Mobile Development
for iPhone and Android

A comparison of 3rd party development
for the iPhone and Android platforms

PETER GRUNDSTROM

Bachelor of Science Thesis
Stockholm, Sweden 2010

o

B R,
EKTHR

VETENSKAP %
o8 OCH KONST 2

ST

KTH Computer Science
and Communication

Mobile Development
for iPhone and Android

A comparison of 3rd party development
for the iPhone and Android platforms

PETER GRUNDSTROM

Bachelor’s Thesis in Engineering and Management (15 ECTS credits)
at the School of Industrial Engineering and Management

Royal Institute of Technology year 2010

Supervisor at CSC was Christian Bogdan

Examiner was Stefan Arnborg

URL: www.csc.kth.se/utbildning/kandidatexjobb/teknikmanagement/2010/
grundstrom_peter_K10054.pdf

Royal Institute of Technology
School of Computer Science and Communication

KTH CSC
SE-100 44 Stockholm, Sweden

URL: www.kth.se/csc

Abstract

The mobile industry has seen strong development in the last few years,
and this has led to that knowledge of mobile development from a few
years back is not relevant any more. This puts the industry in a whole
new situation. As with every subject this big and versatile it is hard
to know where to start especially since there are many platforms and
different techniques in use, but which of them are relevant?

My main approach in writing this thesis is to use the technical docu-
mentation provided by Apple, the Android Project and to some degree
from other developers. These are the documents I used myself when
first developing smartphones applications of my own. The knowledge
and experience I gathered during the development of these applications
will be a large part of this thesis.

Through out this theisis I find that both platforms have their strengths
and weaknesses. Android, backed by Google is more technically driven
and have better solutions to several hard technical problems. Apple
with their iPhone on the other hand have a bigger user base, and has
been better at letting developers monetize on their applications. In the
end I feel that Android still is the better platform, since the problems
it has today is easier to solve then the ones that Apple is facing.

Contents

1 Introduction 1
1.1 Problem definitiono o o 1
1.2 Purposeofthesis 2
1.3 Delimitations 3
1.4 Approach 4
2 Background 5
2.1 History of the iPhone)
2.2 History of Android o 6
2.3 Symbiano 8
2.4 Windows Mobileo 8
2.5 RIM BlackBerry 9
2.6 Palm webOS 9
3 iPhone OS 11
3.1 iPhone OS Architecture 11
3.2 iPhone SDK 12
3.3 Important Developer Concepts 14

3.4 Development Tools L o 16

3.5 Documentation and Developer Resources.

3.6 Distribution

4 Android
4.1 The Android Platform
4.2 Software Development Kit,
4.3 Native Development Kit oL
4.4 TImportant development concepts
4.5 Development tools L Lo o
4.6 Documentation and Developer Resources.

4.7 Distribution

5 Results and Comparisions
5.1 Result matrix oL
5.2 Development Environment and Programming Languages
5.3 Development Techniques
5.4 Distribution and Monetization
5.5 Platform Fragmentation

5.6 Conclusions and future predictions

Bibliography

21

21

23

25

25

28

30

31

33

33

34

35

36

37

39

41

Chapter 1

Introduction

1.1 Problem definition

Because of the strong development the mobile industry has seen the last few years,
knowledge of mobile development from a few years back is not relevant any more.
As with every subject this big and versatile it is hard to know where to start. There
are many platforms and many different techniques in use, but which should one
target? I hope to, through this theisis to answear the following questions;

e What alternatives are there when developing for smartphones?

e What are the the strengths and weaknesses of the different smartphone plat-
forms?

e Compare the different smartphone platforms on key areas

— Development Environment and Programming Languages
— Development Techniques
— Distribution and Monetization

— Platform Fragmentation

e What is the future of smartphones?

I have chosen to focus my comparison to four main areas; Development Environment
and Programming Languages, Development Techniques, Distribution and Moneti-
zation, and Platform Fragmentation. These are areas that I find necessary for a 3rd
party developer to be well versed in, and that are important factors for the success
of a platform.

CHAPTER 1. INTRODUCTION

The first area I will focus on is the Development Environment and Programming
Languages. This is the base in developing for any platform, mobile or otherwise.
I also think that this area will expose differences in philosophy between the two
platforms.

The second area, Developer Techniqes, is in some ways related to the first one,
since some parts of the development environment and the choice of programming
languages determine what development techniques can be used. Another reason to
investigate this area is its great interest to anyone trying to get insight in to the
world of smartphone development.

One important area if a platform is going to attract a lot of 3rd party developers
is if it is possible to make money on that platform. iPhone and Android are in
different phases of their development, and it will be interesting to see how this
affects distribution and monetization.

Lastly I would like to investigate how Platform fragmentation makes it harder to
develop for a platform. I want to study how the situation looks right now, and how
it might developing in the future.

There are of course other areas of interest, that might effect 3rd party developers
and the success of a platform. But I feel that after comparing these four areas I will
be able to give good insight in to the world of smartphone development and make
some predictions on where the market is moving.

1.2 Purpose of thesis

There are many smartphone platforms out there currently trying to compete for
users. Some of these are very successful and have a large market share or an im-
pressive growth rate. Why are these platforms more successful than others? Of
course there are several reasons why one platform succeeds and one fail. Tradi-
tionally people have been looking at the hardware specifications of a mobile phone
when buying it. What applications the phone ran was not as important. Already
customers are starting to change this behavior by choosing their mobile phones,
not because of its camera, but because of the software it runs. I think this is get-
ting even more common in the future, and I believe that which platforms that will
succeed largely depends on the amount of available 3rd party application for that
platform.

Through the answers to the questions raised in the problem definition I hope to
give the reader a good insight into the world of 3rd party smartphone applications
development. The aim is to give an overview of what the different platforms have to
offer and what their strength and weaknesses are. I also hope to give good insight

1.3. DELIMITATIONS

of the technologies and techniques that are relevant and for what purposes they
should be used.

1.3 Delimitations

I have chosen to limit the subject by only focusing on the iPhone and Android
platforms. The main reason for this is that these are the platforms with the strongest
growth, and that they are the platforms currently drawing the most attention from
developers. The iPhone and Android platforms are the start of a new generation of
smartphone operating systems. I feel that they now have matured to a level that
makes a comparison of them feasible, and the development rate of the platforms
has stabilized at a level where such a comparison would still be relevant for some
time after it was written.

It would also have been interesting to study Symbian and Microsoft Windows Mobile
further since they control a big part of the smartphone market. The reason that 1
chose not to study these two platforms more in depth is because of the transition
they are facing. Symbian is transitioning from being the world dominant of the
smartphone operating systems and is now faced with increased competition and
shrinking market share. This at the same time as Nokia is trying to consolidate the
earlier fragmented systems based on Symbian into the new Symbian Foundation. I
think this is a very interesting move, but there are still no phones running this new
platform. This makes it too hard to study, and I do not want to draw conclusions
for a platform where not all details are known. The same is true for Microsoft’s
Windows Mobile. Microsoft has after many years of criticism started developing a
whole new mobile platform called Windows Phone 7. The early information that
has been made public so far makes it out to be a very interesting platform, but
not much is yet known about it and the first phones using the platform will not be
released until Q4 2010.

I will also limit myself to study only some parts of the iPhone and Android platforms.
In this thesis I focus on 3rd party developers and the knowledge necessary for them
to develop and distribute applications for the iPhone and Android platforms. I have
chosen not to look at the devices them selves and their specifications. I have also
limited the description of the underlying architectures to a level that is relevant for
a developer’s understanding of the system.

CHAPTER 1. INTRODUCTION
1.4 Approach

I started the work on this thesis by advancing my knowledge of developing for iPhone
and Android. I had experience with both of them from before, but I felt that I lacked
knowledge in some important areas. Since this manly is a comparison of the two
different platforms I wanted to develop and distribute an identical application for
both platforms. Developing the same application for both systems gave me much
knowledge both about them, their differences, and about where to find my sources
for this thesis. It also gave me an opportunity to see the differences at each step of
the development and distribution cycle.

The application I developed was a travel planner application for Karlstadsbuss.
This applications makes use of most important APIs on both platforms. Among
these APIs are Maps, Location, the different Ul-components and several platform
specific APIs for integration, for example APIs for sending ticket SMSs from the
application and integrating with the system-wide Android search function.

The majority of the facts in this thesis come from technical papers, reference docu-
mentation and other development resources. These are mainly found in the devel-
oper section of Apple’s and the Android project’s homepages. Information about
the history of the platforms and other important dates, generally comes from news-
sources focusing on reporting around these kind of subjects. Some of the news
outlets I have used is Wired Magazine, The Wallstreet Journal Online, Engadget
and Ars Technica.

Chapter 2

Background

2.1 History of the iPhone

In January 2007 Steve Jobs, the CEO of Apple, stood on the stage together with
Cingular, now AT&T’s mobile department, presenting the Apple iPhone. The re-
actions was unprecedented and the event itself was in many ways the beginning of
a paradigm shift in the mobile industry. But the story begins much earlier than
that. It begins with Steve Jobs on stage in the same way as he was going to do five
years later announcing the iPhone, but this time announcing the first iPod. The
iPod was to become one of Apple’s biggest successes ever and by 2004 it accounted
for 16% of the companies revenue [98].

A few years after announcing the iPod, Apple was beginning to feel the competition
from other MP3-player makers as well as cell phone manufacturers who featured
built in music players, including Sony Ericsson with their Walkman series. To
address this competition Apple teamed up with Motorola and Cingular to create
what was to become the Motorola ROKR [2]. The ROKR was supposed to become
the music-playing sequel of Motorola’s big success story the Motorola RAZOR-
series. The collaboration was set up so that Motorola built the entire phone while
Apple could focus on writing the music software. The result was a phone that
was years behind compared to the competition, that was not seen as aesthetically
pleasing and could only store 100 songs [98].

Apple understood that if they were to create a successful music phone, they would
have to do it on their own. To be able to create exactly the product he wanted
Steve Jobs set out to find an operator in the US who would accept his deal. Verizon
declined and Apple ended up back at AT&T [2]. Negotiations were tricky because
the of the new situation and Steve Jobs’ demands, but they managed to finish an

CHAPTER 2. BACKGROUND

agreement. The agreement dictated that AT&T would get exclusivity for the device
plus a percentage of all music sales to the device. In return Apple would get $10
per customer and month and free hands to create their own product [98].

Around Thanksgiving of 2005 Steve Jobs approached his engineers for the first time
with the project. Not yet done with converting Apple’s Mac OS X software from
running on PowerPC processors to Intel’s X86 architecture, they now also had the
job of rewriting large parts of it to make it run on an ARM device with limited
resources. Apple knew how to make the operating system and interface work but
they did not have the competence to design antennas and other mobile components.
They decided to still do it on their own, and under extreme secrecy they developed
all the necessary equipment. Security was so tight that the people working on the
hardware were given dummy software to try on it, and the people working on the
software only saw it running on a big black box with a screen [98]. The same was
true for the engineers from AT&T who were supposed to test the device against
AT&T’s network, but were only given a dummy device containing the baseband
processor and antenna [2].

The resulting product was expensive, ran only on AT&T’s EDGE network, could
not search through mails and the browser did not have neither Java nor Flash
support. Nothing of this mattered, the customers loved it. Since that day in 2007,
all new phones released have been compared to the current version of the Apple’s
iPhone [98].

Apple has continued to develop their successful concept by releasing new versions
of the operating system as well as new versions of the hardware. With the releases
of iPhone 3G and later iPhone 3GS, Apple became the de facto standard which
every one else is judged against. They also continued to join their success with the
iPhone with the iPod by creating the iPod Touch.

In more recent history they took the next step and released the iPad, a tablet based
on the iPhone architecture. A tablet is something Apple has been trying to create
internally for a long time and rumors have always been circulating. It is still to
early too say if the iPad will be the same success as the iPhone, but the sales figure
of 300’000 units the first day might give a hint of its future [24].

2.2 History of Android

Back in 2005 Google bought Android Inc, a small tech company based in Palo Alto.
Android Inc’s business idea was to develop a Linux based operating system for cell
phones and other mobile devices. Part of the idea was to make an operating system
not for a certain hardware manufacturer but a system that anyone could license and

2.2. HISTORY OF ANDROID

put on their device and that was flexible and upgradeable [20].

The vision behind the operating system was to make a smartphone operating system
that enabled the user to access the Internet and to take advantage of his or her
position and mobility. This was something that Andy Rubin, the CEO of Android
Inc, expressed a need for in a 2003 interview with business week when he said that,
“there was tremendous potential in developing smarter mobile devices that are more
aware of its owner’s location and preferences” [3].

The acquisition of Android sparked rumors of Google entering the mobile market
with a gPhone to compete with Apple’s iPhone [94]. These rumors continued in 2007
when Google founded the Open Handset Alliance together with mobile operators
and handset manufacturers [1]. They also released the first version of the Android
SDK to the public at the same time[1]. Google and the Open Handset Alliance have
since subsequently released new versions of the SDK which starting from October
2008 is released under the open source Apache License [20].

At the same time as Google and the Open Handset Alliance released the Android
SDK as open source they announced the first readily available handset running
Android. The phone was the the T-Mobile G1 and is also known as the HTC
Dream or Google G1 dev-phone [54]. It featured a capacitive touch screen, a full
hardware QWERTY keyboard and was first released to customers in the US together
with T-Mobile. Developers could also buy the phone unlocked and rooted through
Google’s developer program, under the name Google G1 dev phone.

The appearance of new Android phones was slow to start with but picked up pace
during 2009. More handsets were released and there are now Android phones from
more than seven manufacturers, including HTC, Motorola, LG, Sony Ericsson and
Samsung [83]. These phones are available in basically every market [17]. Most of
the Android phones are still only available in the the US market, but that is starting
to change with the HT'C Desire that is only being available in Europe and Asia at
launch [22].

In early January 2010 Google fulfilled the rumors of a gPhone, only that its name
now is Nexus One. The Nexus One is branded as Google phone but is manufactured
by the Taiwanese company HTC that also made the first Android phone, the HTC
Dream [53]. The Nexus One is exclusively sold through Google’s phone store and
is only available in a few countries including USA, UK and Singapore [52]. Sales
of the Google Nexus One is lagging behind both the iPhone and other Android
phones, but Google feels the need to have a Android phone with the full “Google
experience” [12].

CHAPTER 2. BACKGROUND
2.3 Symbian

Symbian is one of the the oldest smartphone platforms still in use. The Symbian
history is on one hand a success story, but on the other hand also very fragmented.
Symbian started out as a further development of PSION’s operating system EPOC.
EPOC was in 1997/1998 transformed into a cooperation between PSION and the
phone manufacturing companies Ericsson, Motorola and Nokia [11]. PSION sold
their part of the joint venture as early as 2004. Four years later Nokia, who already
was the biggest stakeholder in Symbian, chose to buy out the rest of the stakeholders
[11]. Symbian is right now the most commonly used smartphone operating system
with a market share of 45%, but it has started to shrink [8].

Symbian was from the beginning the name of the operating system, until its consoli-
dation to the Symbian Foundation. From the beginning it had three major graphical
interfaces; Nokia S60, Ericsson UIQ and MOAP(S) from the Japanese mobile op-
erator NTT [11]. To face the competition from new smartphone platforms, such as
Android and iPhone, Nokia choose to create the Symbian Foundation. The goal
of the Symbian Foundation is to create a royalty free open source platform for the
development of software to mobile phones and other hand held devices [11].

2.4 Windows Mobile

Windows Mobile has traditionally been the second biggest smartphone operating
system. But since the introduction of Apple’s iPhone and Research In Motion’s
Blackberry it has dropped to a mere fourth place, with a market share of 7.9% [8].
Windows Mobile is today at the version 6.5.3 and is based on the Windows CE
platform. Despite its name it is not built on any earlier version of Windows, but is
a completely new operating system [60].

Windows Mobile has been facing a lot of problems and criticism during recent
years. Complaints range from bad usability to being hard to develop for and for
having bad distribution channels. Manufacturers have been trying to work around
these problems with varying results. One of the more successful is HT'C with their
completely reworked user interface Sense [21], while Sony Ericsson’s customized
interface is generally seen as a failed attempt to make an outdated platform work.

To face these problems Microsoft has created Windows Phone 7. Windows Phone 7
was originally announced under the name Windows Mobile 7 Series during Mobile
World Congress 2010 in Barcelona, and is expected to reach consumers some time
during the third or forth quarter of 2010. Windows Phone 7 features a completely
redesigned user interface, a proper distribution channel and minimum criteria that
the manufacturers phones most fulfill [92].

2.5. RIM BLACKBERRY

2.5 RIM BlackBerry

Another contestant on the smartphone market is BlackBerry by Research in Motion,
RIM. RIM revolutionized the mobile market a few years ago when they introduced
their BlackBerry platform centered around push mail. The Blackberry is mostly
available in the US and is generally considered a business phone. This is appar-
ent when looking at RIM’s other services, particularly their BlackBerry Enterprise
Server, which aims to integrate the blackberry phones into the companies existing
IT-infrastructure and communication services including Microsoft Exchange, Lotus
Domino and Novel GroupWise [61]. Blackberry has a big market share in the US
and some other countries but is basically non existent in the rest of the world [8].

2.6 Palm webOS

Palm was the king of the long lost era of PDA’s. With the advance of more capable
phones the need to have a second device for PIM-services, including contact list and
calender, decreased. Palm has earlier tried to make the leap into the mobile market
with their Plam Treo devices, but failed. Now after several years of financial and
technological trouble they are back, with what many believe is their last chance at
survival. During the summer of 2009 Palm introduced Palm Pre and its smaller
sibling Palm Pixe on the US market. Both devices are based around Palms whole
new operating system WebOS [58]. Critics were impressed with the device and
operating system but sales have been scarce. With only 1.1 percent of the global
smartphone market in Q3 2009 palm is still very much a small player [8].

Chapter 3

iPhone OS

3.1 iPhone OS Architecture

The Core OS layer is the lowest layer of the iPhone operating system. It consists
of a stripped down version of the Mac OS X core optimized for mobile devices
[36]. The iPhone OS is a Unix system with standard I/O, POSIX threads and BSD
sockets. It also contains services for mobile device Power Management, security and
Bonjour, which is a system for zero-configuration discovery of devices and services
on IP networks [38].

iPhone OS Layers

Native Applications

Cocoa Touch Layer
- Foundation Framework

- UIKit Framework

Media Layer

Core Service Layer

Core OS Layer

Figure 3.1. Schematic picture of the iPhone OS Architecture.

CHAPTER 3. IPHONE OS

On top of the Core OS layer is the Core Services layer, which provides the fundamen-
tal system services that all applications use. One of them is the Core Foundation,
which includes a C-based interface for collections made up of lists and dictionar-
ies as well as strings and mutable strings. The Core Service layer also contains
frameworks including CoreData which is a framework for a model-view-controller
based view on data and Core Location design to exposed location data from sources
including GPS, triangulation and WiFi positioning. It also contains the low-level
interface towards SQLite and XML parsing [36].

The Media Layer sits in between the lower layers that users never see and the
upper layer were the graphical components and applications resides. Most of the
functionality in the media layer and above uses the Core Graphics framework for
drawing. The Core Graphics framework is some times called Quartz and is the same
vector-based drawing API as on Mac OS X. On top of this resides Core Animation
that provides a high-level interface for configuring animations and effects, which are
then rendered in hardware. The media layer also provides video playback to the
application developers. The framework supports the playback of movie files with
the .mov, .mp4, .m4v, and .3gp-recordings. Audio can be played and outputted
through the Core Audio framework and the OpenGL ES and OpenAL frameworks
is regularly used in game development [36].

The layer that 3rd party developers use the most is the Cocoa Touch layer, which can
be defined as two sub-layers. The lower sub-level consists of the non-user interface
pieces of Cocoa Touch. This is the Foundation Framework, which is a subset of
Foundation in Cocoa on Mac OS X, and contains object wrappers of the strings
and collections from the Core Services layers as well as some other system services
including accessing the file system and networking APIs [27].

The upper portion of Cocoa Touch is the UIKit Framework, which contains the
entire Application infrastructure and all the graphical components. The upper part
of Cocoa Touch also includes Event handling, Graphics and windowing and Text
and web management. The UIKit Framework also enables access for the developer
to some of the hardware interfaces including the camera, accelerometer and other
sensors on the iPhone [36].

3.2 iPhone SDK

The first iPhone that was released did not for the beginning have a SDK for 3rd
party development, and the only available applications were the ones developed
and pre-installed by Apple. This irritated some users who wished to develop and
install homemade applications on the device. In the summer of 2007 something
that started out as a way to install custom ringtones [93] evolved with the help of a

12

3.2. IPHONE SDK

iPhone hackers named Jason Merchant in to a way to develop and install 3rd party
application applications onto the device [97]. This movement continued to become
the iPhone jailbreaking community, which released an unofficial SDK for iPhone
and iPod Touch development [100].

The first official SDK announced by Apple was the iPhone SDK 1.2. The 1.2 version
was announced on the 6th of March 2008 and was a developer preview sent out to
some of Apple’s partners. The applications developed with the iPhone SDK 1.2 were
at the time mainly for demonstration purposes since there was no way to distribute
them at the time [5].

An update to the first official iPhone SDK was released as iPhone SDK 2.0 to 3rd
party developers as a part of the iPhone Developer program. The release of 2.0
also coincides with the release of the Apple AppStore for distribution. The release
was preceded by a series of beta releases so that developers would have applications
ready for release at the launch of the iPhone OS 2.0 for users, which included the
AppStore [14].

In the spring of 2009, in preparation for what was going to be the release of the
iPhone 3GS, Apple released the first previews of the iPhone 3.0 SDK, which is now
considered the baseline of iPhone development. The 3.0 release of the operating
system included many new features such as the long awaited copy-and-paste, land-
scape keyboard in the Mail and Messages applications as well as the possibility
to send and receive MMS-messages [13]. Some of these features, for instance the
copy-and-paste fuction, reflected similar underlying changes to the SDK. The SDK
did not support any form of multitasking for 3rd party applications at the time,
but iPhone SDK 3.0 was released with push notifications which provides a way to
alert users of new information, even when an application is not currently running.
The new SDK also included support for embedding maps directly in applications.
Another big new feature in the 3.0 release was the support for in-application pur-
chases. This enabled application developers to charge for extra content inside the
application. The iPhone SDK 3.0 also added support for peer-to-peer multiplayer
gaming, access for 3rd party developers to the iPod song library as well as OpenGL
ES 2.0 [46].

Apple continued its 3.0 series by releasing the iPhone SDK 3.1 in the early fall of
2009. The 3.1 release mainly focused on bug fixes both for users and developers,
but some small changes were made. The biggest change was in the CoreAudio-
framework that from the 3.0 release onwards allows Bluetooth devices as both input
and output. There were also changes to the Camera API and an added failover
support for the HTTP Live Streaming [37].

On January 27th 2010 Apple announced and released the first version of the iPhone
SDK 3.2. This version is, despite its name, an iPad only release. It adds support
for a range of technologies including Popovers, Split Views, Custom Input Views,

13

CHAPTER 3. IPHONE OS

External Display Support and Gesture Recognizers that are needed to create iPad
applications. iPhone SDK 3.2 features a new framework for text display and text
input in the UIKit framework. It also features custom font support and file sharing
[47]. Some of these new features will be made available for iPhone developers
through the iPhone SDK 4.0 release.

3.3 Important Developer Concepts

On the iPhone platform one screen of content is managed by a UIViewController,
which usually consists of a root view and one or more sub-views that represent the
actual content. If an application only has one screen then the UIViewController is
controlled by the application, but in other cases the UIViewController usually have
a parent view controller such as a UINavigationController or a UI'TabBarController.
UlIViewControllers can either be built programmatically or designed and linked to
an Interface Builder file [45].

There are several variations of the UIViewController with UlTableViewController
being the most common and important. Using the UlTableViewController results
in a fullscreen list that the developer can fill with content [43]. The list is one of the
absolutely crucial design elements on the iPhone, and most application has some
part that consist of the users digging down a through hierarchy through the use of
lists [14].

UlView is the super-class of graphical components and provides a structure for
drawing and handling events. UlView is primarily used in an abstract way but
can also be instantiated directly and used as a container to contain other views
[44]. The most commonly used subclasses of UIView include components such as
UlLabel, UlTableViewCell, UIButton and UllmageView. Some of these classes are
designed to be used directly, for instance the UlLabel or UIButton, whilst others
can either be used directly or sub-classed, such as in the case of UlTableViewCell
which represent one cell in an UlTableView [42].

¢ D ¢ D ¢ _

Figure 3.2. Hierarchy of a on iPhone application.

To control the navigation between UIViewControllers there is two classes, UINaviga-

14

3.3. IMPORTANT DEVELOPER CONCEPTS

tionController and UITabBarController. The UINavigationController automatically
adds a navigation bar to the top of the interface that includes information about
the current navigation controller such as the title and a back button, which takes
the user to the previous view controller. UINavigationController works as a history
stack of view controller and a developer can control it by either pushing a new view
controller onto it or popping the current, to the user visible, view controller [40].

Status bar — o = 230 M |

Cuperting] T 23U

Window

Tab bar

[Custom view

Figure 3.3. Schematic image of the different layers of a typical iPhone appli-
cation.

The other way of controlling navigation between UIViewControllers is with the
UlTabBarController that adds a bar at the bottom of the screen where the developer
can add different tabs. Each of these tabs then represent one view controller. When
switching between tabs, the state of the view controller in each tab is preserved
[41]. Tt is also possible to combine the two navigation controllers. The easiest way
is to add a UlTabBarController and since the UINavigationController in it self is
an UlViewController add it as a tab. This gives the effect of having a hierarchal
navigation in one or more tabs [14].

15

CHAPTER 3. IPHONE OS

3.4 Development Tools

All iPhone development is done in XCode, which is Apple’s Integrated Development
Environment. It was originally built for making Mac OS X applications primarily in
Objective-C, but can also be used with programming languages such as AppleScript,
Java, Python, Ruby and C/C++. Apple has in the past allowed developers to write
games and other applications in tools other than XCode, and other languages such
as C#, but now all iPhone development must be made in C, C++ or Objective-C
[101]. The XCode IDE only runs on Mac OS X and is together with the iPhone
Simulator the main reason that iPhone development is only possible on Intel Mac
systems running Mac OS X 10.5 or later [39].

XCode has been around for a long time but XCode 3.1 was the first version that
enabled iPhone development [49], and it was release together with the first developer
preview of the SDK. XCode has all the features of a modern IDE such as project
management, syntax highlighting, code completion, debugging and version control
[14]. Also, if used for iPhone development, the XCode IDE is able to remotely
debug the application as well as manage packaging of the developed applications
for distribution [48].

There has been one more release of XCode since the release of the first XCode
version capable of iPhone development. The new version XCode 3.2 was released
together with the iPhone SDK version 3.1 and runs on Mac OS X 10.6 codename
Snow Leopard [50]. The new version of XCode includes many improvements to the
user interface especially when it comes to displaying build errors, both inline and
in the build window, as well as to source code navigation. XCode 3.2 also features
new functionality such as static analysis of the code and new available compilers
including the LLVM version of GCC [50].

Static analysis is a powerful feature that analyses written code to find errors in
four different categories; Logic, Memory management, Dead Stores and API usage.
Logic errors include use of uninitialized variables and dereferencing of null pointers.
The Memory management errors detected includes flaws such as leaking of allocated
memory and dead stores errors are raised when a variable is never used. The new
static analysis feature of XCode also finds problems involving breaches of the policies
imposed by the frameworks and libraries used by the developed application [51].

There are also a number of tools, for instance the Interface Builder, that integrates
with XCode to make it easier to build iPhone applications. The Interface Builder is
an easy to use tool to build the graphical parts of an iPhone application in a visual
way with drag and drop [48]. The integration with XCode also makes it possible to
define Outlets and Actions, which connects events from the components defined in
the Interface Builder directly to the code of the application [14].

16

3.4. DEVELOPMENT TOOLS

Instruments is a performance analysis tool for Mac and iPhone applications that
ships together with XCode. Instruments gather information about disk, memory,
and CPU usage in real time, either on a Mac or remotely from a connected iPhone.
This makes it possible to find bottlenecks and memory leaks in an application.
Another feature in Instruments is that instead of just being able to analyze one
aspect such as memory or CPU at the time, it is possible to show the different
Instrument tools at the same time in the same view, something that gives developers
the ability to see correlations between for instance a spike in CPU usage and a lot
of rapid allocations and deallocations of memory [25].

|- Instruments Pane ’- Track Pane |— Extended Detail Pane

B Instruments

_ 0g:pe2:35 @
4 Run1ofl -

[Extended Detail

Stack|Depth v General
. ' i walltimestamp/1000: 1E140060
prabefunc: fstat
-dum“i PRRTIN BTTH PR =

Safari

=====3.

- Net Bytes Out Per SFcond “i';'- an -
> Metwork Activi - [System_.nfo.plist
v.g (Net Bytes In Per Second Thread: Dwd 1de698

Net Packets Out Per Second M| % 0
Net Packets In Per Second fstan
WbSystem. B.dylib
CFURLC reate DataAndPropertiesfromf..,
CoreFaundatian
_CPBundieCopyinfaDictionaryinDirecto. .
Corefoundation
e — —— A | = = = === ===] » || creundieCenntaDictionary
— e LA Suneian Ll s _crnm-:.:m
(Binfadhies 1668 [C open 29 {dev/autots_nawait ! Corefoundation
1668 [C open 30 . tz.framework /Versions/A/Frameworks/ImageKiti || -INSBundle _cfBundle]
= 1670 [C fstat 30 ..xz.frameworkVersions/A/Frameworks/ImageKit. Foundation
1671 [C chose 30 .rz.framework /Wersions /A /Frarmeworks/ImageKit. (3| | ~INSBundle _initinfoDictionary]
1672 [C chose 29 jdev/autofs_nowait Foundarion
Show Obj-C Only 1673 [€ open 29 (dev/autofs_nowait ~[NSgundle infoDictionary]
Flatten Recursion 1674 [C open 30 ...amework,Versions/A Frameworks/QuartzFilters.f Foundation
b Call Tree Constraints 1675 [C fstat 30 ...amework,/Versions/A/Frameworks/Cuartzfilters.f || +[NSBundie allFramewarks]
1676 O C close 30 ...amework Versions/A/Frameworks/QuartzFilters.f Founciation
1677 [C ciose 29 fdevjautofs_nowait ~[NSScriptSuiteRegistry _loadSuitesFor...
|__1678 | @ |clopen | 29|/devjautofsnowait K Founidatson
2 - - - ~INSScriptSulteRegistry ik :
o . T~ T —
G- = @ B = ON | File Activity (8- Insirument Detail Il p

Detail Pane

Figure 3.4. Example of Instruments running against Safari.

The iPhone Simulator is another tool that makes it easier for developers to test
their applications. Since the simulator runs on the same machine as the editor and
debugger, the debugging experience get much smoother [48]. The iPhone Simulator
is a great time saver, but some times code that works on the simulator does not
work on real iPhones. There are differences between the simulator and the actual
device related to the fact that the simulator simulates the iPhone API on top of the
Mac OS X API instead of emulating the whole device. These differences are mainly
around the security model, some small API differences in base classes and that the
file system is case sensitive on the iPhone, while it can be either case sensitive or
case in-senstive on Mac OS X [64].

CHAPTER 3. IPHONE OS

3.5 Documentation and Developer Resources

3rd party development for the iPhone has been possible since 2008, and this has
allowed Apple and the developer community to build up good documentation and
developer resources to aid development of iPhone applications.

Apple supplies many different developer resources to help developers get up to speed
with iPhone development. One of these is the Getting Started Videos available
through iTunes University. Videos are divided in three sections based on the level
of the videos; Essential Videos, Advanced Videos and Foundation Videos. Essential
Videos is a good start and include videos that introduces a programmer not familiar
with iPhone development to the new experience it is to develop on a mobile a device
in general and an iPhone in particular. The Advance Videos takes the guides to the
next level and delivers a more in-depth view on still quite broad subjects. Lastly
the Foundation Videos goes in-depth on specific subject such as multi-touch, game
development for the iPhone or how to master the Interface Builder [27].

As a more conventional means of documentation Apple also provides a big selection
of Getting Started Documents and Guides. The Getting Started Documents covers
larger areas of the iPhone development such as Network and Internet, Graphics and
Animations, and Data Management. These documents then links to other guides or
parts of the reference library were the necessary knowledge for that subject can be
found. The guides are more detailed and covers subjects including View Controller
programming, Core Data Model, Data Migration and Low-level File Management
[33].

Apple also provides Coding How-To’s and Sample Code to help development. The
Coding How-To’s are set up more as a FAQ, where short regular questions such as
“How do I format dates and numbers?” or “How do I write to an SQLite database?”
gets answered with a section of code and/or a link to the iPhone Reference manual
or one of the many Guides of Getting Started Documents provided [32].

The Sample code section provides whole projects including code and other resources
for some sample applications. These applications often cover one or two topics such
as in the case of MapCallouts or TableSearch, or it covers the process of using one of
the frameworks, for instance the UlCatalog example that shows more or less every
view component available to the developer in action [35].

To solve more detailed problems of topics not covered in the other documentation
sections there is the iPhone Reference Library. The iPhone Reference Library is very
similar to a normal reference library and covers every class and protocol (Protocols
are the Objective-C equivalent of Java or C++ Interfaces Java or C++ Interfaces).
The iPhone Reference Library gives a good overview of the functionality of every
class and protocol as well as all the methods associated with it. It describes the

18

3.6. DISTRIBUTION

functionality of every method as well as its method signature [35].

For those cases when a developer needs extra help, or if it is unclear which solution
is the best, there are the Apple Developer Forums. The Apple Developers Forum is
only available to paying members of the iPhone Developers Program. The forum is
divided in different sections where developers can discuss problems and ideas with
each other, but also get in contact with Apple to get their view on an issue [34].

Some of the official Apple documentation including the Getting Started Documents
and the iPhone Reference Library is available freely to the public. Apple has also
released a very small subset of all the Coding How-To’s and Coding Samples, but
to get access to all the official documentation and developer resources such as the
Apple Developer Forums, one needs to be a member of the Apple iPhone Developer
Program [14].

3.6 Distribution

Only members of the iPhone Developer Program are allowed to distribute their
applications through the Apple AppStore. There are two variations of the iPhone
Developer Program. The cost of the normal iPhone Developer Program is a yearly
fee, which currently is $99 and at this point is translated to SEK 795. The normal
version of the developer program enables distribution of free and paid applications
through the AppStore and can be bought either as a company or an individual, but
the price and the content of the program is the same [29]. The other variant of
the developer program is the iPhone Developer Enterprise Program, which is more
expensive at $299 a year and does not enable distribution in the AppStore. The
enterprise program is made for large corporations that want in-house distribution
of iPhone software. To be eligible for the enterprise program, a company must
have more than 500 employees and be registered with the US government through
the DUNS program [28]. Common for the two variations of the iPhone developer
program is that they grant access to the iPhone Dev Center Resources, the iPhone
SDK, pre-releases of the iPhone OS and development tools and the Apple developer
forums [30]. There is also a variation of the iPhone Developer Program for Univer-
sities that gives access to the iPhone SDK, all the tools and the Apple developer
forums, but it does not give permission to do any kind of distribution more than
for basic device testing [31].

The main channel for distribution on the iPhone is the AppStore. The AppStore
was first released with the version 2.0 of the iPhone OS and now features more
than 185 000 applications in 20 categories that have been downloaded in total more
than 4 billion times [24]. In the AppStore there are the concept of both free and
paid applications. Paid applications can be priced at 85 different price tiers going

19

CHAPTER 3. IPHONE OS

from $0.99 to $999 [26]. As of the 6th of April 2010 73% of all iPhone applications
were paid applications, with an average price of $3.55. Games are the most popular
category on the iPhone with about 56% of all the applications. It also features a
lower average price, in the vicinity of the $1.99 price tier [7].

With the release of iPhone OS 3.0 Apple introduced one more way for developers to
monetize on applications in the AppStore through in-application purchases, which
made it possible for developers to charge the user for extra material in the applica-
tion after installation. Some examples of this is the “SVD Reseguide”-application
that is free but charges the user for every travel guide he or she downloads [63].
There is also VinVin.se that is free to use but charges a subscription fee for access
to the wine reviews [99].

Before a 3rd party developed application can be released through the Apple App-
Store it has to go through the approval process. This process has been accused
of being slow, anti-competitive and arbitrary. Although the process is faster now
than it was in the beginning, it still takes approximately 4-5 working days to get
an application approved, given that it does not break any of the rules in the iPhone
Developers Agreement [14]. Apple has also been accused of being anti-competitive
when it rejects applications that they feel duplicate functionality provided by them.
One of the most public examples of this is Apple’s rejection of the iPhone version of
Google Voice [57], that they felt duplicated functionality already in the iPhone OS.
Some of Apple’s decisions have been seen as highly arbitrary, such as in the recent
case of Apple banning Pulitzer Prize winning cartoonist Mark Fiore’s application
because his satire “ridicules public figures”, which they felt was a violation of the
iPhone Developer Program License Agreement [59]. This decision has since then
been withdrawn due to the bad PR it has been generating for Apple, and they have
now asked Mark Fiore to re-submit his application [95].

20

Chapter 4

Android

4.1 The Android Platform

Android is more than the name of the operating system running on Android phones.
The Android platform consists of several well-defined layers spanning from the Linux
kernel to the built in applications that are shipped with every device. The Android
platform is to this date available on ARM and x86 platforms, but could in theory
be ported to any hardware platform supported by Linux [91].

The Android operating system is built on top of the Linux Kernel. The kernel,
starting at version 2.6.27 for Android 1.0, is heavliy modified and not available in
the normal Linux kernel, the changes are instead distributed by the Open Handset
Alliance. The modified Linux kernel provides a software abstraction over the hard-
ware and provides drivers for smartphone hardware such as the screen, camera and
3g-modem as well as power management and low-level security. 3rd party develop-
ers never directly touch this part of the Android platform, only manufacturers do
[91].

Android also consists of a range of Libraries used by different components in the
platform. These include well-known libraries such as libc, SQLite as a database,
FreeType for font rendering, WebKit for html rendering as well as libraries for media
playback and 2D/3D drawing. These libraries are abstracted away by the SDK or
used directly by 3rd party developers through the NDK [91].

The Android Runtime is made up of two parts, the Software Developer Kit, and
the Virtual machine that executes applications written with the SDK. The SDK
is exposed to the 3rd party developer as a group of Java frameworks and classes.
The virtual machine is called Dalvik and is similar to a Java Virtual Machine with
the difference that it does not run Java byte code directly, but instead the Dalvik

21

CHAPTER 4. ANDROID

bytecode that the Java bytecode is converted to during compilation time. The
Dalvik Executable format (.dex) is optimized for memory footprint made to run on
the Dalvik VM, which is register-based and runs each application in a new instance
of the VM [91].

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Window Content

Activity Manager Manager Providers

Telephony Resource Lecation Meotification

elent Ltbot s Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQLite Core Libraries
Framework

e
OpenGL | ES FreeType WWebKit Gl (M

Machine

SGL SSL

LINUX KERNEL

Display - Drin Flash Memory Binder (IPC)
Driver Camera Driver Driver Driver

Keypad Driver WiFi Driver Lif‘ rLll:j:r}r Harf:;i:ent

Figure 4.1. Schematic picture of the Android platform.

In Android the Application Framework is the name for the higher-level APIs and
services that a 3rd party developer can use to build an application. 3rd party
developers have access to the same frameworks as the core applications. The base
in the Application Framework is an Activity Manager that controls the lifecycle of
the applications and provides a common navigation backstack. The Application
Framework provides a rich set of views including lists, text boxes, buttons and
menus that can be used to build applications. It also provides a set of Content
Providers that enable sharing of information between applications. Applications
can for instance, if it has the right permissions, access the information about the
users contacts. The Application also include a Resource Manager that provides
access to non-code resources such as localized strings, graphics and layout files.

On top of the Android Platform there is a set of Applications provided by the
Android Project. These applications usually include Home Screen, Contacts, Phone,
Messaging and Browser. Because of how the Android platform is built, these can be
replaced by either the hardware manufacturer or a 3rd party developed application

22

4.2. SOFTWARE DEVELOPMENT KIT

distributed through for example the Android Market.

4.2 Software Development Kit

Most Android applications, both pre-installed and 3rd party, are written in Java.
A normal Java compiler first compiles the code into Java byte code, which is then
transformed into Dalvik byte code, .dex files, that runs in the Dalvik VM on any
Android device. There are differences between normal Java and Dalvik byte code,
but this is normally not an issue for a 3rd party developer. It is possible to run
Java optimization frameworks such as Proguard, but some times this generates Java
bytecode that can not be converted to dex-bytecode. These problems are usually
solvable by removing a few of the optimizations that does not play well with Dalvik
[14].

The Android SDK also has a different set of APIs from the normal Java environment.
Google has chosen to not include J2ME, an older version of Java for mobile phones,
and to only include a subset of the normal Java APIs in the Android SDK. The
important parts of normal Java APIs are included, including java.nio, java.lang and
java.util, but virtually all classes related to normal Java GUI code including AWT
or SWING are removed. These are instead replaced with Android specific GUI
and system classes. The SDK also include Khronos OpenGL ES framework for
3D rendering, the Apache Harmony HTTP components [6] and W3C XML parsing
components [87].

Since the first stable release of the Android SDK back in 2008 there have been
6 subsequent releases from 1.1 to 2.1, which has led to platform fragmentation
becoming a problem. The different internal market shares can be seen in figure 4.2,
which show that the SDK version 1.0 that was replaced with 1.1 and which in turn
quickly was replaced by 1.5 are not used anymore.

Android 2.1

Android 2.0. 1?
Android 2.0~

Android 1.1

Android 1.6——

Android 1.5

Figure 4.2. Percentage of active devices running a given version of the Android
platform. Data collected during two weeks ending on June 1, 2010

23

CHAPTER 4. ANDROID

Today Android 1.5 SDK is the baseline when it comes to Android development.
With 27.6% of the total number of Android devices it is too large of a market to
ignore. Apart from all the changes to the user experience and to the pre-installed
applications, 1.5 also meant large changes for developers. It was a big leap forward
for Android as a development platform, with big changes to basically all Android
specific APIs [77]. The changes included some new elements in the Ul framework,
added the ability to create homescreen widget with the AppWidgets framework,
improvements to the Media framework and the ability to write new and replace the
existing Input Method Engines [66].

The Android 1.6 SDK was in many ways a minor update when it came to the user
interface. Apart from the new Android Market and Camcorder UI, most changes
were to the API and the development environment. Android SDK version 1.6 was
the first version of the SDK that enables applications to run and look good on
different resolutions and screen densities. Developers can since 1.6 specify what
types of screens their application is supported on. 1.6 also included an extension
to the search API making it possible for developers to include search results from
their application in the global search. For instance if a developer develops a news
application, the articles can be searched at the same time as the web. Something
else that was new in the 1.6 release was the new gesture framework that enables
developers to create, store, load and map gestures to actions. This was released
together with a tool, Gesture Builder, which helps developer create the gestures.
The 1.6 release also contains support for CDMA in the telephone stack as well as a
new version of the Linux kernel, 2.6.29 [67].

Phones carrying the Android 2.0 SDK started shipping in November 2009 and had
many new features to the user experience. Among these new features were Quick
Contact that provides instant access to a contact’s information and different meth-
ods of communication. Android 2.0 also featured a better camera application that
provides effects, digital zoom and flash support. A better virtual keyboard and an
improved browser UI were also included in 2.0 [69]. For developers Android 2.0 SDK
provides a Bluetooth API that enables developers to turn Bluetooth on and off, dis-
cover and pair to devices, and use different Bluetooth services including OBEX or
A2DP. This version of the SDK also enables developers to write sync adapters and
to write/use modules in the centralized account manager API. This for instance lets
users provide their twitter login credentials once for all twitter enabled applications
[68].

The Android 2.1 SDK have been shipping starting with the Google Nexus One from
the 5th of January 2010 [55]. Android 2.1 SDK is a minor platform release with some
small changes in the telephony stack, Webkit- and Ul-framework. Another feature
of the Android 2.1 SDK was Live Wallpapers, which enables developers to create
wallpapers that changes or responds to events such as touch events, orientation or
what time of day it is [70].

24

4.3. NATIVE DEVELOPMENT KIT

4.3 Native Development Kit

Apart from the Software Development Kit, SDK, which enables developers to write
applications using the Java programming language the Android platform also pro-
vide a Native Development Kit starting at Android 1.5 SDK. The Native Develop-
ment Kit enables developers to write parts of their applications in languages, such
as C and C++ that complies into native byte code. It is still not possible to de-
velop whole applications using the NDK, but in certain situations, including games,
signal processing or physics simulation application developers can take advantage
of the increased performance that comes with running native code. This release of
the NDK supports CPU architectures using the ARMv5TE machine instruction set
and higher. The NDK consists of a set of compilers, a way to embed the compiled
code in Android applications as well as headers for included libraries that will be
supported in all future versions of the android platform. Among these libraries are
libe, libm, libz, JNI headers and libraries for OpenGL ES support [84].

The Android NDK, Revision 1 was released together with the Android 1.5 SDK
in June 2009. It includes compiler support (GCC) for ARMv5TE instructions,
including Thumb-1 instructions as well as system headers for stable native APIs,
documentation, and sample applications [84].

In September 2009 the Android NDK, Revision 2 was released. Compatible with
the Android 1.6 SDK, the second revision of the Android NDK featured support
for the OpenGL ES 1.1 API and some more documentation on how to build parts
of an application as native code [84].

In March 2010 the third revision, Android NDK, Revision 3, was released to the
public. This release is compatible with any device running Android 2.0 SDK or later.
Android NDK, Revision 3 includes a new set of compilers, GCC 4.4.0, as well as
other changes to the NDK tool chain. It also includes OpenGL ES 2.0 support that
had been lacking from both the NDK and the SDK so far. The biggest advantage
of OpenGL ES 2.0 is its support for Vertex and Fragments shaders. OpenGL ES
2.0 is the same version that is used in the iPhone OS, and running the same version
will ease the process of porting games between the two platforms [84].

4.4 Important development concepts

Android includes some new development concepts to tackle the problem of writing
applications for devices with limited resources. It also includes some interesting
techniques to make it possible to have a higher layer of integration between appli-
cations than other mobile platforms.

25

CHAPTER 4. ANDROID

The most important development concept on Android are Activities, which are the
graphical presentation layer for an Android application, and in the typical case there
is one Activity for every screen [9]. Usually the window that the Activity draws to
fills the screen, but it might be smaller and float on top of other windows [78]. To
show its content and to interact with the user an Activity uses a hierarchy of Views
and Layouts. The base Activity can have one root View or Layout but there are
also specialized Activities such as ListActivity or MapActivity.

onCreate()
User navigates |
back to the k.
_actvity onStart() - onRestart()

Y

- orresumed)

" The activity |
comes to the
foreground |
[Another activity comes |
l_ in front of the activity J
v " The activity |
[Grher applications | comas to the
___need memory onPause() foreground |

(The activity is no longer visible)

onStop()

Figure 4.3. The Android Activity lifecycle.

One aspect that differentiates an Android Activity from the normal concept of a
Window is its lifecycle, see 4.3. The Activity lifecycle is designed around require-

26

4.4. IMPORTANT DEVELOPMENT CONCEPTS

ments and limitations of the mobile devices it is supposed to run on. The lack of
possibility to swap Activities out of memory creates the need for an Activity to
be able to recreate itself after being removed from memory. This is solved with
Bundles to which Activities can store their necessary data when they get destroyed
and read it back when they are recreated [65].

The second basic concept in Android programming is Intents. An Intent is a spec-
ification of what action a developer wants to perform. A simple example of this is
a request such as “I want to start Activity A” but it can also be a more general
request, for instance “I want to open this PDF file” or “I want to send a SMS”.
To listen to this more general intentions, application developers can set up Intent
Filters that are designed to show the rest of the system what capabilities a certain
Activity have [85].

Intents is not limited to making request but can also broadcast information to
the rest of the system. Omne example of this is the music-player that broadcasts
every time a new song is being played. Some of these broadcasts are standardized
or de facto standardized to help integration between applications. This enables a
developer to for example build a home screen widget that downloads and shows the
lyrics of the current song without actually knowing anything about the application
playing the song [14]. To listen for these kinds of Intents a developer can set up
Broadcast receivers whose only purpose is to listen to and react to these kinds of
broadcasts [85].

The Android platform is designed from the ground up to be multitasking. One big
part of this is to be able to run several applications at once, but equally important is
to be able to run backgrounds Services. Services do not have a visual user interface
and are designed to run in the background for an indefinite period of time. Services
can perform tasks such as play music or download data in the background. A Service
can when the task it is set to do is finished choose to communicate this to the user
either by a notification or by launching an Activity [85].

All Android applications run sandboxed in separate virtual machines, and one con-
sequence of this security model is that applications can not share memory or files
directly. Instead they use Content providers to let other applications access their
data. The Content provider can indirectly give access to data from files, databases
or memory. There is also a set of Content providers provided by system applications
[79].

A developer must provide an AndroidManifest.xml to tie these different components
together and to define the capabilities of an application. The Android manifest
includes information about all the Activities, Services, Intent Filters, Broadcast
Receivers and Content providers that an application provides. The manifest file
also provides all the meta-information about the application such as name, icon,
supported languages, supported screen-sizes, required hardware and minimum SDK

27

CHAPTER 4. ANDROID

version. Additionally the AndroidManifest.xml file is where the developer defines
all the permissions the application needs to function properly. Permissions be given
to allow starting the SMS application, accessing the Internet, to get the current
position from the GPS or start a phone call. Instead of asking every time one of
these permissions is needed they are instead presented to the user at install time
[76].

4.5 Development tools

Android development is, as other development in the Java programming language,
often done in a development environment such as Eclipse. It is possible to do
development in other IDE’s including Netbeans [56], but the official development
environment is Eclipse. Eclipse is an open source development platform originally
built by IBM in 2001 but is now maintained by the non-profit foundation The
Eclipse Foundation [10].

Google’s Android Development Tools, ADT, is a set of Eclipse plugins made to ease
Android development. ADT enables developers to create Android projects with all
the necessary files and build configurations, as well as simplifying the process of
building, testing and signing an application before release. In the day-to-day work
the ADT plugin enables control of an attached device or emulator. These con-
trols includes setting breakpoints, changing the capabilities of the device, logging,
emulating positions or incoming calls etc [82].

When developing for Android a developer can either test applications on an attached
device or an emulator. In comparison with iPhone development, Android makes it
very easy to test an application on different devices. Binaries can be distributed as-
is to any device for testing. Developers can also set a device in debug mode which
enables access to the debug console output of the device and to set breakpoints.
Development can be done on any consumer or development device as long as it is set
to debug mode, under Setting -> Applications -> Development -> USB debugging,
and the Android USB driver is installed [83].

The Android project also provides an emulator, which is very different from the
iPhone simulator in that it is a real hardware emulator. The emulator is based
on the QEMU project and emulates an ARMv5 device with a 16-bit color screen
[73]. Onme of the big advantages of having a hardware emulator is that it gives
developers the ability to run different builds of the operating system. It is for
instance possible to run the real system images from device manufacturers such as
HTC. This is very handy since a developer can see how an application performs on
different customizations of Android [4].

28

4.5. DEVELOPMENT TOOLS

() Android Emulator (5554) —————— = x

1 2 3 45 6 7 8 9 0
QWEURTYUTIOSFP
ASDFGH | KL &
£27Z X CV B NWM X
W@ — e

Contacts

MENU

Figure 4.4. Android running on the emulator.

The emulator runs an Android Virtual Device, AVD, which is a profile that defines
the hardware and software capabilities of an emulated device. Software wise a
developer can specify any downloaded SDK version or any other device image that
he or she might want to test on. A developer can specify if the virtual device
should have the Google libraries such as maps installed or not, as well as specifying
the device RAM size, hardware keyboard support, camera support, GPS support,
screen resolution and screen density. The AVDs are all managed through the ADT
plugin in Eclipse [75].

The Android development environment includes command line tools such as adb
that enables detection and control of all attached devices and emulators. It also
enables installation of 3rd party application onto a device or emulator as well as
opening a shell on the device [75]. The development environment also includes
a tool called TraceView that makes it possible to measure the performance of an
application. A developer can get detailed information on how much memory and

29

CHAPTER 4. ANDROID

CPU the application uses as well as which methods that most time is spent executing
or most objects are allocated in [89].

4.6 Documentation and Developer Resources

The main documentation and resource hub for Android is the developer section of
the Android homepage. The natural starting point when developing for Android is
the Developer Guide, which goes through the all the major concepts of Android,
from the basics of what it is to publishing of applications and best practices. It
also covers different framework topics including the fundamentals of application
lifecycles, user interfaces, location and maps, data storage and security [81].

As with the Java programming language Android provides a good reference manual
over the APIs. The reference manual is also available at the Android developer site
and has in-depth coverage of all the Android specific classes, but also covers the
classes pulled in from W3C and the Apache project as well as the classes from Java
Standard Edition [87].

The Android community also has a series of developer resources such as tutorials,
sample code, technical articles and FAQs for developers to use. The number of
tutorials are a bit limited, but the technical articles provide a good stepping stone
when venturing into a new area of Android [88]. The sample code section also has
a growing list of examples that can be used to study certain techniques [86].

The Android community also provides a range of different forums for developers
that might not find an answer to their questions or wish to discuss a subject [80].
Beginning and entry-level questions are directed to Stack Overflow, which is a “Col-
laboratively edited question and answer site for programmers” [80]. On the site
there is a special sponsored tag for Android that consolidates all questions related
to Android [62].

For immediate and expert-level questions as well as question regarding certain top-
ics, the Android community provides a range of mailing lists. There is one mailing
list for development questions, one for general discussions around Android, one for
NDK based development and two regarding Android security concerns [80]. To keep
the traffic down to a manageable level it is asked that anyone who has a question
tries to find the answer elsewhere before posting it on one of the mailing lists [71].
There is also an Android Market Help Forum for help with Android Market related
questions such as publishing and payouts [74].

On the Android developers website there is a number of educational videos available
that range from official videos about each release, which shows off the new stuff,
to highly technical videos about the platform. Google has also published videos

30

4.7. DISTRIBUTION

from conferences such as Google I/O as well as developer tips and interviews with
developers [90].

Google also publish an Android developers blog where they post about the highlights
of new releases, write-ups of new APIs and other news worthy items [72].

4.7 Distribution

The main distribution channel on the Android platform is the by Google managed
Android Market, which is distributed with near all Android-running devices. A user
needs to have a Google account to be able to use the Android Market, and to be
allowed to publish applications in the Android market a developer needs an Android
Market Developer account. This account is available to individuals and companies
for a one-time fee of $25. This gives them the ability to upload applications to the
Android Market [16]. An Android Market publisher can choose to distribute their
applications for free or a price, and in the case of paid applications 70% of the price
goes to the developer while Google keeps the other 30% [19].

Android Market is available in 46 countries [17] but only 13 of them support paid
applications, [17] and only developers from 9 countries are allowed to publish paid
applications [18]. Paid applications are mainly available in key markets such as
the United States, United Kingdom, Germany and early Android adopting markets
including Austria and Japan [17]. However, it is still missing from the majority of
the European markets, for instance Scandinavia, the Baltic States and large parts
of eastern and southern Europe. Google have earlier said that paid applications
should have been rolled out to more markets in October 2009 but that promise did
not materialize and now there is no new public roadmap for when the remaining
countries will get paid applications [23].

On Android there is also the possibility to distribute applications outside of the
Android Market. Developers can publish applications on their homepage or send
the application directly to users [15]. The possibility to install applications outside
of the Android Market has spawned a range of different 3rd party markets. The
biggest of these alternative markets is SlideME, which offers some advantages over
the normal Android Market such as enabling paid applications on all markets and
giving the developer 100% of the income from an application sales [96].

31

Chapter 5

Results and Comparisions

5.1 Result matrix

Android iPhone
Development Environment and
Programming Languages
- Language Java, C/C++ Objective-

C/C/C++

- Development Environment Eclipse X-Code
- Emulator Good Good
- Interface desiger OK Good
- Performance Tool Bad Good
Development Techniques
- Multitasking Yes Future
- Integration between applications | Yes Limited
Distribution and Monetization
- Free applications Worldwide Worldwide
- Paid applications 13 Markets Worldwide
Platform Fragmentation
- SDK (Active Versions) 3 1
- Screen sizes Different One
- CPU-speed Different Different
- Keyboard Software or hard- | Only software

ware

Figure 5.1. The results in this table is thourder discussed in the comming
sections.

33

CHAPTER 5. RESULTS AND COMPARISIONS

5.2 Development Environment and Programming
Languages

I have chosen to start by comparing iPhone development in XCode and Android
development in Eclipse. XCode is in many ways a good IDE, and is well integrated
into the Mac environment. Eclipse on the other hand, is a de facto industry standard
that many developers already are proficient with. It also has more in common with
other well known IDEs such as Visual Studio. The biggest advantages of the Android
development environment are the easy project management and the possibility to
use existing plugins for Eclipse to connect to a range of different revision control
systems including git and svn. Other strong advantages are refactoring and error
reporting.

A comparison between XCode and Eclipse is also in many ways a comparison be-
tween Objective-C and Java. Objective-C is in the same way as XCode an pretty
obscure product specific to the mac world. Java on the other hand is one of the
most commonly used modern programming languages. The nature of Java with the
help of Eclipse gives a much more enjoyable development environment, and Java
is over all a more modern programming language, with features such as garbage
collection. Objective-C on the other hand uses more obscure constructs such as
having to write @"this is a string" instead of "this is a string". Objective-C is not a
language I would use outside of iPhone development.

XCode’s advantages are the external tools made to help building iPhone applica-
tions. The Interface Builder and performance analysis tools are much better and
feel more integrated than the Android counterpart ADT, which does not feel well
integrated and well polished. The corresponding tool to the Interface Builder on
the Android platform does not have a user friendly interface and lack functionality
to link actions in the interface to methods in the code, a feature that the Interface
Builder has. In my experience it was easier to write the interface XML for Android
on my own, rather than to use the supplied tool. The performace tool for iPhone
development, Instruments, is equaly superior to the corresponding Android tool.

It seems that the time Google did not spend on their interface and performance
tool they spent on the emulator. Much of the advantages of the Android Emilator
comes from that it is built on QEMU and actually emulates a real phone. The
iPhone Simulator on the other hand runs as a normal application and this can give
the developer strange error as those I listed in the Developer Environment section
of the iPhone chapter. The Android Emulator also has much functionality that is
missing from the iPhone Simulator, such as in the Android Emulator being able
to simulate a call or text message from a specified number, change the position
returned by the emulators fake gps as well as limiting the network bandwidth and
latency for the emulated phone to simulate real conditions.

34

5.3. DEVELOPMENT TECHNIQUES

5.3 Development Techniques

The development teqniques used in iPhone and Android is very different from nor-
mal applications on the desktop. It is easy to produce good looking applications on
the iPhone, which follows the iPhone guidelines. View controllers and navigation
controllers works well and creates a good workflow for developers, and easy to use
applications for users. Apple has designed most of their APIs around the Model
View Controller design pattern. One example is the location manager, which has
a corresponding protocol that is registered and then get callbacks every time the
location change. The use of MVC makes it easy to write good applications and
developers does not have to poll different APIs for the current information. One
of the downsides of iPhone development is that it is impossible in many ways for
applications to integrate with the system and to communicate with each other. It
is possible to open another application if it has registered an URI-handle, but this
is only one way communications, and it is impossible to send files of larger amounts
of data between applications.

Android has a more open approach to development, and all APIs are available to
all developers unlike on the iPhone platform where Apple has many hidden APIs
for their own and their partners applications. The main development concept in the
Activities, which I find very useful. The design of Activities is centered around the
requirements of mobile devices, and it is good that Activitiescan be stopped if the
device is running out of memory, and then restored when the user returns to that
Activity. The same situation on the iPhone would result in the application being
terminated. Another very useful and innovative development techniques is the use
of Intents, which is the easiest wayto integrate applications that I have seenon any
platform.

One example where intents and intent filters are very powerful, both for users and
developers is the Facebook application. On iPhone if one want to take a photo and
share it then he or she must first take the photo, then start the Facebook appli-
cation, find the photo and then share it. Another ways is to launch the Facebook
application and use their camera interface, but this will only post your photo to
Facebook, not save it in your camera roll. On Android, the same action would
involve openening the camera application, takeing the photo and the pressin the
share icon. This will show a lost of all applications that can share images, like mail
and Facebook. Clicking on Facebook will start the share photo Activity from the
Facebook application where the user can add a caption. This is not just a good fea-
ture for users, but is also very useful for developers since it creates a many-to-many
relation for sharing images. Any application can send an intent saying “I want to
share a photo.” and any application can define intent filter to answer “I can share
your photo.”. It is then up to the user to chose which service to use. This kind of
integration is a natural part of the Android platform because all applications are

35

CHAPTER 5. RESULTS AND COMPARISIONS

written with the same frameworks and that there are no hidden APIs.

One of the more debated differences between iPhone and Android is their stance
on multitasking. Both platforms have always been able to run several applications
at once, the question has been if running several 3rd party applications at once
should be allowed. Apple has traditionally said no to this with the excuse that it
drains battery-life, while it has always been an integral part of how Android works.
Apple has lately changed their mind, and the version 4.0 of the iPhone OS will allow
running several 3rd party applications at the same time. There are some technical
differences in how this is done, but the experience will be the same. Something
the iPhone lacks even in version 4.0 is the possibility to run 100% background
applications, such as Android Services.

5.4 Distribution and Monetization

To be able to develop for either iPhone or Android a developer needs to be a
part of the corresponding developer program. Apple’s developer program is much
more expensive, $99 per year compared to $ 25 for perpetuity with the Android
development program. The Android program is also much easier to apply for, it
is basically a normal website registration process followed by a credit card charge.
Applying to Apple’s iPhone development program takes several weeks and includes,
sending a copy the companies certificate of registration to Apple by fax.

Development for the Android platform can start even before purchasing the An-
droid development program. iPhone development can only be done locally and not
tested on devices before being an approved iPhone developer. When developing
for iPhone there is a certificate or key for everything. One to be able to compile
the code for devices, one key per device that should be able to run the code and a
distribution certificate for the AppStore. On the Android platform the only key is
the distribution key, that is a normal jarsigner key which is commonly used in Java
development. All the administrative tasks when doing iPhone development is very
cumbersome. Keys constantly needs to be generated or regenerated because their
early expiry dates.

On one hand Android has easier ad-hoc distribution, but fails in comparison on
Application Store distribution. Google still have not made it possible for users
outside the major markets to buy paid-applications. Google have earlier said that
this should have been done during the fall of 2009 but have since that announcement
not given any insight on when it will be possible. This makes it hard for developers
to monetize on applications, there are fewer countries that it is possible to sell
applications from. Apple on the other hand has from day one of the AppStore
provided paid applications for all users through their already established iTunes

36

5.5. PLATFORM FRAGMENTATION

payment channel. Apple also invented the in-application purchase model where
developers can sell content through their applications. This has givven birth to a
range of different payment models including subscriptions or one time charges for
extra content.

Another way of making money on an application is Advertising. There are several
3rd party solutions for embedding advertising. On Android these works pretty ok.
Since the multi tasking makes the content of the ad open in front of the running
application, and you can always go back. On the iPhone this has not been possi-
ble which have made users hesitant to click on ads. To solve this Apple has also
announced that in the 4.0 version of the platform, said to be released during the
summer of 2010, it will be possible to their own solution iAd. iAds open in front of
the running applications, but does not close it as 3rd party solutions does. These
ads will be sold by Apple and the profit will be shared at 60/40.

5.5 Platform Fragmentation

The Android Platform has had an extra ordinary development pace since it launch,
and is at its 6th major version. Three of this versions make up almost all of the
devices running Android, and this has created problems for developers who wants
to create software using the latest features, but have been held back because they
do not want to exclude many of the Android users. One of the main reasons for
this problem is that new releases have to go through the phone manufactures mod-
ifications and quality assurance testing before sent out to the users phones. This
has in the past often taken longer than users and developers have hoped for. The
underlaying reason for this is that manufacturers has not been able to keep up with
Google’s release schedule, which is much faster than whats normal in the industry.
Apple has been spare of this problem so far since they are the only hardware man-
ufacturer that produce smartphones running the iPhone OS, this makes it possible
for them to push updates as they get released.

Google is planning some changes to the coming releases of the Android platform,
which will try to solve this problem by transition many of the components and
pre-installed applications to the Android Market. This will probably start with
the release of version 2.2, codename Fro-yo, and the version after that, codename
Gingerbread. This has already been done with the Google Maps application, and
the result is that the users earlier versions of Android can update to the same version
as those running the latest version. Google has said that this process of moving
components to the Android Market will not be limited to Applications but will also
cover system components such as input methods.

Another move that will help with the platform fragmentation on Android is that

37

CHAPTER 5. RESULTS AND COMPARISIONS

Google is said to start slowing down the release pace. The APIs on Android have
now reached feature parity with the other smartphone platforms, and the developer
focus is now switching towards new features. I think that this slower release pace
together with many components moving to the Android Market will be an effective
approach to platform fragmentation. There will always be some platform fragmen-
tation on Android since the updates always have to be checked by the manufactures,
but in the future the number of active versions will reduce and the difference be-
tween them will not be as large as today.

Apple has, as mention earlier, been spared from the problem of device fragmentation
in the past. iPhone users have always gotten their updates to new versions directly
for free. iPod Touch users have been charged $ 99 for every major update, i.e. 1.0
-> 2.0 and 2.2 -> 3.0, but they have been a minority and most of the users have
paid this fee since they otherwise been very limited to which applications they could
download.

The oldest of the Apple iPhone has been around for a while now, and is hardware-
wise not necessarily design for the features that Apple wants to add to the operating
system. Apple has been under great pressure from users and developers to start
supporting multitasking. They have now recognized this criticism and added multi-
tasking in the new version of the iPhone OS, version 4.0, which is said to be released
during the summer of 2010. iPhone OS version 4.0 is the first version that will not
be available to all past and current devices. Apple has said that the first version of
the iPhone and iPod Touch have reached their end of life, and that they will not be
updated due to hardware constraints. Also the iPhone 3G and the second version
of the iPod Touch will be updated to iPhone OS 4.0, but will be subjects of some
limits because of their small amount of memory. These versions will not be able
to take advantage of the multitasking, so the only versions of the iPhone that will
fully be able to take advantage of the new version of the operating system is the
iPhone 3GS and the iPhone "4G" rumored to be released this summer.

This will create a whole new situation in the iPhone developments, which have
earlier been able to take for granted that all users are running the latest major
version of the operating system a few month after its release. This will no longer
be true when users of the old iPhone and iPod Touch are excluded from the new
versions. Another difficult situation will face the developers who want to take
advantage of the multitasking features of the new version since only the latest
versions of the iPhone and iPod Touch will be access this functionality. The iPad
is also problematic, since it runs another versions of the iPhone OS. Right now it
runs version 3.2 which is a iPad only release, and it will not be updated to 4.0 until
sometime during the fall of 2010. All of this together will from the summer of 2010
and onwards create fragmentation on the iPhone platform. It is to early to tell what
impact this will have, but I think that it will at least create disappointed users and
headaches for developers in a similar way as the platform fragmentation on Android

38

5.6. CONCLUSIONS AND FUTURE PREDICTIONS

has.

5.6 Conclusions and future predictions

It is my opinion that Android is a better development platform, much because
of its stronger focus on technology. I think that the technology choices such as
programming languages and the different techniques feels more natural for a mobile
device, that those done by Apple. Android has however some shortcomings when it
comes to platform fragmentation and distribution. I think it is hard to justify why
Google has not made it possible to buy and sell applications through the Android
Market in more than a few countries, and I think this limits the growth of Android.
Google seems to have the platform fragmentation problem under control, but they
still have not given any idea of when paid applications will be released to the rest
of the world.

iPhone is a more mature platform when it comes to distribution and monetization,
and these areas seems to in many areas come before technology on Apple’s priority
list. The technology that developer uses today to build iPhone applications works,
but it is older than that of Android, and I think that at some point developers
will start to protest against all the rules and limitations set by Apple. Apple has
been good at keeping away platform fragmentation, but the oldest devices running
iPhone OS is now starting to be too limited hardware-wise and have reached their
end of life, which will cause problems.

It is always hard to do predictions about the future, but I think that the big momen-
tum around Android as a development platform will continue, and that it some time
in the next two years will pass Apple and their iPhone in both market share and
number of 3rd party applications. iPhone will also continue to grow as a platform,
but at a slower rate, and together they will take a large part of the smartphone
market share. The whole new Windows Phone 7 and Symbian Foundation will also
be two large actors in the future and it is my prediction that these four platforms
will be those that have the absolute majority of the smartphone market during the
coming years.

39

Bibliography

[1] Open Handset Alliance. Industry leaders announce open platform for mobile
devices. http://www.openhandsetalliance.com/press_110507.html.
(2010-04-03).

ic ingfie mol Sharma and Li Yuan. Apple coup: How steve jobs
2 Nick Wingfield Amol Sh dLiY Appl H job
played hardball in iphone birth. Wall Street Journal Online, February 2007.

[3] Gareth Beavis. A complete history of android: Everything you need to know
about google’s mobile operating system. (2010-04-03).

[4] Kumar Bibek. Android market on emulator.
http://tech-droid.blogspot.com /2009 /11 /android-market-on-emulator.html.
(2010-04-06).

[5]) Ryan Block. Live from apple’s iphone sdk press conference.
http://wuw.engadget.com/2008/03/06/
live-from-apples-iphone-press-conference/. (2010-04-11).

[6] Scott Delap. Google’s android sdk bypasses java me in favor of java lite and
apache harmony. (2010-04-05).

[7] Distmo. Special ipad report - apple app store - ipad and iphone. Distmo
Report, April 2010.

[8] Practical E-commerce. Chart of the week: Google’s android mobile os will
outpace the iphone, others.
http://www.practicalecommerce.com/articles/
1575-Chart-of-the-Week-Google-s—Android-Mobile-0S-Will-Outpace-the-iPhone-0Others.
(2010-02-15).

[9] Mihai Fonoage. Android - An Overview. February 2009.

[10] Eclipse Foundation. About the eclipse foundation.
http://www.eclipse.org/org/. (2010-04-06).

41

BIBLIOGRAPHY

Symbian Foundation. The history of symbian.
http://www.symbian.org/about-us/history-symbian. (2010-02-15).

Priya Ganapati. Google nexus one sales off to slow start. (2010-04-03).

Kent German. A very early review of iphone os 3.0.
http://reviews.cnet.com/8301-19512_7-10205643-233.html.
(2010-04-11).

Peter Grundstrom. Personal experience.

Android Market Help. Distributing apps outside android market.
http://market.android.com/support/bin/answer.py?answer=142471.
(2010-04-18).

Android Market Help. Registration. http://market.android.com/support/
bin/answer.py?answer=113468. (2010-04-18).

Android Market Help. Supported locations for distributing applications.
http://market.android.com/support/bin/answer.py?answer=138294.
(2010-04-03).

Android Market Help. Supported locations for merchants.
http://market.android.com/support/bin/answer.py?answer=150324.
(2010-04-18).

Android Market Help. Transaction fees.
http://market.android.com/support/bin/answer.py?answer=112622.
(2010-04-18).

Simon Hill. History of android: First applications, prototypes & other
events. (2010-04-03).

HTC. Htc hd mini overview.
http://www.htc.com/europe/product/hdmini/overview.html.
(2010-04-21).

HTC. Htc presentation at mwc 2010.
Erik Hornfeldt. 3 Sverige Facebook Fanpage. (2010-04-18).

Apple Inc. Apple presentation of iphone os 4.0.
http://www.apple.com/iphone/preview-iphone-os/. (2010-04-16).

Apple Inc. Developer tools technology overview - apple developer.
http://developer.apple.com/technologies/tools/. (2010-04-11).

Apple Inc. Information from itunes connect. iTunes Connect. (2010-04-16)
Restricted Access.

42

[27]

28]

[34]

[35]

Apple Inc. iphone application development fundamentals. (2010-04-12).

Apple Inc. iphone developer enterprise program - apple developer.
http://developer.apple.com/programs/iphone/enterprise/.
(2010-04-16).

Apple Inc. iphone developer program - apple developer.
http://developer.apple.com/programs/iphone/. (2010-04-16).

Apple Inc. iphone developer program benefits. http:
//developer.apple.com/programs/iphone/distribute.html\#compare.
(2010-04-16).

Apple Inc. iphone developer university program - apple developer.
http://developer.apple.com/programs/iphone/university/.
(2010-04-16).

Apple Inc. iphone os reference library - coding how-to’s.
http://developer.apple.com/iphone/library/navigation/index.html?
section=Resource+Types&topic=Coding%20How-Tos. (2010-04-12).

Apple Inc. iphone os reference library - getting started.
https://developer.apple.com/iphone/library/navigation/index.
html?section=Resource’20Types&topic=Getting’20Started.
(2010-04-12).

Apple Inc. iphone os reference library - reference.
http://developer.apple.com/iphone/library/navigation/index.html?
section=Resource},20Types&topic=Reference. (2010-04-12).

Apple Inc. iphone os reference library - sample code.
http://developer.apple.com/iphone/library/navigation/index.html?
section=Resource},20Types&topic=Sample’%20Code. (2010-04-12).

Apple Inc. iphone os technology overview: iphone os technologies.
http://developer.apple.com/iphone/library/documentation/
Miscellaneous/Conceptual/iPhone0STechOverview/
iPhoneOSTechnologies/iPhone0STechnologies.html/. (2010-04-12).

Apple Inc. iphone sdk release notes for iphone os 3.1.
http://developer.apple.com/iphone/library/releasenotes/General/
RN-iPhoneSDK-3/index.html. (2010-04-11).

Apple Inc. Networking - bonjour.
http://developer.apple.com/networking/bonjour/index.html.
(2010-04-12).

43

[39]

[41]

[43]

[44]

[45]

[46]

[47]

BIBLIOGRAPHY

Apple Inc. Tools for iphone os development.
https://developer.apple.com/iphone/library/referencelibrary/
GettingStarted/URL_Tools_for_iPhone_0S_Development/index.html.
(2010-04-11).

Apple Inc. Uinavigationcontroller class reference.
http://developer.apple.com/iPhone/library/documentation/UIKit/
Reference/UINavigationController_Class/Reference/Reference.html.

(2010-04-14).

Apple Inc. Uitabbarcontroller class reference.
http://developer.apple.com/iPhone/library/documentation/UIKit/
Reference/UITabBarController_Class/Reference/Reference.html.

(2010-04-14).

Apple Inc. Uitableviewcell class reference.
http://developer.apple.com/iPhone/library/documentation/UIKit/
Reference/UITableViewCell_Class/Reference/Reference.html.
(2010-04-14).

Apple Inc. Uitableviewcontroller class reference.
http://developer.apple.com/iPhone/library/documentation/UIKit/
Reference/UITableViewController_Class/Reference/Reference.html.

(2010-04-13).

Apple Inc. Uiview class reference.
http://developer.apple.com/iPhone/library/documentation/UIKit/
Reference/UIView_Class/Reference/Reference.html. (2010-04-13).

Apple Inc. Uiviewcontroller class reference.
http://developer.apple.com/iPhone/library/documentation/UIKit/
Reference/UIViewController_Class/Reference/Reference.html.
(2010-04-13).

Apple Inc. What’s new in iphone os: iphone os 3.0.
http://developer.apple.com/iphone/library/releasenotes/General/
WhatsNewIniPhone0S/Articles/iPhone0Sv3.html. (2010-04-11).

Apple Inc. What’s new in iphone os: iphone os 3.2.
http://developer.apple.com/iphone/library/releasenotes/General/
WhatsNewIniPhone0S/Articles/iPhone0S3_2.html. (2010-04-11).

Apple Inc. Xcode - developer tools technology overview - apple developer.
http://developer.apple.com/technologies/tools/xcode.html.
(2010-04-11).

44

[52]

Apple Inc. Xcode 3.1 feature overview. http://developer.apple.com/
iphone/library/documentation/DeveloperTools/Conceptual/
WhatsNewXcode/10-Articles/xcode_3_1.html. (2010-04-11).

Apple Inc. Xcode 3.2 feature overview. http://developer.apple.com/
iphone/library/documentation/DeveloperTools/Conceptual/
WhatsNewXcode/10-Articles/xcode_3_2.html. (2010-04-11).

Apple Inc. Xcode project management guide: Analyzing code.
http://developer.apple.com/iphone/library/documentation/
DeveloperTools/Conceptual/XcodeProjectManagement/220-Analyzing_
Code/static_analysis.html. (2010-04-11).

Google Inc. Availability in your country and language : Place an order -
nexus one help.

http://www.google.com/support/android /bin/answer.py?answer=166508.
(2010-04-03).

Google Inc. Nexus one phone - feature overview & technical specifications.
http://www.google.com/phone/static/en_ US-nexusone_tech specs.html.
(2010-04-03).

HTC Inc. T-mobile unveils the t-mobile gl - the first phone powered by
android. http://www.htc.com/www /press.aspx?id=66338&lang=1033.
(2010-04-03).

Rob Jackson. Nexus one now available... for verizon/vodafone too (soon)!
http://phandroid.com/2010/01/05/nexus-one-now-available-for-
verizonvodafone-too-soon/.

(2010-04-05).

Kenai. Android plugin for netbeans. http://kenai.com/projects/nbandroid/.
(2010-04-06).

Jason Kincaid. Apple is growing rotten to the core: Official google voice app
blocked from app store. (2010-04-16).

Stephen Lawson. Palm pre launch is high-stakes gamble. (2010-04-21).

Laura McGann. Mark fiore can win a pulitzer prize, but he can’t get his
iphone cartoon app past apple’s satire police. (2010-04-18).

Microsoft. Welcome to windows ce 5.0.
http://msdn.microsoft.com/en-us/library/ms905511.aspx.
(2010-04-21).

Research In Motion. Business solutions at blackberry.com.
http://na.blackberry.com/eng/solutions/. (2010-04-21).

45

BIBLIOGRAPHY

Roman Nurik. Hello, stack overflow!
http://android-developers.blogspot.com/2009/12/hello-stack-overflow.html.
(2010-04-05).

Karin O’Mahony and Ola Henriksson. Svd:s reseguider - nu i din iphone.
Svenska Dagbladet Online. (2010-04-19).

Stack Overflow. iphone device vs. iphone simulator.
http://stackoverflow.com/questions/380062/
iphone-device-vs-iphone-simulator. (2010-04-11).

The Android Project. Activity. http://developer.android.com/reference/
android/app/Activity.html. (2010-04-10).

The Android Project. Android 1.5 platform.
http://developer.android.com/sdk /android-1.5.html. (2010-04-05).

The Android Project. Android 1.6 platform.
http://developer.android.com/sdk/android-1.6.html. (2010-04-05).

The Android Project. Android 2.0 platform.
http://developer.android.com/sdk/android-2.0.html. (2010-04-05).

The Android Project. Android 2.0 platform highlights.
http://developer.android.com/sdk/android-2.0-highlights.html.
(2010-04-05).

The Android Project. Android 2.1 platform.
http://developer.android.com/sdk/android-2.1.html. (2010-04-05).

The Android Project. Android developers.
http://groups.google.com/group/android-developers. (2010-04-05).

The Android Project. Android developers blog.
http://android-developers.blogspot.com. (2010-04-05).

The Android Project. Android emulator.
http://developer.android.com/guide/developing/tools/emulator.html.
(2010-04-06).

The Android Project. Android market help.
http://www.google.com/support/forum/p/Android+Market. (2010-04-05).

The Android Project. Android virtual devices.
http://developer.android.com/guide/developing/tools/avd.html.
(2010-04-06).

The Android Project. The androidmanifest.xml file.
http://developer.android.com/guide/topics/manifest /manifest-intro.html.
(2010-04-10).

46

[77]

(78]

The Android Project. Api differences between 2 and 3.
http://developer.android.com/sdk/api_diff/3/changes.html. (2010-04-05).

The Android Project. Application fundamentals.
http://developer.android.com/guide/topics/fundamentals.html.
(2010-04-10).

The Android Project. Content providers.
http://developer.android.com/guide/topics/providers/content-
providers.html.

(2010-04-10).

The Android Project. Developer forums.
http://developer.android.com /resources/community-groups.html.
(2010-04-05).

The Android Project. The developer’s guide.
http://developer.android.com/guide/index.html. (2010-04-05).

The Android Project. Developing in eclipse, with adt.
http://developer.android.com/guide/developing/eclipse-adt.html.
(2010-04-06).

The Android Project. Developing on a device.
http://developer.android.com/guide/developing/device.html. (2010-04-03).

The Android Project. Download the android ndk.
http://developer.android.com/sdk/ndk/index.html. (2010-04-05).

The Android Project. Intents and intent filters.
http://developer.android.com/guide/topics/intents/intents-filters.html.
(2010-04-10).

The Android Project. List of sample apps.
http://developer.android.com /resources/samples/index.html. (2010-04-05).

The Android Project. Package index.
http://developer.android.com /reference/packages.html. (2010-04-05).

The Android Project. Technical articles.
http://developer.android.com/resources/articles/index.html. (2010-04-05).

The Android Project. Traceview: A graphical log viewer.
http://developer.android.com/guide/developing/tools/traceview.html.
(2010-04-06).

The Android Project. Videos.
http://developer.android.com/videos/index.html. (2010-04-05).

47

[98]

[99]
100]

[101]

BIBLIOGRAPHY

The Android Project. What is android?
http://developer.android.com/guide/basics/what-is-android.html.
(2010-04-03).

Emil Protalinski. Windows phone 7 series to have three chassis.
(2010-04-21).

Thomas Ricker. iphone hackers: "we have owned the filesystem".
http://www.engadget.com/2007/07/10/
iphone-hackers-we-have-owned-the-filesystem/. (2010-04-11).

Daniel Roth. Google’s open source android os will free the wireless web.
Wired Magazine: 16.07. (2010-04-03).

Ryan Singel. Bad pr forces apple to reconsider banning prize-winning
satirist. (2010-04-18).

SlideMe. Frequently asked questions. http://slideme.org/faq. (2010-04-18).

Joshua Topolsky. First third-party "game" app appears for iphone.
http://www.engadget.com/2007/08/06/
first-third-party-game-app-appears-for-iphone/. (2010-04-11).

Fred Vogelstein. The untold story: How the iphone blew up the wireless
industry. Wired Magazine: Issue 16.2, September 2008.

Carolina Werner. Alla viner i din iphone.

Ben Willson. The unofficial iphone sdk: Guide to writing native iphone
applications.
http://reviews.cnet.com/8301-19512_7-10115160-233.html.
(2010-04-11).

Chris Ziegler. Apple’s iphone lockdown: apps must be written in one of
three languages, adobe in the hurt locker. (2010-04-11).

48

www.kth.se

