
1

Axel Ruhe
NADA
September 27, 2006

2D1252, Computa-
tional Algebra A

Programming assignment 3
Scope:

1. To plot functions and data series.

2. To understand simple properties of the singular value decomposition
(SVD) and its use to determine numerical rank of a matrix.

3. Use of SVD in classification and data mining.

Read the chapter on SVD in the lecture notes.

1 Least squares curve fitting

Formulate the least squares problem you get when you are fitting a poly-
nomial to a series of measurement data. If you have a series of m points
ti, i = 1 : m and use polynomials of degree n− 1 you will get an m×n mat-
rix A. The measurements yi will make up a column vector with m elements.

Assignment 1. Study the singular value decomposition of the matrix A
when we have chosen equidistant t = (0 : 0.01 : 1) and n = 15:

1. The singular values σk decrease rather fast in size for larger k. Use
semilogy to plot them. If data are given to moderate accuracy, say 3
decimals, there is no great benefit to use any singular values σk smaller
than 10−3. How large numerical rank r should we choose then?

2. The columns of A are the first powers of t. Plot them as functions of t.
See that they start to look very similar for higher degrees, this means
that the matrix columns are nearly linearly dependent.

3. Plot the first columns of U , the matrix of (left) singular vectors. They
are orthogonal to each other. How does that show up? Look at the
number of sign changes!

4. As a comparison, do a QR factorization of A. Now each column qk of
the orthogonal factor Q is a polynomial of degree k− 1. Plot them and
compare to the columns of U!

Remark: The kth column qk of Q is a polynomial of degree k − 1. All
columns of uk of U are polynomials of the full degree m− 1 but they should
oscillate like the trigonometric functions, sin(kπt).

2 1 LEAST SQUARES CURVE FITTING

Assignment 2. Use your insights from the previous assignment to compute
polynomials to fit the following data series:

1. y(t) = exp(−t). This is an entire function, which can be approximated
by polynomials of any order, better the higher degree you choose.

2. y(t) = |t − .5|. This function has a discontinuous derivative at t = .5
and you always get a large error close to that point.

3. y=exp(t)+e*randn(m,1), where the random perturbation has its size
given by the parameter e. Choose a sequence of values of e = 10−16, 10−12, 10−8, . . .
until you do not longer recognize the exponential function.

In all these three cases, look at the transformed right hand side b = UT y.
Its elements bk should get smaller and smaller for larger k. Compare to the
singular values of the matrix A. When an element bk is significantly larger
in absolute value than the singular value σk, we get a large component in the
solution which does not decrease the residual to a significant amount. The
case with a random perturbation is of special interest. Here it is not useful
to include any singular values σk smaller than the perturbation e.

1. Plot the residual rk(t) = y(t) − pk(t) = y − A ∗ xk in some interesting
cases. Here xk is the solution one gets by using the first k elements in
b and a rank k approximation to the matrix A.

2. Plot ‖rk‖2 as a function of ‖xk‖2. There is a break even point when
increasing the rank k only gives a marginally smaller residual norm at
the cost of a very large solution norm.

This last plot is a simple example of an L-curve. See works by Per Christian
Hansen in Copenhagen if you want to know more!

3

2 Use SVD for pattern recognition

We borrow the following exercise from a NGSSC (National Graduate School
of Scientific Computation) course given by Lars Eldén. If you want to know
more, read his recent paper: Lars Eldén: Numerical linear Algebra in data
mining, Acta Numerica (2006), pp. 327-384. Algorithms of this kind are
used to recognize hand written digits in postal codes, zip codes in US Postal
service terminology. The data is from their test of prospective algorithms.

Construct an algorithm in Matlab for character recognition of hand-
written digits. Using a training set, compute an SVD of each matrix of
digits of one kind. Use the first few (5-20) singular vectors as basis and
classify unknown test digits according to how well they can be represented
in terms of the respective bases (use the residual vector in the least squares
problem as a measure). Try to tune the algorithm for accuracy of classific-
ation (varying the number of basis vectors). Check if all digits are equally
easy or difficult to classify. Report the number of incorrectly classified digits
in a table. Also look at some of those, and see that in many cases they are
very badly written.

If time permits, check the singular values of the different digits, and see
if it is motivated to use different numbers of basis vectors for different digits.

The test data can be fetched via the course homepage. Read the data
with the command load(’zipdata.mat’) The following files are then loaded:

1. dtrain and atrain: the first is a vector that holds the digits (the
number) and the second is an array of dimension 256×1707 that holds
the training images. The images are vectors of dimension 256, that
have been constructed from 16 × 16 images.

2. The test data are given in dtest and atest. Use your algorithm on
the columns of the matrix atest to see if you guess the coresponding
values in the vector dtest! There are 2007 digits in the test set.

3. There is a function ima2.m that takes an image vector as input and
displays it.

