

A Nineteen Tone Scale Synthesizer

 The design and implementation of an interactive
 software instrument for comparing equal temperaments

 S E B A S T I A N S J Ö G R E N

 Bachelor of Science Thesis
 Stockholm, Sweden 2011

A Nineteen Tone Scale Synthesizer

 The design and implementation of an interactive
 software instrument for comparing equal temperaments

 S E B A S T I A N S J Ö G R E N

 Bachelor’s Thesis in Computer Science (15 ECTS credits)
 at the School of Computer Science and Engineering
 Royal Institute of Technology year 2011
 Supervisor at CSC was Henrik Eriksson
 Examiner was Mads Dam

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2011/
 sjogren_sebastian_K11091.pdf

 Royal Institute of Technology
 School of Computer Science and Communication

 KTH CSC
 SE-100 44 Stockholm, Sweden

 URL: www.kth.se/csc

Abstract
The thesis encapsulate the design and implementation of an interac-
tive software synthesizer, built with the intent to serve as an accessible
tool for exploring an alternative music tuning system, Nineteen-tone
Equal Temperament (19-TET) . Fairly large portions of the text aim to
summarize and explain certain principles of music theory, in order to
provide readers unfamiliar with the subject a foundation of knowledge.
Although musical tuning systems can be compared and discussed purely
theoretically, which is also done in this thesis, actually hearing the dif-
ferences was considered more interesting. This is the reason for which
the instrument was developed. Although the work does not include any
comparative study of the tunings as such, the instrument developed is
intended to be of help during such studies. The larger challenge within
the course of this project has been designing the instrument’s user in-
terface. This could be considered the main goal of the project.

Referat
En synthesizer för nittontonsskalan

Examensarbetet sammanfattar design och implementation av en inter-
aktiv mjukvarusynth, byggd med avsikten att fungera som ett lättbe-
gripligt verktyg för att underlätta utforskandet av en alternativ stäm-
ning, nittontonig liksvävande temperatur. Förhållandevis stora delar av
texten ämnar summera och förklara vissa musikteoretiska principer, för
att förse ovana läsare med en kunskapsgrund. Även om stämningar kan
jämföras och diskuteras på ett helt teoretiskt plan, något som också
görs i detta arbete, vore det mer intressant att faktiskt höra skillna-
derna. Detta är skälet till att detta instrument utvecklades. Även om
arbetet inte innehåller någon jämförande studie med avseende på stäm-
ningarna i sig, så är instrumentet som utvecklats tänkt att kunna vara
till hjälp under sådana studier. Den större utmaningen under projektets
gång har varit att ta fram instrumentets användargränssnitt. Detta kan
anses vara projektets huvudsyfte.

Contents

Contents

1 Theoretical background 1
1.1 Tuning and equal temperament . 1
1.2 Overtones and harmonic series . 2
1.3 Intervals, the diatonic scale and just intonation 3

2 Introduction 5
2.1 Differences between 12-TET and 19-TET 5
2.2 The ChucK Audio Programming Language 7

3 Problems 9
3.1 Comparability of tuning systems . 9
3.2 User interface . 9

4 Method 11
4.1 Input devices . 11
4.2 Keyboard design . 12
4.3 Implementation . 14

4.3.1 The back-end . 15
4.3.2 The graphical user interface 17

5 Discussion of results and conclusions 19

Bibliography 21

Terms and acronyms 23

A Source code 25
A.1 Back-end ChucK code . 25

A.1.1 KeyEvent.ck . 25
A.1.2 ShredCollection.ck . 25
A.1.3 OSCHelper.ck . 26
A.1.4 Mapper.ck . 26

A.1.5 AbstractPolySynth.ck . 28
A.1.6 PolyFMVoices.ck . 30
A.1.7 main.ck . 31

A.2 UI C#/.NET code . 33
A.2.1 OSC.cs . 33
A.2.2 Server.cs . 34
A.2.3 Keyboard.xaml.cs . 35
A.2.4 KeyControl.xaml.cs . 37
A.2.5 MainWindow.xaml.cs . 38
A.2.6 SliderControl.xaml.cs . 39
A.2.7 FMVoicesPanel.xaml.cs . 39

A.3 UI XAML code . 40
A.3.1 Keyboard.xaml . 40
A.3.2 KeyControl.xaml . 41
A.3.3 MainWindow.xaml . 43
A.3.4 SliderControl.xaml . 43
A.3.5 FMVoicesPanel.xaml . 44

Theoretical background

Much of the work during the course of this project has consisted of researching
fundamental principles of music theory. Concepts such as tuning system, intervals,
equal temperament and more had to be understood, simply in order to have a chance
at succeeding with the project. This section aims to reiterate the main points of
these concepts in order to familiarize the reader with them, as they are frequently
used and referred to throughout the text. Brief explanations of most terms used in
this section should be available in the glossary.

1.1 Tuning and equal temperament

There is a need to explain what exactly is meant by “nineteen tone scale”. Generally
speaking, music is based on some tuning system. Basically, a tuning system might be
a set of rules or maybe just a mathematical formula, defining what pitches a correctly
tuned instrument should produce. In one particular tuning system, called Twelve-
tone Equal Temperament (12-TET), adjacent notes of the chromatic scale are all
separated by logarithmically equal distances, meaning that the frequency distance
between adjacent pitches increases upwards the scale, but the ratio between them
is always the same, 21/12 or 100 cents. An interval, the ratio between two pitches is
usually expressed in cents is defined as

n = 1200 log2

(
a

b

)
(1.1)

where a
b is the ratio between them. Thus the interval between two adjacent tones

in 12-TET, commonly called a semitone, is always n = 1200 log2

(
21/12

)
= 100.

12-TET is the most commonly used tuning system used in Western music, and is
the standard system for tuning a piano. The note names of the twelve pitch classes
are: C,C]/D[,D,D]/E[,E, F, F]/G[,G,G]/A[,A,A]/B[,B. The reason for using
these names will be disclosed further on. The following definition is used to find the
pitch or frequency of a note in 12-TET:

Pn = Pa

(
12√2

)k−a
(1.2)

1

CHAPTER 1. THEORETICAL BACKGROUND

where Pa refers to the frequency of a reference pitch1. The variables k and a refer
to to numbers assigned to the notes. The pitch A4 is usually assigned the number
49, as A4 is the 49th key on a regular piano [3]. Counting backwards from A in
the list of pitch classes above, it is found that C4 maps to key number 40. The
frequency of the pitch C4 is thus

P40 = P49
(

12√2
)40−49

= 440
29/12 ≈ 261.63 Hz (1.3)

Nineteen-tone equal temperament, 19-TET, is not very different from 12-TET. It
has 19 pitch classes instead of twelve:
C,C],D[,D,D],E[,E,E]/F[, F, F],G[,G,G],A[,A,A],B[,B,B]/C[. Instead of
having the five enharmonic pairs C]/D[,D]/E[, F]/G[,G]/A[and A]/B[, these are
now considered separate. In addition E]/F[and B]/C[are introduced, yeilding a
set of 19 pitch classes instead of 12. Nineteen-tone Equal Temperament (19-TET)
is mathematically very similar to 12-TET, the difference is that in 19-TET, the
smallest interval ratio is equal to 19√2 instead of 12√2.

1.2 Overtones and harmonic series
To understand what makes combinations of tones to be perceived as dissonant or
consonant, there is need to understand a few things about harmonic sound. Sound
can, at least theoretically, be modeled as sums of different sine waves of different
frequency, amplitude and phase. A sawtooth-shaped wave can theoretically be
constructed summing a large number of sine waves in a manner most generally
expressed as a infinite harmonic series [5]:

xsawtooth(t) = π

2

∞∑
k=1

sin(2πkft)
k

(1.4)

The partials of this series are the odd and even harmonics or overtones of the
same fundamental frequency f . Informally, harmonic sound is sound that is per-
ceived as one unified tone as a result of the waves being periodical, in contrast to
disharmonic sound, such as noise, in which the wave is completely random. Har-
monic sound can be created by adding sine waves of the same harmonic series and
it can model the behaviour of physical instruments to some extent. As one increase
the number of overtones, the sound will be perceived as ”sharper“. What causes the
perceiving of two or more tones as being dissonant or consonant is decided by how
their overtones coincide. For example, consider two different sawtooth waves with
fundamental frequencies f0 = 200 Hz and f ′0 = 300 Hz, then they will also have
overtones f1 = 400, f2 = 600, ... and f ′1 = 600, f ′2 = 900, ... But f2 coincides with
f ′1, they are both 600 Hz. Hearing these waves will be perceived as very consonant,
and the reason is that they have coinciding overtones [15]

1The reference pitch is usually A4, which normally has the frequency 440 Hz [1].

2

1.3. INTERVALS, THE DIATONIC SCALE AND JUST INTONATION

1.3 Intervals, the diatonic scale and just intonation

To understand in what ways different tuning systems differ from one another, and
how to compare them to each other, it is helpful to understand the concept of
just intonation. In music, just intonation is any musical tuning system in which
the frequencies of notes are related by different ratios of small whole numbers, in
contrast to equal temperament, in which an interval is defined as a multiple of the
same basic interval. Any interval tuned this way is called a just interval [7]. The
two notes in any just interval are members of the same harmonic series, like in the
example of previous section. In fact, the ratio between the two tones in the example
is the just interval 3/2, also known as a perfect fifth. Three basic intervals can be
used to construct any interval involving the prime numbers 2, 3 and 5 (known as
the 5-limit intonation), defined in table 1.1.

Name Ratio
Semitone s = 16/15
Minor tone t = 10/9
Major tone T = 9/8

Table 1.1. The 5-limit intonation

These are multiplied in various ways to form several other just intervals, see
table 1.2. A just diatonic scale can be derived from these intervals, see table 1.3.

Name Ratio
Minor third 6/5 = Ts
Major third 5/4 = Tt
Perfect fourth 4/3 = Tts
Perfect fifth 3/2 = Ttts
Octave 2/1 = TTTttss

Table 1.2. Intervals derived from the 5-limit intonation

Note Ratio
C 1/1
D 9/8 = T
E 5/4 = Tt
F 4/3 = Tts
G 3/2 = TTts
A 5/3 = (Tt)(Tts)
B 15/8 = (Tt)(TTts)
C 2/1 = (Tts)(TTts)

Table 1.3. A just diatonic scale

3

CHAPTER 1. THEORETICAL BACKGROUND

Many musical tuning systems, including 12-TET and 19-TET, are based on the
diatonic scale. On a piano keyboard the diatonic scale is mapped directly onto
the white keys, C,D,E, F,G,A,B. The intervals between the tones of the diatonic
scale is T-T-s-T-T-T-s, using the notation in table 1.1.

It can also be written C-T-D-T-E-s-F -T-G-T-A-T-B-s-C. In order to acquire
the full chromatic scale, five additional keys are needed, and naturally, they are
placed between the keys that are a major tone apart. Since E and F resp. B and
C are only a semitone apart, there should not be any black key between them. The
pitches of these five black keys are considered to be either flat or sharp. For example
the key between C and D is either a sharp C, C] or a flat D, D[.

In order to understand the purity of a particular tuning system, it is usual
to examine how well intervals in that tuning system approximate just intervals.
What could generally be strived for developing a new tuning system is getting as
many well approximating intervals as possible. The reason for not simply using just
intonation instead equal temperament is that it can produce some rather awkward
interval ratios when combining intervals, it also does not support the transposing of
intervals, making it very difficult and impractical [7]. A brief examination of both
12-TET and 19-TET is contained within the next section.

4

Introduction

Now that important principles and concepts have been breifly explained, it should
be appropriate to finally present the actual project, what it is about and why it
is carried out. To begin with, a purely mathematical account for the differences
between 12-TET and 19-TET does not really provide the whole picture. A compre-
hensive study of these tuning systems and their differences should probably involve
some audible examples. For example, an audio adaptation of the interval tables in
the previous section would positively help widen the view, but it is felt that this
would not present enough challenge, it would not be very interesting either. To
appreciate the difference between 12-TET and 19-TET, an instrument capable of
demonstrating both would be of great use, and since there is not really any such
instrument available, it would have to be built, and in this case, purely in software.
The remaining part of this text will deal with the development of this instrument,
and present the main problems encountered during the process. The actual synthe-
sizer (here referring to the component that produces sound), will be implemented
using the ChucK audio programming language. ChucK comes with a standard li-
brary containing some very well-implemented high-level components for developing
audio synthesis. This is good because dealing with signal processing and real-time
audio synthesis in particular using a general purpose programming language is hard
and complicated. Moreover, not having to put in the time and effort to implement
a real-time audio synthesis from scratch leaves more time to design and develop the
user interface of the instrument.

2.1 Differences between 12-TET and 19-TET

Since very early, composers and theorists have been experimenting with different
tuning systems, but more recently, 19-TET frequently emerges as one of the more
plausible alternatives to the widely used 12-TET [15]. As briefly discussed earlier,
19-TET is the tempered scale in which the octave is divided into 19 equal steps
instead of 12. Basically, in 19-TET, each step represents a frequency increase by a
factor 19√2 instead of 12√2 as in 12-TET. Composer Joel Mandelbaum examines the
acoustical properties of the 19-TET tuning, and advocates for its use [14]. Mandel-
baum demonstrated why he believed this system to be the only reasonably system

5

CHAPTER 2. INTRODUCTION

with a number of divisions between 12 and 22 [12]. Mandelbaum explains why 19-
TET in particular should be considered as an alternative for 12-TET. Here focusing
on the acoustical aspect, the most apparent changes observable when switching from
12-TET to 19-TET is that the fifth and fourth intervals are somewhat impure, in
return for the third and sixth interval which are much closer to just thirds and sixths
than their relatively dissonant counterpart in 12-TET. Basically, both tunings have
some flaws and some strengths [14]. Presented below are some intervals in 12-TET
and some in 19-TET both approximating some common just intervals. The errors
are simply the differences between the actual 12-TET or 19-TET intervals and the
just ratios in cents, see 2.1

∆ = 1200
(

log2 2s/N − log2
a

b

)
(2.1)

where N is here either 12 or 19, s is the number of steps and a
b is the just ratio.

Name Steps Ratio Just ratio Size (cents) Just size (cents) Error
Minor second 1 21/12 16/15 100 111.73 -11.73
Major second 2 22/12 9/8 200 203.91 -3.91
Minor third 3 23/12 6/5 300 315.64 -15.64
Major third 4 24/12 5/4 400 386.31 +13.69
Perfect fourth 5 25/12 4/3 500 498.04 +1.96
Perfect fifth 7 27/12 3/2 700 701.96 -1.96
Minor sixth 8 28/12 8/5 800 813.69 -13.69
Major sixth 9 29/12 5/3 900 884.36 +15.64

Table 2.1. Common intervals in 12-TET, compared to just ratios

Name Steps Ratio Just ratio Size (cents) Just size (cents) Error
Diatonic semitone 2 22/19 16/15 126.32 111.73 +14.59
Major tone 3 23/19 9/8 189.47 203.91 -14.44
Minor third 5 25/19 6/5 315.79 315.64 +0.15
Major third 6 26/19 5/4 378.95 386.31 -7.36
Perfect fourth 8 28/19 4/3 505.26 498.04 +7.22
Perfect fifth 11 211/19 3/2 694.74 701.96 -7.22
Minor sixth 13 213/19 8/5 821.05 813.69 +7.37
Major sixth 14 214/19 5/3 884.21 884.36 -0.15

Table 2.2. Common intervals in 19-TET, compared to just ratios

It is clear that 19-TET indeed gains accuracy in the thirds and the sixths. On
the other hand it loses accuracy in the fourth, fifth and major tone intervals. But
really, what do these differences mean; how bad is it really that the fifths of 19-TET
is around seven cents off? Questions of this kind are discussed in the next section.

6

2.2. THE CHUCK AUDIO PROGRAMMING LANGUAGE

2.2 The ChucK Audio Programming Language

Since ChucK is integral to the implementation, and since the language is very new
and unusual in some aspects, this section provides a short analysis of the most
important principles and concepts of the language. Although reading this it is not
necessary in order to understand the main points of the work, it might still interest
some readers.

Events are one of the central programming concepts in ChucK. In ChucK, there
are shreds, which are a kind of process, running in the ChucK virtual machine.
Events provides a means to communicate between different shreds. Listing 2.1
briefly illustrates some of the most central and unique aspect of the ChucK language.
Two event objects are created, and two function handling these events are defined.
The expression e1 => now; is blocking and causes the executing shred to suspend
(and let other shreds run on the VM) and be placed at the back of the event’s
waiting list. Eventually, in this example, the main shred will signal the event and
the handler will print something.

The expression found on lines 26 and 29 is very important. It means that time
will advance by 500 milliseconds. This in turn means that the shred will suspend for
that exact amount of time. It also means that other shreds are allowed to compute
audio for that exact amount of time.

Basically, to get ChucK to produce sound, time must advance, and this is the
way it is done. On line 21 a sine oscillator has been connected to a gain function
that is connected to the dac1. Running this program will result in repeated beeping
and printing. This is not very exciting, but in fact, this example illustrates most
concepts needed to understand all ChucK code contained within this document,
given of course that the reader already has some experince with reading code written
in not so familiar programming languages.

Listing 2.1. Example illustrating concurrency, events and audio programming in
ChucK

1 Event e1 , e2 ;
2
3 fun void e1Handler () {
4 while (true) {
5 e1 => now ;
6 <<< " handled␣ event ␣e1 " >>>;
7 }
8 }
9

10 fun void e2Handler () {
11 while (true) {
12 e2 => now ;
13 <<< " handled␣ event ␣e2 " >>>;
14 }
15 }

1In general, dac stands for digital/analog converter. In the context of ChucK programming,
connecting some unit generator to dac will enable actual sound, as soon as some audio is computed.

7

CHAPTER 2. INTRODUCTION

16
17 spork ~ e1Handler () ;
18 spork ~ e2Handler () ;
19
20 0 => int c ;
21 SinOsc s => Gain g => dac ;
22 s . f r e q = 440 ;
23
24 while (true) {
25 0 .4 => g . gain ;
26 5 0 0 : :ms => now ;
27
28 0 => g . gain ;
29 5 0 0 : :ms => now ;
30
31 i f (c++ % 2) {
32 e1 . s i g n a l () ;
33 } else {
34 e2 . s i g n a l () ;
35 }
36 }

8

Problems

There are two main problem categories recognized, each separately discussed.

3.1 Comparability of tuning systems
There is a problem that concerns the perceiving of 19-TET in contrast to 12-TET.
As seen, the main differences can be presented as very exact data, derived using
only the mathematical definitions of the tuning systems. However, as previously
touched on, the data obtained in tables 2.1 and 2.1 above might not provide the
whole picture. The data is abstract and purely quantitative, it can be difficult
to realize how these differences manifest themselves, qualitatively speaking. For
example, how much worse does the perfect fifth in 19-TET sound compared to the
perfect fifth in 12-TET? Generally, how are the differences perceived and which
tuning is perceived as most consonant? Studies set out to answer questions of this
kind has been done, but results were somewhat inconclusive [15]. Consequently,
the purpose of the thesis is not to determine what tuning is the ”better“ one, but
rather to work out the design of an instrument that supports both tunings, and
that has the abilitity to switch between them. In order to be absolutely clear on
this point, there will be no attempts to dismiss one tuning in favour of another.
So, the questions regarding the respective qualities of the two tunings will remain
open, and should be investiged further, but that would have to be in some future
study. However, the instrument developed in this project could definitely serve as
a practical tool in such a study.

3.2 User interface
Since the maths needed to compute the note-to-frequency mappings can be con-
sidered fairly trivial, and everything concerning real-time audio synthesis is easily
realized using ChucK, emphasis has been applied to questions concerning user inter-
face. Since it will be software based, the possibilities are restricted. Not everything
can be done, and not everything is practical. Immediately, questions concerning
playability emerges – How should this instrument be played? Is there any previ-
ous similar work that can help and inspire? And since it is software based, which

9

CHAPTER 3. PROBLEMS

of the computer’s input device(s) should be used? Secondly, what is a suitable
graphical user interface for this instrument and purely practical; How should it be
implemented? What development tools should be used? ChucK will stand for the
synthesis part but ChucK does not really have support for Graphical User Interface
(GUI) development, how is this solved?

10

Method

The aim of this section is to provide answers to the questions asked in the chap-
ter Problems. It is divided into subsections, each treating their own category of
problems. There is not really an order of priority here, but the ordering of these
subsections aims to pass through as natural and logical.

4.1 Input devices

It is obvious that this instrument needs some kind of input in order to provide
flexible functionality. Implementations could be considered in which some kind of
notational data is read from files. While such solutions should be easy to implement,
they would suffer from complete lack of interactivity. The process of programming
such an instrument would most likely be tiresome and counterintuitive. There is a
need for some kind of interactive input.

So what devices can be of use? Thoughts of using a regular MIDI-keyboard got
ruled out quickly due to the fact that they are not really suited for any scales other
than those having twelve tones. Some inconvenient remapping of the keys would
in the end only confuse and obstruct any sensible usage. This basically leaves the
mouse and the computer keyboard, because at this point there is neither time nor
knowledge to create any custom input devices, although this would really be the
ultimate. Using only the mouse to interact with a GUI will surely work, but it would
lack playability. Striking a chord would become virtually impossible. So what about
the computer keyboard? It has a lot of buttons so at least one octave of 19-TET
scale could easily be mapped to some section of it. ChucK has excellent support
for keyboard input as well, it catches system-wide keyboard events, meaning the
ChucK application will not have to be in focus while using it. It is known that the
computer keyboard will fail to support truly polyphonic playing; it cannot register
state changes on more than three keys at once. Still, it remains the best alternative,
because playing the keyboard merely by clicking is a lot worse.

11

CHAPTER 4. METHOD

4.2 Keyboard design

It is established that the computer keyboard is the only viable input device to be
considered, but how should the keys on it map onto the pitch classes of 19-TET? It is
fair to say that this problem has been the most time-consuming. Research eventually
led to the notion of two possible keyboard layouts explicitly designed for instruments
using a nineteen tone scale. One that really seems to make sense is the design found
in the appendix of Joseph Yasser’s book “A Theory of Evolving Tonality” [17]. In
it, each of the black keys C]/D[,D]/E[, F]/G[,G]/A[,A]/B[of a regular piano
keyboard is split into two separate keys. The synonyms, (C]/D[,D]/E[, ...) is no
longer, instead there is C] and D[, D] and E[and so on. Two new black keys are
introduced: E]/F[and B]/C[, between E and F and B and the next C, yielding
a total of 19 keys per octave. see figure 4.1 below.

Figure 4.1. Yasser’s 19-tone keyboard

While this design at first seemed aesthetically appealing and logical, it was soon
found to be impractical in the context of this project. There is simply no natural
way of transferring the layout of this keyboard onto a computer keyboard. If there
were to be a GUI only, it would have been fine, but since real keyboard input has
been established necessary, this design will not do. However, there is one other alter-
native. In 1975, Erv Wilson and Scott Hackleman collaborated in the construction
of a clavichord using one of Wilson’s generalized keyboard designs, carried out to 19
tones per octave [13] [16]. Generalized keyboards are musical keyboards with regu-
lar, tile-like arrangements usually with rectangular or hexagonal keys. The concept
of the generalized keyboard was first proposed by Robert Bosanquet in the 1870s,
and since the 1960s, Erv Wilson has explored it further, developing new methods
of using and expanding them [4].

The theory of the generalized keyboard is not entirely trivial, but let us intro-
duce it using an example. A generalized keyboard for the 19-TET scale could be

12

4.2. KEYBOARD DESIGN

calculated in the following manner. Let G be the abelian group (Z19,+) and let 7
be a generator:

G = (Z19,+) = 〈7〉 = {0, 7,−5, 2, 9,−3, 4,−8,−1, 6,−6, 1, 8,−4, 3, 10,−2, 5,−7}
(4.1)

In unchanged order, these numbers determine the vertical positions of the keys.
Flat pitches are assigned the largest negative member of its congruence class1 rather
than the smallest positive number, causing them to get positions below the others,
see figure 4.2.

-10

-5

0

5

10

C

C#

Db

D

D#

Eb

E

Fb

F

F#

Gb

G

G#

Ab

A

A#

Bb

B

Cb

Pitch class

V
e

rt
ic

a
l p

o
s i

tio
n

in
g

Figure 4.2. Schematic of one octave of a generalized keyboard for 19-TET using a
7 as generator

How does this rather intricate mapping fit with the computer keyboard layout?
Initially and completely unchanged, it seems not to. But if the vertical positions al-
lows some displacement and realignment, an adaptation can be formed. Let the row
of keys A, S, D, F, G, H, J, K map to the diatonic scale, C,D,E, F,G,A,B, (C).
Then let the row below, Z, X, C, V, B, N, M map to the flatsD[,E[, F [,G[,A[,B[, C[,
and the keys W, E, T, Y, U map to the sharps C],D], F],G],A]. While this map-
ping does not fully conform to the generalized keyboard, it is an approximation,
justifiable by practical reasons. Since the computer keyboard is really the only rea-
sonable input device for this instrument, this seems like the only practical solution.
See figure 4.3.

1The set of integers congruent to a modulo n. For example 7 + 7 ≡19 14 ≡19 −5.

13

CHAPTER 4. METHOD

Figure 4.3. User interface keyboard adaptation of the generalized keyboard for
19-TET

In order to acquire a suitable keyboard mapping for 12-TET, simply remove the
flat keys from the above mapping, and rename and remap the previously explictly
sharp keys, see figure 4.4.

Figure 4.4. user interface keyboard adaptation for 12-TET

4.3 Implementation

As previously established, the actual synthesizer or the back-end component of the
application is implemented using the ChucK audio programming language. As the
main goals of this project does not include providing an in-depth analysis of the
actual programming language, this section will provide a summary of the how and
why the functional features were implemented. The ChucK language should be
fairly easily understood by readers accustomed to programming languages and the
chapter Introduction contains a short review of the most important aspects of the
ChucK language.

14

4.3. IMPLEMENTATION

4.3.1 The back-end

This subsection serves to describe solutions pertaining the back-end component, i.e
the synthesizer. Sections below discusses the most important logical components.

Mapping keys to frequencies

Synthesis aspects of the application set aside for a while, the most important func-
tionality is the mapping between the keyboard keys and the frequencies attached to
them. This functionality is implemented in a class simply called Mapper. Handling
keyboard input could have been done in the GUI component and then fed into the
back-end component, but since ChucK has excellent support for handling this kind
of input, it was decided to do it the other way around. The mapper however does
not actually handle the keyboard input, but it is responsible for translating the
input into frequencies later sent to the synth.

The Mapper provides one function, remap(int numDiv). It can be called with-
out arguments, or with the arguments 12 or 19. Calling it will cause a few things
to happen. Firstly setupKeys() will be called. Selected frequency spans in the
12-TET and 19-TET scales are pre-calculated at the moment of instantiation of a
mapper object, so mapping is really only a matter of copying certain frequencies
into elements of the map indexed by the correct values, namely the ASCII code for
the keys that are used.

Frequencies are computed applying a generalization of definition 1.2. Calling
remap has one more effect. After setupKeys() has finished, the new mapping will
be sent via OSC to the GUI component. This is because the GUI is designed to
reflect, in detail, what scale is used at the moment and what the exact frequencies
of the pitches are. The mapper is then used in the application by simply accessing
the array, indexing it with ASCII values. Please refer to listing A.4 for details.

Synthesizers

To provide some level of modularity, in order to ease further development, some
basic object oriented programming patterns were applied. Wishes to be able to
rapidly implement more than one synthesizer within the program, without hav-
ing to rewrite tons of code, led to the design of an abstract synthesizer class called
AbstractPolySynth. Basically it is what the name suggest, an abstract class partly
defining and partly declaring the functionality of a polyphonic synthesizer. It de-
clares a set of functions that has to be implemented by any class that extends it.
Examples of such functions are: init() which should implement all initializing
operations such as sporking shreds and assigning member variables. Constructors
are not yet implemented in ChucK, but basically what would have been done in a
constructor is done in the init()-function. The voiceHandler() is a function that
will run in multiple separate shreds, each responsible for one of the synthesizers
voices.

15

CHAPTER 4. METHOD

Moreover, there are some function common to all synths, and therefore defined
in this abstract class. Examples of such functions are the stop() function, which
will kill all shreds belonging to a synth, and disconnect() which will disconnect
the synthesizer from whatever output it was connected to during its initialization.
There are two very important common functions defined in the abstract synth class
called noteOnHandler() and noteOffHandler(). These are also running in sepa-
rate shreds, and they listen for OSC messages sent by the GUI component.

For example, whenever the OSC message /note/on,i is sent, meaning that
the user pressed one of the GUI keys, the noteOnHandler() in turn will signal the
keyDown event, which is a member variable of the abstract synth class. Implemented
correctly, the voiceHandler() listens for the keyDown event and when one of the
shreds running voiceHandler() catches it, it will cause the unit generator2 for its
assigned voice to start producing sound. Again, please refer to actual code found
in listings A.5 and A.6 for more details on this.

Utility classes

There are a few couple of classes left. One is called ShredCollection. A synthe-
sizer that needs to be able to be stopped needs to be able to remove its shreds
from the virtual machine. Removing shreds is done by using the ChucK func-
tion Machine.remove(int id), but one need to provide the id of the shred to be
removed. By having each handler calling the register(int id)-method of the
synth’s ShredCollection-object, storing the id’s, the shreds later can be removed
from the ChucK VM by calling ShredCollection.killall(). Of course this solu-
tion is fraught with potential problems, since just forgetting to register a shred in
a handler will result in “zombie” shreds whenever the synthesizer is killed, but it is
what felt plausible at the time, it took only about 20 minutes to implement and it
works fine if used correctly.

Another utility class is the OSC class, which basically just bundles together an
instance of the OscRecv class, which is provided by the ChucK standard library and
can be used to listen for and receive OSC messages, and an instance of the OscSend
class, which can be used to create and send OSC messages.

Putting it all together

Now that the most important ChucK classes of the application has been described
to some extent, it should be all right to take a look at the main part of the pro-
gram. This part of the program is found in listing A.7. Initially, it instantiates and
initializes objects of the classes recently discussed. Then it tries to open an inter-
face to the computer’s keyboard device. If this is successful, the program now gets
keyboard events system-wide, meaning that ChucK will not have to be in focus, it
can run somewhere in the background.

2The common name for classes found in ChucK’s standard set of unit generators, classes that
processes audio, such as the SinOsc in listing 2.1

16

4.3. IMPLEMENTATION

Then the program enters a loop fetching keys events from the interface. The
inner loop takes key events and performs the appropriate actions. For example if
the up-key is pressed, the program will cause a remap of the keyboard so that all
pitches are increased by one octave. If enter is pressed, the program will cause a
remap from 12-TET to 19-TET or vice versa. If the key pressed is one of the keys
currently mapped by the mapper, the keyDown event will be signaled, causing one
of the voiceHandlers to wake up and do its work. This event will also cause the
program to send an OSC message to the GUI, so it can graphically reflect that a
key is pushed.

4.3.2 The graphical user interface

It should be said that the GUI initially was planned to be developed using the
Python programming language with the help of some interesting Application Pro-
gramming Interfaces (APIs) found. However, back then the development was also
planned to be done under Linux, but ChucK turned out working a lot better run-
ning under Microsoft Windows®, which then quickly was decided to be the default
working platform. The decision to use Windows as platform in turn led to the
decision to use Microsoft Visual Studio 2010®, C#/.NET®and WPF®since there
was good knowledge of this environment. Also, a very good free API for the OSC
protocol was found [8].

What is actually seen on figures 4.3 and 4.4 is the actual keyboard part of the
final GUI. The black and white keys are the visual part of a custom developed user
interface control simply called KeyControl. See listing A.11 for code-behind and
listing A.16 for XAML markup code.

It implements a set of different functions which will now be shortly described.
First off, each KeyControl object has a few visual properties. It is either black or
white, as it might represent sharp, flat or neutral pitch. It has a letter in the upper
left corner, which denotes its physical equivalent on the real keyboard. In the lower
left corner there is a number denoting the frequency of the pitch currently mapped
to the key. Right on the key in the middle is the actual note name, or pitch class.
If the user pushes left mouse button down while hovering a key control, the key will
appear to actually be pushed down a bit, using some nifty animation possibilites
that comes with the WPF framework.

More importantly, the GUI component will send an OSC message to the back-
end, causing it to play the tone. In the same way, if the user presses the keyboard,
switches octave or changes tuning (actions that are taken care out directly by the
back-end), these changes will immediately reflect in the GUI, since the back-end
sends OSC messages as well. The GUI, just like the back-end, is largely event-
driven. There is a static class defining used OSC messages3, and there is a Server
class4 that receives incoming OSC messages and invokes the appropriate actions.

3See listing A.8
4See listing A.9

17

CHAPTER 4. METHOD

The Keyboard control is simply arranging a set of KeyControl object in such a way
that it maps correctly to the real keyboard.

In addition to this, the GUI contains a panel with sliders used to modify any
paramaters of the synthesizer. These of course also need to make use of OSC
messages in order mediate new values, and the synthesizer in the back-end need to
handle these messages. OSC message passing is implemented so that when the user
switches synth in the back-end, the GUI will respond to this, switch to the slider
panel. The code for all this is found in listings A.12, A.13, A.14. Figure 4.5 shows
the complete GUI.

Figure 4.5. The user interface

18

Discussion of results and conclusions

The main aim within this project has been to develop a software tool for interactive
demonstration of the audible differences between the musical tuning systems 12-TET
and 19-TET, and not to evaluate the differences themselves. Therefore, I personally
consider the actual software instrument to be the main result of this project. The
GUI is very intuitive and responsive, and the really good thing about it is that
by hitting the Enter-key, the synthesizer will re-tune from 12-TET to 19-TET or
vice versa, and the keyboard layout will re-map itself, showing the keys, frequencies
and note names corresponding to the current tuning. This definitely argues for its
usefulness in any future comparative study of the tunings. The largest problem with
the instrument is the lack of several, simultaneously mapped octaves. The layout as
is now is limited to just one octave, which clearly is not sufficient to play anything
serious. Switching octaves up and down is done be by pressing the up and down
keys, but there is only one octave at the time.

To shortly address the matter of purity differences regarding the two tuning
systems, it is, by using the instruments ability to quickly switch between tunings,
very easy to confirm that the thirds and sixths in 19-TET indeed are noticeably
purer than in 12-TET, these intervals are really pure. The loss of purity in the fifth
interval in 19-TET is audible as well, but it really is not that bad.

Not being a trained keyboard player, I have to admit it is difficult to say whether
the keyboard adaptation is the best possible one. Although, purely speculative,
Yasser’s keyboard, see figure 4.1. seems more practical, at least if you are used to
a regular piano keyboard. But as discussed in the chapter Method this was never
really a practical alternative.

Initially during the development of the synthesizer, awe was felt before the
problem of managing voice allocation, but using ChucK’s event system this problem
disappeared. ChucK in general has been very easy to learn and use, although the
language is not fully developed. For example, access modifiers, constructors and
referencing variables of primitive data types, are all language features which are yet
to be implemented. Aside from that there was no real problems to speak of. Using
OSC to achieve inter-application communication was, considering the alternative of
basically implement something similar from scratch, really easy once figured out.

Getting into the theoretical aspects of music has led to a widened perspective

19

CHAPTER 5. DISCUSSION OF RESULTS AND CONCLUSIONS

towards music in general, and given knowledge that most definitely will be of use
during contingent further studies in the field. If report writing had not taken as
much time as it did, there might had been time for maybe using ChucK to compose
a smaller musical piece for 19-TET. Maybe it would be a nice summer project.

20

Bibliography

[1] A440 (pitch standard). http://en.wikipedia.org/wiki/A440_(pitch_standard).

[2] Chromatic scale. http://en.wikipedia.org/wiki/Chromatic_scale.

[3] Equal temperament. http://en.wikipedia.org/wiki/Equal_temperament.

[4] Generalized keyboard. http://en.wikipedia.org/wiki/Generalized_keyboard.

[5] Harmonic series. http://en.wikipedia.org/wiki/Harmonic_series_(mathematics).

[6] Introduction to osc. http://opensoundcontrol.org/introduction-osc.

[7] Just intonation. http://en.wikipedia.org/wiki/Just_intonation.

[8] Open sound control api. http://www.bespokesoftware.org/wordpress/?page_id=69/.

[9] Pitch class. http://en.wikipedia.org/wiki/Pitch_class.

[10] Pitch (music). http://en.wikipedia.org/wiki/Pitch_(music).

[11] Xaml overview (wpf). http://msdn.microsoft.com/en-
us/library/ms752059.aspx.

[12] Ivor Darreg. A case for nineteen. INTERVAL - A Microtonal Newsletter, 1979.
http://sonic-arts.org/darreg/case.htm.

[13] Scott Hackleman. The hackleman-wilson 19-tone clavichord. In Micro-
fest 2001 - Conference and festival of music in alternative tunings, 2001.
http://www2.hmc.edu/ alves/microfestabstracts.html.

[14] Mayer Joel Mandelbaum. Multiple division of the octave and the tonal
resources of 19-tone temperament. PhD thesis, Indiana University, 1961.
http://anaphoria.com/mandelbaum.html.

[15] Erkki Huovinen Saku Bucht. Perceived consonance of harmonic intervals in
19-tone equal temperament. In F. Zimmer (Eds.) R. Parncutt, A. Kessler,
editor, Proceedings of the Conference on Interdisciplinary Musicology (CIM04)
Graz/Austria, 15-18 April, 2004, 2004. http://gewi.uni-graz.at/ cim04/.

21

BIBLIOGRAPHY

[16] Erv Wilson. 19-tone scale for the clavichord-19.
http://www.anaphoria.com/Clavichord19-17-22.pdf, 1976.

[17] Joseph Yasser. A Theory of Evolving Tonality. American Library of Musicology,
1932. http://www.musanim.com/Yasser.

22

Terms and acronyms

12-TET Twelve-tone Equal Temperament. 1–5, 9, 13, 15, 16, 19, 23

19-TET Nineteen-tone Equal Temperament. 2–6, 9, 11, 12, 15, 16, 19

API Application Programming Interface. 17

cent A logarithmic unit for measuring musical intervals. 1, 5, 6

chromatic scale The musical scale of all pitches in a given tuning. For example, in
12-TET, the chromatic scale is all pitches in 12-TET, each a semitone apart.
1

ChucK A programming language and a virtual machine for development of audio
synthesis programs. 5–7, 9, 11, 14, 16, 17, 19, 24

GUI Graphical User Interface. 9, 11, 12, 15–18

harmonic A harmonic of a wave having a fundamental frequency is another wave
with a frequency that is an integer multiple of the fundamental frequency. 2

harmonic series The infinite series of all harmonics of a wave given a fundamental
frequency. 2

interval The combination of two notes, or the distance between their pitches. This
distance is commonly expressed as a mathematical ratio between the frequen-
cies of the two pitches. 1, 2, 5, 24

MIDI Musical Instrument Digital Interface, a protocol enabling electronic musical
instruments to communicate. 11

OSC Open Sound Control, a light-weight text-based network protocol for commu-
nication between applications. 15–19

pitch A less formal and more music oriented synonym to the term frequency. 1, 23

23

Terms and acronyms

pitch class A pitch class is the set of pitches that are a whole number of octaves
apart. For instance, on a standard piano there are seven C keys, C1, C2, ...C7.
These form the C pitch class. 1

semitone The smallest musical interval commonly used in western music. It is the
interval between two adjacent notes in a twelve tone scale. 1, 23

shred A thread or process in ChucK. 16

tuning system A system that defines pitches and how they relate to each other.
1–5, 9, 19

WPF Windows Presentation Foundation, a framework for developing user inter-
faces. 17

XAML a declarative markup language used to simplify UI development in .NET
applications. 17

24

Source code

This section provides most of the source code produced during the implementation
of the synthesizer. The code is divided in two sections, one for the ChucK code,
implementing the actual synthesizer, and one for the C# code, implementing the
graphical user interface. Some parts of the C# code is not accounted for here, as
much of it is very similar. The code is presented in listings, one for each source
file. At this point the software is largely prototypical, which is why there is no
downloadable executable. If anyone is interested in taking a closer look, please
e-mail me for a full copy of the source.

A.1 Back-end ChucK code

A.1.1 KeyEvent.ck

Listing A.1. KeyEvent.ck
1 public class KeyEvent extends Event
2 {
3 int a s c i i ;
4
5 fun f loat getFreq (Mapper @ m) {
6 return m.map [a s c i i] ;
7 }
8 }

A.1.2 ShredCollection.ck

Listing A.2. ShredCollection.ck
1 public class ShredCo l l e c t i on
2 {
3 Shred @ shreds [1 0 2 4] ;
4 0 => int head ;
5
6 fun void r e g i s t e r (Shred @ shred) {
7 i f (shreds [head] != null) {
8 Machine . remove (shreds [head] . id ()) ;
9 null @=> shreds [head] ;

25

APPENDIX A. SOURCE CODE

10 }
11
12 shred @=> shreds [head] ;
13 (head + 1) \% shreds . cap () => head ;
14 }
15
16 fun void k i l l A l l () {
17 for (0 => int i ; i < head ; i++)
18 i f (shreds [i] != null)
19 Machine . remove (shreds [i] . id ()) ;
20 0 => head ;
21 }
22 }

A.1.3 OSCHelper.ck

Listing A.3. OSCHelper.ck
1 public class OSCHelper
2 {
3 4712 => stat ic int l i s t e n i n gPo r t ;
4 4710 => stat ic int sendingPort ;
5
6 OscRecv recv ;
7 l i s t e n i n gPo r t => recv . port ;
8 recv . l i s t e n () ;
9

10 OscSend send ;
11 send . setHost (" l o c a l h o s t " , sendingPort) ;
12 }

A.1.4 Mapper.ck

Listing A.4. Mapper.ck
1 public class Mapper
2 {
3 OSCHelper @ osc ;
4
5 19 => int numDivisions ;
6 3 => int octave ;
7 0 => int lowOctave ;
8 6 => int highOctave ;
9

10 // 27.5625 => f l o a t freqA0 ;
11 27 .5 => f loat freqA0 ;
12
13 computeFrequencies (0 , 5 , 19) @=> f loat f r e q s 19 [] ;
14 computeFrequencies (0 , 3 , 12) @=> f loat f r e q s 12 [] ;
15
16 [65 , 87 , 83 , 69 , 68 , 70 , 84 , 71 , 89 , 72 , 85 , 74 , 75] @=> int keys12 [] ;
17 [6 5 , 87 , 90 , 83 , 69 , 88 , 68 , 67 , 70 , 84 , 86 ,
18 71 , 89 , 66 , 72 , 85 , 78 , 74 , 77 , 75] @=> int keys19 [] ;
19

26

A.1. BACK-END CHUCK CODE

20 f loat map [2 5 6] ;
21
22 remap () ;
23
24 fun void setupKeys () {
25 r e s e t (map) ;
26
27 octave ∗ numDivisions => int oc taveOf f s e t ;
28
29 i f (numDivisions == 19) {
30 for (0 => int keyIdx ; keyIdx < keys19 . cap () ; keyIdx++)
31 f r eq s 19 [keyIdx + oc taveOf f s e t] => map [keys19 [keyIdx]] ;
32
33 } else i f (numDivisions == 12) {
34 for (0 => int keyIdx ; keyIdx < keys12 . cap () ; keyIdx++)
35 f r eq s 12 [keyIdx + oc taveOf f s e t] => map [keys12 [keyIdx]] ;
36 }
37 }
38
39 fun f loat [] computeFrequencies (int octaveIdx ,
40 f loat s ta r tP i t ch Idx ,
41 int numDiv) {
42 freqA0 ∗ Math . pow(2 , octaveIdx) => f loat octaveFreq ;
43 Math . pow(2 , s t a r tP i t ch Idx / (numDiv \$ f loat))
44 => f loat s t a r tP i t chRat i o ;
45 octaveFreq ∗ s t a r tP i t chRat i o => f loat s ta r tP i t chFreq ;
46 f loat f r e q s [(highOctave + 1) ∗ numDiv + 1] ;
47
48 for (0 => int p i tchIdx ; p i t chIdx < f r e q s . cap () ; p i t chIdx++) {
49 Math . pow(2 , p i t chIdx / (numDiv \$ f loat)) ∗ s ta r tP i t chFreq =>
50 f loat semiToneFreq ;
51 semiToneFreq => f r e q s [p i t chIdx] ;
52 }
53
54 return f r e q s ;
55 }
56
57 fun stat ic void r e s e t (f loat map []) {
58 for (0 => int i ; i < map . cap () ; i++) 0 => map [i] ;
59 }
60
61 fun void sendMapping () {
62 i f (osc == null)
63 return ;
64
65 i f (numDivisions == 19) {
66 osc . send . startMsg (" / func / toggle_tuning , i ") ;
67 osc . send . addInt (numDivisions) ;
68 osc . send . startMsg (" / func /mapping , i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i
69 ␣␣␣␣␣␣␣␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ") ;
70 for (0 => int i ; i <= 19 ; i++) {
71 osc . send . addInt (keys19 [i]) ;
72 osc . send . addFloat (map [keys19 [i]]) ;
73 }

27

APPENDIX A. SOURCE CODE

74 } else i f (numDivisions == 12) {
75 osc . send . startMsg (" / func / toggle_tuning , i ") ;
76 osc . send . addInt (numDivisions) ;
77 osc . send . startMsg (" / func /mapping , i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i
78 ␣␣␣␣␣␣␣␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ␣ i ␣ f ") ;
79 for (0 => int i ; i <= 12 ; i++) {
80 osc . send . addInt (keys12 [i]) ;
81 osc . send . addFloat (map [keys12 [i]]) ;
82 }
83 }
84 }
85
86 fun void remap () {
87 <<< " swi tch ing ␣ to ␣ " , numDivisions + "−TET" >>>;
88 setupKeys () ;
89 sendMapping () ;
90 }
91
92 fun void remap (int numDiv) {
93 numDiv => numDivisions ;
94 remap () ;
95 }
96 }

A.1.5 AbstractPolySynth.ck

Listing A.5. AbstractPolySynth.ck
1 public class AbstractPolySynth
2 {
3 UGen @ vo i c e s [] ;
4 UGen @ output ;
5 ShredCo l l e c t i on shreds ;
6 OSCHelper @ osc ;
7 Mapper @ mapper ;
8 KeyEvent @ keyDown ;
9 KeyEvent @ keyUp ;

10 int numVoices ;
11 int noteOnOnly ;
12
13 fun pure ShredCol lect ion@ getShreds () ;
14 fun pure void i n i t (int numVoices ,
15 int noteOnOnly ,
16 Mapper@ mapper ,
17 KeyEvent@ kDown ,
18 KeyEvent@ kUp) ;
19 fun pure void voiceHandler (int id) ;
20 fun pure void s t a r t () ;
21
22 fun void stop () {
23 shreds . k i l l A l l () ;
24 }
25
26 fun void d i s connec t () {

28

A.1. BACK-END CHUCK CODE

27 for (0 => int i ; i < numVoices ; i++)
28 vo i c e s [i] =< output ;
29 }
30
31 fun void connect (UGen @ out) {
32 out @=> output ;
33 for (0 => int i ; i < numVoices ; i++)
34 vo i c e s [i] => output ;
35 }
36
37 fun void pingHandler () {
38 shreds . r e g i s t e r (me) ;
39 osc . recv . event (" / ping ") @=> OscEvent pingEvent ;
40 while (true) {
41 <<< " wait ing ␣ f o r ␣GUI␣ to ␣ping " , " " >>>;
42 pingEvent => now ;
43 <<< " got ␣ping ␣ from␣GUI" , " " >>>;
44 while (pingEvent . nextMsg () != 0) ;
45 mapper . remap (1 9) ;
46 }
47 }
48
49 fun void noteOnHandler () {
50 shreds . r e g i s t e r (me) ;
51 osc . recv . event (" / note /on , i ") @=> OscEvent noteOnEvent ;
52 while (true) {
53 noteOnEvent => now ;
54 while (noteOnEvent . nextMsg () != 0) {
55 noteOnEvent . g e t In t () => int a s c i i ;
56
57 i f (mapper .map [a s c i i] != 0) {
58 a s c i i => keyDown . a s c i i ;
59 keyDown . s i g n a l () ;
60 }
61 }
62 }
63 }
64
65 fun void noteOffHandler () {
66 shreds . r e g i s t e r (me) ;
67 osc . recv . event (" / note / o f f , i ") @=> OscEvent noteOffEvent ;
68 while (true) {
69 noteOffEvent => now ;
70 while (noteOffEvent . nextMsg () != 0) {
71 noteOffEvent . g e t In t () => int a s c i i ;
72
73 i f (mapper .map [a s c i i] != 0) {
74 a s c i i => keyUp . a s c i i ;
75 keyUp . s i g n a l () ;
76 }
77 }
78 }
79 }
80

29

APPENDIX A. SOURCE CODE

81 fun void s ta r tBase () {
82 for (0 => int i ; i < numVoices ; i++)
83 spork ~ voiceHandler (i) ;
84
85 spork ~ pingHandler () ;
86 spork ~ noteOnHandler () ;
87 spork ~ noteOffHandler () ;
88 }
89 }

A.1.6 PolyFMVoices.ck

Listing A.6. PolyFMVoices.ck
1 public class PolyFMVoices extends AbstractPolySynth
2 {
3 fun void i n i t (int numVoices ,
4 int noteOnOnly ,
5 Mapper@ m,
6 KeyEvent@ keyDown ,
7 KeyEvent@ keyUp) {
8 numVoices => this . numVoices ;
9 noteOnOnly => this . noteOnOnly ;

10 keyDown @=> this . keyDown ;
11 keyUp @=> this . keyUp ;
12 m @=> mapper ;
13 new UGen [numVoices] @=> vo i c e s ;
14 for (0 => int i ; i < numVoices ; i++) {
15 FMVoices fmv @=> vo i c e s [i] ;
16 1 => fmv . noteOf f ;
17 0 .2 => fmv . gain ;
18 }
19 }
20
21 fun void voiceHandler (int id) {
22 shreds . r e g i s t e r (me) ;
23 while (true) {
24 keyDown => now ;
25 keyDown . getFreq (mapper) => (vo i c e s [id] \$ BeeThree) . f r e q ;
26 1 => (vo i c e s [id] \$ FM) . noteOn ;
27 while (! noteOnOnly) {
28 keyUp => now ;
29 1 => (vo i c e s [id] \$ FM) . noteOf f ;
30 break ;
31 }
32 }
33 }
34
35 fun void vowelHandler () {
36 shreds . r e g i s t e r (me) ;
37 osc . recv . event (" / func /vowel , f ") @=> OscEvent vowelEvent ;
38 while (true) {
39 vowelEvent => now ;
40 while (vowelEvent . nextMsg () != 0) {

30

A.1. BACK-END CHUCK CODE

41 vowelEvent . ge tF loat () => f loat vowel ;
42 for (0 => int i ; i < numVoices ; i++)
43 vowel => (vo i c e s [i] \$ FMVoices) . vowel ;
44 }
45 }
46 }
47
48 fun void s p e c t r a lT i l tHand l e r () {
49 shreds . r e g i s t e r (me) ;
50 osc . recv . event (" / func / s p e c t r a l t i l t , f ") @=> OscEvent sp e c t r a lT i l tEven t ;
51 while (true) {
52 spe c t r a lT i l tEven t => now ;
53 while (sp e c t r a lT i l tEven t . nextMsg () != 0) {
54 spe c t r a lT i l tEven t . ge tF loat () => f loat t i l t ;
55 for (0 => int i ; i < numVoices ; i++)
56 t i l t => (vo i c e s [i] \$ FMVoices) . s p e c t r a l T i l t ;
57 }
58 }
59 }
60
61 fun void s t a r t () {
62 s ta r tBase () ;
63 spork ~ vowelHandler () ;
64 spork ~ sp e c t r a lT i l tHand l e r () ;
65 }
66 }

A.1.7 main.ck

Listing A.7. main.ck
1 KeyEvent keyDown ;
2 KeyEvent keyUp ;
3 OSCHelper osc ;
4
5 Mapper mapper ;
6 osc @=> mapper . osc ;
7
8 PolyBeeThree organ ;
9 organ . i n i t (16 , 0 , mapper , keyDown , keyUp) ;

10 osc @=> organ . osc ;
11
12 PolyFMVoices fmVoices ;
13 fmVoices . i n i t (16 , 0 , mapper , keyDown , keyUp) ;
14 osc @=> fmVoices . osc ;
15
16 AbstractPolySynth synths [2] ;
17 AbstractPolySynth @ currentSynth ;
18
19 organ @=> synths [0] ;
20 fmVoices @=> synths [1] ;
21
22 organ @=> currentSynth ;
23

31

APPENDIX A. SOURCE CODE

24 0 => int synthIdx ;
25
26 synths [0] . s t a r t () ;
27 synths [0] . connect (dac) ;
28
29 fun void mainProgram () {
30 Hid h i ;
31 HidMsg msg ;
32
33 0 => int dev i ce ;
34 // i f (me. args ()) me. arg (0) => Std . a t o i => dev i c e ;
35 i f (! h i . openKeyboard (dev i c e))
36 me . e x i t () ;
37 <<< " keyboard␣ ’ " + hi . name () + " ’ ␣ ready " , " " >>>;
38
39 while (true) {
40 h i => now ;
41 while (h i . recv (msg)) {
42 i f (msg . isButtonDown ()) {
43 // l e f t arrow key −−> t o g g l e synth !
44 i f (msg . which == 203) {
45 synths [synthIdx] . stop () ;
46 synths [synthIdx] . d i s connec t () ;
47 (synthIdx + 1) % 2 => synthIdx ;
48 synths [synthIdx] . s t a r t () ;
49 synths [synthIdx] . connect (dac) ;
50 synths [synthIdx] @=> currentSynth ;
51
52 osc . send . startMsg (" / func / loadsynth , i ") ;
53 osc . send . addInt (synthIdx) ;
54 } else
55
56 // up arrow key −−> s h i f t oc tave upwards
57 i f (msg . which == 200) {
58 mapper . octave < mapper . highOctave ?
59 mapper . octave + 1 : mapper . highOctave => mapper . octave ;
60 mapper . remap () ;
61 // down arrow key −−> s h i f t oc tave downwards
62 } else i f (msg . which == 208) {
63 mapper . octave > mapper . lowOctave ?
64 mapper . octave − 1 : mapper . lowOctave => mapper . octave ;
65 mapper . remap () ;
66 // re turn key −−> t o g g l e 12−TET/19−TET
67 } else i f (msg . a s c i i == 10) {
68 i f (mapper . numDivisions == 19)
69 mapper . remap (1 2) ;
70 else i f (mapper . numDivisions == 12)
71 mapper . remap (1 9) ;
72 }
73 // any o f the keyboard mapped keys down −−> note on
74 else i f (mapper .map [msg . a s c i i] != 0) {
75 msg . a s c i i => keyDown . a s c i i ;
76 keyDown . s i g n a l () ;
77 osc . send . startMsg (" /note /on , i ") ;

32

A.2. UI C#/.NET CODE

78 osc . send . addInt (msg . a s c i i) ;
79 }
80 // key up
81 } else {
82 // any o f the keyboard mapped keys up −−> note o f f
83 i f (mapper .map [msg . a s c i i] != 0) {
84 msg . a s c i i => keyUp . a s c i i ;
85 keyUp . s i g n a l () ;
86 osc . send . startMsg (" /note / o f f , i ") ;
87 osc . send . addInt (msg . a s c i i) ;
88 }
89 }
90 }
91 }
92 }
93
94 mainProgram () ;

A.2 UI C#/.NET code

A.2.1 OSC.cs

Listing A.8. OSC.cs
1 using System ;
2 using System . Co l l e c t i o n s . Generic ;
3 using System . Linq ;
4 using System . Text ;
5 using Bespoke .Common. Osc ;
6 using System . Net ;
7
8 namespace SynTET
9 {

10 stat ic class OSC
11 {
12 public stat ic readonly int SourcePort = 4711 ;
13 public stat ic readonly int Dest inat ionPort = 4712 ;
14
15 public stat ic readonly IPEndPoint Dest inat ionEndPoint =
16 new IPEndPoint (IPAddress . Loopback , Dest inat ionPort) ;
17 public stat ic readonly IPEndPoint SourceEndPoint =
18 new IPEndPoint (IPAddress . Loopback , SourcePort) ;
19
20 public stat ic readonly OscMessage NoteOn =
21 new OscMessage (SourceEndPoint , " / note /on ") ;
22 public stat ic readonly OscMessage NoteOff =
23 new OscMessage (SourceEndPoint , " / note / o f f ") ;
24 public stat ic readonly OscMessage ToggleTuning =
25 new OscMessage (SourceEndPoint , " / func / toggle_tuning ") ;
26 public stat ic readonly OscMessage LoadSynth =
27 new OscMessage (SourceEndPoint , " / func / loadsynth ") ;
28 public stat ic readonly OscMessage Mapping =
29 new OscMessage (SourceEndPoint , " / func /mapping ") ;
30 public stat ic readonly OscMessage Ping =

33

APPENDIX A. SOURCE CODE

31 new OscMessage (SourceEndPoint , " / ping ") ;
32 public stat ic readonly OscMessage Pong =
33 new OscMessage (SourceEndPoint , " /pong ") ;
34
35
36 public stat ic readonly OscMessage Vowel =
37 new OscMessage (SourceEndPoint , " / func /vowel ") ;
38 public stat ic readonly OscMessage Sp e c t r a lT i l t =
39 new OscMessage (SourceEndPoint , " / func / s p e c t r a l t i l t ") ;
40
41 public stat ic readonly OscMessage LFOSpeed =
42 new OscMessage (SourceEndPoint , " / func / l f o / speed ") ;
43 public stat ic readonly OscMessage LFODepth =
44 new OscMessage (SourceEndPoint , " / func / l f o /depth ") ;
45 public stat ic readonly OscMessage ControlOne =
46 new OscMessage (SourceEndPoint , " / func / con t ro l 1 ") ;
47 public stat ic readonly OscMessage ControlTwo =
48 new OscMessage (SourceEndPoint , " / func / con t ro l 2 ") ;
49 }
50 }

A.2.2 Server.cs

Listing A.9. Server.cs
1 using System ;
2 using System . Co l l e c t i o n s . Generic ;
3 using System . Linq ;
4 using System . Text ;
5 using Bespoke .Common. Osc ;
6 using System . Net ;
7 using System .Windows . Threading ;
8 using System .Windows . Contro l s ;
9

10 namespace SynTET
11 {
12 class Server
13 {
14 private readonly OscServer server_ ;
15 private stat ic readonly int port_ = 4710 ;
16 private stat ic readonly IPAddress address_ = IPAddress . Loopback ;
17 private readonly Keyboard keyboard_ ;
18 private readonly StackPanel panel_ ;
19
20 public Server (MainWindow mainWindow) {
21 keyboard_ = mainWindow . keyboard_ ;
22
23 server_ = new OscServer (TransportType .Udp ,
24 IPAddress . Loopback ,
25 port_ ,
26 address_ ,
27 Bespoke .Common. Net . TransmissionType . LocalBroadcast) ;
28 server_ . RegisterMethod (OSC. NoteOn . Address) ;
29 server_ . RegisterMethod (OSC. NoteOff . Address) ;

34

A.2. UI C#/.NET CODE

30 server_ . RegisterMethod (OSC. ToggleTuning . Address) ;
31 server_ . RegisterMethod (OSC.Mapping . Address) ;
32 server_ . RegisterMethod (OSC. LoadSynth . Address) ;
33
34 server_ . MessageReceived += (o , e) => {
35 i f (e . Message . Address . Subst r ing (0 , 5) .
36 Equals (OSC. NoteOff . Address . Subst r ing (0 , 5))) {
37 bool k = fa l se ;
38 i f (e . Message . Address . Equals (OSC. NoteOn . Address))
39 k = true ;
40 else i f (e . Message . Address . Equals (OSC. NoteOff . Address))
41 k = fa l se ;
42
43 keyboard_ . Dispatcher .
44 BeginInvoke (keyboard_ . UpdateButton , e . Message . At<int >(0) , k) ;
45 } else i f (e . Message . Address . Equals (OSC. ToggleTuning . Address)) {
46 keyboard_ . Dispatcher .
47 BeginInvoke (keyboard_ . ToggleKeyboard , e . Message . At<int >(0)) ;
48 } else i f (e . Message . Address . Equals (OSC.Mapping . Address)) {
49 keyboard_ . Dispatcher . BeginInvoke (keyboard_ . UpdatePitches , e . Message) ;
50 } else i f (e . Message . Address . Equals (OSC. LoadSynth . Address)) {
51 mainWindow . Dispatcher .
52 BeginInvoke (mainWindow . ChangePanel , e . Message . At<int >(0)) ;
53 }
54 } ;
55
56 server_ . Star t () ;
57 keyboard_ . Dispatcher . BeginInvoke (keyboard_ . Ping , null) ;
58 }
59 }
60 }

A.2.3 Keyboard.xaml.cs

Listing A.10. Keyboard.xaml.cs
1 using System ;
2 using System . Co l l e c t i o n s . Generic ;
3 using System . Linq ;
4 using System . Text ;
5 using System .Windows ;
6 using System .Windows . Contro l s ;
7 using System .Windows . Data ;
8 using System .Windows . Documents ;
9 using System .Windows . Input ;

10 using System .Windows . Media ;
11 using System .Windows . Media . Imaging ;
12 using System .Windows . Navigat ion ;
13 using System .Windows . Shapes ;
14 using Bespoke .Common. Osc ;
15 using System . Net ;
16 using System .Windows . Threading ;
17
18 namespace SynTET

35

APPENDIX A. SOURCE CODE

19 {
20 public partial c lass Keyboard : UserControl
21 {
22 private readonly KeyControl [] keyboard_ = new KeyControl [2 5 6] ;
23
24 public Action<int , bool> UpdateButton ;
25 public Action<int> ToggleKeyboard ;
26 public Action<OscMessage> UpdatePitches ;
27 public Action<KeyControl> SendNoteOn ;
28 public Action<KeyControl> SendNoteOff ;
29 public Action Ping ;
30
31 public Keyboard ()
32 {
33 UpdatePitches = new Action<OscMessage>(msg => {
34 for (int i = 0 ; i < msg . Data . Length ; i += 2)
35 keyboard_ [msg . At<int>(i)] . Frequency =
36 St r ing . Format (" {0:0.#} " , msg . At<f loat >(i + 1)) ;
37 }) ;
38
39 SendNoteOn = new Action<KeyControl>(kc => {
40 OSC. NoteOn . Append<int >((int) kc . ASCII [0]) ;
41 OSC. NoteOn . Send (OSC. Dest inat ionEndPoint) ;
42 OSC. NoteOn . ClearData () ;
43 }) ;
44
45 SendNoteOff = new Action<KeyControl>(kc => {
46 OSC. NoteOff . Append<int >((int) kc . ASCII [0]) ;
47 OSC. NoteOff . Send (OSC. Dest inat ionEndPoint) ;
48 OSC. NoteOff . ClearData () ;
49 }) ;
50
51 UpdateButton = new Action<int , bool>((idx , mode) => {
52 i f (keyboard_ [idx] != null) keyboard_ [idx] . IsDown = mode ;
53 }) ;
54
55 ToggleKeyboard = new Action<int >((t e t) => {
56 i f (t e t == 12) {
57 keyboard_ [’W’] . P i tchClas s = "C#/Db" ;
58 keyboard_ [’E ’] . P i tchClas s = "D#/Eb" ;
59 keyboard_ [’T ’] . P i tchClas s = "F#/Gb" ;
60 keyboard_ [’Y ’] . P i tchClass = "G#/Ab" ;
61 keyboard_ [’U ’] . P i tchClass = "A#/Bb" ;
62 stackPanel2_ . V i s i b i l i t y = V i s i b i l i t y . Hidden ;
63 } else i f (t e t == 19) {
64 keyboard_ [’W’] . P i tchClas s = "C#" ;
65 keyboard_ [’E ’] . P i tchClas s = "D#" ;
66 keyboard_ [’T ’] . P i tchClas s = "F#" ;
67 keyboard_ [’Y ’] . P i tchClass = "G#" ;
68 keyboard_ [’U ’] . P i tchClass = "A#" ;
69
70 stackPanel2_ . V i s i b i l i t y = V i s i b i l i t y . V i s i b l e ;
71 }
72 }) ;

36

A.2. UI C#/.NET CODE

73
74 Ping = new Action (() => {
75 OSC. Ping . Send (OSC. Dest inat ionEndPoint) ;
76 }) ;
77
78 In i t i a l i z eComponent () ;
79
80 // code f o r t h i s method i s omit ted
81 I n i t i a l i z eK e y s () ;
82 }
83 }
84 }

A.2.4 KeyControl.xaml.cs

Listing A.11. KeyControl.xaml.cs
1 using System ;
2 using System . Co l l e c t i o n s . Generic ;
3 using System . Linq ;
4 using System . Text ;
5 using System .Windows ;
6 using System .Windows . Contro l s ;
7 using System .Windows . Data ;
8 using System .Windows . Documents ;
9 using System .Windows . Input ;

10 using System .Windows . Media ;
11 using System .Windows . Media . Imaging ;
12 using System .Windows . Navigat ion ;
13 using System .Windows . Shapes ;
14 using System .Windows . Contro l s . P r im i t i v e s ;
15 using System . ComponentModel ;
16 using Bespoke .Common. Osc ;
17
18 namespace SynTET
19 {
20 public partial c lass KeyControl : UserControl
21 {
22 // dependency proper ty i n i t i a l i z e r s are omit ted
23
24 private readonly Keyboard keyboard_ ;
25
26 public KeyControl (Keyboard kbd , string a s c i i , string notename) {
27 In i t i a l i z eComponent () ;
28 keyboard_ = kbd ;
29
30 MouseDown += (o , e) => {
31 IsDown = true ;
32 keyboard_ . Dispatcher . BeginInvoke (keyboard_ . SendNoteOn , this) ;
33 } ;
34
35 MouseUp += (o , e) => {
36 IsDown = fa l se ;
37 keyboard_ . Dispatcher . BeginInvoke (keyboard_ . SendNoteOff , this) ;

37

APPENDIX A. SOURCE CODE

38 } ;
39
40 ASCII = a s c i i ;
41 Pi tchClas s = notename ;
42 }
43
44 public KeyControl (Keyboard kbd , string a s c i i , string notename ,
45 Sol idColorBrush black , So l idColorBrush white)
46 : this (kbd , a s c i i , notename) {
47 Black = black ;
48 White = white ;
49 }
50
51 // proper ty acce s so r s are omit ted
52 }
53 }

A.2.5 MainWindow.xaml.cs

Listing A.12. MainWindow.xaml.cs
using System ;
using System . Co l l e c t i o n s . Generic ;
using System . Linq ;
using System . Text ;
using System .Windows ;
using System .Windows . Contro l s ;
using System .Windows . Data ;
using System .Windows . Documents ;
using System .Windows . Input ;
using System .Windows . Media ;
using System .Windows . Media . Imaging ;
using System .Windows . Navigat ion ;
using System .Windows . Shapes ;
using Bespoke .Common. Osc ;
using System . Net ;
using System .Windows . Contro l s . P r im i t i v e s ;
using System .Windows . Threading ;

namespace SynTET
{

public partial c lass MainWindow : Window
{

public Action<int> ChangePanel ;

public MainWindow()
{

In i t i a l i z eComponent () ;
ChangePanel = new Action<int >((idx) =>
{

stackPanel_ . Chi ldren . RemoveAt (0) ;

i f (idx == 0)
stackPanel_ . Chi ldren . I n s e r t (0 , new BeeThreePanel ()) ;

38

A.2. UI C#/.NET CODE

else i f (idx == 1)
stackPanel_ . Chi ldren . I n s e r t (0 , new FMVoicesPanel ()) ;

}) ;

Server s e r v e r = new Server (this) ;
}

}
}

A.2.6 SliderControl.xaml.cs

Listing A.13. SliderControl.xaml.cs
using System ;
using System . Co l l e c t i o n s . Generic ;
using System . Linq ;
using System . Text ;
using System .Windows ;
using System .Windows . Contro l s ;
using System .Windows . Data ;
using System .Windows . Documents ;
using System .Windows . Input ;
using System .Windows . Media ;
using System .Windows . Media . Imaging ;
using System .Windows . Navigat ion ;
using System .Windows . Shapes ;

namespace SynTET
{

public partial c lass S l i d e rCont r o l : UserControl
{

public event Action<f loat> Move ;
// dependency proper ty d e f i n i t i o n s omit ted
// proper ty acce s so r s omit ted
public S l i d e rCont r o l ()
{

In i t i a l i z eComponent () ;
}

private void Slider_MouseMove (object sender , MouseEventArgs e)
{

i f (e . LeftButton == MouseButtonState . Pressed)
{

double value = ((S l i d e r) sender) . Value ;
Value = value ;

i f (Move != null)
Move ((f loat) va lue) ;

}
}

}
}

A.2.7 FMVoicesPanel.xaml.cs

39

APPENDIX A. SOURCE CODE

Listing A.14. FMVoicesPanel.xaml.cs
using System ;
using System . Co l l e c t i o n s . Generic ;
using System . Linq ;
using System . Text ;
using System .Windows ;
using System .Windows . Contro l s ;
using System .Windows . Data ;
using System .Windows . Documents ;
using System .Windows . Input ;
using System .Windows . Media ;
using System .Windows . Media . Imaging ;
using System .Windows . Navigat ion ;
using System .Windows . Shapes ;

namespace SynTET
{

public partial c lass FMVoicesPanel : UserControl
{

public FMVoicesPanel ()
{

In i t i a l i z eComponent () ;

vowel_ .Move += (value) =>
{

OSC. Vowel . Append<f loat >((f loat) va lue) ;
OSC. Vowel . Send (OSC. Dest inat ionEndPoint) ;
OSC. Vowel . ClearData () ;

} ;

s p e c t r a lT i l t_ .Move += (value) =>
{

OSC. Sp e c t r a lT i l t . Append<f loat >((f loat) va lue) ;
OSC. Sp e c t r a lT i l t . Send (OSC. Dest inat ionEndPoint) ;
OSC. Sp e c t r a lT i l t . ClearData () ;

} ;

adsrTarget_ .Move += (value) =>
{

OSC.ADSRTarget . Append<f loat >((f loat) va lue) ;
OSC. ADSRTarget . Send (OSC. Dest inat ionEndPoint) ;
OSC. ADSRTarget . ClearData () ;

} ;

}
}

}

A.3 UI XAML code

A.3.1 Keyboard.xaml

Listing A.15. Keyboard.xaml

40

A.3. UI XAML CODE

<UserControl x :C l a s s="SynTET. Keyboard "
xmlns=" h t tp : // schemas . m i c ro so f t . com/winfx /2006/xaml/ p r e s en ta t i on "
xmlns:x=" h t tp : // schemas . m i c ro so f t . com/winfx /2006/xaml "
xmlns:mc=" h t tp : // schemas . openxmlformats . org /markup−c ompa t i b i l i t y /2006 "
xmlns:d=" h t tp : // schemas . m i c ro so f t . com/ expr e s s i on /blend /2008 "
xmlns:my=" c l r−namespace:SynTET "
mc: Ignorab le="d" Margin=" 5 " Width=" 900 ">
<Border BorderBrush=" Black " BorderThickness=" 2 " CornerRadius=" 10 ">

<Border . Background>
<Sol idColorBrush Color=" Transparent " />

</Border . Background>
<Grid Width=" 880 " Height=" 380 ">

<Grid . RowDef in i t ions>
<RowDefinit ion />
<RowDefinit ion Height=" auto " />
<RowDefinit ion Height=" auto " />
<RowDefinit ion Height=" auto " />
<RowDefinit ion />

</Grid . RowDef in it ions>
<Grid . ColumnDef in it ions>

<ColumnDefinit ion />
<ColumnDefinit ion Width=" auto " />
<ColumnDefinit ion />

</Grid . ColumnDef in it ions>
<StackPanel Grid . Column=" 1 " Grid .Row=" 1 "

Or i entat i on=" Hor i zonta l " Name=" stackPanel0_ " />
<StackPanel Grid . Column=" 1 " Grid .Row=" 2 "

Or i entat i on=" Hor i zonta l " Name=" stackPanel1_ " />
<StackPanel Grid . Column=" 1 " Grid .Row=" 3 "

Or i entat i on=" Hor i zonta l " Name=" stackPanel2_ " />
</Grid>

</Border>
</UserControl>

A.3.2 KeyControl.xaml

Listing A.16. KeyControl.xaml
1 <UserControl x :C l a s s="SynTET. KeyControl "
2 xmlns=" h t tp : // schemas . m i c ro so f t . com/winfx /2006/xaml/ p r e s en ta t i on "
3 xmlns:x=" h t tp : // schemas . m i c ro so f t . com/winfx /2006/xaml "
4 xmlns:mc=" ht tp : // schemas . openxmlformats . org /markup−c ompa t i b i l i t y /2006 "
5 xmlns:d=" h t tp : // schemas . m i c ro so f t . com/ expr e s s i on /blend /2008 "
6 xmlns:my=" c l r−namespace:SynTET "
7 mc: Ignorab le="d" d:Des ignHeight=" 200 " d:DesignWidth=" 200 ">
8 <UserControl . Resources>
9 <Storyboard x:Key=" scaleDown ">

10 <DoubleAnimation Storyboard . TargetName=" scaleTransform_ "
11 Duration=" 00 : 0 0 : 0 0 : 0 . 05 " Storyboard . TargetProperty=" ScaleX "
12 From=" 1 " To=" 0 .9 " />
13 <DoubleAnimation Storyboard . TargetName=" scaleTransform_ "
14 Duration=" 00 : 0 0 : 0 0 : 0 . 05 " Storyboard . TargetProperty=" ScaleY "
15 From=" 1 " To=" 0 .9 " />
16 </Storyboard>

41

APPENDIX A. SOURCE CODE

17 <Storyboard x:Key=" translateDown ">
18 <DoubleAnimation Storyboard . TargetName=" trans lateTransform_ "
19 Duration=" 00 : 0 0 : 0 0 : 0 . 03 " Storyboard . TargetProperty="X"
20 From=" 0 " To=" 5 " />
21 <DoubleAnimation Storyboard . TargetName=" trans lateTransform_ "
22 Duration=" 00 : 0 0 : 0 0 : 0 . 03 " Storyboard . TargetProperty="Y"
23 From=" 0 " To=" 5 " />
24 </Storyboard>
25 <Storyboard x:Key=" scaleUp ">
26 <DoubleAnimation Storyboard . TargetName=" scaleTransform_ "
27 Duration=" 00 : 0 0 : 0 0 : 0 . 05 " Storyboard . TargetProperty=" ScaleX "
28 From=" 0 .9 " To=" 1 " />
29 <DoubleAnimation Storyboard . TargetName=" scaleTransform_ "
30 Duration=" 00 : 0 0 : 0 0 : 0 . 05 " Storyboard . TargetProperty=" ScaleY "
31 From=" 0 .9 " To=" 1 " />
32 </Storyboard>
33 <Storyboard x:Key=" trans lateUp ">
34 <DoubleAnimation Storyboard . TargetName=" trans lateTransform_ "
35 Duration=" 00 : 0 0 : 0 0 : 0 . 03 " Storyboard . TargetProperty="X"
36 From=" 5 " To=" 0 " />
37 <DoubleAnimation Storyboard . TargetName=" trans lateTransform_ "
38 Duration=" 00 : 0 0 : 0 0 : 0 . 03 " Storyboard . TargetProperty="Y"
39 From=" 5 " To=" 0 " />
40 </Storyboard>
41 </UserControl . Resources>
42
43 <UserControl . Template>
44 <ControlTemplate>
45 <Canvas Width=" 100 " Height=" 100 " Background=" Transparent " Margin=" 2 ">
46 <Border Name=" border_ " CornerRadius=" 10 " Width=" 100 " Height=" 100 "
47 BorderThickness=" 2 " BorderBrush=" {TemplateBinding␣my:KeyControl . Black} "
48 Background=" {TemplateBinding␣my:KeyControl . White} " >
49 <Border . E f f e c t>
50 <DropShadowEffect BlurRadius=" 10 " Color=" LightGray "
51 RenderingBias=" Performance " />
52 </Border . E f f e c t>
53 <Border . RenderTransform>
54 <TransformGroup>
55 <ScaleTransform x:Name=" scaleTransform_ " CenterX=" 50 " CenterY=" 50 " />
56 <TranslateTransform x:Name=" trans lateTransform_ " />
57 </TransformGroup>
58 </Border . RenderTransform>
59 <StackPanel Or i entat i on=" Ve r t i c a l ">
60 <TextBlock Name=" a s c i i_ " Margin=" 5 ,5 ,0 ,5 "
61 Text=" {TemplateBinding␣my:KeyControl . ASCII} " HorizontalAl ignment=" Le f t "
62 Vert ica lAl ignment="Top" FontFamily=" Lucida␣Console " FontSize=" 24 "
63 Foreground=" {Binding␣ElementName=border_ , ␣Path=BorderBrush} " />
64 <TextBlock Name=" pitch_ " Text=" {TemplateBinding␣my:KeyControl . P i tchClas s } "
65 HorizontalAl ignment=" Center " Vert i ca lAl ignment=" Center "
66 FontFamily=" Lucida␣Console " FontSize=" 30 "
67 Foreground=" {Binding␣ElementName=border_ , ␣Path=BorderBrush} " />
68 <TextBlock Name=" freq_ " Margin=" 5 ,7 ,0 ,0 "
69 Text=" {TemplateBinding␣my:KeyControl . Frequency} "
70 HorizontalAl ignment=" Le f t " Vert i ca lAl ignment="Bottom"

42

A.3. UI XAML CODE

71 FontFamily=" Lucida␣Console " FontSize=" 20 "
72 Foreground=" {Binding␣ElementName=border_ , ␣Path=BorderBrush} " />
73 </StackPanel>
74 </Border>
75 </Canvas>
76 <ControlTemplate . Tr igge r s>
77 <Trigger Property="my:KeyControl . IsDown " Value="True ">
78 <Trigger . EnterAct ions>
79 <BeginStoryboard Storyboard=" { Stat i cResource ␣ResourceKey=scaleDown} " />
80 <BeginStoryboard Storyboard=" { Stat i cResource ␣ResourceKey=translateDown} " />
81 </Tr igger . EnterAct ions>
82 <Trigger . Exi tAct ions>
83 <BeginStoryboard Storyboard=" { Stat i cResource ␣ResourceKey=scaleUp} " />
84 <BeginStoryboard Storyboard=" { Stat i cResource ␣ResourceKey=trans lateUp } " />
85 </Tr igger . ExitAct ions>
86 </Tr igger>
87 </ControlTemplate . Tr i gge r s>
88 </ControlTemplate>
89 </UserControl . Template>
90 </UserControl>

A.3.3 MainWindow.xaml

Listing A.17. MainWindow.xaml
<Window x : Class="SynTET.MainWindow"

xmlns=" http :// schemas . m i c ro so f t . com/winfx /2006/xaml/ p r e s en ta t i on "
xmlns : x=" http :// schemas . m i c ro so f t . com/winfx /2006/xaml "
xmlns :my=" c l r−namespace :SynTET"
T i t l e="MainWindow" Width=" 935 " Height=" 635 " Margin=" 5 "
Closed="Window_Closed " >
<StackPanel Or i entat i on=" Ve r t i c a l " Name=" stackPanel_ " >

<my: BeeThreePanel x :Name=" sl iderGroup_ " HorizontalAl ignment=" Le f t "/>
<my: Keyboard x :Name=" keyboard_ " HorizontalAl ignment=" Le f t " />

</StackPanel>
</Window>

A.3.4 SliderControl.xaml

Listing A.18. SliderControl.xaml
<UserControl x :C l a s s="SynTET. S l i d e rCont r o l "

xmlns=" h t tp : // schemas . m i c ro so f t . com/winfx /2006/xaml/ p r e s en ta t i on "
xmlns:x=" h t tp : // schemas . m i c ro so f t . com/winfx /2006/xaml "
xmlns:mc=" h t tp : // schemas . openxmlformats . org /markup−c ompa t i b i l i t y /2006 "
xmlns:d=" h t tp : // schemas . m i c ro so f t . com/ expr e s s i on /blend /2008 "
xmlns:my=" c l r−namespace:SynTET "
mc: Ignorab le="d"
d:Des ignHeight=" 50 " d:DesignWidth=" 250 " Margin=" 5 " Width=" 300 " Height=" 37 ">
<UserControl . Resources>

<Sty l e x:Key=" s l i d e r S t y l e 0 " TargetType=" {x:Type␣ S l i d e r } ">
<Se t t e r Property="Margin " Value=" 0 ,7 ,7 ,0 " />

</ Sty l e>

43

APPENDIX A. SOURCE CODE

<Sty l e x:Key=" textB lockSty l e0 " TargetType=" {x:Type␣TextBlock} ">
<Se t t e r Property=" HorizontalAl ignment " Value=" Right " />
<Se t t e r Property="Margin " Value=" 0 ,7 ,7 ,0 " />

</ Sty l e>
</UserControl . Resources>
<UserControl . Template>

<ControlTemplate>
<Border BorderBrush=" Black " BorderThickness=" 1 " CornerRadius=" 5 ">

<Border . Background>
<Sol idColorBrush Color=" Al i ceBlue " />

</Border . Background>

<Grid>
<Grid . ColumnDef in it ions>

<ColumnDefinit ion />
<ColumnDefinit ion Width=" 120 " />
<ColumnDefinit ion />

</Grid . ColumnDef in it ions>
<Grid . RowDef in i t ions>

<RowDefinit ion />
</Grid . RowDef in it ions>

<TextBlock Grid .Row=" 0 " Grid . Column=" 0 "
Text=" {TemplateBinding␣my:S l iderContro l . Text} "
S ty l e=" { Stat i cResource ␣ResourceKey=textB lockSty l e0 } " />

<S l i d e r Grid .Row=" 0 " Grid . Column=" 1 "
S ty l e=" { Stat i cResource ␣ResourceKey=s l i d e r S t y l e 0 } "
Maximum=" {TemplateBinding␣my:S l iderContro l .Maximum} "
Minimum=" {TemplateBinding␣my:S l iderContro l .Minimum} "
Value=" {TemplateBinding␣my:S l iderContro l . Value} "
MouseMove=" Slider_MouseMove " />

<TextBlock Grid .Row=" 0 " Grid . Column=" 2 "
Text=" {TemplateBinding␣my:S l iderContro l . ValueText} "
S ty l e=" { Stat i cResource ␣ResourceKey=textB lockSty l e0 } " />

</Grid>
</Border>

</ControlTemplate>
</UserControl . Template>

</UserControl>

A.3.5 FMVoicesPanel.xaml

Listing A.19. FMVoicesPanel.xaml
<UserControl x :C l a s s="SynTET. FMVoicesPanel "

xmlns=" h t tp : // schemas . m i c ro so f t . com/winfx /2006/xaml/ p r e s en ta t i on "
xmlns:x=" h t tp : // schemas . m i c ro so f t . com/winfx /2006/xaml "
xmlns:mc=" h t tp : // schemas . openxmlformats . org /markup−c ompa t i b i l i t y /2006 "
xmlns:d=" h t tp : // schemas . m i c ro so f t . com/ expr e s s i on /blend /2008 "
xmlns:my=" c l r−namespace:SynTET "
mc: Ignorab le="d"
Margin=" 5 " Width=" 450 " Background=" Transparent ">
<Border BorderBrush=" Black " BorderThickness=" 2 " CornerRadius=" 10 ">

<Border . Background>

44

A.3. UI XAML CODE

<Sol idColorBrush Color=" Al i ceBlue " />
</Border . Background>
<StackPanel HorizontalAl ignment=" Le f t ">

<my:S l iderContro l x:Name=" vowel_ " Text="Vowel "
Minimum=" 0 " Maximum=" 1 " Value=" 0 .5 " />

<my:S l iderContro l x:Name=" spe c t r a lT i l t_ " Text=" Spec t r a l ␣ T i l t "
Minimum=" 0 " Maximum=" 1 " Value=" 0 .5 " />

<my:S l iderContro l x:Name=" adsrTarget_ " Text="ADSR␣Target "
Minimum=" 0 " Maximum=" 1 " Value=" 0 .5 " />

</StackPanel>
</Border>

</UserControl>

45

www.kth.se

