The Efficiency of Software
Transactional Memory

ERIK HE
and HENRY RODR

LIN
S,
EKTHR

VETENSKAP
39 OCH KONST 9%

ST

KTH Computer Science
and Communication

Bachelor of Science Thesis
Stockholm, Sweden 2010

The Efficiency of Software
Transactional Memory

ERIK H

EL
and HENRY RODRI

IN
CK
Bachelor’s Thesis in Computer Science (15 ECTS credits)
at the School of Computer Science and Engineering
Royal Institute of Technology year 2010

Supervisor at CSC was Mads Dam

Examiner was Mads Dam

URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2010/
helin_erik_OCH_rodrick_henry_K10003.pdf

Royal Institute of Technology
School of Computer Science and Communication

KTH CSC
100 44 Stockholm

URL: www.kth.se/csc

Abstract

Concurrency problems in computer programs are notori-
ously hard to solve correctly. This is largely due to the
complexity of reasoning about and using semaphores and
similar locking mechanisms. In this study, an alternative
model for solving concurrency related problems called Soft-
ware Transactional Memory (STM) is evaluated.

The evaluation is done using the Haskell programming
language, which supports both concurrency models. For
benchmarking, solutions to two typical concurrency prob-
lems have been developed. The performance aspects stud-
ied are running time, memory consumption and scalability.

The results show that the two different concurrency
models have similar performance characteristics in many
cases, an important exception being that STM performs
much worse when a lot of work is performed inside a trans-
action.

The conclusion is that Software Transactional Memory
can be an efficient alternative to semaphores if used care-
fully.

iii

iv

Referat

Effektiviteten hos Software Transactional
Memory

Problem i datorprogram relaterade till samtidig exekvering
av kod ar Okédnt svara att 10sa. Detta beror till stor del
pé svarigheterna med att resonera kring och implemente-
ra denna typ av programkod med hjélp av semaforer och
liknande lasmekanismer. I denna studie har en alternativ
modell for att 16sa samtidighetsrelaterade problem kallad
Software Transactional Memory (STM) utvérderats.

Utvarderingen har gjorts med hjilp av programspraket
Haskell, vilket stéder bade STM och semaforer. Fér bench-
mark har l6sningar till tva typiska samtidighetsrelaterade
problem utvecklats. Prestanda har sedan métts med avse-
ende pa kortid, minnesatgang och skalbarhet.

Resultaten visar att de tva olika samtidighetsmodeller-
na har likartade prestandaegenskaper i manga fall. Ett vik-
tigt undantag dr att STM-16sningarna blir betydligt 1&ng-
sammare an semaforlosningarna da mycket jobb utfors i en
transaktion.

Slutsatsen ar att ett omsorgsfullt anvindande av STM
kan vara ett effektivt alternativ till semaforer.

Contents

1 Introduction 1
2 Background 3
2.1 Software Transactional Memory 3
2.1.1 Definition of Software Transactional Memory 3

2.1.2 Atomic Blocks 4

2.1.3 Concurrency Control 4

2.1.4 Update Strategies 5

2.1.5 Further Design Aspects)

2.2 Introduction to Haskell 6
2.2.1 Main features 6

2.2.2 Example programo 6

223 Monads e 6

2.3 Concurrency In Haskell 7
2.3.1 Threads 7

2.3.2 Semaphores 8

2.3.3 Software Transactional Memory 8

2.4 Literature review 9

3 Method 11
3.1 Method 11
3.1.1 Tools e 11

3.2 Problems 12
3.2.1 The Producer-Consumer Problem 12

3.2.2 The Bathroom problem 14

4 Results 17
4.1 Results. e 17
4.1.1 Bathroom 17

4.1.2 Producer-Consumer 20

4.2 Discussion e e e e 24
4.3 Conclusion 25
Bibliography 27

vi CONTENTS

Appendices 29
A Source Code 31
A.1 Producer-Consumer problem 31
A.1.1 Semaphore L 31

A12 STM e 34

A.2 Bathroom problem 36
A.2.1 Semaphore 36

A22 STM e 37

Chapter 1

Introduction

The purpose of this study is to evaluate the performance of Software Transactional
Memory (STM) by comparing it to the traditional semaphore based approach to
solving concurrency related problems in programming. In order to understand why
Software Transactional Memory has evolved as a way of solving such problems, it
is important to understand the concepts of concurrency and parallelism.

In this essay, the terms parallelism and concurrency will be used in the following
way:

e A parallel program utilizes two or more processors to speed up execution,
but is in no semantic way different from a non-parallel one, nor is it non-
deterministic. All the parallel aspects of the program are added "under the
hood”, i.e. with the help of a compiler or a run time system.

e A concurrent program is a program which solves a given task with the help
of concurrency. This means that the program is using one or more threads
to solve a problem. These threads may run on more than one processor, but
they do not necessarily have to. A concurrent program is non-deterministic,
which means that it is not possible to know in advance exactly in which way
the program will execute.

One justified question is whether concurrency is needed in programs at all. The
answer is that many problems can be expressed in a very natural way with the help
of concurrency. For example, GUI applications usually handle input events from
the user in separate threads to make the user interface feel more responsive.

The problems with concurrency arise when the different threads need to commu-
nicate with each other. A currently executing thread may at any time be preempted
(interrupted) to let another thread use the CPU, and usually the programmer can
not control this process at all. This means that the programmer has to make sure
that the threads can be interrupted without putting the program in an inconsistenst
state.

Today, there are mainly two different approaches to how to solve this problem

[1:

2 CHAPTER 1. INTRODUCTION

e Message passing - Two or more threads communicate by sending messages
back and forth between each other. These messages may include data and
other information which the threads need to access.

e Shared memory - Two or more threads communicate by sharing a block of
memory. By writing to a shared memory location, a thread can change the
state of another thread.

This essay will focus on the second approach, shared memory. Shared memory
programming is usually carried out by using some kind of locking mechanism to
prevent two threads from using the shared resources at the same time. The basic
building blocks in these locks are semaphores, first introduced by Edsger Dijkstra
[3]. They behave much like ordinary integers, but with three main differences [4]:

i) A semaphore can be initialized to any integer value, but once it is initialized, the
value of the semaphore can only be changed by incrementing or decrementing
it.

ii) A semaphore which is decremented to a negative value blocks the thread that
modified it.

iii) A semaphore which is incremented by a thread unblocks exactly one blocked
thread if any threads are blocked. The thread which is being unblocked is
chosen in no particular order.

The operations increment and decrement are often called signal and wait. A
semaphore which is initialized to the value of 1 is often called a binary semaphore.
This is because such a semaphore only allows one thread at a time to access the
shared memory. Another common name for binary semaphores is "mutex” (a port-
manteau of the words mutual and exclusion).

By using semaphores, one can make sure that the shared memory is accessed
by a correct number of threads at the same time. However, as the complexity of
a concurrency related problem increases, the problem becomes difficult to solve by
using semaphores. Due to the asynchronous nature of concurrent programs, it is
hard to convince oneself (and others!) that the semaphores are being used in a
correct way.

Fortunately, other techniques have evolved with the promise to make the writing
of concurrent applications easier. One of them is called Software Transactional
Memory.

Chapter 2

Background

2.1 Software Transactional Memory

This section gives an overview of some important aspects of Software Transactional
Memory (STM) and the alternative strategies used today when designing such sys-
tems. In addition to giving an overview of the field, a brief understanding of the
topics discussed here will be important later when the particular implementation of
STM in Haskell is analyzed.

2.1.1 Definition of Software Transactional Memory

In order to define the concept of Software Transactional Memory, we must first
define what we mean by a transaction. Larus and Rajwar [13] describe transactions
as sequences of actions that appear indivisible and instantaneous to the outside
observer.

Transactions are at the core of the programming model for database systems
and have been so for a long time. In database systems theory, four properties,
commonly known as the ACID properties, are used to describe the desired behaviour
of transactions: [20]

o Atomicity - Either all actions of a transaction succeed or, in case of a failure,
any actions performed by a partial transaction will be undone.

e Consistency - A transaction executed in isolation preserves the consistency of
the database. For example, if money is to be transferred from an account A
to another account B, the consistency requirement is that the sum of A and
B is unchanged.

e Isolation - Concurrent transactions must be executed as if they were run in
isolation, that is, one transaction should not see any inconsistent intermediate

states created by another concurrently running transaction.

3

4 CHAPTER 2. BACKGROUND

e Durability - If a transaction is successful, the changes made to the database
must survive any system failure.

A Software Transactional Memory system is based on nondurable transactions
(naturally said to have the ACI properties). The durability requirement is not
needed in order to define STM transactions, since it is not a property of the generic
computer programs that STM is designed for.

2.1.2 Atomic Blocks

One of the key concepts of STM is the atomic block, a programming construct
that allows the programmer to group operations to be performed in isolation. Usu-
ally, this idea is presented as a programming language keyword, atomic, with an
accompanying scope holding the code of the transaction:

atomic {
statements. ..

Conceptually, the atomic block is a simple form of Hoare’s so-called conditional
critical region (CCR), a classical mechanism for defining concurrent algorithms.
Hoare’s goal when introducing CCR was to move the responsibility of creating
necessary semaphores from the programmer to the compiler, thus reducing the
complexity of concurrent code. [6]

Executing code in an atomic block (i.e. a transaction) has two different defined
outcomes: Either the entire transaction succeeds and the changes become visible
outside the transaction, or the transaction aborts and leaves the program in an
unchanged state. A third, undefined outcome, is that the code in the transaction
does not terminate.

An abort happens if access to a shared memory location conflicts with another
transaction or if a deadlock is discovered. If a transaction aborts, the system re-
executes it in hope that the problem will not occur again.

2.1.3 Concurrency Control

The fact that conflicting transactions must be aborted and re-executed does not put
any specific constraints on how and when the STM system should detect conflicts
and trigger the abortion.

As it turns out, this activity, which is called concurrency control, is handled by
different STMs using either a pessimistic or optimistic approach. [13]

In a pessimistic STM, conflict detection and conflict resolution (abortion and
re-execution) takes place instantaneously after a conflict occurs. This might seem
like the most efficient approach since you “throw away” the least possible number
of computations in case of a rollback.

2.1. SOFTWARE TRANSACTIONAL MEMORY 5

However, if there are more than two simultaneous transactions, it’s not always
clear what the best strategy is. Assume that two transactions A and B both conflict
with a transaction C but not with each other. It would suffice to abort C, but it is
hard for the pessimistic algorithm to know this since it has no knowledge in advance
regarding whether A and B are conflicting or not [22].

Because of such scenarios, the alternative approach, optimistic concurrency con-
trol, validates only when it is time to commit.

2.1.4 Update Strategies

One problem when designing an STM system is to decide on how the shared memory
should be updated by a transaction. As with concurrency control, there are two
main strategies here: Direct updates and deferred updates. [8]

In an STM system with direct updates, transactions directly modify the shared
resources. The original value of the modified object must be stored by the system
in order to be able to restore the original state if the transaction aborts. It is also
the responsibility of the STM system to provide some kind of concurrency control
On MEeMmOry access.

Deferred updates, on the other hand, are made private to the transaction (a
separate record). When the transaction commits, the entire record is written to the
shared memory. This strategy is good when there are many aborted transactions,
since the shared state is not changed and does not have to be restored. However,
there is considerably more work involved in committing the transaction with this
strategy, and the commit action must appear atomic to the other transactions.

2.1.5 Further Design Aspects

As discussed in section 2.1.3, the choice of transaction to abort in case of a conflict
might have an impact on performance. There is also the possibility that a trans-
action hardly gets to commit because of repeated conflicts with other transactions.
STM systems usually provide some kind of contention manager to deal with such
issues. [22]

Another thing that one must decide when designing an STM is what it should
mean for two transactions to conflict. This could be defined in several ways. One
possibility is to say that transactions conflict if they try to access the same word
in memory. Another possible definition is that a conflict occurs when transactions
access the same object (which of course would be a language specific definition). On
which level a conflict is detected is called the granularity of an STM system. [25]

A third problem is how to deal with side-effects. Imagine for example that an
I/O action takes place inside a transaction (like printing a message on the screen).
In general, such actions cannot be undone and must be avoided in transactional
code [11]. As we will see, this is less of a problem in the Haskell programming
language, since side-effects are well isolated from pure (side-effect free) functions.

6 CHAPTER 2. BACKGROUND

2.2 Introduction to Haskell

A short review of the Haskell programming language follows below. Readers well
familiar with the language may skip to the next section.

2.2.1 Main features

Concurrent Haskell is an extension to the programming language Haskell98 [18].
Haskell has three primary features which will be important when discussing con-
current applications:

o Haskell is a functional programming language. Being a functional language
means that the program only consists of evaluation of expressions [9].

e Haskell is a pure programming language. Being pure means that it is not
possible to update the value of a variable, that is, once a variable is initialized,
the value of it can not change [9].

o Haskell is a lazy programming language. Being lazy means that Haskell only
evaluates an expression when it is needed [9]. The reason for Haskell doing so
is to avoid recomputation of expressions.

2.2.2 Example program

1 -- Multiplies the two numbers a and b
2 mult :: Num t => t -> t
3 mult a b = a * b

Code 2.1. A simple Haskell example

Example 2.1 shows a very basic Haskell program multiplying two numbers:
e The first line is just a comment. A one-line comment always starts with —-.

e The second line is an example of Haskell’s typesystem. Haskell has support
for true polymorphism, which in this case means that mult can take any kind
of number as input, and returns a number of the same type.

e The third line specifies the input arguments as well as the body of the function.
Note that Haskell doesn’t use parentheses around the arguments.

2.2.3 Monads

A question which arises is how Haskell can manage input/output (I/O). After all,
I/O can be seen as updating the state of the "world”, and since Haskell is pure,
it can not modify the world outside a function. The answer is called monads. A

2.3. CONCURRENCY IN HASKELL 7

monad can be viewed as a wrapper around the world. The print function in Haskell
does not lack a return value, instead it returns a monad that contains two things: !

The new world, which essentially is the old world with the evaluation of print
applied to it.

The pure result of print, which is the string that print is supposed to print
on the screen.

With the help of this abstraction, Haskell can be a pure language and at the
same time perform I/O. Monads can also be used for other purposes than I1/O. This
will be of great importance when discussing the implementation of STM in Haskell.

2.3

Concurrency In Haskell

The following section discusses the main components of Haskell’s concurrency sup-
port, and how they are used.

2.3.1 Threads

Haskell has several different kinds of threads, all for different purposes. To under-
stand how concurrency works in Haskell, it is important to have an understanding
of the various kinds of threads:

Sparks - A spark is the lightest of all threads in Haskell. In fact, it is not even
a thread to begin with, instead it’s a potential thread. A spark is created with
the par function. A spark is turned into a Haskell thread when the thread
scheduler in Haskell has the capacity available to spawn new threads.

Haskell threads - A Haskell thread is much lighter than an Operating System
(OS) thread in terms of system resources used [15]. The Haskell threads run on
a finite-sized private stack but they all share the same heap. Multiple Haskell
threads usually run on a single OS thread. Haskell threads are created with
the function forkIO.

Operating System threads - An OS thread is an abstraction over the operating
system’s native threads (POSIX or Windows threads). OS threads are used by
Haskell in order to support Symmetric Multiprocessor Parallelism (SMP). The
typical scenario is to use the same number of OS threads for an application as
the number of cores on the CPU. An OS thread is created with the function
fork0S.

The different threads are controlled by the Haskell Runtime System’s (RT'S) own
scheduler.

'This is a bit simplified, for the full explanation, see Tackling the Awkward Squad [12].

8 CHAPTER 2. BACKGROUND

2.3.2 Semaphores

Haskell supports communication between threads using shared memory. To prevent
two or more threads from accessing the same memory at the same time, Haskell
introduces the type MVar. An MVar can be viewed as a binary semaphore[18] with
the exception that if there are more than one waiting threads, they are woken up in
first in first out (FIFO) order [24]. In contrast to semaphores, MVars can also store
a value in addition to its use as a simple lock. The reason for this is due to the
functional nature of Haskell. In imperative programs, one often uses a semaphore as
a lock around a global variable. This global variable can be seen as the value which
is stored inside the MVar. MVars support both the signal and wait operations with
the functions putMVar and takeMVar. These functions can also access and update
the data stored inside the MVar.

Haskell also has support for ordinary semaphores through the type QSem. QSem
is built on top of MVar and works much as a regular semaphore. The only difference
between traditional semaphores and QSem is that QSem, just like MVar, wakes the
thread which has been asleep for the longest time when signal is called [24].

2.3.3 Software Transactional Memory

Much in the same way as MVars are used to share data between threads, TVars are
used to share data between transactions in Haskell. Similar to the MVar, the TVar
supports the functions putTVar and readTVar. The TVar holds both the data which
is shared, as well as regulates the access to it. This is, once again, very similar to
the design of MVar. However, the type signature of readTVar is

readTVar :: TVar a -> STM a
while the type signature for takeMVar is
takeMVar :: MVar a -> I0 a

The important difference is that readTVar returns an STM monad, while takeMVar
returns an 10 monad. Because of Haskell’s type system, this results in three impor-
tant rules for transactions:

e« No STM actions can be performed outside a transaction, since any function
using readTVar or putTVar must be of type STM a.

e No side-effects can occur inside a transaction, since any function calling an-
other function with return type I0 must also be of type I0. However, all
transaction must be of type STM, and therefore can not call any I0 functions.

o Transactions can be expressed very naturally with the do syntax, since STM is
a monad.

The last point means that a transaction can be expressed as:

2.4. LITERATURE REVIEW 9

transaction = do expression 1
expression 2

expression n

Since an important part of almost all programs is to communicate with a user
via I/O, it must be possible to use the data returned from a transaction. This
problem is solved with the function atomically, which has the type:

atomically :: STM a -> I0 a

Haskell’s runtime system uses deferred updates by writing to a record instead of
updating a variable directly [7]. Optimistic concurrency control is used when vali-
dating transactions, and each time a transaction is validated, it locks the validator
to ensure atomicity. Instead of locking the entire validator, there is also an option
to just lock the current TVar being validated [7].

2.4 Literature review

One of the earliest traces of Software Transactional Memory is a paper by Lomet
published in 1977 [14]. Even though the programming language construct he pro-
poses has a different name, it is essentially the same idea as STM. Lomet’s goal was
also the same as that of contemporary STM researchers — to move the responsibility
of concurrency control from the programmer to the system.

The STM-like system proposed in Lomet’s paper could be described as being
rather aggressive since it has both pessimistic concurrency control and direct up-
dates. No practical implementation of Lomet’s system was ever created.

The term Software Transactional Memory first appeared in a paper by Shavit
and Touitou in 1995 [19], and the system described in the paper is commonly known
as the first actual example of transactional memory implemented in software (hard-
ware based solutions were proposed earlier).

Just like Lomet’s STM, Shavit and Touitou’s system is pessimistic and does di-
rect updates. One of the major drawbacks with their design is that the transactions
are static, that is, the resources being guarded by a transaction must be explicitly
stated.

Another major contribution, at least as far as STM in Haskell goes, is Keir
Fraser’s thesis Practical lock-freedom from 2004 [5]. The thesis proposes the imple-
mentation of STM that Haskell’s variant is based on.

Fraser presents STM as a lock-free abstraction for concurrent programming and
relates it to other lock-free techniques. Specifically, he presents a generalization of
the atomic compare-€$-swap-instruction found in many modern processor architec-
tures. His multi-word compare-&-swap shares many properties with STM, since
both techniques allows for several instructions to be executed atomically.

The first paper about STM in Haskell was written by Simon Peyton-Jones et
al [7]. This paper discusses how STM can be implemented in Haskell, and explains

10 CHAPTER 2. BACKGROUND

the major problems and their respective solutions. The STM implementation in the
paper lacks extensive testing, which is something the authors themselves mention
at the end.

This was picked up by Tim Harris et al [17] in a paper which discusses how
Haskell STM applications can be profiled. The paper presents detailed statistics of
several profiled applications. The profiling part is very thorough, but the paper only
compares different STM applications to each other. This makes it harder to fully
understand the performance of STM compared to other concurrency techniques.
The benchmarks were run at a time when the implementation of STM wasn’t as
mature as it is today, and it would be interesting to see these tests being run with
the latest version of GHC.

An article was later written by Don Jones Jr, Simon Marlow and Satnam
Sing [10], discussing in great detail the aspects of profiling parallel applications in
Haskell. An implementation of a flexible profiling framework in Haskell is presented
together with a GUI application called ThreadScope. ThreadScope visualizes the
tracing of a program, and several use cases are discussed. Unfortunately, Thread-
Scope does not yet support tracing of STM transactions.

In 2009, Tim Harris et al followed up their own paper by further examining at
which level the profiling of STM applications should be done [21]. In this paper,
they turn their focus to the individual transactions instead of the applications. This
results in much more fine-grained statistics, which reveals more of the performance
characteristics of an STM application.

Simon Marlow et al [23] wrote in 2009 a paper which compares different im-
plementations of singly-linked lists in Haskell. The implementations differ in which
concurrency technique they are making use of. The compared techniques are I0Ref,
MVar and STM. The paper offers a detailed description of the different implemen-
tations, as well as a comparison of the running time and scalability of the different
solutions. The tests are run using version 6.10.1 of GHC. Our study is based upon
this work, but will focus on different kinds of concurrency problems and we will only
compare the MVar and STM techniques. However, we will further extend the mea-
surements to also include how much memory the different concurrency techniques
are using.

Chapter 3

Method

3.1 Method

To measure the efficiency of STM, two different solutions have been developed for
two different kinds of concurrency related problems. The first kind of solution uses
semaphores for concurrency control, while the second kind uses STM.

Two different kinds of problems have been chosen for testing the performance in
different situations. The first problem is a traditional producer-consumer problem,
while the second problem is more of a synchronization problem. Both problems are
described in detail in section 3.2.

The two different solutions for each problem have been benchmarked using the
tools described in section 3.1.1. The following aspects of the solutions are bench-
marked:

e Running time - How long time a solution runs on a given input.
e Memory usage - How much memory a solution uses on a given input.

e Scalability - How the running time for a solution is affected by running it on
a CPU with one to four cores.

In order to empirically determine the efficiency of STM, the benchmarks for the
different solutions have been compared to see if any variant outperforms the other.

3.1.1 Tools

To benchmark the solutions, two different tools have been used:
o Criterion - Criterion[16] has been used for reliable runtime statistics.

o GHC Runtime System - The GHC Runtime System (RTS) has been used for
statistics about memory consumption with the help of the garbage collector.

11

12 CHAPTER 3. METHOD

3.2 Problems

The problems are taken from The Little Book of Semaphores [4] and the semaphore
based solutions follow the ones in the book. These solutions are well tested, which
minimizes the risk for bugs in our implementations.

In all the solutions, the threads need to perform some work. Since the solutions
only are used for benchmarking, the work consists of solving the n-queens problem [2]
for different sizes of n.

The full source code for the solutions can be found in appendix A.

3.2.1 The Producer-Consumer Problem

The first concurrency problem in this study is the classical Producer-Consumer
problem. The main reason for studying this problem is that it often appears in real
world applications, not just as puzzles in textbooks.

In the Producer-Consumer problem, two types of threads exist, all sharing the
same queue. The first kind of thread, the producer, generates data of some kind
and pushes it to the queue. The second kind of thread, the consumer, pops data
from the queue and processes it.

An event driven system could be implemented using this technique, where mul-
tiple threads (the producers) could fire events (produce data) to be handled by one
or more event handlers (consumer threads).

Implementation using semaphores

Among the possible solutions to this problem, a standard solution exists using three
semaphores. First of all, a mutex is used to serialize access to the queue. The two
other semaphores could be called items and spaces (these are the names used in
The Little Book of Semaphores [4]) and are used for bound checking.

The items and spaces semaphores could conceptually be though of as represent-
ing the number of items in the queue and the number of empty slots, respectively 1.
Hence, items is initially set to zero and spaces is set to the capacity (maximum size)
of the queue.

When a producer is ready to push an item on the queue, it will first call wait
on the spaces semaphore. If the queue is full, spaces will be zero and the producer
blocks. Similarly, consumers will wait on the items semaphore and block if no items
exist to consume.

The items semaphore is signalled by the producer when it has pushed a new
item to the queue and the spaces semaphore is signalled by the consumer when an
item is popped.

A possible danger when implementing this solution is that locks are taken in the
wrong order. Suppose that the producer thread first calls wait on the queue-access

'In practice, this model is false. For example, a producer will decrement the spaces semaphore
to zero before filling the last slot in the queue, and other threads could get to run in-between.

3.2. PROBLEMS 13

mutex and then on the spaces semaphore. If the queue is full, the producer will
block, holding both the spaces and the mutexr locks. Now, if a consumer is to pop
an item off the queue, it must first acquire the mutex lock, but since this lock is
held by a producer, the consumer will also block and the system deadlocks.

Implementation using STM

When implementing a Producer-Consumer solution in STM, it is possible to think
of the problem in a sequential manner. Instead of using awkward bound checking
semaphores, the length property of the queue can be used as long as the bound
checking takes place inside an atomic block.

For example, a producer thread that is ready to push an item will enter an
atomic block and acquire a reference to the queue from a transactional variable
(TVar, as described in 2.3.3). The producer will then check the length of the queue
and compare it to a variable specifying the capacity of the queue. If there is space
left in the queue, the buffer will be updated and written back to the TVar, otherwise
the STM function retry will be called.

The transaction can also abort and retry if inconsistencies are discovered at
commit time. Suppose that two producers P; and P» try to push to the queue
concurrently. Further, assume that there is one empty slot in the queue. If P; and
P, enter the atomic block at the same time, they will both discover that there is
still room in the queue and will attempt to push an item. Now, if for example
P, commits first, P;s transaction will be successful and the number of empty slots
in the queue will be set to zero. When Ps tries to commit, the STM system will
discover that the actual state of the queue differs from the state of the queue at
the beginning of Pss transaction. Pas transaction must therefore abort and retry,
hoping for better luck next time.

The consumers can be implemented in a similar way. The only big differences
are that retry is called if the queue is empty and that a value — the item popped
from the queue — is returned from the transaction.

It could be argued that this solution is suboptimal since the entire queue is
wrapped in a single TVar, which possibly introduces false conflicts. For instance,
assume that there are 10 filled slots in a queue with capacity 100. Now, if one
consumer and one producer begin their transactions at the same time and the
producer commits first, the consumer will abort on commit. Since the queue was
not extremely short and the threads modified different ends, there is (in theory) no
real conflict between the two operations.

However, we chose the single TVar approach since it results in a simpler solu-
tion. Also, we believe that this solution allows at least as much concurrency as the
semaphore solution, since it locks the entire queue on update as well.

14 CHAPTER 3. METHOD

3.2.2 The Bathroom problem

The second concurrency problem is about a unisex bathroom. At a big company,
both men and women share the same bathroom. There are however two restrictions
put on the employees on how they may use the bathroom. The first restriction
states that men and women are not allowed to be in the bathroom at the same
time. Second, only three persons are allowed to be in the bathroom at any given
point.

Implementation using semaphores

The solution to this problem follows the solution in The Little Book of Semaphores [4]
at page 177 very closely. Two semaphores, numMale and numFemale, are used for
keeping track of the number of males as well as females currently in the bathroom.

To synchronize how males and females may enter the bathroom, a so-called
lightswitch is used. A lightswitch is a synchronization mechanism which condition-
ally locks a mutex. The idea corresponds closely to how a lightswitch in a room is
used. The first person (thread) which enters a room (critical section) turns on the
lightswitch (locks the mutex). More people (threads) may enter or leave the room
(critical section) as long as the last person (thread) leaving the room turns off the
lightswitch (releases the mutex). The solution uses one lightswitch for the males
and one lightswitch for the females, both locking a mutex empty which tells if the
bathroom is empty or not.

For a "male” thread to enter the bathroom, it needs to lock the mutex empty
with the help of the male lightswitch. The thread then calls wait on the semaphore
numMale. After performing a calculation, it calls signal on the numMale semaphore.
Finally it unlocks the mutex empty through the male lightswitch. The algorithm
works similarly for "female” threads.

The only problem with the solution above is if a male thread enters the bathroom
first. Then, as long as male threads keep entering the bathroom, no female thread
may enter. Therefore, the female threads will possibly never be allowed to enter,
even though they entered the queue to the bathroom before the male threads. To
solve this, a mutex named turnstile is used. The turnstile mutex is locked before
using a lightswitch to lock empty. As soon as the lightswitch acquires the lock on
empty, the turnstile is signalled. Due to this, threads of different gender enter as
they arrive to the bathroom.

Implementation using STM

The STM solution consists of several transactions. The transactions are designed to
perform tasks similar to the semaphores in the solution above. All the transactions
are laid out sequentially in a do block. Hence, if a thread has to retry one of
the transactions, it won’t be able to immediately go on and perform the following
transactions.

3.2. PROBLEMS 15

The semaphore turnstile is modelled as a TVar Bool. The logic of locking the
turnstile is modelled as a transaction which checks the value of the TVar. If the
value is True, i.e. it’s locked by some thread, the transaction calls retry.

The next transaction performs the same logic as a lightswitch combined with
the numMale/numFemale mutex. A TVar Gender called occupier is used, where
Gender is either Male, Female or None. occupier monitors which gender is currently
in the bathroom. The transaction checks if occupier is of the same gender as the
thread. If the gender is the same or None (the room is empty), the transaction will
continue. Otherwise, the transaction is retried. A TVar Int called count, holding
the number of people currently in the bathroom, is then read. If count is larger
than three, the transaction will call retry. Otherwise, the transaction increases
count by one and succeed.

After the gender check follows a transaction that will simply write True to
the TVar representing the turnstile. This indicates that the thread has passed the
gender checking transaction and that another thread may complete the turnstile
transaction.

The thread then performs a computation, which as mentioned earlier consists
of solving the n-queens problem [2].

The last transaction decreases count by one. If count is equal to zero, the
transaction will also set occupier to None. This indicates that the bathroom is
empty and that threads of any kind may enter.

Chapter 4

Results

4.1 Results

All the running time and memory tests were run using GHC 6.12.1 on a computer
equipped with an Intel Core 2 Duo processor at 2x 2.2 GHz and 4 GB of RAM.
The operating system used was the 32-bits version of Ubuntu 9.10. The tests were
run 3 times with the average value used as the result.

The scalability tests were run on a computer equipped with a Intel Core i5 CPU
at 4 x 2.67 GHz. The compiler and RTS used was GHC 6.12.1 and the operating
system was the 32-bit version of Ubuntu 9.10. The computer was equipped with 4
GB of RAM.

In both problems, only the running time was considered when benchmarking
the scalability.

4.1.1 Bathroom

For all the benchmarks of the solutions to the Bathroom problem, the input in table
4.1 was used. The sequences describe in which order people of different gender arrive
to the bathroom.

Length Sequence

8 M FF MM FFF

15 M FF MM FFF MMM FFFF

24 M FF MM FFF MMM FFFF MMMM FFFFF

35 M FF MM FFF MMM FFFF MMMM FFFFF MMMMM FFFFEFF

Table 4.1. M stands for male, F' for female

In all the figures, n stands for the input to the n-queens problem. The n-queens
computation was used as a simulation for a toilet visit.

17

18 CHAPTER 4. RESULTS

Running time

For the running time test, the application Fast is included as well. Fast spawns
n threads which calculate the n-queens problem for a given input. The threads do
not have any restrictions on them, i.e. maximum concurrency is achieved.

The results can be seen in figure 4.1.

n=10
6
5
v
4
z
(]
£, - SEM
> == STM
£ V- Fast
S
@ 2 =
1
v
0
5 10 15 20 25 30 35 40
People (nr)

Figure 4.1. Running times for input sequences in table 4.1

Memory consumption

The results can be seen in figure 4.2.

n=10
50
45
40
35
@ 30
=
> 25 = SEM
g *=STM
g 20
=
15
10
5
0
5 10 15 20 25 30 35
People (nr)

Figure 4.2. Memory consumption for input sequences in table 4.1

4.1. RESULTS 19

Scalability

Two different versions of the problem were considered for the scalability benchmark.
The first version was the original solution, only allowing three threads in the bath-
room at the same time. The second version allowed the same number of threads in
the bathroom as the number of cores that was used. For example, when running
on one core, one thread was allowed, on two cores, two threads were allowed and so
forth.

In both versions, the input used was sequences of length 35. The corresponding
input sequence can be seen in table 4.1.

The results are shown in figure 4.3 and 4.4.

People = 35, n =10
35

N

& SEM
= STM

Running time (s)
P

o
13

0 1 2 3 4 5

Cores (nr)

Figure 4.3. Scalability when three threads are allowed in the bathroom

People = 35,n =10

w
o

w

[d
3

N

& SEM
= STM

Running time (s)
P

nd
o

0 1 2 3 4 5

Cores (nr)

Figure 4.4. Scalability when the same number of threads as cores are allowed

20 CHAPTER 4. RESULTS

4.1.2 Producer-Consumer

Three different versions of the Producer-Consumer problem were benchmarked. In
the first version, no extra work is done in the consumer threads. The second version
computes the n-queens problem for a 9 x 9 chess board in the consumer threads.
This computation is performed outside the critical section, i.e. when the threads
haven’t locked any shared resource. In the last version, the consumer threads also
computes the n-queens problem for a 9 x 9 chessboard. However, the computation
now takes place inside the critical section.

In order to be able to benchmark the Producer-Consumer problem, the problem
was slightly modified. The original version of the problem does not specify when
the program should terminate. In the benchmarked version, a producer produces
a finite amount of items. A producer is done once it has produced all its items.
Additionally, the benchmarked solution puts a restriction on how many items a
consumer is allowed to consume. A consumer is done once it has consumed all its
item. A consumer is also done if there are no items in the queue, nor any producers
left. When all producers and consumers are done, the program terminates.

In all the diagrams, the variables used are:

e Buffer - the size of the buffer.
e Producer - the number of producer threads.
e 1 - the input to the n-queens problem for the producer threads.

e loops - the number of items produced by a producer as well as consumed by
a consumer.

Running time

The results can be seen in figure 4.5, figure 4.6 and figure 4.7.

Buffer = 10, Producers = 10, n = 10, loops = 5
40

35

30

25
20 = SEM
==STM

Running time (s)

s ————N

5 10 15 20 25 30 35
Consumers (threads)

Figure 4.5. No work in consumer threads

4.1. RESULTS

Buffer = 10, Producers = 10, n = 10, loops = 5
40

35
30
25

20 - SEM
> STM

Running time (s)

e —— —— —"

5 10 15 20 25 30 35
Consumers (threads)

Figure 4.6. Work outside critical section in consumer threads

Buffer = 10, Producers = 10, n = 10, loops = 5
40

35
30
25

20 & SEM
= STM

Running time (s)

10 = = =

5 10 15 20 25 30 35
Consumers (threads)

Figure 4.7. Work inside critical section in consumer threads

Memory consumption

The results can be seen in figure 4.8, figure 4.9 and figure 4.10.

Scalability

The results can be seen in figure 4.11, figure 4.12 and figure 4.13.

21

CHAPTER 4. RESULTS

Buffer = 10, Producers = 10, n = 10, loops = 5
100

920
80
70
60

50 & SEM

&= STM

\

40

Memory (kB)

30
20

5 10 15 20 25 3
Consumers (threads)

S

35

Figure 4.8. No work in consumer threads

Buffer = 10, Producer = 10, n = 10, loops = 5
100

90
80
70
60

50 & SEM

== STM
40

N

Memory (kB)

30

20

5 10 15 20 25 3

S

35
Consumers (threads)

Figure 4.9. Work outside critical section in consumer threads

Buffer = 10, Producer = 10, n = 10, loops = 5
100
90
80
70
Z 60
=
> 50 - SEM
g 0 > STM
2
30
20
10
0
5 10 15 20 25 30 35
Consumers (threads)

Figure 4.10. Work inside critical section in consumer threads

4.1. RESULTS

Buffer = 10, Producers = 10, Consumers = 30, n = 10, loops = 5
10

9
8

& SEM
“=STM

Running time (s)
> (5] o ~
N
w
IS

Cores (nr)

Figure 4.11. No work in consumer

Buffer = 10, Producers = 10, Consumers = 30, n = 10, loops = 10

& SEM
== STM

Running time (s)

& o o ~ ® © o =
N
w

Cores (nr)

Figure 4.12. Work outside the critical section in consumer threads

Buffer = 10, Producers = 10, Consumers = 30, n = 10, loops = 5
70
65

60
55
50
45
40
35 & SEM
30 STM
25
20
15
1 2 3 4

Running time (s)

10

Cores (nr)

Figure 4.13. Work inside the critical section in consumer threads

24 CHAPTER 4. RESULTS

4.2 Discussion

To begin with, we would like to point out that the problems used in this evaluation
are by no means a complete representation of all kinds of concurrency problems.
Hence, the results, discussion and conclusion should be read with this in mind.

We would also like to point out that there are several aspects of concurrency that
we haven’t benchmarked and which relate more to software engineering. Among
these are how long time it takes to implement the different solutions, how easy they
are to maintain as well as how easy it is to compose different modules.

In the results, figure 4.7 clearly shows that the STM solution performs worse than
the semaphore solution. This is most certainly due to Haskell’s use of optimistic
concurrency control and deferred updates in the implementation of STM. Each
transaction will begin by altering the buffer, which is followed by a computation.
When the transaction tries to validate, it is likely that another transaction has
finished earlier and updated the state of the buffer. In this case, the first transaction
will not validate and therefore has to implicitly call retry, forcing the computation
in the transaction to be redone. This causes the STM solution to waste time when
performing the same computation over and over again.

This can be further verified by looking at figure 4.13. The more cores the STM
solutions gets, the more transactions it performs in parallel. Therefore, the running
time will decrease, since the additional unnecessary computations will be distributed
over many cores. Perhaps, this problem will be marginalized in the future, since
CPUs are likely to get more and more cores.

It is also noticeable that the running time of the semaphore solution almost
didn’t increase between the tests in figure 4.6 and figure 4.7. One might expect
the running time to be worse when the computation takes place while locking of
the buffer. The reason for this is that the computations performed in the critical
section are small and that the semaphore based solutions never redo any work.

In all the tests, the memory consumed by the solutions increased linearly with
the input. This was true for both the STM and the semaphore solutions, which
can be seen in all the diagrams regarding memory consumption. The memory con-
sumption of the STM solutions seem to grow a little bit faster than the semaphore
solutions, but only by a constant factor.

Our experiments imply that the STM based solutions scale at least as well as
the semaphore based solutions as long as the work done in the critial sections is
minimal. This is not a big surprise, since less work in the critical sections is likely
to cause fewer conflicts and also results in less overhead when transactions abort
and retry.

However, the tests do not tell us much about how well the two approaches work
as the size of the application increases. Our test programs are small and have
fine lock granularity, which leads to low locking overhead. In general, it is hard
or even impossible to maintain such fine lock granularity in a larger system — it
is not uncommon to lock entire objects or parts of the system (for example using
monitors) just to be on the safe side.

4.3. CONCLUSION 25

Since STM code is not subject to deadlocks and similar issues, it is much easier
to keep the transactions small than it is to keep the lock granularity fine. So even
though STM performs worse than semaphores when the work done in the critical
section increases, it is possible that the overhead of using STM is more or less
negligible in a larger system.

4.3 Conclusion

Not all concurrency problems are naturally modelled as transactions. Our STM
based solution to the Bathroom Problem is a good example of this. The solution
looks very much like the semaphore based solution but with the semaphores re-
placed by small transactions checking some condition. This leads us to think that
programmers using STM still need to understand the fundamental problems of con-
currency to some extent, and that it is important to understand in which contexts
STM is suitable. This also includes understanding the performance issues when a
transaction performs a lot of work.

However, we feel that it is more straightforward to model the solutions with
transactions. It is also significantly easier to reason about the correctness and we
believe that this is one of the big advantages of STM.

Given the results of our study, we think that the efficiency of STM is in many
cases sufficiently good for it to be used as an alternative to the traditional concur-
rency model using sempahores.

Bibliography

[11]

Concurrent programming, March 2010. http://en.wikipedia.org/wiki/
Concurrent_computing.

Eight queens puzzle, April 2010. http://en.wikipedia.org/wiki/Eight_
queens_puzzle.

Edsger W. Dijkstra. Cooperating sequential processes. pages 65138, 2002.

Allen B. Downey. The Little Book of Semaphores. Green Tea Press, http:
//greenteapress.com/index.html, 2008.

K.A. Fraser. Practical lock-freedom, ph.d. thesis, university of cambridge.
Technical Report, No. 579, February 2004.

Tim Harris and Keir Fraser. Language support for lightweight transactions.
SIGPLAN Not., 38(11):388-402, 2003. ISSN 0362-1340.

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Com-
posable Memory Transactions. In PPoPP ’05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel programming,
pages 48-60, New York, NY, USA, 2005. ACM. ISBN 1-59593-080-9.

C. Herzeel, P. Costanza, and T. D’Hondt. Reusable building blocks for software
transactional memory. In Second European Lisp Symposium (ELS’09), 2009.

Paul Hudak. Conception, evolution, and application of functional programming
languages. ACM Comput. Surv., 21(3):359-411, 1989. ISSN 0360-0300.

Don Jones, Jr., Simon Marlow, and Satnam Singh. Parallel performance tuning
for Haskell. In Haskell 09: Proceedings of the 2nd ACM SIGPLAN symposium
on Haskell, pages 81-92, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
508-6.

Simon P. Jones. Beautiful Concurrency. O’Reilly Media, Inc., 2007.
ISBN 0596510047. URL http://research.microsoft.com/Users/simonpj/
papers/stm/index.htm.

27

28

[12]

[14]

[15]

[16]

18]

[20]

[21]

[22]

BIBLIOGRAPHY

Simon Peyton Jones. Tackling the Awkward Squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell. In Engineering
theories of software construction, pages 47-96. IOS Press, 2001. ISBN 1-58603-
1724.

Jim Larus and Ravi Rajwar. Transactional Memory (Synthesis Lectures
on Computer Architecture). Morgan & Claypool Publishers, 2007. ISBN
1598291246.

D. B. Lomet. Process structuring, synchronization, and recovery using atomic
actions. SIGPLAN Not., 12(3):128-137, 1977. ISSN 0362-1340.

Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime support for
multicore Haskell. SIGPLAN Not., 44(9):65-78, 2009. ISSN 0362-1340.

Bryan O’Sullivan. Criterion, a new benchmarking library for haskell,
September 2009. http://www.serpentine.com/blog/2009/09/29/
criterion-a-new-benchmarking-library-for-haskell/.

Cristian Perfumo, Nehir Sénmez, Srdjan Stipic, Osman Unsal, Adridn Cristal,
Tim Harris, and Mateo Valero. The limits of software transactional memory
(STM): dissecting Haskell STM applications on a many-core environment. In
CF ’08: Proceedings of the 5th conference on Computing frontiers, pages 67—78,
New York, NY, USA, 2008. ACM. ISBN 978-1-60558-077-7.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell.
In POPL ’96: Proceedings of the 25rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 295-308, New York, NY, USA,
1996. ACM. ISBN 0-89791-769-3.

Nir Shavit and Dan Touitou. Software transactional memory. In PODC ’95:
Proceedings of the fourteenth annual ACM symposium on Principles of dis-
tributed computing, pages 204-213, New York, NY, USA, 1995. ACM. ISBN
0-89791-710-3.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database Systems
Concepts. McGraw-Hill Science/Engineering/Math, fourth edition, 2001. ISBN
0072554819.

Nehir Sonmez, Tim Harris, Adrian Cristal, Osman S. Unsal, and Mateo Valero.
Taking the heat off transactions: Dynamic selection of pessimistic concurrency
control. In IPDPS ’09: Proceedings of the 2009 IEEE International Symposium
on ParallelésDistributed Processing, pages 1-10, Washington, DC, USA, 2009.
IEEE Computer Society. ISBN 978-1-4244-3751-1.

M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott. Conflict
detection and validation strategies for software transactional memory. In DISC;
2006.

BIBLIOGRAPHY 29

[23] Martin Sulzmann, Edmund S.L. Lam, and Simon Marlow. Comparing the
performance of concurrent linked-list implementations in Haskell. SIGPLAN
Not., 44(5):11-20, 2009. ISSN 0362-1340.

[24] libraries@haskell.org. Control.Concurrent.MVar, March 2010.
http://www.haskell.org/ghc/docs/latest/html/libraries/base/
Control-Concurrent-MVar.html.

[25] X. Wang, Z. Ji, C. Fu, and M. Hu. A review of transactional memory in
multicore processors. Information Technology Journal 9 (1): 192-200, 2010.

Appendix A

Source Code

Here is the relevant source code for the two problems. The complete source code
can be found at http://bitbucket.org/helino/bachelor-thesis.

A.1 Producer-Consumer problem

A.1.1 Semaphore

1 module ProdCons(test) where

2

3 import qualified Data.Sequence as S

4 import Control.Concurrent

5 import Control.Concurrent.MVar

6 import Control.Concurrent .QSem

7

8 import Producer

9 import Consumer

10 import System (getArgs)

11

12 test :: [Int] —> I0()

13 test (bufSize:prods:cons:queens:loops:[]) =

14 do

15 spaces <— newQSem bufSize

16 items <— newMVar 0

17 mutex <— new(QSem 1

18 buffer <— newMVar (S.empty)

19 prodAvail <— newMVar (prods)

20 pvars <— spawnProducers prods spaces items mutex buffer
queens loops prodAvail []

21 cvars <— spawnConsumers cons spaces items mutex buffer
prodAvail []

22 joinThreads (pvars ++ cvars)

23

24

25 joinThreads :: [(MVar ())] — I0()

26 joinThreads [] = return ()

31

32 APPENDIX A. SOURCE CODE
27 joinThreads (fst:rest) =
28 do
29 takeMVar fst
30 joinThreads rest
31
32 spawnProducers :: Int —> QSem —> MVar Int —> QSem —> MVar (S.Seq
Int) — Int —> Int —> MVar Int —> [MVar ()] —> IO [MVar ()]
33 spawnProducers 0 _ list = return list
34 spawnProducers n spaces items mutex buffer queens loops prodAvail
list =
35 do
36 joiner <— newEmptyMVar :: IO (MVar ())
37 forkIO $ produce spaces items mutex buffer queens loops
joiner prodAvail
38 spawnProducers (n—1) spaces items mutex buffer queens loops
prodAvail (joiner:list)
39
40 spawnConsumers :: Int —> QSem —> MVar Int —> QSem —> MVar (S.Seq
Int) — MVar Int —> [MVar ()] —> IO [MVar ()]
41 spawnConsumers 0 _ list = return list
42 spawnConsumers n spaces items mutex buffer prodAvail list =
43 do
44 joiner <— newEmptyMVar :: IO (MVar ())
45 forkIO $ consume spaces items mutex buffer joiner prodAvail
46 spawnConsumers (n—1) spaces items mutex buffer prodAvail (
joiner:list)
1 module Producer (produce) where
2
3 import Control.Concurrent .MVar
4 import Control.Concurrent .QSem
5 import qualified Data.Sequence as S
6 import Queens
7
8 produce :: QSem —> MVar Int —> QSem —> MVar (S.Seq Int)—> Int —>
Int —> MVar () —> MVar Int —> IO()
9 produce 0 joiner prodAvail =
10 do
11 left <— takeMVar prodAvail
12 putMVar prodAvail (left —1)
13 putMVar joiner ()
14 return ()
15 produce spaces items mutex buffer queens loops joiner prodAvail =
16 do
17 (putBuffer items spaces mutex buffer) $! (nsoln queens)
18 produce spaces items mutex buffer queens (loops—1) joiner
prodAvail
19
20 putBuffer :: MVar Int —> QSem —> QSem —> MVar (S.Seq Int) —> Int —>
10 ()
21 putBuffer items spaces mutex buffer num =
22 do

A.1. PRODUCER-CONSUMER PROBLEM

23 waitQSem spaces

24 waitQSem mutex

25

26 seq <— takeMVar buffer

27 putMVar buffer (seq S.|> num)
28

29 signalQSem mutex

30 signalQSem spaces

31 numltems <— takeMVar items

32 putMVar items (numltems+1)

1 module Consumer (consume) where

2

3 import Control.Concurrent.MVar

4 import Control.Concurrent .QSem

5 import qualified Data.Sequence as S
6 import Queens

7

8 consume :: QSem —> MVar Int —> QSem —> MVar (S.Seq Int)—> MVar ()

—> MVar Int —> I0()
9 consume spaces items mutex buffer joiner prodAvail =
10 do

11 numltems <— takeMVar items

12 if numltems =— 0

13 then do numLeft <— takeMVar prodAvail

14 putMVar items numltems

15 putMVar prodAvail numLeft

16

17 if numLeft = 0

18 then finish joiner

19 else consume spaces items mutex buffer

joiner prodAvail

20 else do

21 putMVar items (numltems—1)

22 waitQSem mutex

23

24 seq <— takeMVar buffer

25 let num = S.index seq 0

26 putMVar buffer (S.drop 1 seq)

27 signal@QSem mutex

28 signalQSem spaces

29

30 consume spaces items mutex buffer joiner
prodAvail

31

32 release :: QSem —> MVar Int —> QSem —> MVar (S.Seq Int)—> MVar ()
—> MVar Int —> Int — I0()

33 release spaces items mutex buffer joiner prodAvail n =

34 do

35 signalQSem mutex

36 signal@QSem spaces

37

34 APPENDIX A. SOURCE CODE

38 consume spaces items mutex buffer joiner prodAvail

39

40 finish :: MVar () — I0()

41 finish joiner =

42 do

43 putMVar joiner ()

44 return ()

A.l.2 STM

1 module ProdCons(test) where

2

3 import GHC. Conc

4 import qualified Data.Sequence as S

5 import System(getArgs)

6 import Queens

7

8 test :: [Int] — IO()

9 test (bufSize:prods:cons:queens:loops:[]) =

10 do

11 buffer <— newTVarIO (S.empty :: S.Seq Int)

12 prodsAvail <— newTVarlO prods

13 ptvs <— spawnProducers prods buffer queens bufSize loops
prodsAvail []

14 ctvs <— spawnConsumers cons buffer prodsAvail []

15 joinThreads (ptvs ++ ctvs)

16

17 joinThreads [TVar Int] —> IO ()

18 joinThreads [] = return ()

19 joinThreads (h:t) =

20 do

21 atomically $ do val <— readTVar h

22 if val =1

23 then retry

24 else return ()

25 joinThreads t

26

27 spawnProducers :: Int —> TVar (S.Seq Int) —> Int —> Int —> Int —>

TVar Int —> [TVar Int]—> IO [TVar Int|

28 spawnProducers 0 _ list = return list

29 spawnProducers n buffer queens bufSize loops prods list =

30 do

31 sync <— newTVarlO (1 :: Int)

32 forkIO (produce buffer queens bufSize loops prods sync)

33 spawnProducers (n—1) buffer queens bufSize loops prods (
sync: list)

34

35 spawnConsumers :: Int —> TVar (S.Seq Int) —> TVar Int —> [TVar Int]

—> IO [TVar Int]
36 spawnConsumers 0 _ _ list = return list
37 spawnConsumers n buffer prods list =

Al

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83

PRODUCER-CONSUMER PROBLEM

do
sync <— newTVarIO (1 :: Int)
forkIO (consume buffer prods sync)
spawnConsumers (n—1) buffer prods (sync:list)

consume :: TVar (S.Seq Int) —> TVar Int —> TVar Int —> IO()
consume buffer prods sync =
do
n <— atomically $ do seq <— readTVar buffer
if S.length seq = 0
then do left <— readTVar prods
if left = 0
then return (—1)
else retry
else do let num = S.index seq 0
writeTVar buffer (S.drop 1
seq)
return num
if n = -1
then finish sync
else do consume buffer prods sync

finish :: TVar Int — I0 ()
finish sync =
do
atomically $ writeTVar sync 0
return ()

produce :: TVar (S.Seq Int) —> Int —> Int —> Int —> TVar Int —>
TVar Int —> IO()

produce _ _ _ 0 prods sync =
do

atomically $ do avail <— readTVar prods
writeTVar prods (avail —1)
writeTVar sync 0

return ()

produce buffer queens bufSize loops prods sync =
do
(putBuffer buffer bufSize) $! (nsoln queens)
produce buffer queens bufSize (loops—1) prods sync

putBuffer :: TVar (S.Seq Int) —> Int —> Int — IO()
putBuffer buffer bufSize num =
do
atomically $§ do seq <— readTVar buffer
if S.length seq >= bufSize
then retry
else writeTVar buffer (seq S.|> num)

36

APPENDIX A. SOURCE CODE

A.2 Bathroom problem

A.2.1 Semaphore

0~ O Ul Wi+

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43

44
45
46

module Bathroom(test) where

import Control. Concurrent .QSem
import Control. Concurrent
import Lightswitch

import System .Random

import Queens

data Gender = Male | Female
deriving (Eq, Show)

test :: [Char] —> Int —> IO()
test glist queens =
do
space <— newQSem 3
empty <— newQSem 1
io <— newQSem 1
turnstile <— newQSem 1

maleLocks <— newSwitchlocks
femLocks <— newSwitchlocks

mvs <— spawnThreads (c2g glist []) queens space io empty
turnstile maleLocks femLocks []
joinThreads mvs

c2g :: [Char] —> [Gender] —> [Gender]
c2g [] list = reverse list
c2g ('M’:rest) list = c2g rest (Male:list)
c2g ('m’:rest) list = c2g rest (Male:list)
c2g (’F’:rest) list = c2g rest (Female:list)
c2g (’f’:rest) list = c2g rest (Female:list)
c2g (h:t) list = c2g t list
joinThreads :: [MVar ()] — IO()
joinThreads [] = return ()
joinThreads (h:t) =
do
takeMVar h
joinThreads t
spawnThreads :: [Gender] —> Int —> QSem —> QSem —> QSem —> QSem —>
Switchlocks —> Switchlocks —> [MVar ()] —> IO [MVar ()]
spawnThreads [] _ _ _ list = return list

spawnThreads (h:t) queens space io empty turnstile maleLocks
femLocks list =
do
sync <— newEmptyMVar :: IO (MVar ())
if h = Male

A.2. BATHROOM PROBLEM

47 then forkIO $ calc Male space io empty turnstile
maleLocks queens sync

48 else forkIO $ calc Female space io empty turnstile
femLocks queens sync

49

50 spawnThreads t queens space io empty turnstile maleLocks

femLocks (sync:list)
51
52 calc :: Gender —> QSem —> QSem —> QSem —> QSem —> Switchlocks —>

Int —> MVar () —> I0()
53 calc gender space io empty turnstile switchlocks queens sync =
54 do

55 waitQSem turnstile

56 lock switchlocks empty

57 signalQSem turnstile

58 waitQSem space

59

60 handleResult $! (nsoln queens)

61 where

62 handleResult = \num —> do signalQSem space

63 unlock switchlocks empty

64 putMVar sync ()

A.2.2 STM

1 module Bathroom where

2

3 import Control.Concurrent

4 import GHC. Conc

5 import System.Random

6 import Queens

7

8 data Gender = Male | Female | None

9 deriving (Show, Eq)

10

11 test :: [Char]| —> Int —> I0()

12 test glist queens =

13 do occupier <— newTVarlO (None :: Gender)

14 visitors <— newTVarIO (0 :: Int)

15 turnstile <— newTVarlO(False :: Bool)

16 tvs <— spawnThreads (c2g glist []) queens occupier visitors
turnstile []

17 joinThreads tvs

18

19 c¢2g :: [Char| —> [Gender] —> [Gender]

20 c2g [] list = reverse list

21 c2g ('M’:rest) list = c2g rest (Male:list)

22 ¢2g ('m’:rest) list = c2g rest (Male:list)

23 c¢2g ('F’:rest) list = c2g rest (Female:list)

24 c¢2g (’f’:rest) list = c2g rest (Female:list)

25 c2g (h:t) list = c2g t list

38

26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44

45

46
47

48
49

50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73

APPENDIX A. SOURCE CODE
joinThreads :: [TVar Int] —> IO ()
joinThreads [|] = return ()
joinThreads (h:t) =
do
atomically $ do val <— readTVar h
if val = 1
then retry
else return ()
joinThreads t
spawnThreads :: [Gender] —> Int —> TVar Gender —> TVar Int —> TVar
Bool —> [TVar Int] — IO [TVar Int]
spawnThreads [] _ _ _ _ list = return list
spawnThreads (h:t) queens occupier visitors turnstile list =
do
sync <— newTVarIO (1 :: Int)
if h = Female
then forkIO $ visit Female occupier visitors turnstile
queens sync
else forkIO $ visit Male occupier visitors turnstile
queens sync
spawnThreads t queens occupier visitors turnstile (sync:
list)
visit :: Gender —> TVar Gender —> TVar Int —> TVar Bool —> Int —>
TVar Int —> I0()
visit g occ visitors turnstile queens sync =

do
atomically $ do queue <— readTVar turnstile
if queue
then retry
else writeTVar turnstile True
atomically $ lock g occ visitors
atomically $ writeTVar turnstile False
handleResult $! (nsoln queens)
where
handleResult = \num —> do atomically $ do unlock occ
visitors

writeTVar sync 0
lock :: Gender —> TVar Gender —> TVar Int —> STM ()
lock g occ visitors =
do
curr <— readTVar occ
if (g = curr) || (curr = None)
then do count <— readTVar visitors
if (count < 3)
then do writeTVar visitors (count+1)
if curr = None
then writeTVar occ g
else return ()
else retry

A.2. BATHROOM PROBLEM

74
75
76
7
78
79
80
81
82
83

unlock
unlock
do

else retry

TVar Gender —> TVar Int —> STM ()
occ visitors =

curr <— readTVar visitors
writeTVar visitors (curr—1)
if curr — 1
then writeTVar occ None
else return ()

www.kth.se

