
1

Axel Ruhe
NADA
September 7, 2006

2D1252, Computa-
tional Algebra A

Programming assignment 1
Study the relevant topics before preparing solutions to the assignments. I

give some hints to reading, D means Demmel book Applied Numerical Linear
Algebra, L means my lecture notes Topics in Numerical Linear Algebra.

You are encouraged to work in groups of two, and you may work at any
time. The course assistant, Mohammad Motamed, will answer questions
concerning these assignments at the lab sessions, Friday afternoons.

Hand in a report to me by Sept 21, at the lecture! The report may be hand
written, but would preferably include plots and matrices from Matlab . Do
not hand in your entire Matlab code, only a few lines where the interesting
computations are done. I will not like to see long Matlab programs or
diary files!

Assignment 1. Properties of floating point arithmetic (D 1.4-1.6)

There are several ways to compute the values of a polynomial numerically.
Three of these are:

Sum: p(x) =
∑n

k=0 ckx
k for c a vector of coefficients.

Product: p(x) =
∏n

i=1(x − ri) for ri a set of roots.
Eigenvalue problem: p(x) = det(A − xI) for A an n × n matrix.

The interesting thing is now that these representations behave differently
numerically in floating point arithmetic. The product can be computed with
a small relative forward error, while the two others only can be computed
with a bounded backward error in the coefficients or matrix elements. You
will feel the difference in the neighbourhood of a zero of the polynomial and
specially if the zero is multiple.

As an example consider the polynomial given by the product and sum

p56 = (x − 5)6 = x6 − 30x5 + 375x4 − 2500x3 + 9375x2 − 18750x + 15625

Do the following:

1. Compare the values of the polynomial computed these two ways. Plot
the values for an interval around the multiple root at x = 5, say
[4.992, 5.008]. Take 200 points distributed evenly or randomly over
the interval. Use the Matlab routines poly, to find the coefficients
ck when the roots ri are given, and polyval, to evaluate a polynomial
with given coefficients ck. Does the plot give a good clue to where the
polynomial has its zeros?



2

2. Compute the roots of the polynomial! You may get any values in a
rather large region in the complex plane around x = 5. The Matlab
routine roots will give you a set of complex values of ri. Plot them
as points in the complex plane. Use the command axis(’equal’);
to make sure that real and imaginary parts will be scaled in the same
way! You will get a six star of size like (‖c‖ε)(1/6) = (18750 ∗ 2.22 ∗
10−16)(1/6) = .0127. (A much more elaborate exercise on this is given
in D 1 Question 1.20 3 on page 30)

Remark: The routine roots uses the third representation. It finds a repres-
entation of the polynomial as an eigenvalue problem for a specially chosen
matrix A and computes its eigenvalues. In this case this representation is as
ill conditioned as the sum representation. There are several other matrices
that have the same eigenvalues as the polynomial roots. Many of these
are better conditioned. We will discuss eigenvalue computation later in the
course.

Assignment 2. Operations on vectors and matrices in Matlab , Gauss
elimination (L 1.1, D 2.3)

Write a Matlab routine for Gaussian elimination without pivoting. The
built in routine, called by the \ (backslash) operator or when invoking the
lu command, does row pivoting.

Try to formulate your routine in terms of operations on vectors and matrices.
At elimination step i, the computation of the multipliers, lj,i, can be done as
an operation on a column vector, taken from the ith column of the matrix
A. Moreover the innermost loop can be replaced by a rank one modification
of the lower southeast part of the matrix, subtracting the outer product of
the column vector from the ith column of L that was just computed, and
the row vector taken from the ith row of the matrix A.

Assignment 3. The need for pivoting (D2.4.1)

Try the routine you just written to compute a solution x of the simple 2× 2
system with

A =
[
ε 2
3 4

]
and b =

[
1
1

]

Choose a sequence of smaller and smaller ε like 10−k, k = 1 : 17. Compare
the computed solution x̃ to what you got with the built in routine, it is
assumed to be close to the exact solution x̂! Plot the growth factor and the
norm of the error in the solution e = x̃ − x̂ and residual r = A ∗ x̃ − b, as a
function of the pivot ε! You will get the best result using logarithmic scaling,
command loglog in Matlab .

Assignment 4. Now take a matrix of random numbers. You may take a
reasonable large order n. Compare the factors obtained with or without
pivoting! For these matrices pivoting does not matter very much, it would
be a strike of luck (or bad luck), if a pivot gets dangerously small here.



3

Assignment 5. Pivoting, singular submatrices (L1.3)

The following matrix,

B =
1 2 3 4 2
6 7 8 9 10
11 12 13 14 15
17 17 18 20 20
21 22 20 21 20

is specially devised to give interesting results when doing Gaussian elim-
ination without pivoting. Try it yourself! You will get Inf, which means
“infinity” and occurs when a nonzero number is divided by zero, and NaN,
which means “not a number” and occurs when zero is divided by zero or two
infinities are subtracted.

These things occur because the leading 3 × 3 submatrix of B is singular,
giving a zero pivot at step k = 3. Run the standard routine with pivoting,
and no exceptional number will show up, the matrix is nonsingular.

Assignment 6. Modify the leading element b11 to 1 + ε for a small number
ε ≈ 10−7. Now the infinities will be large numbers. How large will they be
compared to ε? What happens with the “not a number”?


