difficult task; one that
requires substantial experience. Regardless of what originally moti-
vated constructing such a model, a lot of time and energy will devoted
to the craft of making it work. Both for models intended to model
the brain and those intended to perform an engineering function, pa-
rameters need to be tuned and the implementation optimized, before
they can produce anything useful at all. A substantial investment of
time and resources goes into these tasks, an investment that may shift
attention from the original research question to problems specific to
model building itself; an individual scientist or a group of scientists
may spend years working on the same model. The following motiva-
tion may therefore become every bit as important:
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| Objective | Object | Truth criterion | Goal |
Science nature hypothesis explanation of
testing phenomena
Mathematics system of | deduction insight on logi-
axioms cal relafions
Technology artifacts function ability to per-
form tasks
Craft model aesthetics personal skill

Table 2.1: Four different projects, all working with models of the brain,
are contrasted with regard to methodological issues.

4. Modelling as a craft.

In contrast to the other objectives, the crafimanship objective, does not
have objective success criteria. Rather, the goal might be for the
individual or the group to improve their ability to create artifacts,
which are in turn judged according to aesthetic criteria.

2.1.5 Mixing of objectives

In practice, as was hinted in the introduction to this section, the objec-
tives here described are often mixed together. Individual researchers
may pursue more than one of them at a time, not necessarily keeping
them separate in the daily work. From one perspective this is a good
thing; the different projects have much to learn from each other. If,
on the other hand, one does not make clear which project is currently
being pursued, then potentially dangerous ground is trod. It is then
unclear what object is being studied, which ¢ruth criterion is used to
evaluate results, and what the ultimate goal of the research is. In ta-
ble 2.1 the different projects are contrasted with respect to these points.

2.2 Modelling and realism

2.2.1 A different kind of empirical science

Traditionally, science has distinguished two forms of activity; empiri-
cal investigations and theoretical work. The former is concerned more
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directly with reality, which is probed using experiments and other in-
vestigations, in order to ultimately produce data. Theoretical activity
deals with stating hypotheses, analysing them and deriving predictions
from them. Computer models fit nicely into this framework as special
forms of hypotheses. They are sources of predictions for the experimen-
tal work.

Producing predictions from a model may sometimes be done using
purely mathematical tools. For instance, conditions for some measure
of optimality may be derived for a neural model, leading to a prediction
that these conditions are satisfied in biology. For realistic models, di-
rect comparison of model parameters to reality is sometimes possible.
But in general, one must simulate the model’s behaviour, perhaps un-
der several different conditions, and produce measurements from the
simulations. This is similar to conducting an empirical study. Exper-
iments are performed on the model using methodology similar to that
used in the laboratory, only they are being carried out in the “alternate
universe” wherein the model lives. If a discrepancy is then found be-
tween model behaviour and the outcome of a laboratory experiment,
neither the model nor the "real” experiment is necessarily at fault; it is
also possible that the "virtual” experiment in the model universe was
flawed. The symmetric relationship between model and reality is illus-
trated in figure 2.1. One consequence of this is that one should stick
to one and the same model for long enough to experimentally probe its
properties, or one will be chasing a moving target. Also note that from
a methodological perspective, there is nothing wrong with a model that
must be subject to computer simulation to be useful; all that we must
ask is that there is some specified procedure to produce predictions
from the model.

2.2.2 Realism

The diverse class of models that are collectively known as ”artificial
neural networks” borrow their fundamental structure from the nervous
system. They are constructed from a number of nodes, corresponding to
biological neurons, which are linked by connections, corresponding to
synapses. This prompts us to consider them realistic models. One ad-
vantage of realism in modelling is that it makes it relatively straight-
forward to translate between model and biological system; some ob-
servation that pertains to the nodes of an artificial neural network
model should also be applicable to the neurons of the brain. But in
fact, there are a number of qualifications to this identification. A node
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Mofel Rezllity
Experiment Experiment

Outcome M Outcome

Figure 2.1: Comparison of a model to reality.

in an artificial neural network may include more computational ma-
chinery than a biological neuron does. For instance, while a biological
neuron is generally restricted to being either excitatory or inhibitory?,
nodes in artificial networks are often allowed to transmit both types
of signals. In such a case, one node in the model should rather be
identified with a group of neurons working together, containing both
excitatory and inhibitory neurons (see chapter 6). But there may also
be a one-to-many mapping in the other direction; perhaps the simple,
atomic nodes of an artificial neural network should really be thought
of as lower level components of biological neurons, the latter being ca-
pable of performing parallell processing in their dendritic trees (Taylor
et al., 2000; Hausser et al., 2000).

Taking these objections seriously and ruling out a one-to-one map-
ping between natural and artificial neurons makes it nontrivial to trans-
late model results to predictions about nature. What then separates
neural network models, as applied to e.g. psychological data, from purely
phenomenological models, is that their underlying assumptions are
“realistic” or "analogous” to what is known about biological networks (Lee
et al., 1998). Specifically, one assumption may be that any information
processing in the model is localized. In the words of Milton Friedman,
we implicitly claim that "the conformity of these ’assumptions’ to 're-
ality’ is a test of the validity of the hypothesis different from or addi-
tional to the test by implications.” Friedman however, claims that this
view is fundamentally flawed and detrimental to hypothesis driven sci-

2This rule was long thought to be a fundamental principle of neural interactions,
but lately some exceptions have been discovered.
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| Level | Subcellular | Neuron | Network | System |
Methods| pharma- patch clamp | multicell imaging. psy-
cological, recording recording, chology, psy-
genetic anatomy chophysics
knock-out

Table 2.2: Some examples of experimental techniques, ordered accord-
ing to the the level of understanding to which they contribute most
directly.

ence (Friedman, 1966). This criticism should be moderated, however,
by noting that realism may often be a prerequisite for producing pre-
dictions in the first place. A physiologically detail model, for instance,
has a wider interface to experimental work, in that certain model fea-
tures, such as ion channel properties, can sometimes be tested in a very
direct way, perhaps by experimentally blocking that ion channel by an
antagonist substance.

2.2.3 Model determination

Why are realistic models used in computational neuroscience if there
is a risk, according to Friedman’s view, that they undermine the rigor
of the field? One simple reason is the relative paucity of constraints
on models from biology. To illustrate the basic picture, table 2.2 lists
some current experimental techniques. They are ordered according to
the scale at which they probe the biological system, from local to global.
It is such methods that are the source of empirical data against which
we compare model predictions and hence constrain certain models and
rule out others. On the network level, which is at the focus of this
thesis, one of the most impressive experimental techniques is multi-
electrode recording. Using a large number of electrodes, this technique
makes it possible to record spike events from hundreds or more in-
dividual neurons (Nicolelis and Ribeiro, 2002; Pellizzer et al., 1995).
While this is spectacular in itself, it samples just a minuscule frac-
tion of the billions of neurons in the neocortex. The information thus
obtained is somewhat anecdotal in character; some reports detail the
response characteristics of individual neurons. Further constraints are
thus needed.
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2.2.4 Additional objectives

One of the studies reported in this thesis deals with sequence learn-
ing in the cerebral cortex (chapter 5). I will here use that study as
an example case. The aim of the study is to learn about how the brain
solves tasks with prominent temporal aspects; think of learning to sing
a song. In order to understand this type of behaviour, we would like to
build a model that performs similar tasks and to demonstrate that the
model shares important properties with the brain. For instance, we
would constrain the model to using mechanisms known from biological
neurons (subcellular and neuron levels in table 2.2) and we would com-
pare its network activity to multi neuron recordings (network level).
Human subjects have performed various sequence learning tasks,
their performance being recorded (system level) (Koch and Hoffmann,
2000; Avons, 1998). We might ask of our model to perform similarly
to humans on sequence learning tasks. This would mean that tasks
that prove hard for people should also be hard for the model. If possi-
ble, the failure modes of the model should be similar to the mistakes
humans make. Note how this differs from the engineering objective
of making the system perform as good as possible in all cases. These
two requirements impose constraints on the model, the second one is
the more specific, since it has a higher dimensionality. Continuing to
constrain the model, we may next add several more requirements:

e Efficiency
e Scalability

¢ Robustness.

These requirements mean that we prefer models that can store long
sequences, to those that can only store shorter ones. We prefer models
whose storage capacities increase as fast as their resources for stor-
age, usually the number of plastic synapses. We prefer models that
are little affected by noise and variability in the model components.
All of this can be motivated from an evolutionary perspective; the cor-
tex is likely to have an efficient design, to be similar to its evolution-
ary predecessors and to not easily break down. One objection to these
heuristic criteria could be that they are not directly based on experi-
mental evidence. Although they are also likely realized by an evolu-
tionary process, are they not in fact engineering objectives, the pursuit
of which might lead to solutions that perform on par with the brain,
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but bears little resemblance to it? Certainly, it is hard to see how these
assumptions could experimentally be put to test. On the other hand
it is generally the case that each scientific paradigm has at its core
certain unproven assumptions; we might put the above hypotheses of
optimality into this category. This is perfectly acceptable, as long as
productive science is produced in the community (Kuhn, 1970).

2.3 Conclusions

A common view is that good science should deal with producing hy-
potheses that are in some sense testable; verifiable or falsifiable (Pop-
per, 1959). Another criterion is that it should postulate mechanisms for
or explanations to phenomena (Bechtel and Abrahamsen, ress; Wood-
ward, 2003). This second criterion is seemingly fulfilled in theoretical
neuroscience; the heuristic criteria for model selection, and the prefer-
ence for realistic models, generally lead to explanations in mechanistic
terms. In principle, such models are also falsifiable, but there may
be practical problems. Models are often nebulous in nature, having a
wealth of parameters and variants (Collins and Pinch, 1998). Further-
more, a prescription is needed for how to generate predictions from a
model. Thus it may be harder to test a model in neuroscience than
some other scientific hypotheses. The conclusion to draw from this is
that we should strive to make models easily falsifiable. This is achieved
by contrasting core claims in a model from the free parameters and by
clearly stating how to generate predictions.



Chapter 3

The cortex as an attractor
memory

3.1 The cerebral cortex

3.1.1 Development

One of the early steps in the development of the vertebrate embryo is
the gastrula phase; so called because what is to become the digestive
tract is then first apparent (Larsen, 2001). During this phase, a bulge
is formed in the ectoderm, the outermost of just three cell layers in the
embryo at this stage, the one which later also develops into the skin.
From this bulge, known as the neural plate, located in the back of the
embryo, the neural system in its entirety is formed (Streit and Stern,
1999; Xanthos et al., 2002). As the cells in the neural plate divide, its
center begins to protrude inwards, forming a neural groove and finally
closing in on itself into a neural tube (O’Rahilly and Muller, 1994). The
part towards the tail of the neural tube (the caudal part) will develop
into the spinal cord, a relatively homogeneous structure, differentiated
primarily along a dorsal-ventral axis, with neurons receiving and pro-
cessing sensory information located dorsally (towards the back) and
motor processing located ventrally (towards the belly) (Kandel et al.,
2000, Figure 17-3, p. 319).

The part of the neural tube towards the nose (the rostral part) is on
the other hand destined for greater glory. It undergoes a series of differ-
entiations. First it develops into three clearly distinguishable, rounded
cavities: the forebrain, midbrain and hindbrain (Larsen, 2001). To-
wards the forebrain, the dorsoventral division between sensory and

14
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motor regions, prominent in the spinal cord, becomes less distinct and
moves ventrally, meaning that the forebrain is likely developed entirely
from the dorsal, sensory side. After this first differentiation, the fore-
brain and hindbrain cavities are further divided, whereas the midbrain
is not. The forebrain’s anterior part is now called the telencephalon
and the posterior part the diencephalon. The rostral part of the hind-
brain forms the metencephalon, the caudal part the myelencephalon.
At this point in development we therefore have six anatomically sepa-
rate parts in the nervous system; the spinal cord, the myelencephalon
(which will develop into the lower part of the brain stem), the meten-
cephalon (the upper brain stem and the cerebellum), the midbrain or
mesencephalon (e.g. the tectum), the diencephalon (the thalamus and
the hypothalamus) and finally the telencephalon (the basal ganglia,
the hippocampus and the cerebral cortex). Now the cerebral cortex and
other structures begin to grow rapidly outwards. The cerebral hemi-
spheres emerge as two prominent bulges, that will eventually, in the
human brain, encase and cover all of the midbrain structures.

3.1.2 Anatomy and function

The cerebral cortex forms the surface of the cerebral hemispheres, the
largest structure in the human brain. Underneath the cortex itself,
where cell bodies, synapses and short range connections are located, is
the white matter, containing long range axons (Kandel et al., 2000, p.
322). Most of these connect different parts of the cortical surface; when
referring to the cortex as a functional system, these corticocortical con-
nections through the white matter are often implicitly included. The
cerebral hemispheres also contain the hippocampus, the basal ganglia
and the amygdala. The hippocampus is located ventrally of the lateral
ventricle, medially (on the inside) of the temporal lobe. It is some-
times thought of as an unusually agile version of the cortex itself; it is
involved with intermediate storage of memories, before they are com-
mitted to long term memory (Treves and Rolls, 1992, 1994; Rolls and
Treves, 1997). The basal ganglia are located in the center of the cere-
bral hemispheres, near the lateral ventricle. They play an important
role in executive functions; decision making with regard to initiating
and stopping movements and are most likely also involved with cog-
nitive decisions (Mink, 1996). The amygdala is a set of nuclei in the
temporal lobe that is involved with innate and learned responses re-
lated to fear and other emotions (Gallagher and Chiba, 1996).

The first thing to note about the large scale connectivity of the cor-
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tex is that it mostly listens to itself. The majority of the long range
connections arriving at any cortical area originate in other areas of
the cortex (Abeles, 1991). This is true even for the primary sensory
cortices; which may otherwise be thought of as the input areas of the
cortex (Lamme et al., 1998; Salin and Bullier, 1995). Sensory inputs
from all modalities but olfaction arrive at these areas via nuclei in the
thalamus. But the thalamus is not a pure input processor either; it
receives most of its input from the cortex (Kandel et al., 2000; Guillery
and Sherman, 2002a, pp. 341-343). The thalamocortical system thus
forms a loop, where information is passed from the thalamus to the cor-
tex, is processed by the cortex and then passed back to another part of
the thalamus. While anatomically it is part of the diencephalon (rather
than the telencephalon) the thalamus is therefore tightly integrated
with the cortex from a functional perspective.

Each hemisphere in the cerebral cortex is divided into four lobes;
occipital, parietal, temporal and frontal. These lobes, which form the
visible area of the cortex, are clearly separated by deep sulci. But there
is also a hidden part; in particular the lateral sulcus, separating the
temporal lobe from the parietal and frontal lobes, hides a substantial
cortical surface area, called the insular cortex. Also hidden is the cin-
gulate cortex, located between the two hemispheres.

3.1.3 Evolution

In its present, much expanded form, the cerebral cortex is a relatively
young structure, but already in the amphibian brain, there are ana-
logues to the different parts of the human telencephalon; the hippocam-
pus, the pyriform olfactory cortex and the isocortex (Northcutt and
Kaas, 1995). The likely precursor to the latter is known as the pallium.
Like the isocortex, it receives inputs from different sensory modalities
and it displays reentrant connectivity, in that connections are often re-
ciprocal rather than feed forward. Unlike the isocortex, the pallium
does not have specific areas for different modalities and it lacks any
trace of the homogeneous, layered structure of the isocortex (Herrick,
1948). Its structure is even ”inside-out” compared to the mammalian
cortex; in the pallium the cell bodies are on the inside, near the ven-
tricles, axons are on the surface (Super and Uylings, 2001). Moving
forward to the reptilian brain, we find the pallium much enlarged, but
still lacking layered structure (Aboitiz et al., 2002, 2003). In contrast,
the reptilian pyriform cortex, which is involved with olfactory process-
ing, has already formed the three-layered structure seen in mammals.
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In all living mammals, the isocortex displays a homogeneous, lay-
ered structure; hence the name. For this reason, we may assume that
this was the case already for the earliest mammals (Northcutt and
Kaas, 1995). What is remarkable about the evolution of the cortex
since then is not innovation, but the lack of it. A great growth of the
cortical surface area has taken place without changing the fundamen-
tal design — and with little additional differentiation between cortical
areas. It thus seems that the cortical design was exceptionally well
suited for scaling. This scaling of the cortex has taken place by in-
creasing the size of individual areas, but even more so by adding to
the number of areas. This process has been interpreted as new areas
being added to perform higher order processing. Speaking for that in-
terpretation is the fact that in the primate cortex, the prefrontal areas,
associated with abstract planning activities, have seen the most rapid
expansion (Fuster, 2002).

3.1.4 Microcircuitry
Local circuit

There are two main classes of neurons in the cortex; pyramidal cells
and interneurons. The pyramidal cells, shaped like little pyramids,
pointing outwards, are responsible for all non-local communication.
Any information that leaves a local cortical circuit is passed through
the axon of a pyramidal cell. The pyramidal cells are excitatory cells,
communicating mainly by the neurotransmitter glutamate. Depend-
ing on the layer to which they belong, pyramidals either tend to project
laterally, within the cortex, or send their axons into the white mat-
ter, projecting to other cortical areas or subcortically. Both is often the
case; axons typically branch and project to more than one destination.
Pyramidal cells receive their input through two sets of dendrites. The
apical dendrite extends like an antenna tower from the top (the apex)
of the pyramid, ascending to the cortical surface. The basal dendrites
are found near the base of the pyramid and extend horizontally. There
are numerous types of interneurons. The spiny stellate cells are gluta-
matergic and also share other properties with pyramidal cells (Staiger
et al., 2004). They are prominent in layer IV of primary sensory cor-
tices, where thalamic input is received. But most interneurons are in-
hibitory, their main emitted transmittor substance being GABA. They
are collectively known as non-spiny stellate or granule cells; small, lo-
cally projecting, inhibitory cells that come in an assortment of shapes.
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One major class are the basket cells, so named because their axons tend
to encase the cell bodies of the pyramidal cells on which they synapse.
Most basket cell dendrites are local, some extending about 100 um,
whereas their axons can reach upwards of 1 mm (Wang et al., 2002).
Another class is the double bouquet cell. They project to dendrites of
pyramidal cells inside a narrow (<100 um) vertical column (Markram
et al., 2004). Chandelier cells project to the axons of pyramidal cells;
they have been found to reliably fire when the overall activity in a lo-
cal circuit is high and have therefore been hypothesized to moderate
excitatory signals in that condition (Zhu et al., 2004).

The isocortex is organized in six anatomical layers. Of particular
interest to us will be the cortical layers 11/111. The pyramidal cells in
these layers project mostly locally, within the cortex. In the rat visual
cortex, about 70% of the projections terminate within 300 um of the cell
body, but there are also lateral connections of longer range (Nicoll and
Blakemore, 1993). Thus they form a local, highly recurrent network
that may form a substrate for attractor memory.

Projections

Having already mentioned the local circuitry of layer 11/111, I will now
relate functional aspects of the other cortical layers. Layer IV may be
thought of as the input layer. It receives input from the thalamus and
from “earlier” or "lower” cortical areas. Layers I and VI also receive in-
put, but in the form of feedback from ”later” or "higher” cortical areas.
By a lower area is understood one that is closer to a primary sensory
input stream; a signal pathway that enters the thalamocortical loop
for the first time. Because cortical areas are interconnected in an intri-
cate web and most connections are reciprocal, the notion of a hierarchy
could not be extended much beyond the first few steps; if it were not
for the different roles of the cortical layers. As it turns out, one can
construct a fairly consistent hierarchy of cortical areas using the rule
that projections to layer 1V are forward connections and connections
to layers I and VI are backward projections (Felleman and Van Essen,
1991).

Layers I-III are the source of feedforward corticocortical connec-
tions, those that terminate in layer 1v. The feedback connections orig-
inate in layers V and VI. Layer v is the output layer of cortex. In the
primary motor areas this is literally true; here large pyramidal cells
send off axons that control movement, either directly (corticospinal
fibers) or through motor centers in the brain stem (corticobulbar) (Kan-
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del et al., 2000, p. 671f). In the case of distal muscles, the former
class of pyramidal cells are just one synapse away from directly con-
trolling the muscles; they project to the large ”alpha” motor neurons
in the spinal cord, that in turn innervate muscle fibres (de Noordhout
et al., 1999; Ziemann et al., 2004). With regard to the hierarchical ter-
minology, the dual role of layer vV as a source of feedback and motor
output may seem to be a paradox; should not the motor output be in
the forward direction? But the primary motor cortex, where the motor
output is produced, is at the bottom of the motor hierarchy; it contains
the lowest abstraction level, just like the bottom rungs of the sensory
hierarchy, because it must operate on a concrete representation of mo-
tor actions, in terms of simple motor programs and individual muscle
movements (though primary motor cortex also processes more complex
information) (Scott, 2003). Noting this, one can also label the forward
projections, from the superficial layers to layer 1V, a sensory stream
and the backwards projections, from layer Vv to layers I and VI a mo-
tor stream. The thalamus is not only the sensory gateway to the cor-
tex; also the cortical motor output impinges on the thalamus, which
receives branches of outgoing motor axons originating in layer Vv, to-
gether with modulatory input from layer Vi (Guillery and Sherman,
2002b).

Columnar structure

A standard technique for investigating the brain is to cut it in thin
slices and observe them under a microscope. To do this, the preparation
must be stained with an agent that colors just one component of it. For
instance, the Nissl stain colors the “Nissl substance”, related to protein
synthesis, therefore selectively staining neural cell bodies (Simmons
and Swanson, 1993). When this staining was applied to vertical slices
of the cortex, cell bodies were found to be localized in narrow columns,
35-60 um wide in the human cortex. Each such column contains about
80-100 neurons; both pyramidal cells and interneurons (Buxhoeveden
and Casanova, 2002). It has been suggested, based on vertical connec-
tivity within the minicolumn, that it acts as a functional unit, meaning
that all neurons in the column receive much the same input (Peters and
Yilmaz, 1993). In primary sensory cortices it indeed has been found
that neurons within a minicolumn share receptive field properties; i.e.
they respond to the same stimuli (Hubel and Wiesel, 1977; Favorov
and Kelly, 1994; Sugimoto et al., 1997). An attractor memory built
on minicolumns rather than the neurons as functional units allows for



20 Chapter 3. The cortex as an attractor memory

more dense connectivity and hence higher storage capacity (Fransén
and Lansner, 1998).

Columnar structures on a larger scale have been found in several
cortical areas. The term "hypercolumn” was originally used to describe
the finding of localized areas in visual cortex that include representa-
tions of the full range of a visual variable; ocular dominance or orien-
tation preference. It was nevertheless proposed as a general organiza-
tional principle for the cortex and indeed similar structure has since
been found elsewhere (Mountcastle, 1997). In the context of attractor
memory, hypercolumns are interesting because they imply a normal-
ization property over minicolumnar activity. If one hypercolumn cov-
ers the full range of some variable, and if the activity distribution over
the constituent minicolumns code for the brain’s estimate of that vari-
able, then the total activity should sum to one, or to some measure of
confidence in the estimate (Carandini et al., 1997).

3.1.5 Synaptic plasticity

In 1949, Donald O. Hebb proposed the following rule for how the con-
nection between two neurons should be modified, depending on activ-
ity (Hebb, 1949):

When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is in-
creased.

Hebb then pointed out that no such mechanism was known at the time;
only much later it was found that such a mechanism does indeed ex-
ist. It was found that synaptic transmission, under certain conditions,
could become more efficient after repeated stimulation. Long term po-
tentiation (LTP), as the phenomenon was called, was first found in the
hippocampus, not surprisingly, since that is probably one of the most
plastic part of the brain (Lomo, 1968, 1971). Mechanistic explanations
of several forms of plasticity followed (Fox and Lloyd, 2002). One im-
portant component of learning and synaptic plasticity is the NMDA
receptor (Newcomer and Krystal, 2001). These receptors, found post-
synaptically, are gated by glutamate, directly regulating membrane ion
channels.! NMDA receptors are special when compared to other glu-

IThe receptors are named for a substance, N-methyl-D-aspartate, that is used to
selectively control them in the laboratory.
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tamate gated receptors, in two respects. Firstly, the ion channels they
gate are normally blocked by magnesium ions; only when the cell mem-
brane is depolarized is the blocking removed and the channel becomes
effective. Secondly, the channels are permeable to calcium ions, which
are known to trigger and regulate a large number of intracellular func-
tions. Specifically, calcium levels in dendrites have been shown to cor-
relate with LTP (Ismailov et al., 2004). To become active, the receptor
requires simultaneously a presynaptic spike (to provide glutamate gat-
ing) and postsynaptic depolarization (to remove the magnesium block-
ing). When both conditions are met, there is a calcium influx that lead
to potentiation of the synapse. The NMDA receptor therefore serves
as a coincidence detector between pre- and postsynaptic activity, trig-
gering synaptic plasticity and realizing Hebb’s learning rule (Colbert,
2001).

3.2 Attractor memory

The term ”attractor memory” denotes a fairly large class of abstract
neural network models. What they have in common is that they pro-
vide a means of embedding information as attractors in a dynamical
system. One example of a dynamical system is just an interconnected
network of neurons; the dynamics” being the equations describing how
the state of neurons and synapses evolve in time. As the word implies,
an attractor is something that will tend to attract the evolution of such
a system, if the system state comes sufficiently close to the attractor. In
fact, for a deterministic system, the initial condition alone determines
the attractor in which it will end up, and once there the system will
then never again depart. The attractor itself may be a point in state
space, a limit cycle or an irregular-looking "strange” attractor.

3.2.1 The sparse Hopfield network

The autoassociative Hopfield network is a very pure and simple asso-
ciative memory. The network consists of just a single pool containing
N artificial neurons, all interconnected through N? artificial synapses,
collected in a matrix J;;. The network is capable of storing static pat-
terns taking the form of binary vectors & = [&1, &3,...,EN] Where &; €
{0,1}. It operates, in its learning phase, by a version of Hebb’s rule;
basically the reciprocal synaptic connection between a pair of neurons
is strengthend when they are both active. More precisely, for storing
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sparse patterns, where units are inactive most of the time, the optimal
form of the learning rule is based on the deviation of unit activity from
its mean (Okada, 1996; Frolov et al., 1997). When storing a set of p
patterns {&1 .. &f} the learned synaptic weights become by this rule:
] 14
Jy =5 2 (& = (&) (& = (&) -
p=1

Once the network has been trained in this way (the J;; matrix filled in)
the network may be used to retrieve the stored patterns. To do this,
the network is cued with a partial, noisy or otherwise distorted version
of one of the patterns; x° = £*. This means that the state vector of the
network neurons [x;...xn] is initialized to the cue. The current state is
then propagated through the synaptic matrix. Either one neural state
is updated at a time, as was the case in the original Hopfield model,
or the whole network is updated in parallell (Hopfield, 1982). In the
latter case, the the network dynamical equations become:

N
XJ{‘H =0 (Z ]let — 9) .
jA

Here ©(-) is the Heaviside step function and 0 is an activity threshold.
If the cue x° is sufficiently close to one of the patterns £, and not too
many patterns have been stored, the new state x' will be closer still to
&t and after a few iterations the full pattern will be retrieved. Because
the retrieved pattern is the same as the one that generated the cue, this
Hopfield type network is referred to as autoassociative; it associates a
pattern with itself.

3.2.2 Learning paradigm

In the above presentation of the Hopfield network, we saw a learning

paradigm that is in fact the most common way to use an attractor mem-

ory system. The pattern completion paradigm consists of three phases:
1. Store

A number of patterns are presented to the learning system.

2. Cue

A fragment of one pattern is input to the system. The cue may
be distorted in two ways; parts of the pattern may be missing and
parts of the information may be incorrect.
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3. Recall

The autoassociative memory fills in and corrects the cue, converg-
ing on the full and undistorted cued pattern.

The usefulness of this paradigm is that patterns may be retrieved using
content addressing; there is no need to specify an index number or any
other special key to find a particular pattern, we only need to present
a part of the pattern itself — whatever is known about the information
that one wants to retrieve. When it comes to testing the performance of
an attractor memory, the pattern completion paradigm is also suitable,
because there are straightforward performance measures for it.

3.2.3 Performance measures

When a partial or noisy pattern is processed by an autoassociative net-
work, the desired effect is that some or all of the missing information
is filled in. The network operation can be regarded as a mapping from
the cue to an output pattern; a natural performance measure is then
how much closer the latter is to the original pattern. One measure
of how close a distorted pattern is to the original is the amount of in-
formation needed to correct the errors. Depending on context, there
may be arbitrarily clever ways of encoding that information, but we
will here settle for a simple code: First the indexes of the units that
should be switched on are listed, then those that should be turned
off (Schwenker et al., 1996).2 Let as before N be the pattern length
and let a* be the number of active units in pattern . In the distorted
pattern &* there are e = Z;L O(&* — &M inactive units that should
be active and e = Z;L O(E* — M) active units that should in fact be
inactive. (This implies that the activity level of the distorted pattern &*
is @* = a* + e — e".) The information needed to correct the distorted
pattern becomes:

et —1

=
r(E4E4) = ) log(N—&" —j)+ ) log(a*—j).
j=0 j=0

For small distortions, this becomes approximately r(&*, &E*) ~ e log(N—
a*) + e! log(a*). ~For sparse activity, the measure may be further ap-
proximated as T(EH, EF) &~ e* log(N) + ek log(a*).

2If we are dealing with sparse patterns, the former corrections will be more expen-
sive, because there are more zeros than ones to choose from.
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We may now describe the information gain from operating on a
noisy patterns by the associative network as the decrease in missing in-
formation. If the network transforms the pattern according to é+ — F:”,
the information gain is r(&%, &#) — r(E*, EM). We can take the total de-
crease in missing information (over all the stored patterns) as a mea-
sure of the useful information content in the associative memory:

I=) (v(E%&") —r(&"&").

p=1

The information content divided by the number of synapses is a mea-
sure of the efficacy of the network, as it relates the useful information
to the total information embedded in the system. Naturally, this effi-
cacy measure is conditional on the distortion applied to the patterns;
the mapping &* — &, If no distortion at all is applied, that is &+ = &¥,
then of course r(&*, £*) will already be zero and the best we could hope
for would be zero information gain, meaning that the stored patterns
are stable under the dynamics of the associative memory. Conversely, if
too severe distortions are applied, making the patterns indistinguish-
able, any associative memory will fail to produce a noticeable informa-
tion gain. The type of distortion to apply should therefore be reasonable
in severity and its type chosen according to the intended application of
the associative memory.
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Input processing

Attractor memories deal with storing and retrieving cortical represen-
tations for different kinds of behaviourally relevant entities; sensory
impressions, words and concepts as well as motor programs. But the
external world; its shapes, colors and sounds, does not present itself
in a form suitable for processing by an attractor memory. Sensory im-
pressions must therefore be pre-processed into a form digestable by
such a system. For this representation to be useful, two conflicting re-
quirements should additionally be satisfied: The code should preserve
similarity of inputs, in order that the cortex may generalize between
similar situations, but it should otherwise make efficient use of the
available code space, in order for storage capacity to be maximized.

Efficient coding has previously been proposed as a computational
objective for sensory regions (Barlow, 1983), but in this chapter the ob-
jective will be more specific; the representation should be efficient in
the sense that it may be efficiently processed by an attractor memory.
The critical resource for associative memory is the capacity of plastic
synapses. Making efficient use of Hebbian synaptic memory has been
shown to require a set of active units that is a small fraction of the
whole network (Willshaw et al., 1969; Palm, 1980; Palm and Sommer,
1995). As recently emphasised, another critical resource is metabolic
energy consumption limiting the number of permissible spikes (Laugh-
lin and Sejnowski, 2003). This limit has been estimated to be a few
action potentials per neuron per second (Lennie, 2003). Thus, the ef-
ficient sensory code is sparse and binary, a conclusion also argued for
previously (Foldiak, 1990).

Generative models are a traditional approach to create coding maps
in sensory areas. A generative model optimizes the ability to recon-
struct the input data from the code vectors. Setting this objective gives

25



26 Chapter 4. Input processing

a local performance measure, allowing for unsupervised learning. A
very successfull approach to understanding cortical sensory coding is
based on linear generative models (Olshausen and Field, 1996; Bell
and Sejnowski, 1997). Using InfoMax in a linear coding model, which
is also known as independent component analysis (ICA), the receptive
fields become localized, as seen experimentally in primary visual ar-
eas; though the actual receptive field shapes generated are unlike those
seen in V1 simple cells. In this chapter, I introduce a generative model
that yields sparse population patterns, or small neural assemblies, as
sensory representations. As it turns out, the model itself may be rep-
resented as an attractor memory structure.

4.1 The gated-linear generative model

The focus of this chapter will be a generative model where a piece
of data x € R™, e.g. an image patch, is reconstructed in terms of a
nonorthogonal and overcomplete set of basis vectors {(W;; : i=1,...,m;j =
1,..,n;m>n}as

%i=) ay¥u€R™ 4.1)
1=1

In this gated-linear generative model one factor in the bilinear expan-
sion is a binary gating variable y;, the other a real-valued coefficient a;.
I will refer to y € {0, 1}™ as the gating vector, since it determines what
set of basis vectors is used. The vector a € R™ is referred to as the
coefficient vector. What the model does, in other words, is to encode an
input image in the form of one analogue and one digital vector, in such
a way that the original image can be reconstructed from this represen-
tation. The gain from this is that the new representation, in particular
the digital vector, may be better suited for e.g. storing in associative
memory. The model is further described by an objective function to be
minimized:

F—(X>U» Cl) = F—‘rec("»U» a) + Esp (U) ’ (42)

where E,.. is a reconstruction term describing the deviation of the re-
construction X from the data x. The binary sparseness term E, penal-
izes one-entries in the gating vector as

Ep(y) =0 us, (4.3)
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where 6 is a threshold parameter controlling the reconstruction benefit
required for inclusion of a nonzero y; in the gating vector. The gating
vector can also be expressed as a projection matrix in coefficient space

PY =81y € R™ x R™, (4.4)

Thus, we can rewrite (4.1) in matrix notation, 8 = (PY¥)"a, and write
the objective function as

n
E(x,y,a) = %; (xi —%)° = % (a,PYCPYa) — (a,P¥c) + <X’2—X> +0(y,y).
(4.5)
where (x,y) := ) ; x;y; is the inner product between the vectors x and y.
We may now move from the image coordinate space to the inner product
space, writing the overlaps between basis vectors C := Y¥T ¢ R™xR™
and the filter outputs ¢ := Yx € R™. The term (x,x) is constant for a
given x and will further on be omitted. Note that for fixed y the model
becomes an ordinary linear generative model. However, we will here be
interested in the dynamics of the gating vector, which will ultimately
be the representation of input seen by the associative memory — and
each change in y involves an optimization of the coefficients a.

4.1.1 Optimizing the coefficients
For every fixed y the optimal coefficient vector a* has to minimize the

energy (4.5), so

1
a® = argmin_ [E(y,c)] = argmin 3 (a,PYCPYa) — (a,PYc)| . (4.6)

If the operator CP := PYCPY were invertible, we could solve for a* by
taking the derivative and inverting that matrix. As this is generally
not the case, we must settle for the pseudoinverse solution:

a* = [CP]TPYc € R™. .7

This leaves the {a} : y; = 0} undetermined; we may arbitrarily set
them to zero. To optimize the gating vector, a* from (4.7) is inserted
into the applicable part of (4.5);

Erec(y,c) = —% (PYc,[CP1*c). (4.8)
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The above equation allows for direct optimization of the y variables. A
local search method to optimize y is to use (4.8) in a sequential update
scheme; given a y vector the single bit flip is chosen that yields the
maximum energy decrease,

AE(y - §) = % (PYe, ([C71* — [CYT)e) + 0 ((0,T) — (y,u)),  (4.9)

where § is one of the m vectors that can be obtained from y by a single
bit flip. However, in general the optimization is computationally ex-
pensive because of the calculation of a matrix pseudoinverse required
for every change in the y-vector. One way to greatly speed up this com-
putation by an approximative method follows (section 4.2).

4.1.2 Learning the basis vectors

To learn the set of basis vectors, the optimal input reconstruction using
the current set of basis vectors is first determined, yielding a and vy.
Then we follow the gradient of the energy function (4.2) with respect to
the basis vector components, which yields a local ”"delta” learning rule:

ot N
V.. = (Xi — Xi) a;y;. (410)
i

At every update step the normalization of the basis vectors is main-
tained by re-normalizing.

4.2 The small assembly coding network

The matrix inversion in the objective function (4.8) prevents direct net-
work implementation of the optimization of the gating vector y. To de-
rive an approximative solutions to this optimization problem, the oper-
ator CP is written as a product of an operator that is, in most cases, full
rank and a projection operator:

CP = PYCPY = [PY(C — 1)PY 4 1]PY =: CYPY
Substituting the newly introduced CY into the energy equation yields:

Ey) = —3 (¢, [C17P¥e)

The operator CVY is full rank and can thus be inverted using the ordi-
nary inverse, rather than the pseudoinverse, if the set of basis vectors
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selected by the nonzero y; are linearly independent. We may then use
the power series expansion

[CY]'=1—PY(C—1)PY+[PY(C—1)PY]? — ... (4.11)

which converges as long as |[PY(C — 1)PY|| << 1. This condition can
be ensured by a) making the y sparse through adding an appropriate
sparseness constraint in the energy function and b) by ensuring that y
does not contain basis vectors with any mutual Cj; close to one.

Using the expansion (4.11) up to the first order yields the first-order
approximation to equation (4.2)

Elc,y) = — (e, PY) + 3 (e, PYC—T)PY) + Exply)  (412)
= %(c,Py(C—Z)PycHEsp(y). (4.13)

The interpretation of EF° is most obvious in the form (4.12), where the

first term describes the support of basis vectors by filter inputs ¢ and
the second term accounts for "explaining away", competition between
basis vectors with high overlap. At the same time the second term
directs the choice of y towards regions where the first-order approxi-
mation is valid. Equation (4.13) is the energy function of a recurrent
neural network;

1
EPW) =5 Tuvwym+0) ur (4.14)
m 1

This is formally the energy function of a Hopfield associative memory
network, only the connection matrix depends on the stimulus;

Tﬁ = CiCﬁCj - 26ijCiz. (415)

In the first order approximation, the continuous variables, a™ = [1 —
PY(C — 1)PY]c, are then computed as

a; = Ci— in Cijc5Y5, (4.16)
e

which completes the description of the small assembly coding network
(SACN).
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4.3 Results from simulation experiments

The SACN model was first tested on patches of natural scene images.
The images have undergone a "whitening” preprocessing to equalize
the spatial frequency distribution (Olshausen and Field, 1996). The
number of basis vectors was three times overcomplete, with m = 192,
Unless stated otherwise, the patch size used was 8 x 8 = 64 pixels.

The SACN model at a given sparseness level — as adjusted by choos-
ing 0 in equation (4.3) — is compared with a graded sparse generative
model. In that model, the reconstruction map is of the same form as
in the SACN; %; = Y [, ¥y (Olshausen and Field, 1997). However,
in that model a different energy function is used, aiming for a graded
form of sparseness. Using one such a sparseness function, we have:

E(x,a) = Eree(x,a) + B D _lail, (4.17)

Sparseness is varied in the graded model by changing the parameter
B. To make the models comparable, the output of the graded model is
optimally pruned, keeping just the largest of the coefficients, such that
the energy function 4.2 is optimized.

4.3.1 Reconstruction quality

An example of an original image and its reconstruction is shown in
Fig. 4.1. The choice 6 = 5.6 - 1072 in equation (4.14) sets the sparseness
of the mean usage to (y) ~ 4.8. The number of basis vectors used to
reconstruct each of the 8 x 8 patches is displayed in the grid on the
right hand panel.

By systematically varying 6 in equation (4.14) we may investigate
how constraining binary sparseness effects reconstruction. Fig. 4.2
(left) shows that with growing sparseness (decreasing mean usage) the
reconstruction error increases. Approaching a mean usage (y) = 1
means to enter the regime of vector quantization, where the recon-
struction quality is limited by our fixed number of basis vectors (corre-
sponding to a small dictionary size). Comparing reconstruction achieved
with the SACN model and with the pruned linear model, the residual
errors of the former are significantly lower.
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Figure 4.1: Image, reconstruction and map indicating the usage in in-
dividual patches. This particular image part was chosen because there
is some interesting structure in it. As a consequence, the SACN has
assigned a higher average usage number than the overall (y) ~ 4.8.
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Figure 4.2: Reconstruction error as a function of mean usage. The
curve of the pruned linear model ends at about (y) = 10 because even
with setting § = 0 in the linear coding model, this is the maximum
usage that survives the the pruning process described above.
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4.3.2 Model basis vectors vs. biological receptive fields

To explore the shapes of the basis vectors resulting from the learning
with natural scenes more quantitatively, they are fitted with model
functions. In the sparse regime, each basis vector can be well fitted
with two-dimensional Gabor function in the image coordinates u,v;

’ 2 ! 2
h(u/,v)=A expl— (\/;G > —<\/;G >]COS(27Tfu'+‘D)’ (4.18)

where u’ and v’ are translated and rotated image coordinates, o, and
o, represent the widths of the Gaussian envelope, f and ® are the
spatial frequency and phase of the sinusoidal grating.

The parameters of the Gabor fits allow a much more compact de-
scription of the shapes of basis vectors. In figure 4.3 (left), a two di-
mensional display is used, that has previously been employed for exper-
imentally determined receptive fields (Ringach, 2002). On the horizon-
tal and vertical axes, are mapped respectively n, = o,f and n, = o,f;
the size of the Gaussian envelope measured in units of the period of the
sinusoidal grating. Center surround geometries are located near the
origin, slim edge-detector type geometries are at large n,, and small
n, values, geometries with multiple subfields are at large n, and n,
values. The right diagram is a histogram of the carrier phase ® with
respect to the center of the envelope. The properties of the basis vec-
tors of the generative models are compared to receptive fields recorded
in the primary visual cortex of monkeys (Ringach, 2002).

As can be assessed in figure 4.3, the basis vectors of the SACN model
resemble the spatial structure of biological receptive fields much more
closely than those of the linear coding model.

4.4 Conclusions

The SACN model works by “explaining away” parts of the input using a
set of basis vectors, paying a penalty for each one used. The interaction
between basis vectors is mediated by the lateral weights C, similar as
in linear generative models (Olshausen and Field, 1996; Lee and Se-
ung, 1997) and in a heuristically derived binary sparse coding network
(Foldiak, 1990). The network computation in the SACN differs from
these models; the SACN units receive a product of the bottom-up in-
put times the difference between bottom-up input and the input over
the lateral connections, in a Hopfield type model. The representations
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ICA model SAC model

Figure 4.3: This figure displays shape properties of the basis vectors
and compares them to receptive fields in V1 of monkey (Ringach, 2002).
In the top diagram the n, and n, on the axes are the relation between
carrier width and oscillatory period. The bottom diagram relates the
asymmetry of basis functions/receptive fields.
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produced are sparse and binary, suitable for storage in an attractor
memory.

The simulation experiments presented reveal an interesting differ-
ence, introduced by the gating nonlinearity of the overcomplete SACN:
The basis vectors develop more diverse profiles, there are not only ori-
ented shapes as found in the linear model, but also center surround
shapes (Olshausen and Field, 1996). When compared to the pruned lin-
ear model the SACN model finds more parsimonious representations;
better reconstruction by same number of basis vectors.



Chapter 5

Sequence memory

Abstract models of attractor memory, such as the Hopfield network,
were originally though of as static systems. In terms borrowed from
psychology, no concepts of timing or serial order are connected to them.
This means, among other things, that it does not matter to the memory
system if a millisecond or century passes between two operations. Also,
what is stored in the memory is nothing but a set of memory snapshots,
with no internal ordering.

5.1 Timing and serial order

The brain of any living organism, or for that matter a computer that in-
teracts with its environment, can in the most general case be thought of
as performing a mapping from sensory perceptions and time, to motor
commands; (x,t) — y. I will here initially be concerned with learning
and reproduction of stereotypic spatiotemporal patterns, in which case
we may drop the input part and be left with a mapping t — y. Fur-
thermore, my primary interest will be in spatiotemporal patterns that
change only at a finite number of points in time. That is, there are no
gradual changes, only discrete transitions between spatial patterns. I
will refer to this class of spatiotemporal patterns as sequences.

A sequence can be decomposed into two parts; the points in time
when transitions take place and the ordered list of patterns exhibited.
The two parts are known in the psychological literature respectively as
timing and serial order. It has been demonstrated that the two con-
cepts are learned and processed independently. If a subject has first
learnt either component (timing or serial order) of a sequence, learning
the full sequence then proceeds faster. Furthermore, separate brain
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areas are involved in processing timing and serial order (Ullén et al.,
2003). This separation hints that if we would like to faithfully model
the brain, the two should be kept separate. I will here deal with serial
order, mentioning timing only in passing.

5.2 Sequences and the nervous system

A single cell organism that swims in the direction of a nutrient, but
away from harmful substances, exhibits a behaviour that can be con-
sidered a static mapping from input to output. No history of past ex-
perience, and no learning, is required to produce the behaviour. More
complex behaviours, on the other hand, are based not just on the sen-
sory input, but also on the internal state of the organism. This is the
case already for only slightly more complex behaviours. The motor
commands for walking, generated in the spinal cord, involve a state-
ful system, incorporating (among other components) internal oscilla-
tors, pacing the movements. Of course, sensory input also plays a role,
but without internal state the system will know neither when to start
swinging a leg forwards, nor that a movement of the left leg should be
followed by one of the right (Wadden and Ekeberg, 1998).

Associative memories certainly have internal state. When cued
with a “stimulus”, their response — the completed pattern — will de-
pend on which patterns have been previously stored in the memory. In
their basic form however, we may conclude that they don’t have the ca-
pability of performing even a task like walking. Two things are again
missing: timing and serial order.

Moving straight from the ancient circuitry in the spinal cord, to
the highest level of neocortex, let me next define cognitive sequences.
A cognitive sequence is a series of events taking place on the highest
level in the information processing hierarchy of the nervous system.
This is where processing of abstract concepts; such as words, numbers
or other symbolic constructs takes place, sometimes under direct con-
scious control. Simple examples of cognitive sequences are the acts of
counting or singing. The act of thinking itself may be speculated to be
a more sophisticated form; more on that in the conclusion of this chap-
ter (section 5.4). I have described motor acts and cognitive sequences,
although seemingly vastly different, in the same context, for a reason.
Experiments have demonstrated that motor acts are truly sequences,
in the sense defined above. That is, they are based on a high level plan
that is discrete in nature, consisting of a number of well-defined inter-



5.3. Sequence processors 37

mediate steps. Actual movement seems to be a form of interpolation
based on the discrete plan (Johansson et al., 2001).

The cerebral cortex is not alone in producing sequence output. Some
reports indicate that the basal ganglia may be even more important for
serial order production (Cromwell and Berridge, 1996). The other com-
ponent, timing, seems to be dependent on the cerebellum; a structure
which is much smaller in size than the cerebral cortex, but which con-
tains more neurons than all the other parts of the brain. Motor tasks
can be performed without a cerebellum, but the fine structure and tim-
ing is lost (Sakai et al., 2002; Diener et al., 1993). This anatomical
separation of timing from serial order again motivates treating the two
aspects separately.

5.3 Sequence processors

Let us now return to the simplest case of sequence processing, that of
reproducing a learned sequence. While the ability to sing a song or
to count may not be as impressive as the skills of an advanced chess
player, I will argue that more advanced skills emerge from a combina-
tion of a basic sequence machinery, combined with associative mem-
ory. The requirement that an associative memory structure be main-
tained will then be an important constraint. Already Hopfield, a pi-
oneer of associative memory, discovered that this is a nontrivial re-
quirement. He experimented with adding a sequence producing term,
Jij = ZE:] £XEMT to his autoassociative memory. This synaptic matrix
term stores a series of patterns by chaining them together; each pat-
tern in the sequence being linked to its successor by Hebbian associa-
tion.! This does not work well in the asynchronously updated Hopfield
network, but it does work in a synchronously updated version, provided
the autoassociative part of the memory matrix is dropped (Hopfield,
1982; Diiring et al., 1998). The resulting heteroassociative network has
but one recall attractor state?; an endless reproduction of the learned
sequence; this model will be incapable of dwelling in any of the pattern
states, but will rather always march steadily on.

'Here we may make the sequence of patterns cyclic by defining & =gl
2In addition, there may be spurious attractors, but those are in general not viewed
as contributing to the computational power of the model (Amit, 1989).



38 Chapter 5. Sequence memory

5.3.1 Learning paradigm

For evaluating sequence learning networks, we slightly modify the pat-
tern completion paradigm, to read as follows:

1. Store

A sequence of patterns are presented to the learning system.

2. Cue

A fragment of one sequence is input to the system.

3. Recall

The system continues sequence recall from the cue onwards.

The fragment presented in the cue phase may be a subsequence of the
original sequence; consisting of a few patterns. The distortion of the
cue may take additional forms, compared to the static case: apart from
distortion of individual patterns, there may be distortions with respect
to order (omitting, inserting or exchanging patterns) and with respect
to timing.

5.3.2 Naive mixing

Can the auto- and heteroassociative Hopfield networks be combined,
adding sequence recall to the autoassociative memory function? One
way to do this would be to follow Hopfield’s lead and simply add the
two learning equations together; J;; = Zﬁ; E((1—)& + ocE,)V“ ). Here
« is a parameter regulating the amount of heteroassociation (Hertz
et al., 1991). We may understand the poor performance observed for
the asynchronously updated version of this network from considering
the performance of a synchronous network trained in this way. The
heteroassociative part of the weight matrix then acts as as a noise term
for the autoassociative recall and vice versa, as seen in figure 5.1(a).
Another way of combining auto- and heteroassociation in a syn-
chronously updated network is to interleave them, using an autoas-
sociative step to "clean up” each new pattern before applying the het-
eroassociative step. In the simple case of noise free sequences, we
should however not expect better performance from such a network
than from a purely heteroassociative network. The reason for this is
that the heteroassociative Hopfield network has a larger memory ca-
pacity than the autoassociative version (Diiring et al., 1998). Looking
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retrieval of a 10 item sequence.

Figure 5.1: Mixing of auto- and heteroassociation. This has benefits
only under certain circumstances. Both plots refer to a k-winner-take-
all Hopfield network with 100 neurons and 10% activity level.
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at the case for zero noise in figure 5.1(b) we see that performance is in
fact slightly worse for a network where we include an autoassociative
step than for a purely heteroassociative one. We also see that the in-
terleaved model will pay off at higher noise levels. More importantly,
processing in the brain, mediated by spikes and with no central pac-
ing, is very unlikely to be instantaneous and perfectly synchronized, as
required by the purely heteroassociative model.

5.3.3 A sequence learning model

I have argued that the ability to perform temporal tasks should be built
on top of an autoassociative memory, so that the system retains the
ability to represent each memory state individually. But as was also
explained, naively adding additional mechanisms to an autoassocia-
tive memory may break it. I will next outline a clean and simple model
where sequence learning has been added to an associative memory,
while maintaining a high memory capacity. The model is a fully con-
nected, single layer, k-winner-take-all network with synchronous up-
dating. The k-winner-take-all rule means that at each moment in time,
exactly k units are active; the units with the strongest support (Kown
and Zervakis, 1995). Thus we need not concern ourselves with activity
control, the problem of keeping the number of active units at an ap-
propriate level (O’Reilly, 1998). The neural units themselves are leaky
integrators; they have a short-lasting memory of their input history.

The key feature of the model is that the synapses are dynamical,;
their efficacies vary depending on past use. Each synapse possesses a
finite pool of "resources” used for transmitting information. This is in
analogy with real synapses, where the presynaptic neuron maintains
a number of vesicles with transmittor substance, ready for release. A
fraction of the available resources are used each time the synapse is
activated, which happens each time the presynaptic cell fires (Tsodyks
and Markram, 1997). Thus, a synapse that has recently been activated
a few times will be less influential than one that has not been acti-
vate for a while. This turns out to be highly advantageous for sequence
processing in that it helps separating autoassociation from forward as-
sociation. The two types of signal are separated in time, such that
autoassociation dominates when a pattern is newly activated but gives
way to heteroassociation after some time; determined by how fast re-
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sources are expended. The network equations are as follows:
N
Ri(t+1) = (1= tmem)hi(t) + ) wyrss(t)s;(t)
j=1

0 otherwise
ni(t) € N(0,0)
ry(t+1) = (T —uys;(t)) ry(t) + trec(1 —135(1))

s(t) = { 1 ifi € n-argmax; (h;(t) 4+ n;(t))

Here N is the number of units in the network, n is the number of ac-
tive units at any one time. The model uses synchronous time updating,
which is equivalent to assuming that all spiking activity is synchro-
nized to a 50 Hz gamma rhythm. Thus other time constants in the
model are related to a 20 ms gamma time interval. The key variables
of the model are the integrated support vector h, the spike vector s and
the synaptic resource pool matrix r. The latter represents the synaptic
resources that are temporarily expended when used; they recover with
a time constant of 800 ms. (Tsodyks and Markram, 1997).

The synapses in the model implement a simple Hebbian learning
rule. The pre- and postsynaptic sides of a synapse each maintains a
short-term memory of past activity, the combination of which is used
to update the synaptic release parameters u;;. A synapse thus potenti-
ated will release more ”vesicles” per transmission event, expending its
resources faster. While there is no explicit synaptic “strength”, or con-
ductance parameter, a potentiated synapse will still have an increased
overall efficacy, since resources recover at a speed proportional to the
amount that has been spent.

Model properties

The sequence recall behaviour of the model is illustrated in figure 5.2,
where support levels of four stored patterns are shown. The four pat-
terns take turn in being active. Importantly, the model is empirically
found to be efficient, meaning that its storage capacity is just a con-
stant factor below the theoretical limit, determined by the informa-
tion content in the synapses (see figure 5.3). An interesting aspect
of the model is that the sequence recall behaviour is emergent from
the combination of a non-pointwise Hebbian learning rule and dynam-
ical synapses. This means that recall goes in the forward direction
when the presynaptic time constant is larger then the postsynaptic one,
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Figure 5.2: Sequence recall in the model network. Each curve shows
the mean support level (h;) for the units belonging to four stored pat-
terns. Synaptic depression weakens the active pattern, eventually al-

lowing the next pattern in the sequence to take over.
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which is consistent with what has been observed in biological synapses.
In terms of sequence learning methods, as related in the psychological
literature, this model falls into the category of associative chaining,
meaning that each pattern is associated by the next one in the se-
quence. This association is provided by the memory traces built into
the synapses.

In the model as described so far, timing is hard wired. More pre-
cisely, how long a pattern can remain active depends on the rate at
which an autoassociatively potentiated synapse expends resources. This
determines the number of spikes that can be fired before these synapses
are too exhausted to support the pattern, something that will always
happen eventually, since only the release rate is modified by the learn-
ing. However, by slightly modifying the model, such that in addition
to release probability also synaptic efficacy is modified in the learn-
ing phase, pattern recall will be stable. An active pattern will still be
weakened after a short while, as resources are expended, but lateral
inhibition (as represented by the k-winner-take-all rule in the model)
will prevent another pattern from becoming active. If the lateral in-
hibition is now relaxed for a moment (the number k temporarily in-
creased), units from other patterns are also activated in parallell with
the previous pattern. Once inhibition is restored, the previously ac-
tive, weakened, pattern will lose in the competition with one of the
newly activated ones. The end result is that momentarily reduced in-
hibition triggers a change of active pattern. If the network is trained
with a sequence, it will switch to the next pattern in line. In figure 5.4
such a behaviour is shown. Which pattern is next activated need not
be specified by the intrinsic associative chaining property, but could be
specified by any external system, separating timing and serial order.
The important thing to note is that the system retains its autoassocia-
tive properties, performing pattern completion when presented with a
distorted version of one of the stored patterns. Meanwhile, autoasso-
ciation gets out of the way once its work is done, not interfering with
pattern transitions.

5.4 Sequences and cognition

From computer science we know that a very simple sequence process-
ing capability, that of the Turing machine, is all that is required to per-
form a vast class of computation (Turing, 1936). The idea that the brain
is just a serial computer, implemented in neurons and synapses, was
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Figure 5.4: Disinhibition triggers pattern transitions. In this version
of the sequence learning network, patterns are stable , but destabilize
as activity control is relaxed. At t=240 and t=540 ms the k-value is
momentarily doubled, leading to transitions first from pattern 1 — 2,
then from pattern 2 — 3. Note that the steady state support value
from weakened synapses is much smaller than the transient signals
that appear at pattern transitions.
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the tenet of the most radical proponents of traditional artificial intelli-
gence. Traditional Al has not failed; it has spawned many techniques
that are fundamental to computing today, such as high level program-
ming languages and relational databases. On the other hand, it has not
been successful in mimicking human intelligence. This is illustrated by
the fact that some tasks that are easy for symbolic Al systems, such as
tasks requiring deep recursion, are difficult for humans, whereas other
tasks, such as image recognition, are easy for us but have not been
successfully approached using symbolic methods. In this respect, the
approaches of connectionism, neural networks and parallel distributed
processing yield results more similar to biological intelligence. The as-
sociative memory systems that are the focal point of this thesis belong
to this family of models. Still, it is apparent that we do use a serial
approach to some mental tasks, for example when planning a route,
playing chess or performing arithmetic. Doing these things our work-
ing memory passes through a series of intermediate states, which we
may identify with places along the route, positions on the chess board
or partial results of a calculation. Unlike the Turing machine, the men-
tal path followed in such tasks may require something more complex
than following a simple list of rules. Presumably, our ability for pattern
recognition and other forms of parallell processing comes heavily into
play. An understanding of higher cognitive function therefore seems to
require a combination of parallell processing — associative memory —
and sequence processing.



Chapter 6

A biophysically detailed
attractor memory model

I have so far in this thesis analysed abstract models of attractor mem-
ory. The network units have been assumed to operate on real valued
inputs and to produce binary outputs. In contrast, the basic unit of the
brain, the neuron, communicates through spike trains; series of all-or-
nothing impulses occurring asynchronously. Real neurons overall have
a much richer set of behaviours than the artificial neurons so far em-
ployed. On the other hand, some features that seem natural and are
easily implemented in an abstract model may be non-trivial in a more
realistic setting. In the previous, I have relied on two such features, so
far without justification.

1. T have assumed that there is no limit on the number of cells to
which a given neuron can send its output. In reality, a pyramidal
cells project to a finite number of other neurons.

2. In the chapter on sequence memory, a k-winner-take-all rule was
included in the network dynamics to maintain a tight control over
the network activity level; to prevent runaway activity or termi-
nation of the network’s activity. In fact, activity control is a hard
problem in neural modelling.

In this chapter I will remedy these omissions, by introducing a much
more detailed, biologically plausible network model. I will show how
properties of the abstract model, including those mentioned above, emerge
from the detailed model, validating their use in the abstract models.

47
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6.1 The cortical network model

The model I present in this chapter is based on the minicolumnar hy-
pothesis of cortical function. In this view, the minicolumns are taken
as the computational units of the network. In the model, and presum-
ably in the real cortex, excitatory coupling within a minicolumn means
that it will be either active or inactive as a whole, the activities of the
individual neurons need not be detailed. A minicolumn naturally has a
richer repertoire than a single neuron; for instance it turns out that it
can exert inhibitory as well as excitatory influence over another mini-
column far away, even though such non local interactions are always
mediated by nominally excitatory pyramidal cells. In addition to the
tightly coupled minicolumn, there is another level of structure in the
model; a number of minicolumns are grouped together into a hypercol-
umn. While the minicolumn was internally dominated by excitation,
inhibition is the dominant interaction in between them, rendering the
hypercolumn a winner-take-all unit. This is, as we have already seen,
a very stable and efficient way of controlling the activity level in an
associative memory, but this time it will be emergent from underlying
mechanisms.

The neurons in the simulated network are conductance-based mod-
els, meaning that they include a simplified model for the fundamental
electrical properties of the neuron. This includes ion currents passing
through channels in the cell membrane and electrical currents trav-
elling between different parts of the neuron. The internal currents
are modelled by compartmentalizing the neurons; their geometries are
approximated by joining together a finite number of building blocks;
spheres and cylinders. The interactions between neurons take place by
simulating the opening and closing of ion channels at the appropriate
compartment of the postsynaptic neuron. The synaptic dynamics, de-
termining precisely how this takes place, may be arbitrarily complex
both on the pre- and postsynaptic sides.

In the present model, there are three types of neurons. The exci-
tatory pyramidal cells project both locally, within a minicolumn, and
globally to other hypercolumns; the local connections serving to forge
the minicolumnar unit, the long range connections corresponding to
the weight matrix of the associative memory. Here the minicolumnar
organization allows for negative weights in the matrix. This is realized
by pyramidal cells projecting to an inhibitory “regular spiking non-
pyramidal” (RSNP) class of cells, including e.g. double bouquet cells.
This changes the sign of the effective projection, while maintaining its
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specificity, as the projection of these cells in turn is very localized; pro-
jecting largely to a single minicolumn. The third cell type is the bas-
ket cell. Like the RSNP cells these are inhibitory, local interneurons,
but their projections are spread out over the local hypercolumn. They
serve to maintain activity control in the network. Their influence in the
model has been tuned such that it is unlikely that two minicolumns in
the same hypercolumn would be simultaneously active.

6.2 Network properties

I apply several methods to analyze the characteristics of the model net-
work. Where possible, I have followed methodology from experimental
neuroscience, in order to make results obtained from the model easily
comparable to the experimental literature. The following properties of
the network activity have been studied:

1. Pattern completion and rivalry
2. Up/down states

3. Artificial EEG

4. Unitary events

5. Temporal correlations.

6.2.1 Pattern completion and rivalry

Pattern completion is the basic element of associative memory. This
is tested by stimulating just some of the minicolumns participating in
a pattern, by simulated layer 1V input. Equally important is pattern
rivalry; competition between patterns. If two or more patterns are si-
multaneously stimulated, one would expect the pattern that receives
the strongest stimulation to be activated, which was tested by inject-
ing ambiguous layer 1V input. It turns out that pattern completion is
very fast; after just one burst from the stimulated minicolumns, the
others are activated. Similarly, for the rivalry experiment the assem-
bly with more stimulation is found to become active; the other activity
is terminated. This is decided by the network in a matter of tens of
milliseconds.
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6.2.2 Up/down states

It has recently been found that pyramidal cells in the cortex have a dis-
crete nature to their behaviour; they alternate between a "down” state
of low firing rate and an "up” state where the firing rate is high. It is
also seen that the soma potential is elevated when a neuron is in the
up state (Cossart et al., 2003). Looking at the model network activity,
we clearly see a similar phenomenon. The patterns take turns in be-
ing active, which for the individual neurons, that are coupled to many
other neurons participating in the same patterns, means an input that
varying accordingly. This manifests itself both as a raised membrane
potential and as an accompanying variation in spike rate, as seen in
figure 6.1(C-D). In a down state, the average soma potential is 65 mV
and spike frequency is 0.2 Hz. In an up state they are 57 mV and
8 Hz, respectively. The up states last for some 700 ms, the rise of soma
potential at their onset happening during about 50 ms. There is no ex-
ponential decay after termination of an up state (as has been reported
experimentally); this is overshadowed by inputs from the next active
pattern, but there is indeed more activity in the beginning of up states.

The attractor dynamics of the model is dependent on the long-range
connections. When these were scaled down ten times, no attractor
dynamics was observed. Again increased three times from this level,
some pattern completion could be evoked, but only noisy after-activity
and no spontaneous attractor dynamics. At four times increase there
was after-activity and some noisy spontaneous attractor activity and
with connection strength at half that used normally the dynamics was
essentially the same as for the standard model.

6.2.3 Artificial EEG

I create an artificial EEG trace from the network simulation, intended
to be similar to the actual EEG that would be recorded if the model
were embedded in a human cortex. This allows for relating network ac-
tivity to the wealth of empirical EEG data that has been recorded from
human subjects under many different conditions. The main source of
the EEG signal is believed to be currents in the apical dendrites of
pyramidal cells, but the exact mechanisms are likely rather compli-
cated (Alexander D. Protopapas and Bower, 1998). Rather than striv-
ing for complete realism in the model, I therefore settle for a simplified
model, wherein the dendritic current in pyramidal cells is represented
by the derivative of the soma potential. This signal, aggregated from
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Figure 6.1: Up and down states in the biophysically detailed network
model. A: Raster plot of spike activity in the entire network; the top-
most, rapidly firing cells are the RSNP cells, then follow the pyramidal
cells (sorted by hypercolumn and minicolumn) and finally the basket
cells. Simulated time is 4 seconds and different patterns take turns
being active, with short transitional periods in between. B: Local field
potential; note asynchronous spindles at the up state onsets. C: Mean
spike frequency of the pyramidal cells in one of the patterns, showing
up and down states, the spike frequency being highest at the beginning
of up states. D: Soma potential of one of the pyramidal cells in the same
pattern. Membrane potential and spike rate are clearly elevated in the
up state.
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all pyramidal neurons in the model, is then low-pass filtered to gener-
ate the simulated signal, as it would be recorded by an EEG apparatus.

Following practice in the field, the EEG signal is divided into shorter
segments, for each of which a cosine-shaped Hanning filter is applied
to regularize the signal; smoothly bringing it to zero at the beginning
and end of the segments (Dressler et al., 2004). For each subpart, the
power spectrum is calculated, and these spectra are added together. A
gamma-like oscillation with a frequency around 25-30 Hz is robustly
identified, as is evident from figure 6.3(A). The signal is almost exclu-
sively generated by the activity in the up states, consistent with ex-
perimental data, relating gamma patterns in human EEG to memory
matches (Tallon-Baudry et al., 1998).

6.2.4 Unitary events

To analyse the fine structure of network activity, the unitary event tech-
nique was applied. The method starts by binning the set of neural spike
trains into small time bins, a typical bin size being 5 ms. For each neu-
ron, a bin is marked ”0” if the neuron emitted no spike inside of the time
interval associated with the bin and ”1” otherwise. The method then
proceeds to calculate the probability of obtaining the particular vectors
of ”0”:s and ”1”:s that describe each bin, based on individual spike fre-
quencies for the neurons. A measure of “surprise”, based on the num-
ber of occurrences of each such vector, compared to the expected num-
ber of occurrences, is calculated and bins carrying “surprise” exceed-
ing some threshold are flagged as unitary events (Griin et al., 2002a).
There is also a version of the method that proceeds without binning,
but this would incur prohibitive computational costs in our case, where
we record from hundreds of simulated neurons; instead we verify va-
lidity by slightly varying the bin size (Griin et al., 1999, 2002a).

Since activity in our network is certainly nonstationary, each mini-
column alternating between bursting and quiescent modes, we calcu-
late firing frequency using a windowed average. The window size is
chosen such that the estimated firing frequencies for individual neu-
rons track the instantaneous firing frequency for the full pattern to
which they belong. The window size turns out to be an important pa-
rameter in our case; as the spike rate in the network varies on a short
time scale, a small window size is required (Griin et al., 2002b).

Because of the large number of neurons in the network, we may
expect that, at least in the high activity, bursting phase, there will be
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few or no repeats of one and the same spike pattern. We must there-
fore distinguish unitary events during the bursting phase without re-
peated spike patterns, setting the surprise threshold such that indi-
vidual spike events will be flagged as appropriate. If a fixed surprise
threshold were used, we would flag roughly the bins in which the most
neurons fire; they all occur during peak network activity. To better con-
trol the sensitivity, I use a moving threshold that for each bin calculates
the ”expected surprise”, based on the instantaneous firing frequencies,
and similarly also the "expected surprise deviation”. I then choose the
threshold for flagging a bin as the expected surprise plus a multiple of
the deviation, chosen such that the expected number of unitary events
would be less than one, if there were no structure at all in the data;
thereby the variations in network activity are compensated for.

With the unitary event method, it is found that there is significant
substructure in the network bursts; it is not exhaustive to describe the
minicolumns in the network as having one active and one quiescent
state. On the other hand, when the frequency calculation is performed
using a sufficiently small window size, just a handful of unitary events
are identified. These occur in the beginning and towards the end of
a burst period (figure 6.2). Unitary events have been associated with
behaviourally salient points in time. In monkeys they have been ob-
served prominently near the end of the delay period in a delayed re-
sponse task, when the animal is preparing to execute a movement and
also in relation to external stimuli (Riehle et al., 2000, 1997).

6.2.5 Temporal correlations

Using an autocorrelogram measure, the temporal structure of the pat-
terns is analyzed on short and long time scales. The measure used
is equivalent to the average crosscorrelogram between pairs of neu-
rons. Two such measures are produced, one within the minicolumn
and one averaged over pairs of minicolumns participating in the same
pattern. A correction, similar to the shift predictor is applied, by sub-
tracting from the raw correlations the correlogram for low pass filtered
spike trains, removing gross temporal dynamics but preserving fine
structure (Gerstein and Perkel, 1969). The averaged crosscorrelogram
between units shows a well defined central peak, with the peaks cor-
responding to one oscillatory period at about 40 ms clearly visible and
peaks for two periods at 80 ms being less prominent; figure 6.3(C). This
synchronization is the source of the gamma frequency apparent in the
EEG. In figure 6.3(D) we see that synchronization is much weaker be-
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Figure 6.2: Unitary events calculated using a moving surprise thresh-

old and a small spike rate averaging window. Only in the beginning
and towards the end of up states are unitary events detected.
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Figure 6.3: Temporal fine structure of network activity. A: Frequency
spectrum of artificial EEG, generated by pyramidal cell currents. There
is a peak energy around 25-30 Hz. B: Average autocorrelation between
spiking activity within a minicolumn. UP state duration is reflected in
peak width, pattern recurrence in the side peak spacings. C: Autocor-
relation within a minicolumn on a short time scale, corrected for slow
dynamics. The synchronization giving rise to the 25-30 Hz oscillation
is evident. D: Average crosscorrelation between different minicolumns,
belonging to the same pattern. An imprecise synchronization is evi-
dent, but with a tendency towards inverting the patterns seen within
a minicolumn on the 10 ms time scale.

tween different minicolumns, even those belonging to the same cell as-
sembly (Steriade et al., 1996). Similar oscillations have been found in
local field potentials of awake behaving monkeys (Brovelli et al., 2004).
On a longer time scale, there is also a non-zero correlation appearing
after about a second and then again at longer time intervals, corre-
sponding to a pattern being reactivated after a quiet period and can be
seen in figure 6.3(B).
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6.3 Conclusions

In constructing this detailed network model, there have been influ-
ences both from the top down model and from detailed empirical data
on cortical structure. The model clearly demonstrates that attractor
memory systems are realizable in the cortical substrate. Too much top
down influence probably went into constructing the model though, to
draw the stronger conclusion that the cortex must implement an at-
tractor memory. Of particular interest is also the methodology of mim-
icking real experiments in the model universe, thereby extending the
interface of observables between simulation and experiment.



Chapter 7

The large scale cortex

The models discussed so far have dealt with models of attractor mem-
ory and related concepts that each can be realized using just a tiny part
of the cerebral cortex, as evidenced by the modest scale of the cortical
network presented in the previous chapter. In this final main chap-
ter of the thesis, I will deal with the cortex on a global scale. More
accurately, I will deal with both the cortex, and the underlying white
matter, which in the human brain occupies a volume about the same
as the cortex itself (Pakkenberg and Gundersen, 1997). The corticocor-
tical connections through the white matter become a very prominent
feature as we consider the cortex on a larger scale.

The large scale structure of the cortex and the white matter has
been approached with purely mathematical tools, including dimension-
ality analysis, that do not take functional aspects into consideration.
Here I will stay true to the theme of my thesis and approach the struc-
ture of the cortex from a functional perspective, based on the hypoth-
esis that the cortex largely functions as an attractor memory and has
been optimized to operate as such. This hypothesis then leads to struc-
tural predictions.

7.1 Connectivity of the cortex

The cortex is sparsely connected on a global scale. If it were not, the
amount of wiring would grow dramatically as the number of neurons
was scaled up; going from rodent to primate to human the brain would
come to consist almost exclusively of white matter. Suppose that the
cortex were built from N computational units (individual neurons or
minicolumns) that each occupy a fixed amount of gray matter volume

57
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vg, for a total volume of Vy = Nvg. In this volume we include cell bod-
ies, synapses and local connections, but not long range connections. If
connectivity were global, here taken to mean that for each pair of units
there is a fixed probability v that they are connected, the number of
connections becomes yN? (Braitenberg, 2001). If we now approximate
the cerebral hemispheres, consisting of the cortex and the underlying
white matter, as a sphere of volume V, the average length of a single
connection, assuming it can be constructed as a straight line, would
be proportional to the sphere radius. We can then write its volume as
a,,V'/3, bringing the total white matter volume to V,, = yNZa,,V'/3.
The constant a,, incorporates the axon area and a dimensionless geo-
metric constant. The volume of the model brain can be expressed as the
sum of gray and white matter volumes; V = V,+V,, = v;N+va,,V'/>N2,

Solving for N we find that N = X vithyan V4/3—v9; the gray matter frac-

2van \3/V
. vV, vg A/ V2 Hyan V4/3 2
tion of the total volume becomes ¢ = —¥-2¢ W4 . For large V
Vv 2vay V4/3

we see that the gray matter fraction vanishes as Vﬁ ~ #

A mouse brain contains about VJ* = 0.1 cm? gray and VI = 0.01 cm?
white matter (it contains about 1.6- 107 pyramidal cells or 1.6 - 10° mini-
columns) (Zhang and Sejnowski, 2000). Using these numbers, we may
calculate v4 and a,, and then plot how the white and gray matter vol-
umes grow as the brain is scaled up by adding more neurons. In fig-
ure 7.1 it is shown that white matter completely dominates our hypo-
thetical brain as it is scaled up. This will happen eventually, and with
the same asymptotic power law (%} ~ #), regardless of the following:

e The details of the gray matter computational unit and the white
matter wiring.

e The average length of global connections, as long as it is a fixed
fraction of brain size.

e The fraction of possible connections that are realized.

7.2 Connectivity structure

The above scaling argument, while simplistic, conclusively rules out
random connectivity in the large scale cortex. This means that there
must be some form of localized structure in corticocortical connectiv-
ity. Two types of such models are small world- and scale free networks.
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Figure 7.1: Scaling of white and gray matter in a hypothetical brain.

A small world network can be represented as a graph, where vertices
typically have a large number of local connections to nearby vertices,
but may also have one or a few global ones. Whether this architec-
ture falls under the above scaling argument depends on how the global
connections are set up; I will not here look into how to scalably wire
the cortex based on a small world prescription. The prevalence of lo-
cal connections leads to a high clustering, whereas the smaller number
of global connections suffice to yield a short average path length. In
the remainder of this chapter one particular small-world type network
that I have already dealt with will be investigated; the hypercolum-
nar attractor network. This network has high local connectivity in the
hypercolumns, but fewer global connections in between them.

7.2.1 Patchy connectivity

When viewed on an intermediate scale, the connectivity of the cerebral
cortex shows a peculiar structure. It is patchy, meaning that two ar-
eas on cortical surface the scale of cortical hypercolumns tend to be ei-
ther extensively interconnected, or not interconnected at all (Boyd and
Matsubara, 1991). In this section I describe a model designed to un-
derstand this patchy connectivity, based on a hypercolumnar network,
structurally similar to the biophysically detailed model described in
chapter 6.

First we consider two extremes; one "fully patchy” case where each
hypercolumn communicates with all minicolumns in another hypercol-
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umn, or with none. This means that the network connectivity is de-
fined strictly on the hypercolumnar level, as opposed to the minicolum-
nar one, and would manifest itself as highly patch connectivity if we
were to trace the lower level connectivity. At the opposite "non-patchy”
extreme, connections between minicolumns are independently estab-
lished, meaning that the connectivity matrix is defined on the mini-
columnar level. We investigate three versions of this kinds of patchi-
ness; one which applies to the incoming connections, one which applies
to the outgoing ones and finally a reciprocal case. The storage capacity
of the network is evaluated as a function of patchiness, using numerical
simulations as well as mathematical analysis.

7.3 Analysis of patchy connectivity

We analyse the network in two versions, the only difference being the
learning rule for the synaptic weight matrix. The first version uses the
sparse Hopfield learning rule previously described, the second one uses
the Willshaw rule, which is similar, but with all weight values clipped
at zero or one. For both models, the stability of the learned patterns is
analysed. A pattern is stable if for each hypercolumn the ”correct” (al-
ready active) minicolumn receives the highest support value. For both
models I describe how to calculate an approximate probability distribu-
tion for the support values, for both the "correct” and ”incorrect” mini-
columns and thereby the probability of pattern stability. We describe
the clustering of the hypercolumnar network by the parameter C, run-
ning from 1 in the fully clustered network to 0 in the independently
wired one. The task is then to find the optimal clustering value, for the
highest storage capacity.

Further notation will be U for the number of minicolumns (meaning
that 1/U is the activity level of the network), H for the number of hy-
percolumns and P for the number of stored patterns. The connectivity
is described by K; for the fully clustered network this is the number of
hypercolumns that are connected to each other hypercolumn.

7.3.1 Hopfield learning rule

The Hopfield learning rule is linear in the sense that each stored pat-
tern adds to the synaptic matrix. The weight increment for each pat-
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tern can be described by a stochastic variable X;;

(1—1/u)? 1/u?
Xk = (1—-u)/u? 2(u—1)/u?
1/U? (u—1)2%/u?

These are potential synaptic weights in the sense that they will be
realized only for those {ij} where a connection actually exists. The re-
alized synaptic weights are the sums over the contributions to X}; from
each pattern, gated with a binary variable Yj; that indicates whether
the connection exists; Wy; = Yj; ZE:1 Xi;. The support for any minicol-
umn, when the pattern &}’ is active, is the sum of the synaptic weights
linking it to the active minicolumns;

P
1 1
k k p=1

This sum may be partitioned across the "block” hypercolumns that are,
depending on the clustering parameter C, more or less completely con-
nected to the hypercolumn where our minicolumn resides and the "non-
block” hypercolumns that are not connected at all in the fully clustered
case, but otherwise have a non-zero probability of being connected. The
central limit theorem is applied to approximate the sum of the support
variables as a normal distribution. We have the average E(Xy) = 0
and variance V(X;;) = (U — 1)2/U% We then treat the minicolumns
that are part of the active pattern separately from those that are not.
For the latter, the &, Y and X are independent and we calculate the
average and variance of their support values to be E(S;) = 0 and
V(S;) = KPV(Xy)/N2 In the variance calculations, the Y; variables
contribute, through an addition formula for second order moments, but
in this case they have no effect because the average weight is zero.
For the S, the situation is similar, except for the connections to other
units in the same pattern. For those, the &} is known to be active and
the weights will have a non-zero mean since this pattern was one of
the learned ones. The Y;; may still be zero however and this is where
the difference between the patchy and non-patchy networks come in.
The mean E(S]) = K(1 — 1/U)? is independent on patchiness, but the
variance;

K
N2(H—1)
© ((T=1/WHA = C) + (K+ 1) =K = 1) + (H=1)V(X})

V(SH) =

1
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becomes greater for the less patchy cases (smaller C) because of how
the second order moments are added.

7.3.2 Willshaw learning rule

The probability that an entry in the synapse matrix of the Willshaw
memory is used, when storing a single pattern is p, = 1/n% After
storing P patterns, the density of ones in the memory matrix is

pi=1-(1 —‘Po)P.

We may think of the fully clustered (patchy) extreme as a starting
point, generating the less patchy networks by randomly relocating mini-
column connections. In the initial, fully clustered, network, the input to
a particular minicolumn unit comes from the K “block” hypercolumns
that are fully connected to the unit’s hypercolumn. For a given clus-
tering measure C, the ratio of units that have been relocated from this
starting point is 1—C. When a connection is relocated, it may be moved
either to another “block” hypercolumn, or to a “non-block” hypercol-
umn. The probability of the former case is ﬁ Therefore, the probabil-
ities that a connection is present are, in the block and non-block cases
respectively;

K
L= (1-0)—.
P ( C)H

K
H

We now consider the stability of patterns. To this end, we first con-
sider one hypercolumn. We calculate the support level of the unit that
is part of the active pattern (S*) and that of the other units (57):

K H—K

St = Y B+ > Nf
i=1 i=1
K H-—K

ST = ) Bi+)> N,
i=1 i=1

where the variables B; are the contributions from the block parts and
the N; are from the non-block parts. Each of these stochastic variables
take the value 1 precisely when a) there is a connection from the active
unit in the other hypercolumn to the unit under consideration, and b)
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this synapse entry is set to one. The latter is always true for the “4”
units, in the active pattern. Assuming independence between the B;:s
and the N;:s the sums become binomial distributions;

St € Bin(K, py) +Bin(H—-K -1, p,.)
S™ € Bin(K, ppp1) + Bin(H—-K—1, p,p1).

The probability for the pattern unit having strictly larger support than
any one other unit becomes

Punit = P(ST > S7). (7.1

The probability for stable recall in one hypercolumn becomes phyper =
pe.. and the probability that all hypercolumns are thus stable is pyattern =
Pliper = Pumy- This is also the expected ratio of stable patterns for a
given memory load;
r=P(sy >s_ )4

We can now determine the storage capacity, given our performance
criterion. The summation over the possible outcomes for the stochastic
variables ST implicit in equation 7.1 can be carried out exactly for any
reasonably small network size, or be approached by a normal approxi-
mation for very large networks.

7.4 Results

In addition to the above analysis, we simulated the network storage
capacity using a computer implementation. We determined storage
capacity in both the analytical approach and the simulations as the
largest number of patterns that could be retrieved, varying the number
of stored patterns to achieve the optimum number.

Networks with patchy connectivity were found to have higher stor-
age capacity than non-patchy networks (figure 7.2). This is due to a
larger variability in the non-patchy networks. Simply stated, there
is a risk that important, signal-carrying connections may be missing,
when connectivity is less structured. This may explain the connectivity
structure seen in the brain. Further, the analysis shows that the most
important type of clustering is "sender side” clustering; meaning that
all minicolumns should be represented when a hypercolumn projects
to another hypercolumn, leading to a prediction that this type of clus-
tering should be strongly represented in the brain.



64 Chapter 7. The large scale cortex

500

—— Hopfield Analytic
450 | —»— Hopfield

—— Willshaw Analytic
400 | —e— Willshaw

0 20 40 60 80 100
Clustering (%)

Figure 7.2: Storage capacity in the patchy hypercolumnar network, as
a function of clustering. Shown are analytical and simulation results
for networks with Hopfield and Willshaw learning rules. High cluster-
ing leads to a higher storage capacity.



Chapter 8

Conclusions

I have in this thesis studied some aspects in an overall picture of the
cortex. The central piece is attractor memory function which allows for
storage and retrieval of arbitrary memory patterns. Attractor mem-
ory systems are notable for their content addressing capabilities. This
allows for generalizing experiences to novel situations; very rapidly ac-
cessing past experiences similar to the present situation. Using such
similarity-based computation, many challenging tasks may prove to be
nothing more than memory retrieval, but there is a catch. To access
similar memories, there must be a metric or a measure of what “sim-
ilar” means. To an attractor memory system, the measure of similar-
ity is embedded in the representation — the codes used by the system
for different inputs, objects or situations. Constructing such a code is
highly non-trivial; for it must entail all the high level features and ab-
stract concepts that one desires the system to handle.

I have suggested a first step in the complex process of generating
representations for sensory inputs; a way to produce efficient codes
from natural image data. The codes generated by the proposed model
are well suited for storage in an attractor memory; they are binary,
sparse and have little internal correlations. In experiments I have
found that transmission and storage of such codes is more efficient
than using previously suggested representations that do not optimize
a discrete objective function.

When dealing with artificial attractor memory systems, we often
measure just a single aspect of their performance, notably storage ca-
pacity. It is important to realize that other characteristics are neces-
sary for attractor memories to be good citizens in the computational
community of the brain. Working memory has been suggested to oper-
ate as an attractor memory and long term memory is certain to be fun-
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damentally involved in cognitive tasks. Such tasks certainly involve a
temporal aspect. I model this kind of task using a sequence learning
model and argue that in such a situation heteroassociative attractor
memory does best to perform its retrieval and then get out of the way.
My model sequence learning network demonstrates how that can be
accomplished by way of synaptic dynamics, without sacrificing storage
capacity.

Brain theories must be solidly rooted in empirical knowledge. 1
show, in a methodological review, that model realism is not sufficient
to ensure this. But by constructing similar models at various levels of
abstraction, high level models may be more tightly coupled to the real
brain. For a biophysically detailed attractor memory model, I show
how virtual experiments, e.g. EEG measurements, may be performed
on the model and directly compared to actual experimental results. Us-
ing an abstract model of the same type on the other hand, a possible
functional explanation for the experimentally observed phenomenon of
reciprocally patchy connectivity in the cortex is put forth.

By linking abstract and detailed models, by analyzing constraints
imposed on cortical architecture from scaling requirements and by con-
sidering experimental results from a functional perspective, we are
slowly increasing our knowledge of the computational functions hid-
den in the cerebral cortex. In this thesis I have sampled but a few
pieces of that intriguing puzzle.
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