

Putting a Finger on Guitars and
Algorithms

 Computing Fingering Information for Guitar Tablatures

 K O N R A D I L Z C U K

 a n d P H I L I P S K Ö L D

 Bachelor of Science Thesis
 Stockholm, Sweden 2013

Putting a Finger on Guitars and
Algorithms

 Computing Fingering Information for Guitar Tablatures

 K O N R A D I L C Z U K

 a n d P H I L I P S K Ö L D

 DM129X, Bachelor’s Thesis in Computer Science (15 ECTS credits)

 Degree Progr. in Computer Science and Media Technology 300 credits

 Royal Institute of Technology year 2013

 Supervisor at CSC was Roberto Bresin

 Examiner was Sten Tärnström

 URL: www.csc.kth.se/utbildning/kandidatexjobb/medieteknik/2013/

 ilczuk_konrad_OCH_skold_philip_K13018.pdf

 Kungliga tekniska högskolan

 Skolan för datavetenskap och kommunikation

 KTH CSC

 100 44 Stockholm

 URL: www.kth.se/csc

Abstract

Guitar tablature is a notation system widely used by
guitar players when learning to play songs. The notation
consists of information about which string and which fret
the guitarist should put his finger on. However, it does not
normally contain information on which fingers should be
put on which notes.

In this thesis we study existing methods related to in-
corporating fingering information alongside musical nota-
tions. Using this material, we define a set of factors that
affect the guitar fingering and then design an algorithm for
computing an optimal fingering for a tablature.

The final product is an algorithm that computes op-
timal fingering positions according to the relevant factors.
The computed fingerings are evaluated by comparing them
to how experienced guitarists play the given melody.

Our results indicate that it is possible to produce op-
timal fingerings algorithmically. This is a step forward in
helping beginner and intermediate guitar players in their
learning process.

Sammanfattning
Att Sätta ett Finger på Gitarrer och

Algoritmer: Beräkning av Fingersättning för
Gitarrtablaturer

Gitarrtablatur är ett notationssystem som används re-
gelbundet av gitarrspelare för att studera och lära sig att
spela låtar. Notationen innehåller information om var nå-
gonstans på gitarren man ska spela, det vill säga vid vilka
strängar och vilka band man ska placera sina fingrar. Den
innehåller däremot sällan information om vilket finger som
ska användas för att spela respektive ton.

I den här uppsatsen undersöker vi existerande meto-
der relaterade till att berika musiknotationer med finger-
information. Vi använder oss av den kunskapen och identi-
fierar faktorer som påverkar fingersättningen och designar
en algoritm som beräknar en optimal fingersättning. Se-
dan implementerar vi algoritmen och evaluerar resultatet
genom att jämföra med hur professionella och erfarna gi-
tarrister väljer att placera sina fingrar.

Resultaten visar tydligt hur beräknade fingersättningar
ofta överennsstämmer med hur erfarna gitarisster spelar.
Detta är ett steg framåt i att hjälpa gitarrister i deras tidiga
inlärningsprocess.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Common Guitar Notations . 1

1.2.1 Standard Music Notation . 1
1.2.2 Guitar Tablature . 2
1.2.3 Chord Diagram . 2

1.3 Guitar Fingering . 3

2 Problem Statement 5

3 Aims 7
3.1 Purpose . 7
3.2 Hypothesis . 7
3.3 Scope of Work . 8

4 Literature Research 9
4.1 Complexity Factors . 10
4.2 Existing Approaches . 10

5 Method 13
5.1 Complexity Factors . 13
5.2 Concept . 14
5.3 Algorithm Complexity . 17
5.4 Limitations . 17
5.5 Tools . 17
5.6 Evaluating Results . 17

6 Result and Discussion 19
6.1 Algorithm Performance . 19
6.2 Complexity Factors . 21

6.2.1 Required Finger Span . 21
6.2.2 Finger Properties . 21
6.2.3 String Change . 21
6.2.4 String Distance . 21

6.2.5 Available Fingers . 21
6.2.6 Articulation . 22
6.2.7 Neck Position . 22
6.2.8 Time, rhythm . 22
6.2.9 Ascending and Descending Sequences 22
6.2.10 Repeaned Sequences . 22

6.3 Implemented Rules . 23
6.3.1 Scoring System . 23
6.3.2 Distance Rule . 24
6.3.3 String Change Rule . 25
6.3.4 Little Finger Rule . 27
6.3.5 Slide Rule . 27

6.4 Algorithm Result Presentation . 29
6.4.1 Racer X - Technical Difficulties 30
6.4.2 Deep Purple - Sometimes I Feel Like Screaming 32
6.4.3 Led Zeppelin - Black Dog . 33
6.4.4 Led Zeppelin - Ocean . 34
6.4.5 AC/DC - Thunderstruck . 35
6.4.6 Steve Vai - Jibboom . 36
6.4.7 Steve Vai - For The Love Of God 37
6.4.8 Guthrie Govan - Uncle Skunk 38
6.4.9 C-Major Sweeping Pattern 39
6.4.10 A. Vivaldi - L’estate Presto 40
6.4.11 A Minor Pentatonic Scale . 41

7 Conclusion 43
7.1 Analysis of Results . 43

7.1.1 Repeated Pattern and Cognitive Factors 43
7.1.2 Decoration and Articulation 44
7.1.3 Biomechanical Characteristics 45
7.1.4 Individual preferences and technical skills 45

7.2 Possible Improvements . 46
7.2.1 Applicability . 46
7.2.2 Tablature Explicitness . 46
7.2.3 Complexity Factor Implementation 46

8 Summary 47

Appendix 48

A Glossary 49

B Arobas Music Email 51

Bibliography 53

Dedicated to the people working or studying at the Royal Institute of Technology.

Chapter 1

Introduction

For readers who are not familiar with terminology from computer science or music
theory, we include a glossary as an appendix.

1.1 Background

There exist numerous ways of representing music. Among them we find those that
are specifically made for the guitar to aid the guitar player in understanding and
learning a song: notes, guitar tablature and chord diagrams, each way with par-
ticular advantages and disadvantages. Modeling, representation, generation, and
evaluation of music notation are among the many problems that have interested
researchers within computer science, and which have generated many applications.

1.2 Common Guitar Notations

1.2.1 Standard Music Notation

Standard music notation is often the prefered notation, as this represents music
independently of instrument. This comes from the fact that it contains relative
duration of a sound together with its pitch (Wikipedia, 2013).

Figure 1.1. “Jingle Bells” represented in standard music notation.

1

CHAPTER 1. INTRODUCTION

1.2.2 Guitar Tablature
The Guitar Tablature is a notation popular among guitarists, mostly due to the
fact that it takes relatively little time to learn to read it. It describes where on the
guitar neck a finger should be pressed. The basic variants of tablature do not take
any rhythmical values into consideration.

Figure 1.2. Sample text representation of a Guitar Tablature, “Jingle Bells”, with-
out rhythmical values.

Figure 1.3. Sample graphical guitar tablature of the same song(Jingle Bells) en-
hanced with rhythmical values underneath the notes.

1.2.3 Chord Diagram
The chord diagram is a notation that represents chords - a combination of two or
more notes. This notation often, but not always, includes which fingers should press
which note.

Figure 1.4. Chord Diagram representing an G Major chord (Guitar Instructions,
2013)

2

1.3. GUITAR FINGERING

1.3 Guitar Fingering
Even when the guitar player has access to a notation for a song indicating where
the notes are on the guitar neck, there are still many alternative ways to play that
song. This is because each note can be played with any of the available fingers. The
four playing fingers are usually referred to as finger 1, 2, 3 and 4, which corresponds
to the index-, long-, ring- and little-finger respectively.

Figure 1.5. The playing fingers and their numberings (GuitarLessons.com, 2012).

The mapping of a note and the finger it should be played with is called a guitar
fingering, or simply fingering. Fingerings are often presented with an integer from
1 to 4 placed next to, or under each note. This additional information is often
referred to as LHF or RHF (Left/Right Hand Fingering).

Figure 1.6. A representation of a tablature, "Jingle Bells", together with the finger-
ing below each note.

3

Chapter 2

Problem Statement

The number of possible fingerings for a melody is vast - 4N , where N is the number
of notes in a song (Rutherford, 2009). To stress how large this number is, a song with
just 15 notes would have more than a billion fingering possibilities. This introduces
a problem - many beginner or intermediate guitar players have difficulty knowing
which fingerings are best. Anecdotal evidence and our own experience as guitarists
show that questions like “how do I play this?”, “why do my fingers hurt?” or “is
this impossible?” often arise when people play a melody in a way that is not the
best.

Fingering information can be of great help for musicians. An alternative to fin-
gering notation would be private tutoring or recorded tutorials where a professional
guitarist explains the exact fingering to the tutee. Additionally, it is possible to
manually add fingering notation to both new and existing tablatures if one knows
how, but it is a very repetitive and slow process. Because of this, a large num-
ber of available tablatures lack fingering information, making it difficult for some
less-experienced players to learn their favorite songs. Moreover, at the time of writ-
ing (April 2013), there is no popular software (Informer Technologies, Inc., 2013)
available to guitar players that helps them compute fingering information.

We will refer to the problem of algorithmically computing the best fingerings of
a guitar tablature as the Optimal Fingering Problem (OFP).

5

Chapter 3

Aims

3.1 Purpose
The main goal is to determine if it is possible to algorithmically provide fingering
information for existing tablatures.

Our aim is to prove or disprove whether an implementation with disjunct rules1,
that reflect the complexity of guitar playing, is a sufficient method to solve the OFP.

The purpose of the thesis is to improve the learning process for beginner and
intermediate guitar players by providing state-of-the-art approaches to solve this
problem algorithmically.

3.2 Hypothesis
The difficulty of guitar playing depends on a limited set of identifiable factors. We
define and list these factors so that they later can be used as the basis for a solution
to the OFP. Our main research questions are:

• Is it possible to compute good fingerings by implementing guitar complexity
factors2 as disjunct rules?

• Is there a limit on what can be achieved algorithmically and will the solutions
be adequate to significantly improve the song learning experience for guitar
players?

• Will the algorithm be suitable for complex as well as simple melodies?

1Stand alone rules, that work independently of one another.
2Factors that make up the difficulty of guitar playing.

7

CHAPTER 3. AIMS

3.3 Scope of Work
We have limited our work to handle melodies where only one note is played at a
time and without considering any time and rhythmical aspects. Also, we have only
implemented those complexity factors that were necessary to conclude whether the
method works or not. Factors that affect guitar playing, but have nothing to do
with how the guitar player organizes his/her fingers on the guitar neck have been
intentionally omitted. Within this thesis the algorithm has been our main focus
and so we have excluded graphical and user-friendly aspects from this study.

8

Chapter 4

Literature Research

One problem that has been considerably analyzed is the problem of generating a
tablature from standard musical notation (Tuohy and Potter, 2005; Radicioni and
Lombardo, 2007). Much of the research that can be found on the Tablature Gen-
eration Problem (TGP) is relevant in the OFP. Furthermore, the complexity of
guitar playing, and specifically the term complexity factor (Heijink and Meulen-
broek, 2002), has proven very fruitful in solving the OFP. Analyzing advantages
and disadvantages to existing approaches to the LHF and similar problems (Tuohy
and Potter, 2005; Radicioni and Lombardo, 2007) aided us in our own solution.

Categorizing music notation in terms of fingering can be done using chords,
melodies and mixed passages (Radicioni and Lombardo, 2007). We cover only one
of these parts - the melodies - in our study. Furthermore, the authors suggest that
each of the three distinct categories requires a different approach when evaluating
which fingers are to be prefered.

There are also advanced techniques such as string bending1, slides2 or hammer-
on and pull-offs3 that can be used. Rutherford (2009) suggests that such techniques
also have an impact on the fingering.

1a very common technique performed (most often) on the electric guitar in which the player
usually uses his third finger to bend the string upwards while in the process creates a smooth
transition from one note to another.

2A smooth transition generated by sliding a finger from one note to another.
3A technique of playing notes in a way that makes them sound linked to each other.

9

CHAPTER 4. LITERATURE RESEARCH

4.1 Complexity Factors

To create a solution to the OFP, we need to evaluate how hard or easy a fingering is
to play. Heijink and Meulenbroek (2002) hypothesise three factors (biomechanical,
cognitive and musical) that would reflect the complexity of finger movements in
guitar playing, which they refer to as complexity factors. The three factors they
identified were the need to reposition the hand during a tone sequence, the position
on the guitar neck and the required finger span to play a sequence comfortably.

4.2 Existing Approaches

There exists a number of possible ways of computing a fingering. What all of these
approaches have in common is that, at some point, the solution must evaluate which
alternative is the best. The practical aspects of guitar playing must be reflected
in some way in the solution. Each solution is thus highly dependent on how the
algorithm treats the practical aspects. The same holds true for the TGP.

There has been extensive research within the area of tablature generation. Many
different approaches have been suggested, some more sophisticated than others.
Most of the concepts within them are applicable for the OFP. An easy to implement
approach is to model the problem as a graph and then finding a solution using
a path-finding algorithm4 between two nodes in a graph. This is exactly what
Radisavljevic and Driessen (2004) propose. Dynamic programming5 has also been
used to solve the fingering problem (Radisavljevic and Driessen, 2004).

Tuohy and Potter (2005) argue that the nature of the TGP makes exhaustive
searches6 tedious and impractical. The same concern is present in the OFP as
the number of fingerings grows exponentially with the number of notes in a song.
For the TGP, Touhy and Potter (2005) suggests using genetic programming, an
approach that could be used in the OFP as well. Genetic programming is a kind
of heuristic7 that mimics evolution and survival of the fittest. In both concepts the
complexity factors would be reflected in what is called a fitness function8.

We have also contacted the company Arobas Music (Appendix B.1), developer
of the popular tablature software called “Guitar Pro”, and discussed implementing
such functionality into their product. They are already working on this themselves
(February 2013), which proves that the topic is very current at the time of writing.
However, it is unclear what approach they will use. There have been remarks on

4An algorithm that scans a graph to find the best path between two points.
5A method for solving complex problems by breaking them down into simpler, overlapping,

subproblems[12].
6A method of computing a result in which all possible combinations are examined before the

final result is delivered.
7A technique for finding an approximate solution when classic methods fail to find any exact

solution[14]
8A function used to indicate how good a solution is, relative to given aims.

10

4.2. EXISTING APPROACHES

how badly the tablature generation within that particular software performs (Tuohy
and Potter, 2005).

Additionally, as mentioned in section 2 (Problem Statement) there is no software
that assigns fingers algorithmically to melodies (Informer Technologies Inc., 2013).
However, we found that “Guitar Guru” is a product that comes closest to this,
because it presents a fingering for songs, but these have been manually assigned
instead of computed and are available to buy from their database of around 2500
songs. Lastly, there are also programs that display fingerings for guitar chords, but
again - these have been manually assigned.

11

Chapter 5

Method

We model the problem as a graph and use this as the basis upon which to construct
the algorithm. The graph contains information about notes, fingers and transitions
between pairs of {Note,Finger}. This is very intuitive to understand and an easy
way of implementing the underlying data structure.

We identified a set of complexity factors that affect fingering and implemented
them as disjunct rules that are used to weight1 the finger-transitions. The process
of weighting involves each rule scanning the graph, and then scoring each edge2, ac-
cording to how desirable each transition is. Finally we use a path-finding algorithm
to determine the optimal fingerings for the entire melody, by traversing the graph
from the first note to the last.

5.1 Complexity Factors
As we introduced in the section 4.1, Heijink and Meulenbroek (2002) use the term
complexity factors to refer to factors that determine the complexity of left-hand
finger movements in guitar playing. The same idea can be used when discussing the
complexity of fingering transitions, i.e each possible fingering between two notes.
We will use the term complexity factors as factors that represent the complexity of
a fingering transition.

There are two stages of work to address the complexity of guitar playing. First,
we identify the complexity factors. For instance, the required finger-span of a finger-
ing is such a factor, as it clearly affects the difficulty of that fingering. By difficulty
or complexity of a fingering, we mean a characteristic of that fingering rather than
the difficulty that a guitar player may experience. Secondly, after we identify the
set of complexity factors, we design concrete rules that describe a way to implement
those factors, building upon the work of Heijink and Meulenbroek (2002).

1(verb) to assign a score, to prioritize.
2A link between two nodes in a graph. In our case, the edge represents a transition from one

note to another.

13

CHAPTER 5. METHOD

5.2 Concept
Since our implementation contains multiple phases, we use a range of different data
structures and algorithmical steps to read, process and output our data.

The tablature is represented as a matrix where each row is an individual string,
each column represents a point in time and the cells contain information about the
fret positions. This can be read from left to right while maintaining the notes in
chronological order. To reiterate, our study does not consider time aspects. The
tablature source does not affect the way we represent it. MusicXML file, Guitar
Pro file or ASCII file, etc. could all be used. For simplicity we have decided to read
input from ASCII3 files.

Figure 5.1. An example ASCII-tablature that will be translated to a matrix.

Figure 5.2. A matrix representation of tablature.

Because we will be using a Optimal Path Approach, we now model the problem
as a graph problem where we begin by translating the data from the matrix to
a graph. Each note is represented by 4 vertices, representing the possible finger-
ings of that particular note. Then each transition between two note-fingerings is
represented by an edge, resulting in 16 edges for each pair of notes.

3Files containing plain, readable text.

14

5.2. CONCEPT

Figure 5.3. A graph with vertices for all possible note-fingerings. The columns
shows the fingering options(1,2,3,4) for the notes “5 D” (fifth fret on the D-string),
“6 D” and ”8 B” respectively. The edges represent every possible transition between
two notes.

The next step is to weight each edge. This is done using the Visitor Design Pat-
tern4 in which each rule visits each edge, weighting the edge with a scoring function,
thus indicating how beneficial that transition is. The beneficiality of a transition
indicates how easy it is to go from playing the given note with a specific finger, and
from there move on to another note with perhaps the same, or a different finger.
This often means that the musician switches between fingers that are convenient to
use if that results in a smooth transition between fingering positions and as little
as possible hand movement along the guitar neck.

When the weights are assigned, we find an optimal path through the graph,
selecting the overall best transitions, thus generating (according to our rules) an
optimal fingering for the tablature.

The final output is the original tablature, beneath which we find our computed
ten best fingerings. A proposed finger is written directly under the corresponding
note for good readability.

4Visitor Design Pattern - A way of separating an algorithm and the object it operates on.

15

CHAPTER 5. METHOD

Figure 5.4. A graph showing how some edges have been assigned with a weight. In
this case a high weight indicates a “good” transition.This graph has been simplified
for readability.

16

5.3. ALGORITHM COMPLEXITY

5.3 Algorithm Complexity
The computational complexity5 arises from the time taken to find the optimal path
in the graph, as all other steps in the algorithm are done in linear time in relation
to the amount of notes. A simple way to find the optimal path in the weighted
graph is to perform an exhaustive search. This approach would give the algorithm
a complexity of 4(N−k), where N is the total number of notes and k is the number of
open notes, thus making it exponential6. However, as the graph is a directed acyclic
graph7 there exists a proof that an optimal path can be found in linear time (Rivest
et al., 2001).

5.4 Limitations
This approach of modeling the problem as a graph to find an optimal path, only
works for melodies. However, working with complexity factors, and implementing
them with disjunct rules is fully applicable to other approaches and works for more
than just melodies.

5.5 Tools
We have chosen a high level object oriented programming language - C# - as our
tool to implement the algorithm. The main reason for this is that the C# language
allows for rapid code development and easy code maintenance.

5.6 Evaluating Results
The output of the algorithm is compared with how experienced guitar players, and
composers of a melody, play the melody themselves. This is done to analyze any
differences and draw conclusions as to why they occur.

5An indication of how well an algorithm performs with respect to time. More or less: how fast
it computes in relation to the amount of data provided in the input stage.

6Exponential Complexity indicates that the growth rate is proportional to the function’s current
value[13]

7A graph in which there exists no path(sequence of edges) from any vertex such that it creates
a loop back to the same vertex.

17

Chapter 6

Result and Discussion

In this section we present the results of our study, which include the complexity
factors we have identified, which of those we have chosen to implement and how our
algorithm performed for a number of different melodies. Each design concept and
algorithm result is followed by a brief discussion.

6.1 Algorithm Performance
The number of fingerings is exponential, and our implementation runs in exponen-
tial time and space. With this running time, the algorithm manages to compute
fingerings for melodies with up to 11 non-open notes1. With an optimization, where
paths with no potential are ignored early, it can handle melodies with up to 19 notes.
The upper bounds arise because the computer runs out of memory (as illustrated
in table 6.1).

However, using a path finding algorithm with better computational complexity
would increase this threshold significantly and at the same time produce the same
results.

1these results were achieved on an Asus ux31a[7]

19

CHAPTER 6. RESULT AND DISCUSSION

Number of notes time [ms] time (optimized) [ms]
1 2.00 1.75
2 1.75 2.00
3 2.00 2.00
4 2.50 2.25
5 2.50 2.25
6 9.00 2.50
7 28.8 4.00
8 133 6.50
9 610 12.3
10 2746 26.0
11 12209 47.0
12 out of memory 106
13 out of memory 251
14 out of memory 521
15 out of memory 779
16 out of memory 1616
17 out of memory 3553
18 out of memory 7498
19 out of memory 11476
20 out of memory out of memory

Table 6.1. The table demonstrates an average running time (four measurements per
each number of notes, rounded down) for the non-optimized version and the optimized
version of our algorithm. Both of them increase exponentially after test cases with
more than five notes. The time for the non-optimized version grows by a factor of
approximately 4. This means that a melody with 20 notes would (if possible) take
almost 4 hours to compute. The optimized version shows a much better performance.
The factor by which the time to compute increases is only around 2, but is slowly
approaching 4 as the number of notes increase. For 20 notes it would (if possible)
compute the results in around 23 seconds.

20

6.2. COMPLEXITY FACTORS

6.2 Complexity Factors
We identified a set of factors which reflect the complexity of guitar fingering tran-
sitions i.e complexity factors, as explained in section 4.1. We have then partially
addressed these factors with concrete rules that weight different fingering transitions
in order to produce a suggestion of an optimal fingering, according to the optimal
path approach.

The identified complexity factors are more specific than those used by Heijink
and Meulenbroek (2002). Below, we present the identified complexity factors, one
by one, and discuss why we have chosen them.

6.2.1 Required Finger Span

The note distance is the distance between two notes, expressed in how many frets
there are between them. Depending on how great this distance is some fingerings
will be harder or easier to play.

For instance a transition from the 4th fret to the 5th requires a finger span of
1 fret. This would be easiest to play with two adjacent fingers ({1, 2}, {2, 3},{3,
4} using the finger enumeration explained in section 1.3). Furthermore, the same
adjacent fingerings become harder to play as the notes move further apart from
each other (thus increasing the note distance).

6.2.2 Finger Properties

Different fingers have different strengths which is determined by their physical prop-
erties and how often they are used. This is most notable in the little finger, which
is generally weaker than other fingers. The stronger the finger, the easier transition
involving that finger will be.

6.2.3 String Change

Fingering works differently when we change the string we are playing. A same-
finger transition can work very well between two frets on the same string, but not
necessary between the same frets on different strings.

6.2.4 String Distance

String distance indicates how much the player must move his/her hand in order to
reach out for the new string. A fingering may work well for a transition between
two adjacent strings but not between two strings that are further apart.

6.2.5 Available Fingers

When playing a new note it is preferable to use those fingers that are not currently
assigned to a fret, or that have not been recently assigned.

21

CHAPTER 6. RESULT AND DISCUSSION

6.2.6 Articulation
Many complexity factors reflect biological and mechanical properties, like the finger
span or finger strength, but there are also musical factors that affect the complexity
of guitar playing (Heijink and Meulenbroek, 2002). Note articulation occurs when
individual notes, or transitions between notes, are played with a technique in order
to produce a very specific, desired musical effect (Wikipedia, 2013). Many such
articulations affect the fingering (Rutherford, 2009; Heijink and Meulenbroek, 2002).

6.2.7 Neck Position
A transition may be easy at one position on the neck, but as soon as the player tries
to map the same fingers to notes that are further away, it becomes more difficult.
This comes from the fact that distances between frets gradually become smaller
towards the top of the neck. Heijink and Meulenbroek (2002) also mention this as
a complexity factor.

6.2.8 Time, rhythm
Rhythmical values play an important role in determining a fingering. The slower
the melody, the more freedom the player has in the choice of fingers, as he/she
has enough time to use any of them. However, in very fast sequences the choice of
fingers narrows, as we cannot afford certain transitions due to the delay they cause.

6.2.9 Ascending and Descending Sequences
Knowing the direction of a sequence of notes is important for the player when plan-
ning fingerings for the next steps in the melody. In both ascending and descending
progressions the player is highly unlikely to re-use fingers that he or she has recently
used. The player first uses the available fingers and then, if necessary, repositions
the hand in the direction of the sequence.

6.2.10 Repeaned Sequences
Sometimes it is easier for the player to play a fingering he/she has played before on
various parts of the neck, even if they are not the best ones from the perspective of
the other complexity factors. Recurring patterns are sometimes better to play the
way they were first played, instead of needing to memorize individual fingerings for
each occurrence.

22

6.3. IMPLEMENTED RULES

6.3 Implemented Rules
After identifying the set of complexity factors, we implemented only those that
were necessary to conclude whether our hypothesis was correct or not. The subset
of these factors was expressed in the algorithm as disjunct rules. Each rule provides
a score that modifies the weight of the given edge, where the edge represents the
transition between two notes with a suggested fingering.

Below, we describe the scoring system, followed by how our rules work and why
they were implemented.

6.3.1 Scoring System
The impact a rule has on a transition is subjective. There is no way of knowing what
exact score the rule ought to give. Instead, the scoring system works as follows: an
enum, Score, has the discrete terms: full, good, average, lower-average, little, very
little and none. Each term has an integer value between 0 and 100, a percentual
expression relative to the defined maximum score each rule can give a transition.
This way, each rule will express how good a transition is using those terms. The
enum that represents the scoring alternatives is presented below.

Enum Score: {
None = 0,
VeryLittle = 1,
Little = 5,
AvgLower = 25,
Avg = 50,
Good = 75,
Full = 100
}
To exemplify how this works - an Average Score (Score.Avg) would score 200 if

the maximum score was 400.
A constraint to the defined maximum is that it needs to be high enough for

the results to be distinguishable. For example, a maximum of 3 gives an average
score and a good score the same value. This means that we lose accuracy because
transitions of different qualities get the same weight. A maximum of 100 proved
empirically to be sufficient, allowing for a good degree of freedom.

23

CHAPTER 6. RESULT AND DISCUSSION

6.3.2 Distance Rule
The first, and also most influential rule, is the distance rule. It addresses almost
entirely the complexity factors: required finger span and ascending and descending
sequences. The importance of this rule comes from the fact that the required finger
span is the best indicator of whether a fingering is convenient to play.

The rule begins by calculating the natural finger span and the required finger
span. The values indicate the distance between two notes and the distance between
the two fingers, respectively. Both distances are expressed in frets. Depending on
the outcome of the note distance, we classify the behaviour of this rule into two
cases:

Short Range

This is when the player can reach the note distance without needing to reposition
his/her hand. The difference between the required finder span and the natural
finger span determines the score. The larger the difference, the more difficult the
transition is, because it requires stretching the fingers unnaturally. This difference
translates into a weight using our scoring system - the smallest difference scores a
maximum, while the biggest scores zero points.

Long Range

When the next note is out of the player’s reach, the rule values all fingers equally
since the whole hand must be repositioned.
function DistanceRule(edge)

noteDistance← edge.to.fret− edge.from.fret
fingerDistance← edge.to.finger − edge.from.finger
if ShortRange then

if FingersCrossing then
return

else
result← abs(noteDistance− fingerDistance)
score← Translate(result)
edge.DoWeight(score)

end if
else if LongRange then

return
end if

end function
The rule also partially covers the ascending and descending sequences complexity

factor. This is because negative note distances correspond to descending patterns
and positive ones to ascending.

24

6.3. IMPLEMENTED RULES

6.3.3 String Change Rule
The idea of examining the difference of the natural finger span and required finger
span(see section 6.3.2, distance rule) works very well, as long as concerned with
the same string. However, as soon as the transition involves a string change, the
quality of results decline, especially string changes to the same fret generate almost
unplayable fingerings. This is the reason why we introduced the String Change
Rule.

The String Change Rule is divided into two major cases: transitions to the same
fret and transitions between different frets:

Transition to Same Fret

In this case it is generally best to choose higher or lower fingers depending on if the
string change is to a higher or lower string. If the transition is to a higher string,
transitions to higher fingers: 1 to 2 or 2 to 4 etc. are preferred. If the transition is
to a lower string, transitions from higher to lower fingers are preferred instead.

Barring is also an option if it is a string change to the same fret. The String
Change Rule always favours barring with the first finger especially if the strings are
adjacent.

Transition to Other Fret

When the transition is to another fret or there is no string change involved at all
the String Change Rule does nothing. In both of these cases the Distance Rule is
sufficient and produces very good results.

25

CHAPTER 6. RESULT AND DISCUSSION

function StringChangeRule(edge)
if not StringChange then return
end if
if TransitionToSameFret then

//easy to bar with the first finger on adjacent strings
if ToAdjacentString and BarWithF irst then

edge.DoWeight(Score.Avg)
end if

//best to bar with first finger
if BarWithF irst then

edge.DoWeight(Score.Little)
end if

if TransitionToLowerString then
if TransitionToLowerF inger then

edge.DoWeight(Score.Good)
else

edge.DoWeight(Score.Little)
end if

else if TransitionToHigherString then
if TransitionToHigherF inger then

edge.DoWeight(Score.Good)
else

edge.DoWeight(Score.Little)
end if

end if
elsereturn
end if

end function

26

6.3. IMPLEMENTED RULES

6.3.4 Little Finger Rule
The Little Finger Rule covers a part of the complexity factor regarding the fin-
gers’ biomechanical properties. Implementing this rule allows the utilization of the
natural attributes of each finger, in this case, their strength.

This simple, yet useful, rule favors transitions that go to any other finger than
the little finger, by giving a little weight bonus to all fingers except the little finger.
Often, it is definitely preferable to use the little finger, but in those cases other rules
will compensate for it.
function LittleFingerRule(edge)

if not TransitionToLittleF inger then
edge.DoWeight(Score.Little)

end if
end function

6.3.5 Slide Rule
This rule partially addresses the complexity factor Articulation. It was chosen as a
proof that articulation could be parametrized and included in the algorithm.

The rule works by favoring transitions to the same finger, whenever slides are
possible.
function SlideRule(edge)

if TransitionToSameString then
if TransitionToSameFinger then

edge.DoWeight(Score.Little)
end if

end if
end function

27

CHAPTER 6. RESULT AND DISCUSSION

Figure 6.1. The identified complexity factors with the mapping to the implemented
rules.

28

6.4. ALGORITHM RESULT PRESENTATION

6.4 Algorithm Result Presentation
This subsection demonstrates the result our algorithm produced for a range of
different input melodies together with a discussion part after each one of them.
The melodies we used have been chosen carefully to test different aspects of the
algorithm. The list below shows the songs from which we have extracted the melody
inputs.

1. Racer X - Technical Difficulties
2. Deep Purple - Sometimes I Feel Like Screaming
3. Led Zeppelin - Black Dog
4. Led Zeppelin - Ocean
5. AC/DC - Thunderstruck
6. Steve Vai - Jibboom
7. Steve Vai - For The Love Of God
8. Guthrie Govan - Uncle Skunk
9. C-Major Sweeping Pattern, taken from an instructional video

10. A. Vivaldi - L’estate Presto
11. A Minor Pentatonic Scale

The results for all 11 melodies are presented in the following form:

• The reason why the song was chosen,
• The tablature for the examined melody,
• The output of our algorithm - fingerings,
• The real fingering - the one played by the composer or other experienced

guitarist,
• Brief comment regarding the similarities or differences between our fingerings

and the real fingering,
• Highlighting differences for better readability,
• Discussion regarding the reasons for differences or similarities.

F stands for “Fingering”. The fingerings will be listed one after another in
descending order, meaning that the first from top is considered “best” by our algo-
rithm, and the subsequent ones are sometimes equally good, or just a little worse.

RF stands for “Real Fingering” which reflects how the composer or other expe-
rienced guitarist plays the melody.

29

CHAPTER 6. RESULT AND DISCUSSION

6.4.1 Racer X - Technical Difficulties2

Chosen because:

It does not utilize any advance techniques, such as: bends, slides and tappings. It
contains some notes that come after each other on the same fret but on adjacent
string.

Figure 6.2.

Comment:

The real fingering (RF) is exactly the same as our optimal solution (best fingering).
The second solution, which uses a slide on the last note, is also considered optimal
by us. The reason for this is that the differing finger in the transition to the last
note is comfortable to play with a slide. The second best result can be accredited
to the Slide Rule (section 6.3.5).

Figure 6.3.

Comment:

The real fingering is the same as our optimal solution with one difference on the
transition between the adjacent 10ths.

2source: see reference [23]

30

6.4. ALGORITHM RESULT PRESENTATION

Figure 6.4.

Comment:

Same as our optimal with two minor differences. The first twelfth fret is played with
the second finger instead of the third, as our algorithm suggests. The first eleventh
fret is played by Paul Gilbert3 with the first finger, instead of the second.

Discussion:

Overall, the computed fingerings are good. Our optimal fingering in the first sample
(Figure 6.2) is exactly what Gilbert uses when he plays it.

The second melody (Figure 6.3) differs because in our implementation a tran-
sition on the same fret, but between adjacent strings with the same finger, is con-
sidered technically more difficult than to use another finger. Although this may be
true for many average players, Gilbert achieves his speed partially due to how he
plays this part.

Also, we estimate that transitions to the same fret on adjacent strings are easier
to do with the first finger than with others, because we assume that this would
mean that the finger was barred. This is why our result differs from when Gilbert
makes such a transition with his little-finger but not when he bars with other fingers,
mainly because he does not bar his little-finger but instead makes a very quick jump.

Gilbert plays the third melody (Figure 6.4) with the 12th fret with the second
finger, whereas our optimal solution says the third would be best. The difference
arises as the algorithm does not consider neck position. On higher frets, playing
this part with the 2nd finger is easier than with the third, however from a note
and finger distance perspective(which we take into consideration), the third finger
performs better.

3Racer X’s guitar player, who can be seen in the source video for “Technical Difficulties".

31

CHAPTER 6. RESULT AND DISCUSSION

6.4.2 Deep Purple - Sometimes I Feel Like Screaming
Chosen because:

Contains some string-skipping, places where the player could, but doesn’t have to
slide from and to notes leaving open the chance to interpret how to play it. We
suggest the RF for this melody.

Figure 6.5.

Comment:

Many of the computed fingerings match the preferred fingering of guitar players
(RF). There are differences on just a few notes (highlighted parts above), where the
RF suggests sliding.

Discussion:

The algorithm makes little consideration of slides, which gives rise to the differences
with the RF as highlighted. The difference here is due to our estimation of the
importance, or influence, of the slide rule. Some songs are more “slidy”. A more
detailed input with notation for sliding would eliminate these problems. Increasing
the influence, however, of the slide rule gives the preferred (optimal) result.

32

6.4. ALGORITHM RESULT PRESENTATION

6.4.3 Led Zeppelin - Black Dog4

Chosen because:

Firstly it contains string changes both to the same fret and to other frets, as well
as a string-skip from the A to the D-string. It also contains a repeated pattern that
is played many times on different parts of the neck.

Figure 6.6.

Comment:

Our result differs from how it is played. The first bit is usually played with fingers
1, 2 and 3, with the third finger barred on the transition between the two 7ths.
Also, when the melody goes up to the 9th fret it is usually done with the third
finger, followed by a jump, but our top solutions suggests using the fourth.

Discussion:

The first part is erroneous because the algorithm favoured playing without barring.
This results in a fingering that is more difficult to play, mostly because of the finger
strengths of fingers 2, 3 and 4. This suggests that there might be more to finger
strength than we originally anticipated.

The reason our algorithm suggests the second part should be played with the
fourth finger, and not with the third, and also including a jump (as in the original),
is that our algorithm always assumes that minimum hand-movement is optimal. But
in this case, there is a specific sequence that is played repeatedly on a different part
of the neck, which is why these sequences in the original are played with the same
fingerings even though it requires more hand movement. It is also worth mentioning
that the jump is possible because the melody is not played using legato5.

4Source: see reference [24]
5A technique of playing notes in a way that makes them sound linked to each other.

33

CHAPTER 6. RESULT AND DISCUSSION

6.4.4 Led Zeppelin - Ocean6

Chosen because:

It is a technically easy song where the RF is very intuitive.

Figure 6.7.

Comment:

The results have been obtained by assuming edges scoring less than 50% in total,
from all rules, are not important enough to be retained. Our second result is the
same as the RF.

Discussion:

Our second solution is the exact same as the RF. However, the two top solutions
that we suggest have been weighted the same, meaning that the algorithm cannot
tell whether one would be better than the other. In reality, how you would play
this comes down a preference, but neck position does also have an effect here. The
reason that we weight them the same is because we assume that it is as hard to
stretch fingers as to play them tightly together than their natural span.

What is notable in these results is that in order to cope with melodies this long
we have applied an approximation where we assume that in a good fingering we will
never use transitions that are not very good, thus getting rid of many "weak" edges
in the graph. The fact that the results are still very good indicates that the song is
technically not very difficult and that the weak finger-transitions are obviously not
very likely to be used at all.

6Source: see reference [20]

34

6.4. ALGORITHM RESULT PRESENTATION

6.4.5 AC/DC - Thunderstruck7

Chosen because:

Every other note is an open note, which is a special case which we have not taken
into consideration.

Figure 6.8.

Comment:

None of our top solutions are close to the RF.

Discussion:

It is apparent that the results are not optimal. The reason is that we only look at
single transitions, and each note can be played with four fingers that are equally
good in case we go to or from an open note8. In order to correct this, we would
have to look ahead instead of just looking at one transition at a time.

7Source: see reference [18]
8Open string/note - A note that is played without the involvement of any fret-pressing.

35

CHAPTER 6. RESULT AND DISCUSSION

6.4.6 Steve Vai - Jibboom9

Chosen because:

Its an example of a song with open strings that we can solve (contrary to the
previous example: section 6.4.5, Thunderstruck)

Figure 6.9.

Comment:

The algorithm produces the exact same result, as how Steve Vai plays the song.

Discussion:

The fingers 3 and 1 are chosen instead of 2 and 4 because they’re stronger. It is also
an example where the same pattern is played repeatedly with the same fingering,
and the algorithm recognizes that as the most convenient way to play it.

What is notable in this example is how each open-string-note effectively makes
the problem space four times smaller. As we recall from section 5.1 the compu-
tational complexity is 4(N−k), where N is the total number of notes and k is the
number of open note. Each time k is incremented by one, the problem space gets
divided by four.

9Source: see reference [17]

36

6.4. ALGORITHM RESULT PRESENTATION

6.4.7 Steve Vai - For The Love Of God10

Chosen because:

The melody is very articulate, meaning the player is strongly encouraged to "deco-
rate" the notes with different techniques. We do not take many of these techniques
into consideration. It also has some string changes and also requires the player to
reach for the higher frets.

Figure 6.10.

Comment:

These results did not match how Steve Vai plays the melody. He chooses to stretch
to the 16th fret with his third finger, while our solutions play that with the fourth.
Another noticeable difference is that the two adjacent 12-fret-notes are played by
him exactly as one note, but with two different fingers.

Discussion:

The differences from our best computed results come from the fact that the melody
is played in a unique and possibly unintuitive way which uses an interesting combi-
nation of fingers. Vai uses his method to express a specific feeling with the melody
and to adjust for the next notes. One example are slides, where our algorithm
suggests slides only when it is convenient but in this particular composition the
slides appear as artistic expression. This means that, in the melody the slides are
there because the artist likes the sound of them, not due to how comfortable it
is to perform them. Such ways of playing are sometimes referred to as “advanced
techniques” and may alter fingerings Rutherford (2009).

10Source: see reference [16]

37

CHAPTER 6. RESULT AND DISCUSSION

6.4.8 Guthrie Govan - Uncle Skunk11

Chosen because:

it incorporates a very fast, advanced arpeggio12 and slides.

Figure 6.11.

Comment:

Our first result differs slightly from how the melody is usually played. Firstly, our
it mainly suggest using the fingers 4, 3 and 1 in the arpeggio whilst it is preferably
played with 3, 2 and 1. Secondly we do not favour sliding as much, thus giving a
different finger suggestion for the second part.

Discussion:

The reason the arpeggio differs is because the time aspect is not considered in the
algorithm. The transitions from the first note through the arpeggio is too fast, so
using the little-finger in the arpeggio is not an option because there is not enough
time to move it there. Taking this into account would require looking at the time
aspect, as well as looking at more than two notes at a time in order to determine
what is feasible and what is not.

The second part is interesting because we produce a better result by increasing
the influence of the sliding rule as a whole. It does not suggest the exact same
fingering as Govan but comes closer. In the transitions 16 to 11 and 9 to 14 it is
especially important to slide, which our modified algorithm also suggests.

11Source: see reference [21]
12A musical technique where notes in a chord are played or sung in sequence, one after the

other, rather than ringing out simultaneously[10].

38

6.4. ALGORITHM RESULT PRESENTATION

6.4.9 C-Major Sweeping Pattern13

Chosen because:

t is an arpeggio over a chord. This pattern is often used for fast solos and is also
the basis for improvisation.

Figure 6.12.

Comment:

Our optimal solution is the one that the guitar tutor plays.

Discussion:

This is a case where there is little space for articulating notes. The RF therefore
corresponds very well with the rules by which the algorithm finds the best set of
transitions.

13Source: see reference [22]

39

CHAPTER 6. RESULT AND DISCUSSION

6.4.10 A. Vivaldi - L’estate Presto
Chosen because:

it is a melody that is played fast, has many string changes and therefore requires
the player to use the right fingers in order to achieve the speed as in the original.
We suggest the RF for this song.

Figure 6.13.

Comment:

The top results are variations of each other in places where they can vary. In those
places the choice of a specific finger is just as good as the choice of any other and
therefore all fingers are weighted the same way.

Discussion:

The optimal fingering is debatable in this case, both because using either the second
or third fingers to play the playing the middle notes in the descending triples is
equally comfortable. Most people however use the second finger. Our top results
are variations of that, showing the use of both second and third fingers. If we
implemented a rule that takes the current neck position into consideration, the
optimal answer would suggest the 2nd finger.

40

6.4. ALGORITHM RESULT PRESENTATION

6.4.11 A Minor Pentatonic Scale14

Chosen because:

Scales are the key to understanding how different tones and harmonies work to-
gether. They are often used as an exercise to improve technique and speed. Chords
are built up on the basis of scales.

Figure 6.14.

Comment:

Our optimal fingering is exactly the same as the real fingering.

Discussion:

We have primarily implemented complexity factors that are biomechanical, and
achieved good results for many melodies. This is especially apparent in examples like
this one, where the melody is simple in both cognitive and musical terms (Heijink
and Meulenbroek, 2002); the biomechanical complexity factors reflect the fingering
constraints accurately.

14Source: see reference [19]

41

Chapter 7

Conclusion

To summarize our discussion, we have identified the major characteristics that in-
fluenced the results.

7.1 Analysis of Results

7.1.1 Repeated Pattern and Cognitive Factors
Our results show that it is not always preferable to play the most convenient fin-
gering, as we assumed it would be. As also identified by Heijink and Meulenbroek
(2002) there are times when cognitive factors play a role in choosing guitar fin-
gerings. Some melodies, for instance Black Dog (section 6.4.3) contain repeated
sequences where it is cognitively easier to use the same fingering every time the
same sequence is played, because of the natural process of memorizing a fingering.
The guitarist remembers one fingering and applies this to several instances of the
same pattern, even though it is biomechanically more complex for some of those
instances.

43

CHAPTER 7. CONCLUSION

7.1.2 Decoration and Articulation
We conclude that there are major differences in how songs should be played if
articulations and note decorations1 are considered. Some melodies are very artistic
and expressive, where individual notes and transitions have a specific character and
feel, while other melodies are more technical. This means that there are two distinct
types of melodies to consider when calculating a fingering:

Linear, simple melodies:

• The most comfortable transitions are regarded as exceptionally good with
respect to many rules.

• The least comfortable transitions are regarded as exceptionally bad with re-
spect to many rules.

Complex/artistically expressive melodies:

• Most transitions are considered effective with respect to some complexity fac-
tors, but uncomfortable with respect to others.

• Many transitions are classified merely as acceptable and the contrast between
and their weights differ only marginally.

Linear melodies result in considerable differences between the alternatives for
fingering and make it very easy and also effective to completely ignore many finger-
ing alternatives. Intuitively, there is often one fingering that is the obvious choice.
Very technical playing, for instance the C-Major Sweeping Pattern or Racer X’s
“Technical Difficulties”, fall under this category.

Complex melodies require that most edges are retained, because only few scored
so low that they could be omitted without affecting the fingering result in an overly
negative way. Paths are weighted more or less equally, as there are no contrast
between the different alternative fingerings; most transitions are both good and bad
with respect to different rules. For instance we might have five fingerings that are,
technically, as effective.

In order to deal with more complex melodies the simplest solution would be to
handle more expressive input notation. For instance there are notations for slides,
tappings and bendings. Extended notation will eliminate many fingerings that are
simply undesirable.

1Note decoration - a general term by which we mean everything that can be done with a single
note, more than simply playing it. This includes: switching between fingers while still holding the
same note, vibrating it in a subtle and special way etc.

44

7.1. ANALYSIS OF RESULTS

7.1.3 Biomechanical Characteristics
There are individual biomechanical constraints that influence fingerings. Finger
strength or hand size, for instance, have an impact on which fingering each guitarist
finds most convenient. Some guitar players may not be able to stretch their fingers
as far as other players. Another example would be a player with an injured finger,
who would probably not wish use it extensively. A possible solution to this is to
take into account physical attributes of the hand and the guitar of the user.

7.1.4 Individual preferences and technical skills
Another factor that is apparent from the results is that individual skill is also a
factor. We assumed that it was not easy to jump to the same fret on an adjacent
string for instance, yet Paul Gilbert (Racer X) did not find it a problem at all, hence
the difference in fingerings. This suggests that personal preferences are important.
Techniques, like barring, sliding, bending or stretching are in reality performed
slightly differently by different guitar players. For instance, skilled guitar players
are in general better at bending tones with the fourth finger than intermediate or
beginner guitarists are. The average guitar player finds it harder to bend with the
fourth finger than with any other finger.

45

CHAPTER 7. CONCLUSION

7.2 Possible Improvements

7.2.1 Applicability
Given that the number of fingerings grow exponentially, our simple path-finding
implementation is not practical. Users would, and should, demand to be able to
get computed fingerings for longer melodies. To make the algorithm applicable for
practical use the optimal path should be calculated with better time complexity.
We suggest a dynamic programming approach which would run linear time. The
existence of such was mentioned in chapter Method: Algorithm Complexity (4.1)
. Furthermore, we want to emphasize the importance of developing a user friendly
interface for a commercial version.

7.2.2 Tablature Explicitness
As our results suggest, a more explicit tablature notation would in many cases
dramatically improve the results. The fact that many available tablatures do contain
more information than that we have considered is a strong reason to, in the future,
also implement these functionalities. This is especially relevant for notation of bends
and slides.

7.2.3 Complexity Factor Implementation
It is apparent that fingerings differing from the RF arise when some of our complex-
ity factors are not considered. In our solution, only six out of the ten complexity
factors we identified are implemented. Implementing all of them would significantly
improve the results.

46

Chapter 8

Summary

To conclude, our hypothesis appears to be accurate. Implementing complexity
factors as disjunct rules gives qualitative results for the Optimal Fingering Problem.

The independent operation of the rules allows for a holistic evaluation of finger-
ings and is particularly suited for simpler melodies. However, implementing more
Complexity Factors and allowing users to specify articulation preferences would
make it possible to also handle complex melodies really well.

Solving the Optimal Fingering Problem in this fashion is very much suitable
for a commercial software for generating fingerings to melodies. Deploying such
software would greatly aid guitarists in their learning process by allowing them to
receive fingering information for any melody of their choice and in many cases save
up on private tutoring.

47

Appendix A

Glossary

ASCII File - File containing plain, readable text.
Arpeggio - A musical technique where notes in a chord are played or sung in

sequence, one after the other, rather than ringing out simultaneously[10].
Barre - a technique of playing notes on the guitar where one finger is put on

many strings of the same fret enabling the guitarist in the process to play many
tones without the necessity of moving the hand.

String Bending - a very common technique performed (most often) on the
electric guitar in which the player usually uses his third finger to bend the string
upwards while in the process creates a smooth transition from one note to another.

Computational complexity - An indication of how well an algorithm performs
with respect to time. More or less: how fast it computes in relation to the amount
of data provided in the input stage.

Directed Acyclic Graph - A graph in which there exists no path(sequence of
edges) from any vertex such that it creates a loop back to the same vertex.

Disjunct Rules - Stand alone rules, that work independently of one another.
Dynamic Programming - A method for solving complex problems by break-

ing them down into simpler subproblems. Applicable to problems exhibiting the
properties of overlapping subproblems[12].

Edge - A link between two nodes in a graph. In our case, the edge represents
a transition from one note to another.

Exhaustive search - A method of computing a result in which all possible
combinations are examined before the final result is delivered.

Exponential Complexity - Exponential compelexity is when the growth rate
is proportional to the function’s current value[13].

Fingering Transition - A transition between two notes described by which
finger the first note is played, and with which one the other one is played.

Fitness Function - A function used to indicate how good a solution is, relative
to the given aims.

Graph - A data structure where objects are connected by links(edges).
Guitar Neck - The part of the guitar where the player puts his fingers on top

49

APPENDIX A. GLOSSARY

of strings to determine the pitch.
Heuristic - A technique for finding an approximate solution when classic meth-

ods fail to find any exact solution[14].
High Level Object Oriented Programming Language - A programming

language with a high level of abstraction, hiding many computer architecture details.
Legato (Hammer-on / Pull-off) - A technique of playing notes in a way that

makes them sound linked to each other.
Note decoration / Note Articulation - a general term by which we mean

everything that can be done with a single note, more than simply playing it. This
includes: switching between fingers while still holding the same note, vibrating it
in a subtle and special way etc.

Open String Note/Open Note - A note that is played without the involve-
ment of any fret-pressing.

Path-finding Algorithm - An algorithm that scans a space(or in our case: a
graph) to find the best path between two points.

Sliding (glissando slide) - A smooth transition generated by sliding a finger
from one note to another.

Sweeping - a technique in which the player “sweeps”(plays) through many
strings by going up and down the guitar neck. This often implies the player has
good coordination between his left and right hand. A sweeping pattern is often used
in fast solos, chord arpeggios and improvisation.

Visitor Design Pattern - A method of separating the algorithm from the
objects it operates on.

Weighting - (verb) to assigning score, to prioritize.

50

Appendix B

Arobas Music Email

Figure B.1. Email conversation with arobas music.

51

Bibliography

[1] T.H. Cormen, C. E. Leiserson, R.L. Rivest, C. Stein, 2001. In-
troduction to Algorithms, Second Edition. The MIT Press. Available
at: http://ftp.tudelft.nl/TUDelft/oilie/Birmingham/Introduction%
20to%20Algorithms.pdf

[2] Heijink, H., & Meulenbroek, R. G. J. (2002). On the Complexity of Classi-
cal Guitar Playing: Functional Adaptations to Task Constraints. Journal of
Motor Behavior, 34(4), pp 339–351. Available at: http://dx.doi.org/10.
1080/00222890209601952

[3] Radicioni, D., and Lombardo, V. (2007). A Constraint-based Approach for
Annotating Music Scores with Gestural Information. Constraints, 12(4),
405–428. Available at: http://dx.doi.org/10.1007/s10601-007-9015-y

[4] Radisavljevic, A., and Driessen, P. (2004). Path difference learning for guitar
fingering problem. Proceedings of the International Computer Music Confer-
ence (Vol. 28). sn. Available at: http://www.ece.uvic.ca/~peterd/papers/
PDL_paperICMC2004_ver9.PDF

[5] N. T. Rutherford (2009). FINGAR, a Genetic Algorithm Approach to Pro-
ducing Playable Guitar Tablature with Fingering Instructions. Available
at: http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/
archive/ug2009/pdf/aca04ntr.pdf

[6] Tuohy, D., and Potter, W. D. (2005). A genetic algorithm for the automatic
generation of playable guitar tablature. Proceedings of the International Com-
puter Music Conference (pp. 499–502). sn. Available at: http://www.cs.uga.
edu/~potter/CompIntell/Tuohy_Potter_Tablature_GA.pdf

[7] ASUSTeK Computer Inc., 2013. ASUS_ZENBOOK_UX31A. Available
at: https://www.asus.com/Notebooks_Ultrabooks/ASUS_ZENBOOK_UX31A/
#specifications [Accessed June 01, 2013].

[8] Guitar Instructions, 2012. G Major Chord.[Image Online] Available
at: http://guitarinstructions4u.com/wp-content/uploads/2010/08/
OpenG.jpeg [Accessed March 27, 2013]

53

http://ftp.tudelft.nl/TUDelft/oilie/Birmingham/Introduction%20to%20Algorithms.pdf
http://ftp.tudelft.nl/TUDelft/oilie/Birmingham/Introduction%20to%20Algorithms.pdf
http://dx.doi.org/10.1080/00222890209601952
http://dx.doi.org/10.1080/00222890209601952
http://dx.doi.org/10.1007/s10601-007-9015-y
http://www.ece.uvic.ca/~peterd/papers/PDL_paperICMC2004_ver9.PDF
http://www.ece.uvic.ca/~peterd/papers/PDL_paperICMC2004_ver9.PDF
http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/archive/ug2009/pdf/aca04ntr.pdf
http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/archive/ug2009/pdf/aca04ntr.pdf
http://www.cs.uga.edu/~potter/CompIntell/Tuohy_Potter_Tablature_GA.pdf
http://www.cs.uga.edu/~potter/CompIntell/Tuohy_Potter_Tablature_GA.pdf
https://www.asus.com/Notebooks_Ultrabooks/ASUS_ZENBOOK_UX31A/#specifications
https://www.asus.com/Notebooks_Ultrabooks/ASUS_ZENBOOK_UX31A/#specifications
http://guitarinstructions4u.com/wp-content/uploads/2010/08/OpenG.jpeg
http://guitarinstructions4u.com/wp-content/uploads/2010/08/OpenG.jpeg

BIBLIOGRAPHY

[9] GuitarLessons.com 2012. Finger Numbers [Image Online] Available at:
http://www.guitarlessons.com/media/guitar-lessons/chord-charts/
finger-numbers.gif

[10] Wikipedia contributors, 2013, Arpeggio. Wikipedia, The Free Encyclopedia.
Available at: http://en.wikipedia.org/wiki/Arpeggio [Accessed May 15,
2013]

[11] Wikipedia contributors, 2013, Articulation. Wikipedia, The Free Encyclope-
dia. Available at: http://en.wikipedia.org/wiki/Articulation_(music)
[Accessed May 1, 2013]

[12] Wikipedia contributors, 2013, Dynamic Programming. Wikipedia, The
Free Encyclopedia. Available at: http://en.wikipedia.org/wiki/Dynamic_
programming [Accessed May 15, 2013]

[13] Wikipedia contributors, 2013, Exponential Growth. Wikipedia, The Free
Encyclopedia. Available at: http://en.wikipedia.org/wiki/Exponential_
growth [Accessed May 16, 2013]

[14] Wikipedia contributors, 2013, Hueristic(Computer Science). Wikipedia,
The Free Encyclopedia. Available at: http://en.wikipedia.org/wiki/
Heuristic_(computer_science) [Accessed May 15, 2013]

[15] Wikipedia contributors, 2013. Note. Wikipedia, The Free Encyclopedia. Avail-
able at: http://en.wikipedia.org/wiki/Note [Accessed April 13, 2013].

[16] 40662n3055, 2009. For The Love of God lesson Part 1. [video online] Avail-
able at: http://www.youtube.com/watch?v=L2I22QmNhz8 [Accessed April
11, 2013]

[17] docjs314, 2008. Steve Vai - Jibboom. [video online] Available at: http://www.
youtube.com/watch?v=m6qf9RQhjqs [Accessed April 11, 2013]

[18] GuitarLessons365Song, 2011. AC/DC - Thunderstruck Guitar Lesson Pt.1
- Intro. [video online] Available at: http://www.youtube.com/watch?v=
fkk2TlRc428 [Accessed April 11, 2013]

[19] JustinSandercoe, 2009. Minor Pentatonic Scale (Guitar Lesson BC-176) Gui-
tar for beginners Stage 7. [video online] Available at: http://www.youtube.
com/watch?v=G-X1RemAzks [Accessed 3 May, 2013]

[20] jun626, 2009. The Ocean. [video online] Available at: http://www.youtube.
com/watch?v=LgplgyFrIGs [Accessed April 10, 2013]

[21] MissMisstreater, 2009. Guthrie Govan - Uncle Skunk Lesson - Levi Clay. [video
online] Available at: https://www.youtube.com/watch?v=Q7JBD_F9WJ0 [Ac-
cessed 11 April, 2013]

54

http://www.guitarlessons.com/media/guitar-lessons/chord-charts/finger-numbers.gif
http://www.guitarlessons.com/media/guitar-lessons/chord-charts/finger-numbers.gif
http://en.wikipedia.org/wiki/Arpeggio
http://en.wikipedia.org/wiki/Articulation_(music)
http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Heuristic_(computer_science)
http://en.wikipedia.org/wiki/Heuristic_(computer_science)
http://en.wikipedia.org/wiki/Note
http://www.youtube.com/watch?v=L2I22QmNhz8
http://www.youtube.com/watch?v=m6qf9RQhjqs
http://www.youtube.com/watch?v=m6qf9RQhjqs
http://www.youtube.com/watch?v=fkk2TlRc428
http://www.youtube.com/watch?v=fkk2TlRc428
http://www.youtube.com/watch?v=G-X1RemAzks
http://www.youtube.com/watch?v=G-X1RemAzks
http://www.youtube.com/watch?v=LgplgyFrIGs
http://www.youtube.com/watch?v=LgplgyFrIGs
https://www.youtube.com/watch?v=Q7JBD_F9WJ0

BIBLIOGRAPHY

[22] RoboCop00, 2006. Sweep Picking Practice. [video online] Available at: http:
//www.youtube.com/watch?v=3mbx03mP5eg [Accessed 11 April, 2013]

[23] r1ku97, 2011. Paul Gilbert - Technical Difficulties (Racer X). [video on-
line] Available at: http://www.youtube.com/watch?v=rn-wj4pRpIE [Ac-
cessed April 10, 2013]

[24] tokairock, 2009. Led Zeppelin - Black Dog Live (TSRTS) by jun626. [video
online] Available at: http://www.youtube.com/watch?v=gXvQfoa_qlw [Ac-
cessed April 10, 2013]

55

http://www.youtube.com/watch?v=3mbx03mP5eg
http://www.youtube.com/watch?v=3mbx03mP5eg
http://www.youtube.com/watch?v=rn-wj4pRpIE
http://www.youtube.com/watch?v=gXvQfoa_qlw

www.kth.se

	KEX-Omslag 2 förf ENG
	sköld
	Skolan för datavetenskap och kommunikation

	baksida

