

A Comparison between Go and C++

 J O A K I M A N N E B Ä C K
 a n d J O H A N S T J E R N B E R G

 Bachelor of Science Thesis
 Stockholm, Sweden 2011

A Comparison between Go and C++

 J O A K I M A N N E B Ä C K
 a n d J O H A N S T J E R N B E R G

 Bachelor’s Thesis in Computer Science (15 ECTS credits)
 at the School of Computer Science and Engineering
 Royal Institute of Technology year 2011
 Supervisor at CSC was Alexander Baltatzis
 Examiner was Mads Dam

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2011/
 anneback_joakim_OCH_stjernberg_johan_K11073.pdf

 Kungliga tekniska högskolan
 Skolan för datavetenskap och kommunikation

 KTH CSC
 100 44 Stockholm

 URL: www.kth.se/csc

Abstract
This is a study on the new, Google-based, programming language Go.
In the study, selected common areas in programming languages are de-
scribed and when available how they work in Go. Furthermore, it fea-
tures a comparison between Go and C++ on these areas as well as in
summary.

Go introduces a new approach on concurrent programming that is
much easier than in the recognised languages of today and works very
smoothly and quickly both when it comes to compiling and running.
However, some very popular features such as inheritance and generic
data types have been left out and is not currently supported.

We believe that the ideas introduced with Go are very interesting
indeed but that it is too early to tell if Go will become a recognised
language or stay a small-scale experiment for Google.

Referat
En jämförelse mellan Go och C++

Det här är en studie av det nya, Googlebaserade, programmeringssprå-
ket Go. Utvalda delar av programmeringsspråk beskrivs i studien och
hur de fungerar i Go, då de stöds. Dessutom jämförs Go med C++ både
inom de olika områdena samt sammanfattningsvis.

Go introducerar ett nytt tänk vid programmering i flera trådar som
är mycket lättare än i de vedertagna språken i dag och fungerar väldigt
smidigt samt snabbt både när det gäller att kompilera och köra pro-
grammen. Dock har några mycket populära funktioner såsom arv och
generiska datatyper utelämnats och stöds för närvarande inte.

Vi anser att de idéer som införs med Go är mycket intressanta men
att det är för tidigt att säga om Go kommer att bli ett vedertaget språk
eller förbli ett småskaligt experiment för Google.

Contents

1 Introduction 1
1.1 Preface . 1
1.2 Purpose . 1
1.3 Problem Statement . 2

2 Background 3
2.1 What is Go? . 3
2.2 History . 3
2.3 The Purpose of Go . 3
2.4 Background to C++ . 4
2.5 Inheritance . 4
2.6 Functions and Methods . 5
2.7 Data Types . 5
2.8 Generic Types . 6
2.9 Concurrency . 7
2.10 Syntax . 8
2.11 Garbage Collection . 9
2.12 Compilation . 10
2.13 Speed . 10
2.14 Operators . 11

3 Method 13

4 Code comparison 14

5 Survey 17

6 Discussion 19

7 Conclusions 20

Bibliography 22

Chapter 1

Introduction

1.1 Preface

This document is was written for the course Degree Project in Computer Science,
DD143X/dkand11 at the Royal Institute of Technology. The authors of this doc-
ument are Joakim Annebäck and Johan Stjernberg, both 3rd year students at the
Computer Science programme at the Royal Institute of Technology. Their supervi-
sor for the work was Alexander Baltatzis and the examiner Mads Dam.

The purpose of the document was to investigate the programming language Go.
Both authors have been engaged in every part of the project. The writing of the
document has been divided evenly between us two authors.

Joakim Annebäck has written: History of Go, Background to C++, Inheritance,
Data Types, Garbage Collection, Speed, Operators.

Johan Stjernberg has written: Purpose, The Purpose of Go, Functions and Meth-
ods, Syntax, Compilation, Results.

Both have worked together on the Problem Statement, Method, Discussion and
Conclusion.

1.2 Purpose

Our project aims to investigate the new programming language Go, which is cur-
rently being developed by some Google employees. Very few new programming lan-
guages have been successful over the last couple of years, so when a well-established
company like Google announces a new one it is of course tempting to try it out.
Here is a quote from the Go projects’ web page:

Go was born out of frustration with existing languages and environments
for systems programming.[1]

1

CHAPTER 1. INTRODUCTION

The goal of our report is to analyse the programming language; what distinguishes
Go from other languages? Is it better than the rest? Will it be a huge success or
suffer the same destiny as Google Wave, that did not become the success Google
hoped for? These and similar questions have made us interested in trying out Go
and is the main reason for our choice of project. Another is the challenging twist
in that Go is so new and unexplored.

1.3 Problem Statement
• What are the advantages and disadvantages with Go?

• What are the differences between Go and the more well-established program-
ming language C++?

• Proof of concept: the development of a simple Go application, for example
the implementation of a guest book or search algorithm.

In the first question we want to investigate, in general, how good Go is compared
to other languages. We also want to know for what kind of tasks Go is more suitable
to use than other languages.

Since the first question is more about the general view of Go, the point of the
second question is to analyse more closely and in detail how different the language is
to another more established programming language. We have chosen the recognised
and well-established language C++ for this comparison.

Lastly, we include a simple demonstration of how Go can be used and in par-
ticular how the code looks. We choose to implement the Bubble sort algorithm,
showing how Go works and how the syntax looks through an easy example like this.

2

Chapter 2

Background

2.1 What is Go?
Go is an open source programming language developed largely by Google employees.
It is intended to be fast compiled, strongly typed, garbage collected and with explicit
support for concurrent programming.

2.2 History
The original developers Rob Pike, Robert Griesemer and Ken Thompson started
out in September 2007 with the design of the new programming language, Go. In
the beginning of year 2008 Thompson had started working on a compiler which
generated C code as output. This was to investigate ideas on design of the compiler
for Go. Since the development had now become a full-time project, just a few
months after the first experiments with a new compiler, it had been stabilised
enough for a production compiler. Ian Taylor started working on a GCC front end
for Go using the draft specification in May 2008. In the end of 2008 Russ Cox
helped move the language and libraries from prototype to reality. Since Go is a
open source project many others have contributed to it with code, documentation,
ideas and discussions. It was officially announced with implementations for Linux
and Mac OS X in November 2009. Implementation for Windows has also been
announced although it is not optimised.

2.3 The Purpose of Go
While the computer hardware has improved a great deal over the last decade, the
improvement of the programming languages have more or less stopped. There have
not been any new successful programming language in many years now, and the Go
developers hope to change that.

Go is an attempt to combine the ease of programming of an inter-

3

CHAPTER 2. BACKGROUND

preted, dynamically typed language with the efficiency and safety of a
statically typed, compiled language. It also aims to be modern, with
support for networked and multicore computing. Finally, it is intended
to be fast: it should take at most a few seconds to build a large exe-
cutable on a single computer.

2.4 Background to C++
C++ was invented by the Danish programmer Bjarne Stroustrup. He began devel-
oping a language in 1979 called “C with Classes” which later came to be known as
C++. Stroustrup used some design rules when developing C++ :

• C++ should be type safe, statically typed.

• C++ should have support for separate compilation with multiple program-
ming styles, e.g. object-oriented programming, generic programming.

• C++ should be as compatible with C as possible for easy transition.

• C++ uses the “zero-overhead rule”.[4, p. 121]

• C++ should be designed to give the programmer a choice, even if it is possible
to make an incorrect one.[4, p. 121]

C++ deals with type safety by checking all function calls at compile-time.[4, p.
92] With the use of header files C++ gives support for separate compilation with
multiple programming styles.[4, p. 120] Instead of designing C++ with support
for only C++ techniques, Stroustrup designed C++ to be backwards compatible
with C. Thus making it easy for programmers used to C to start programming in
C++, using “warnings” for suggesting the C++ technique instead of using the C
technique.[4, p. 112] Virtual functions, multiple inheritance, runtime identification,
exception handling and templates all owe a part of their design to the “zero-overhead
rule”, which states that: “What you don’t use, you don’t pay for”. In C++ the
programmer can know the cost of using a feature, in the language, since it is not
distributed, over e.g. various classes. The programmer then get to choose for himself
making the decision between cost and benefit of using this particular feature.[4, p.
121]

2.5 Inheritance
Although Go provides methods and types that makes it possible for an object-
oriented style of programming, Go does not have type inheritance.[1] Where other
programming languages, i.e. C++, features templates, classes and subclasses Go
provides interfaces. The interface in Go can be compared to a pure abstract class1

1A class that contains no data and where all methods are pure virtual.

4

2.6. FUNCTIONS AND METHODS

in C++. An interface can also be very lightweight since it does not even have to
contain any methods, if there is no need for it. Types in Go can satisfy more than
one interface at once, without any of the complexities that follows with traditional
multiple inheritence.[1] To declare an interface in Go simply use following notation:

type Test interface {
// List of Methods

}

In comparison to Go, C++ is object-oriented and offers classes. This provides in-
heritance, which allows one type of data to inherit from other data types. Multiple
inheritance is also supported by C++. This gives a data type the ability to inherit
from one or more data types. With inheritance the base class does not only pro-
vide the declaration of the member function, but also implementation and member
data.[5]

2.6 Functions and Methods
Although similar in general, there is at least one notable difference between C++
and Go on this matter. Go lacks the feature of function overloading which is quite
commonly used in C++. That is, in Go you may not have several declarations
of a method with the same name but different parameters. According to the Go
developers, the reason for this is that it simplifies method dispatch and makes code
less confusing.[1]

2.7 Data Types
When it comes to data types Go has many of the common data types that most of
the object-oriented programming languages popular today have.

• Pre-declared numeric types: uint, int, float, complex, uintptr

• Integer numeric types: uint8, uint16, uint32, uint64, int8, int16, int32, int64

• Floating-point numeric types: float32, float64

• Complex types: complex64, complex128 [3]

In comparison to C++ int and int32 are two distinct types, even if both have
the same size. Since the int type is generic, specification of the size is required if the
number if bits it holds is important. Here is an example showing the declaration of
two different types of integers:

var i int32: // i and n do not have the same types
var n int = 17;

5

CHAPTER 2. BACKGROUND

The default size of an int or an uint is 32 bits no matter if the 32 or 64 bits
compiler is used. The data types complex and floats are always sized, “because
programmers should be aware of precision when using floating-point numbers”. [1]

When it comes to strings in Go, they are immutable values[3], which mean that
they are not just arrays of byte values. Like a const string in C++, the string in
Go can not be change once it has been built. Even if the string itself cannot be
changed, the string variable still can by simply reassigning it.

2.8 Generic Types
Go does not currently support generic types. However, it does support objects
without a type using the empty interface.

Generics are convenient but they come at a cost in complexity in the
type system and run-time. We haven’t yet found a design that gives
value proportionate to the complexity, although we continue to think
about it. Meanwhile, Go’s built-in maps and slices, plus the ability to
use the empty interface to construct containers (with explicit unboxing)
mean in many cases it is possible to write code that does what generics
would enable, if less smoothly. [1]

C++ on the other hand has support for generic types. Generic programming
is supported by the use of function templates, class templates and, in some cases,
specialised templates in C++.

A function template is a special function that can operate with generic types.
When creating a function template it’s functionality can be used for multiple data
types without the need of repeating the code for each data type. With a special
kind of parameter - a so called template parameter - this can be done in C++. The
template parameter can be used to pass a type as an argument similar to a regular
function parameter that can be used to pass a value to a function. The function
template can use these parameters as if they were regular types. All the following
code examples are in C++. [6]

template <class identifier>
//function declaration

;

Class templates gives the possibility for a class to have members that use tem-
plate parameters as types.[6]

template <class identifier>
class classname {

//class declaration
};

6

2.9. CONCURRENCY

In some cases one may want to define a different implementation for a template
where a specific type is used as a template parameter, this can be done using a
specialisation of that template.[6]

template <> class classname <specified_type> {
//specialised code

}

2.9 Concurrency
Goroutines are Go’s model of threads/coroutines. To start a goroutine, one can
simply put go as a prefix to any function call. This causes the function to run in a
new, different goroutine, which is run in parallel with the current computation, in
the same address space. [8]

func server(i int) {
for {

print(i)
sys.sleep(10)

}
}
go server(1) //start new Goroutine
go server(2) //start new to run in parallel with the first one

According to the Go team, goroutines are cheap and developers need not to
worry about the stack size.[9] In contrast, there is currently no built-in way to
manage threads in C++, although the feature is expected in the upcoming new
standard and is already today possible using third-party libraries. When starting
the Go project, one of the big goals was to create a design that makes software
development easier on multi-core hardware.[1]

The main method of synchronising between goroutines is the channel communi-
cation. Each send operation on a particular channel is matched to a corresponding
receive operation from that channel, usually in a different goroutine. The send oper-
ation on a channel happens before the receive operation from the channel completes.

var c = make(chan int, 10)
var a string

func f() {
a = "hello, world" //write to a, before it is sent to c
c <- 0 //send to c

}

func main() {
go f() //start new goroutine

7

CHAPTER 2. BACKGROUND

<-c //receive on c completes
print(a) //print string "hello, world"

}

2.10 Syntax
The Go syntax is somewhat unique. Semicolons are optional but brackets in if and
else cases are mandatory. This will result in a compile-time error:

if(5 > 3) fmt.Println(“great”);

whereas this is okay:

if(5 > 3) { fmt.Println("great") }

One may also note that the quite popular ternary operator, available in C, C++
and Java among others, is due to this fact not available in Go. The following will
generate a compilation error:

x = (x > 10 ? x : 10);

Functions or methods work similar to many other programming languages but
have an unconventional syntax. Here is a method head example that is valid:

func returnTwo(a, b int) (c int, d int) {

Note that the data type (here: int) must follow after the variable name, in contrast
to having it before the variable name which is more conventional. It is also possible
to skip the data type if it is the same for several variables in a row, as demonstrated
by the parameters a, b here. Another pleasant feature is the possibility to return
more than one variable (here: c, d), which is not a unique feature for Go but still
quite uncommon today. In this case we chose to explicitly say that both c and d
are of type integer, but we could just as well have written it the same way as the
parameters a, b. Lastly, note that the return statement comes last in this case, as
opposed to languages like C and Java which start with the return parameter.

Here is an example method summing up two integers a, b and returning the
result s.

func sum(a, b int) int { // returns an int
s := a + b
return s

}

When it comes to iteration and loops, the syntax is somewhat similar to what
we are used to.

for i := 0; i < 10; i++ {
fmt.Println("Num:", i)

}

8

2.11. GARBAGE COLLECTION

Note here the use of ‘:=’ in the first statement. It means that we declare i
and that Go is to automatically guess the data type. Alternatively, we could have
specified i to be of type integer as is the case here:

var i int
for i = 0; i < 10; i++ {

fmt.Println("Num:", i)
}

However, in this case we use ‘=’ instead of ‘:=’. Using ‘:=’ in this case will result
in a compile-time error due to the fact that i has already been declared.

While loops do exist but do not use the conventional name ‘while’ - they are
also called for-loops.

for i < 7 {
i++

}

Many programmers would like to use paranthesis in if- and for-statements such
as this, ie. for(i < 7){...}, but it is not only discouraged but even forbidden in Go
and results in a compile-time error.

Another syntax related decision worth mentioning is Go’s approach on the ever-
lasting fight between programmers as to whether the opening bracket after a con-
struct, ie. if-case, should be on a line of its own or at the same line as the construct.
Go forbids having the opening bracket anywhere but at the same line, so the fol-
lowing will not compile:

if a > 5
{
[...]
}

However, the following works fine:

if a > 5 {
[...]

}

2.11 Garbage Collection
Go uses garbage collection for memory management, which means that it is not
possible nor necessary to free memory explicitly like in C++. Currently, Go uses
a mark-and-sweep collector for this task. The automatic garbage collection also
eases the writing of concurrent programming code as the programmer does not
need to think about memory management as different objects are passed between
Goroutines. The Go team’s approach has been that it’s easier for them to tackle

9

CHAPTER 2. BACKGROUND

this quite complex issue once and for all rather than having every programmer think
about it while developing. [1]

C++ does not have any garbage collection and relies heavily on that the pro-
grammer knows what he or she is doing. However, a default destructor is automati-
cally created if the programmer does not write one. The default destructor will free
up memory in some obvious cases but is unable to safely handle objects accessed in
more complex ways, such as through pointers. The pointer will be deleted, but not
the object itself.

2.12 Compilation
There is a set of compilers for Go, supporting both 32 and 64 bits systems, named
6g, 8g and 5g. Additionally there is a compiler that uses gcc named gccgo, which
has proven to be faster in some cases.

6g - the original Go compiler - was first considered to be written in Go itself, but
the developers decided not to because of issues with bootstrapping and the open
source distribution. It is the most "mature" compiler with an efficient optimiser
that generates good code. The compilers can be used with Linux, FreeBSD, OSX
and Windows operating systems.

One of the main objectives with the Go language was to not only run programs
quickly but also compile them very fast. The compilation times can be reduced with
help from goroutines, which splits up the compilation into more than one thread,
making it compile simultaneously.

2.13 Speed
As mentioned before one of the main purposes of Go was to have a fast programming
language when compiling code. Go is a concurrent language which uses the fact
that the computers have gotten faster and faster, hardware-wise. With the use of
goroutines and the fact that it is a fully garbage collected programming language, it
utilises the multi-core CPUs which for the most part results in a fast compilation.[1]
Sometimes the use of more than one CPU core may result in the program slowing
down. This depends on the nature of the program. If its Goroutines takes a lot of
time communicating on channels it may result in a decrease of preformance. Since
Go is a relatively new programming language the Goroutine scheduler is not yet
fully developed. The aim is to have it recognise these kinds of cases, where use of
multi-core slows the program down, and optimise the usage of OS-threads. [1]

In comparison to C++ it is much faster at compiling when it comes to larger
programs. One reason for this is that Go does not use header files, instead each
source file is a part of a defined package[1]. This avoids much of the included files
and libraries you get from using header files. Also there is no hierarchy in Go which
increases the speed since there is no time spent defining the relationships between
types.[1]

10

2.14. OPERATORS

2.14 Operators

Table 2.1. C++ Operators [7]

Operator Description
:: scope
() [] . -> ++ −− dynamic_cast
static_cast reinterpret_cast
const_cast typeid

postfix

++ −− ˜ ! sizeof new delete unary (prefix)
* & indirection and reference (pointers)
+ - unary sign operator
(type) type casting
.* ->* pointer-to-member
* / % multiplicative
+ - additive
� � shift
> < >= <= relational
== != equality
& bitwise AND
^ bitwise XOR
| bitwise OR
&& logical AND
‖ logical OR
?: conditional
= *= /= %= += -= �= �= &=
^= |=

assignment

, comma

As shown in the table Go has almost the same kind of operators as C++ has. Al-
though Go has support for pointers it does not provide pointer arithmetics. There-
fore this kind of operators does exist in C++ but not in Go[8]. Another notable
difference is that C++ supports overloading of operators. Go does not support
operator overloading since the developers think that “things are simpler without it”
and “it seems more a convenience than an absolute requirement”. [1]

11

CHAPTER 2. BACKGROUND

Table 2.2. GO Operators

Operators Description
* / % �� & &^ arithmetic, multiplication
+ - | ^ arithmetic, addition
== != < > <= >= comparison
&& logical AND
‖ logical OR
! logical NOT
<- receive
& * address
(type) conversion
= *= /= %= += -= �= �= &=
^= |=

assignment

[] index

12

Chapter 3

Method

Go was announced in November 2009 and since it is so recent very few reports on
the subject exist. However, a great deal of material – including a thorough language
specification – is available on the web and we believe it made a sufficient basis of
material for our study.

Our research is mostly based on the language specification and other documen-
tation about the Go language in comparison to some other languages in general, and
in particular compared to C++. We have also investigated other relevant material
on the subject and compared how a specific algorithm work in the two primarily
compared languages.

We have in our research tried out both the existing 8g compiler and The Go
Playground[2]. We used them for testing how the syntax, functions, methods, com-
pilation and concurrency work.

Apart from this, we also conducted a small-scale survey on important features
and qualities in programming languages, in order to get a feeling of how important
the Go features and skipped features are.

13

Chapter 4

Code comparison

In the investigation between Go and C++, we have compared the well-known "Bub-
ble sort" algorithm written in both programming languages.

At first we can see that the Go implementation takes just an array of ints,
using the built-in function len to get the length of it. The C++ implementation
takes a vector of ints as input, using the built-in function size to get the number of
elements. Since there are of course many ways that we can implement the algorithm
in both of the languages, we can only confirm the syntax of functions and methods
corresponding to eachother are very much alike. Compared with eachother Go has
the absence of brackets and semicolons, and in C++ we have to specify that the
ints i and j in the for-loops have to be unsigned ints.

Firstly, we take a look at a C++ implementation.

#include <vector>
using std::vector;
void bubbleSort(vector<int> &v){ //takes an vector of int as input

if(v.size()>0){//check if the vector is empty, if it is we don’t do anything
int temp;
for (unsigned int i = 0; i < v.size() - 1; i++){

for(unsigned int j = i+1; j < v.size();j++){
if (v[i] > v[j]){ //if two elements are in the wrong order, swap!

temp = v[i];
v[i] = v[j];
v[j] = temp;

}
}

}
}

}

int main(){

14

vector<int> vec(10); //test
vec[0] = 1;
vec[1] = 2;
vec[2] = 0;
vec[3] = -5;
vec[4] = 8;
vec[5] = 9;
vec[6] = 27;
vec[7] = 3;
vec[8] = -7;
vec[9] = 9;
bubbleSort(vec);
for(unsigned int index = 0; index<vec.size();++index){

std::cout<< vec[index] <<endl;
}

}

Secondly, we look at the same algorithm but in Go.

package main

import "fmt"

// Takes an array v of type int as input and returns the sorted array.
func bubbleSort(v []int) []int {

var temp int
// Loop through all of v
for i := range v {
// Loop from current i to end of v
for j := i + 1; j < len(v); j++ {
if v[i] > v[j] {
// Two elements are in the wrong order. Swap!
temp = v[i]
v[i] = v[j]
v[j] = temp

}
}

}
return v;

}

func main() {
var a = []int { 2, 4, 9, 3, -2, -3, 0, 18, -5}
var b = []int {}
var c = []int {3}

15

CHAPTER 4. CODE COMPARISON

var d = []int {-5, 5}
var e = []int {5, -5}

fmt.Println(bubbleSort(a))
fmt.Println(bubbleSort(b))
fmt.Println(bubbleSort(c))
fmt.Println(bubbleSort(d))
fmt.Println(bubbleSort(e))

}

16

Chapter 5

Survey

In order to get a better feeling of how important different built-in features in a
programming language are, we wrote a survey that other students in Computer
Science at the Royal Institute of Technology (KTH) answered. The question was
how important six specific features are to have built-in in programming languages.
The features were garbage collection, concurrency, inheritance, generic types, speed
(compiling) and speed (runtime). For each feature or quality, the respondee was
asked to choose how important, on a scale from one (not important) to five (very
important) it is to have that feature or quality in a programming language. In the
question formulation, it was made clear that it regards having the feature built-in
in the language.

15 students took the survey independently and filled it out on printed paper.
The result is provided here as the mean value of the responses on the same scale
from one to five, where one means not important and five very important.

As seen in the results, although with a small margin, the students prioritise
garbage collection, inheritance and run-time speed over concurrency, generic types
and compilation speed.

The survey that we conducted with students at the Computer Science pro-
gramme at the Royal Institute of Technology in Stockholm gave us some information
about what kind of functions are important, for programmers, in a programming
language.

Garbage collection 4.00
Concurrency 3.87
Inheritance 4.13
Generic types 3.87
Speed (compilation) 3.27
Speed (runtime) 4.27

Table 5.1. Survey result with the mean value of importance level for different
features and qualities in programming languages, according to some KTH students.

17

CHAPTER 5. SURVEY

Assuming these indications are true, it was a very good design choice of the
Go team to include automatic garbage collection, and a big plus that it also can
handle garbage when working with multiple threads. However, the lack of support
for inheritance, which we believe is important in order to conduct object-oriented
work, is a big issue that the Go team should really consider solving.

It should be noted that this is a small-scale survey and that the result is not
statistically reliable. However, we see it as an indication of that inheritance and
garbage collection are important and appreciated features. Furthermore, it seems
more important that programs run fast than that they compile quickly. In fact,
the respondees seem to think that quick compilation is the least important factor
of those included in the survey. We think this factor could depend on how big the
programming projects are and since the students at the university usually do not
conduct large scale projects, they may think it is less important than programmers
at companies like Google, who may save a lot of money and time if the compile
times are quick.

18

Chapter 6

Discussion

In the aims for Go, the developers were really focused on designing a concurrent
and fast compiling programming language that utilises the power of computers
today, with emphasis on that there has been a lot of improvement of the computer
hardware in the last years, but not in the software field.

There has not been any successful programming languages released in over a
decade that has taken the rapid improvement of computers’ hardware and used it
to its advantage[1]. The Go team is on its way to achieveing this goal, but because
of this some of the functions, that are found in the more common programming
lanuages (such as Java and C++), have been set aside. For example support for
generic programming has not yet been implemented and remains an open issue.
Going back to the first question in the problem statement –What are the advantages
and disadvantages with Go? – this may be a disadvantage for Go reaching its goal
to emerge as a major programming language.

One of the main contributing factors to the speed of Go is that it is a concur-
rent programming language with the unique approach in the introduction of the
goroutines. The purpose of goroutines is to make concurrency easier to use. In
comparison, it is possible to run multiple threads in C++, but it is not a built-in
feature in the language. Therefore, one currently needs to use some kind of third-
party library for concurrency to work. This is clearly not as easy as just writing
go as a prefix to a function for starting a new goroutine, which we see as a big
advantage of Go.

The Go developers claim that the use of interfaces instead of inheritance has real
advantages, and state that one of the contributing factors to the fast compilation
of Go code is the absence of inheritance. In Go, types can satisfy more than one
interface at once, which eliminates the complexities of the multiple inheritance that
exists in e.g. C++. Therefore, no time is spent on defining relationships between
types[1].

19

Chapter 7

Conclusions

C++ and Go are two quite different languages regarding focus during development
and which features are built-in. For instance, C++ has extended support when
it comes to inheritance, generic types and pointer arithmetics while Go focuses on
garbage collection, concurrency and compiling quickly.

Go’s main advantage is its ability to produce fast compiling programs utilising
concurrent programming. But because of the absence of inheritence it is not an
object-oriented programming language like the more popular languages today, e.g.
Java and C++.

C++ was originally designed and developed in the 1980’s and despite being very
popular even today, a lot has happened since then and the focus has in some cases
changed since then. For example, concurrency was not a big deal back then but is
a very hot topic today as multi-core processors become more and more common.
The Go developers say that the language was born out of frustration with existing
languages and aims to be a very modern language with the latest features. In our
opinion, the extensive support for concurrency in terms of goroutines supports that
claim.

Despite this, the long awaited new standard for C++ does contain native con-
currency support and it is still a much more popular language than Go. Although
Go is still a very young language, we feel that the development team needs some
sort of a major breakthrough in order to make Go a commonly used language in the
programming society. If they could find a good way to support generic types and
inheritance without slowing down Go or making coding too complex, that would
probably be a very good beginning.

Furthermore, the Go team enforces both unconventional syntax and a new think-
ing when it comes to software development that most people today are not used to
or trained in. "Do not communicate by sharing memory. Instead, share memory by
communicating." [9] This is an example of how the Go team asks programmers to
reconsider how they work and try their new ideas. In this case, they mean that con-
current programming in Go is different from that in C, C++ and Java. Although
the syntax and built-in support for concurrent programming is not too hard to get

20

used to, we believe that it takes time to have people change their way of coding and
thinking.

Even if it is all but certain that Go will ever have a major breakthrough and
become an accepted, popular language, one can only hope that the ideas of simplicity
and making concurrent programming much smoother that Go introduces will inspire
other language designers in their future work. We find the ideals of Go highly
interesting, and believe that they really do have good potential in making software
development less painful.

21

Bibliography

[1] The Go Programming Language: FAQ, 2011. Available on Internet: http:
//golang.org/doc/go_faq.html; [Accessed 2011-04-13]

[2] The Go Playground, 2011. Available on Internet: http://golang.org/doc/
play/; [Accessed 2011-04-10]

[3] The Go Programming Language Specification, 2011. http://golang.org/
doc/go_spec.html; [Accessed 2011-04-13]

[4] Stroustrup, B. (1994)The Design and Evolution of C++. AT&T Bell Labora-
tories, Murray Hill, New Jersey.

[5] Friendship and inheritance, 2011. http://www.cplusplus.com/doc/
tutorial/inheritance/; [Accessed 2011-04-10]

[6] Templates, 2011. http://www.cplusplus.com/doc/tutorial/templates/;
[Accessed 2011-04-10]

[7] Operators, 2011. http://www.cplusplus.com/doc/tutorial/operators/;
[Accessed 2011-04-10]

[8] Go For C++ Programmers, 2011. http://golang.org/doc/go_for_cpp_
programmers.html; [Accessed 2011-04-08]

[9] Pike, R. (2009). The Go Programming Language. http://golang.org/doc/
GoCourseDay3.pdf;[Accessed 2011-03-20]

[10] Schmager, F. (2010).Evaluating the GO Programming Language with
Design Patterns. Victoria University of Wellington, New Zealand
http://ecs.victoria.ac.nz/twiki/pub/Main/TechnicalReportSeries/
ECSTR11-01.pdf; [Accessed 2011-04-08]

22

www.kth.se

