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THE MATHEMATICAL GAZE' E 

1936: Post, Turing and 'a kind of miracle' 
in mathematical logic 

G. T. Q. HOARE 

Preamble 
In the 1930s several mathematicians, principally Alonzo Church (1903- 

1995), Stephen Kleene (1909-1994), Emil Post (1897-1954) and Alan 
Turing (1912-1954), began investigating the notion of effective calculability. 
(A function from natural numbers to natural numbers is effectively 
calculable if there is some finite rule or mechanism which will calculate the 
value of the function for any natural number.) Central to this activity was 
the notion of recursiveness. Loosely, recursion is a process of defining a 
function by specifying each of its values in terms of previously defined 
values. (The sequence of Fibonacci numbers, F(1), F(2), F(3), ..., for 
example, can be defined by setting F (1) = 1, F(2) = 1, and then for all 
natural numbers n > 2,F(n) = F(n - 1) + F(n - 2), so thatF(3) = 2, 
F(4) = 3, F(5) = 5, etc.). Within 10 years a new branch of mathematical 
logic, Recursive Function Theory (RFT), had been established (for a brief 
overview of RFT see [1]). 

Calculation by means of recursion has a long history. Richard 
Dedekind, however, appears to have been the first to use the concept of 
(primitive) recursion (he called it definition by induction) explicitly in his 
exposition of the theory of natural numbers (Was sind und was sollen die 
Zahlen? (1888)). But it was Thoralf Skolem in his 1923 paper [2] who, in 
demonstrating that many number-theoretic functions are primitive recursive, 
grasped clearly and decisively the full power of the recursive mode of 
thought in his formulation of a portion of elementary arithmetic. Again, 
Kurt Godel, in his epoch-making paper of 1931, On formally undecidable 
propositions of Principia Mathematica and related systems, gave a precise 
definition of a primitive recursive function. Then, in a lecture given in 
1934, Godel, modifying a suggestion of Jacques Herbrand, proposed a 
definition of general recursiveness; he was proposing an answer to the 
question of 'what one would mean by "every recursive function".' 
Meanwhile, during 1932-35, Church and his student Kleene, had given an 
exact definition of a class of computable number-theoretic functions which 
they called A-definable which seemed to embrace the notion of effective 
calculability. Indeed, almost simultaneously with G6del's 1934 lecture 
Church was to propose his famous thesis, that every effectively calculable 
function is A-definable. In 1935 Church chose to express his thesis in terms 
of Herbrand-Godel general recursiveness. It did not take the Princeton 
group, Church, Kleene and J. Barkley Rosser, long to realise that A-definable 
and Herbrand-Godel recursive are equivalent; between them Church and 
Kleene proved the equivalence. Godel, however, was unwilling to endorse 
the equivalence of effective calculability either with A-definability or 
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recursiveness. But now we are at the threshold of that remarkable year, 
1936, which Godel, in his 1946 [3], speaks of a 'kind of miracle' that the 
class of processes which can be accomplished by mechanical means can be 
given a precise mathematical characterisation. So what finally convinced 
Godel? 

Turing and Post died 50 years ago and this note commemorates their 
contributions not only to our understanding of algorithms but also to the 
enormous influence, out of all proportion to their published output, they 
have had on the 'high-tech' society in which we live. By 1936 Post was a 
seasoned logician although, as we shall see, he held back from publishing 
much of his research in the 1920s. Turing's involvement in our story was 
sudden and motivated initially, not by RFT but by the Hilbert challenge of 
the Entscheidungsproblem (decision problem), the problem of determining 
whether or not a given formula of the predicate calculus (PC) is valid. 

Emil L. Post 
Emil Post, born of Jewish parents in August6w, Poland, arrived in New 

York in 1904 where he lived for the rest of his life. There he attended a 
school for talented students which was on the same campus as City College 
which was to feature so much in his life, a life dogged by misfortune and 
illness. At the age of 12 he lost his left arm in a tragic accident which 
thwarted his ambition to be an astronomer. Throughout his adult life Post 
suffered from periods of crippling manic-depressive illness which tended to 
erupt when he was at his most creative. There was also, especially in the 
1920s, an almost total neglect of the field of logic in America so, a fortiori, 
there would have been precious little understanding of what Post was 
attempting at that time. This partly explains why so much of these early 
researches remained unpublished for some 20 years. Post also had to face 
the daunting prospect of having to earn his living teaching in public high 
schools which he did for the most part until 1935 when he was rescued by 
his alma mater, City College, where he was on the mathematical faculty 
until his death. Even so the teaching load of 16 contact hours per week was 
formidable; individual faculty offices and secretarial help were unavailable 
so Post retreated to his home to do his research. His young daughter Phyllis 
was expected to remain silent. In later life, Phyllis Goodman, as she was to 
become, described her father as a genius and her mother as a saint [4, p. xii]. 
She explained how her mother typed her father's manuscripts and 
correspondence, handled financial matters and generally buttressed him 
from any intrusion into his daily regime. 

Post took his B. S. degree at City College in 1917 having majored in 
mathematics. Although we think of him primarily as a logician his earliest 
interest was in analysis. As an undergraduate he worked out a 
generalisation of the differential operator DL when n is not an integer and the 
resultant paper featured an important result about inverting the Laplace 
transform. As a graduate student at Colombia University, where Post had 
enlisted in 1917, he also published a brief paper on the functional equation 
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of the Gamma function but his longest paper [4] established the equivalence 
of the theory of polyadic groups (groups with n > 2 arguments where 
n = 2 is the standard case) to the theory of finite cyclic extensions of 
ordinary groups. However, it was in his doctoral thesis, which was to prove 
so influential, that he proposed a framework for systems of logic as 
combinatorial mathematical calculi; the most powerful mathematical or 
logical system is essentially a set of rules determining how certain strings of 
symbols can be transformed into other strings of symbols. Such systems 
Post referred to as being obtained by 'generalisation by postulation' but later 
as being in canonical form A. The monumental Principia Mathematica 
(PM) of Russell and Whitehead was the backdrop to Post's programme. In 
his thesis Post extracted the sentential calculus (SC) part of PM, treated it as 
a combinatorial calculus, showed that its axioms were complete and 
consistent and, by means of the truth-table algorithm, his innovation, also 
solved the decision problem for SC. Post also extended his truth-table 
method for two truth values to an arbitrary finite number of truth values. 
Post's doctoral thesis marks the beginning of what soon became a major area 
of Mathematical Logic, namely Proof Theory. 

The main thrust of Post's thinking during the year 1920-21, as post- 
doctoral fellow at Princeton University, was to show that a very wide class 
of formal logical systems can all be expressed in a particular form which he 
called canonical form. He considered three such forms A, B, C, 
subsequently proved by him to be equivalent and, for example, showed that 
the PC part of PM could be put into form B and hence into canonical form 
C. Post believed that his techniques could be used to show that all provable 
formulas of PM could be regarded as the set of strings generated by some 
system in canonical form C. The basic idea was that of a canonical 
production which takes the form 

goPlglP... g,n - lPng, 
-- hoPi,hlPih2... Pi,hn. 

where the gi are fixed strings, which may be null, defined on a finite 
alphabet X, the Pi are variable strings and the subscripts il.... , in are to be 
found among 1, 2, ... , m, and need not be distinct. Modus ponens, for 
example, which can be expressed by the schema: 

A 
A =* B 

B 
could be written in Post's canonical form as 

glPgl 

glPg2Qgi 

produce 

glQgl 
where g1 represents the empty string, g2 represents the string consisting of 
the single symbol = and P, Q represent any strings regarded as well-formed 
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formulas. Readers may check that for Z = (a, b, c) and axioms a, b, c, aa, 
bb, cc all palindromes are generated by the productions P -> aPa; 
P -- bPb;P -> cPc. 

Still at Princeton, Post proved a beautiful theorem, the normal-form 
theorem, which showed how a system in canonical form C could be reduced 
to the astonishingly simple form involving one initial assertion (axiom) and 
each production taking the (normal) form gP -X Ph. An application of 
Cantor's diagonal method led Post to the conclusion that the decision 
problem for normal systems and hence of PM has a negative solution but, as 
he was to remark in [5], 'the correctness of this result is clearly entirely 
dependent on the trustworthiness of the analysis leading to the above 
generalisation', namely to Post's thesis, which can be stated as: any finitely 
given language is generated by rules of some canonical normal system. Post 
concluded in [5] that a complete symbolic logic is impossible. 

Again, in 1921, Post was led to a class of apparently simple but 
frustrating problems called tag. A tag system is a normal system in which 
the antecedent strings g have the same length I g I and the consequent string 
h depends only on the first symbol of the associated g. The 'simple' case: 
agP -> Paa; bgP -> Pbbab (g is any string from {a, b} and g I = 2) 
'proved intractable'. One variant of the problem is to devise an algorithm to 
determine whether the process terminates with the empty string. Post 
conjectured that tag would be a candidate for recursive unsolvability. He 
was right; tag was later proved unsolvable by Marvin Minsky in 1961. 

From the above considerations it is clear that Post had anticipated the 
salient results of the 1930s principally by Godel, Church and Turing. He 
apparently lectured on the incompleteness of PM at Colombia University in 
the 1920s but he was to concede that his work was 'fragmentary'. 
Significantly, Post did not publish his results. He was unhappy at Princeton 
and at the end of 1921 he collapsed with the first attack of manic depression 
which necessitated hospitalisation. His [5] was submitted to the American 
Journal of Mathematics in 1941 and was rejected by the editor Hermann 
Weyl who, in mitigation, wrote in a letter to Post that 'you may be 
comforted by the certainty that most of the leading logicians, at least in this 
country, know in a general way of your anticipation'. Subsequently a much 
shorter paper [6], containing only the normal form theorem, was accepted. 
His original submission which eventually appeared in the 1965 anthology 
[5] contained a philosophical appendix based on a diary Post had kept since 
1916. We can but imagine the anguish Post suffered on the appearance of 
Godel's 1931 incompleteness paper and the announcement by Church in 
1935 of an unsolvable problem in elementary number theory. 

Post's 1936 paper [7] which appeared in the first issue of the Journal of 
Symbolic Logic showed that his creativity had not been blunted by his 
disappointments. Independently of Turing but aware of Church's Thesis, 
Post gives an analysis of the computing process very similar to that given by 
Turing but there is a subtle difference. Whereas Turing concentrated on the 
mechanics of the machine, its internal configuration; Post focused on the 
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instructions or 'software' that would make the 'machine' work. We note 
that Post in [5] and [6] gave a characterisation of effectiveness in terms of 
his canonical and normal systems. 

In possibly his most influential paper [8], Post formulated a method of 
developing the concept of a recursively enumerable (r.e.) set independently 
of the theory of computable functions [see Appendix]. By extending the r.e. 
concept to include the empty set Post showed for the first time that recursive 
sets are r.e. sets with r.e. complements. He also showed that every infinite 
r.e. set contains an infinite recursive subset and that there exists an r.e. set 
that is not recursive. He also set out an elegant 'miniature' form of Godel's 
incompleteness theorem. However, what can be regarded as the most 
original contribution to this paper is his treatment of the ways in which one 
r.e. set could be considered reducible to another. An r.e. set X is said to be 
many-one reducible to an r.e. set Y if and only if there exists a recursive 
function f such that x E X < f (x) E Y. If the function is one-one then 
we have one-one reducibility. Post proved the existence of an r.e. set K 
which is complete with respect to many-one (one-one) reducibility in the 
sense that every r.e. set X is many-one (one-one) reducible to K. Hence K 
has highest degree of unsolvability with respect to many-one (one-one) 
reducibility. (We meet a complete set in the context of the halting problem 
in the appendix.) Post formulated several mathematical reducibility 
concepts, the most general of which he takes from Turing 1939 [9]. 

Post now asked whether there exist r.e. sets of different degrees. If we 
denote by 0 the unique lowest degree of the recursive sets and let 0' denote 
the degree of K, then 0 < O'. Post's Problem, as it became known, is to 
locate an r.e. degree a such that 0 < a < 0'. His simple sets whose 
complements S do not contain infinite r.e. sets did not provide the answer. 
Progress was made, however, by Post himself in the abstract [10] in which 
degrees of unsolvability less than 0' were obtained but not for r.e. sets. 
Friedberg and Mucnik independently and almost simultaneously solved the 
problem in 1956 [11, 12]. 

In [13] and [14] Post established the recursive unsolvability of two 
problems in combinatorial mathematics, the Post Correspondence Problem 
and the word problem for the semi-groups posed by Axel Thue in 1914. A 
Post correspondence system consists of a finite alphabet A and a finite set of 
ordered pairs of strings (gi, hi), 1 < i < m, where a word u on A is called a 
solution of the system if for some sequence 1 < i , i, .... in < m (the i, 
need not be distinct) we have, 

u = gilgi,.. gi, = hlhi2-... hin. 

The Post correspondence problem is to devise an algorithm for determining 
whether a given Correspondence system has a solution. The paper [13], in 
which Post shows that no such algorithm exists, begins with the 
unsolvability of the decision problem for Post normal systems. 

In the word problem for semi-groups consider strings, possibly null, 
defined on a finite alphabet and suppose (ul, vi), (u2, v2), ..., (u,,, v,) 
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represents a finite list of pairs of strings, or words, each pair of words ui, vi 
deemed to be equivalent (think of the list as a dictionary). We call two 
arbitrary words (u, v) equivalent if v can be obtained from u by a finite 
number of transformations each of which consists of a replacement in a 
given word w of a segment identical with ui by the word vi or vice-versa, 
1 < i < n. The word problem for semi-groups is to find an algorithm to 
show for an arbitrary pair (u, v) whether or not u is equivalent to v. Post's 
strategy was to reduce the problem to that of the halting problem for Turing 
machines known to be unsolvable (see appendix). Thus the solution to this 
word problem is negative. Post had qualms about relying solely on Turing's 
work, however, and as well as fashioning an independent proof, he 
presented a thorough critique of Turing's 1936-37 paper [17] which 
contained a number of errors. Thus Post was the first to prove the 
unsolvability of a 'classical' mathematical problem which was not 
specifically related to logic. We note, in passing, that Andrej A. Markov, 
independently, arrived at the same result by exploiting Post normal systems! 

We learn from the distinguished logician Martin Davis, one of Post's 
students, that Post's classes 'were tautly organized tense affairs' [4, p. xxv]. 
Even so Post was popular, inspiring and very effective with both strong and 
weak students. He was a 'stickler for care and precision in mathematical 
discourse'. 

When Post was 50 his health improved but in 1954 he broke down again 
and was institutionalised. Still no drug therapy was available; electro- 
convulsive shock treatment was administered and a short while after 
receiving it, still in hospital, he died suddenly of a coronary. 

Alan Mathison Turing 
Alan Turing was born in a nursing home in Paddington, London, on 23 

June 1912 and was raised mainly by relatives until he was of school age. 
After a prep. school start to his education he was accepted at Sherborne, 'a 
moderately distinguished public school' [15], in 1926. From boyhood 
Turing, as well as being especially keen about chemistry, was interested also 
in mathematics, theoretical physics and astronomy. Something of a 
maverick, he was keen to conduct his own experiments and to work things 
out from first principles. He was imaginative, sceptical and inquisitive with 
a sense of humour. From having a sunny disposition as a young boy he 
became somewhat withdrawn and awkward as an adolescent. His 
interactions with authority were often, given his character, difficult and 
bumpy affairs. In the sixth form at Sherborne he was supervised in 
mathematics by a young teacher, Donald Eperson, well known to 
Mathematical Association members, who was recently down from Oxford. 
Eperson had the insight and shrewdness to leave such a mathematical talent 
to his own devices and to give assistance only when necessary. In spite of 
his unorthodox methods, lack of polish, proneness to trivial errors and the 
near illegibility of his handwriting Turing won a scholarship to King's 

7 



THE MATHEMATICAL GAZE'TI'E 

College, Cambridge in 1930. In 1934 he graduated with distinction in the 
mathematical Tripos examination. Less than a year later he was elected to a 
Fellowship of the college, his dissertation having been a proof of the Central 
Limit Theorem which amounted to a rediscovery. 

In 1935 Turing attended a course on the Foundations of Mathematics 
given by the topologist Max H. A. Newman. Although he was interested in 
mathematical logic he had been working in other areas of mathematics, 
particularly group theory. The lectures considered such concepts as the 
consistency, completeness and decidability of various formal axiomatic 
systems and the Godel incompleteness results but it was the 
Entscheidungsproblem which captured his attention and dominated his 
thinking from the Summer of 1935 until the early Spring of 1936. David 
Hilbert called this problem the fundamental theorem of mathematical logic 
for he surmised that an algorithmic solution to it would entail that any 
mathematical problem would be decided by an algorithm. Thus, if there is a 
mathematical problem that is algorithmically unsolvable then the 
unsolvability of the Entscheidungsproblem would follow. Soon Turing saw 
that the problem had a negative solution but what was required now was a 
precise mathematical analysis of the informal concept of calculability by a 
strictly mechanical process; it was necessary to survey the class of all 
possible algorithms. This is what Turing achieved and the tools he 
fashioned for the purpose have become fundamental for the development of 
computer science. In mid-April 1936 he submitted a draft of his paper On 
Computable Numbers, with an Application to the Entscheidungsproblem to 
Newman who, at first, was sceptical of Turing's analysis; he was astonished 
that so simple a concept as that of a Turing machine (Church's label) could 
deliver the answer to such an outstanding problem. Eventually, though, 
Newman was persuaded and encouraged Turing to publish his paper. It is a 
remarkable tour de force especially as he was so new to this field. 
Typically, Turing's success seems to have depended on a mind uncluttered 
by the work of others and on his view of symbolic logic as a branch of 
applied mathematics which induced a physical, even engineering, edge to 
his thinking. There were technical errors in his paper, as Post discovered, 
but these could be rectified. 

We shall not describe a Turing machine here (but see [1, p. 291]). 
Suffice it to say that Turing, beginning with a human agent carrying out a 
pen and paper calculation, proceeds by a process involving simplifications 
and the elimination of irrelevant details to arrive at the familiar finite state 
device on a one-way infinite tape. Turing's paper includes the unsolvability 
of the halting problem and of the Entscheidungsproblem as well as a 
construction of a universal Turing machine capable of mimicking the 
behaviour of any Turing machine. We see here the genesis of the concept of 
the stored-program computer which later von Neumann was to exploit (see 
Appendix). Turing also proved that there is no algorithm to determine 
whether a Turing machine starting with a blank tape will ever print some 
particular symbol. It was this problem, closely allied to the halting problem. 
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which Turing expressed in the language of PC and thus obtained the 
unsolvability of the Entscheidungsproblem. 

However, just as Turing was presenting the draft of his paper to 
Newman, Church submitted a paper [16] with a simple proof of the 
unsolvability of the decision problem for PC. The daunting news of 
Church's achievement reached Cambridge in May 1936 and seemed to 
preempt Turing's analysis of calculability and his Entscheidungsproblem 
result. However, as Turing's characterisation of calculability was 
sufficiently different from that of Church, his paper was submitted after all 
and appeared later with an added appendix which sketched a proof of the 
equivalence of his notion of calculability with that of A-definability. Indeed, 
this paper represents something of a coup as Gtdel was finally convinced 
that the Turing machine model of computation therein was of fundamental 
importance in establishing the validity of Church's thesis. Turing had, in a 
sense, outflanked those at Princeton who had been working for some years 
on the problem of effectiveness. 

Turing, supported by his fellowship funds from King's, decided to spend 
the year 1936-37 in Princeton and arrived there at the end of September 
1936. Eventually this was extended to 1938 so that he could do Ph.D. work 
under the supervision of Church who had, incidentally, refereed Turing's 
paper [17] which appeared in print in January 1937. For the dissertation 
Turing was to investigate Church's idea of ordinal logics in the context of 
Godel's incompleteness theorems. The upshot was a profound, difficult and 
important paper [9] in which Turing investigates the possibility of escaping 
Godel's incompleteness theorem by substituting a single given logic by a 
system of logics (ordinal logics) derived from each other by transfinite 
iterations. More importantly, almost incidentally, Turing introduces the 
concept of an oracle which enabled a classification of unsolvable problems 
and led to a rich theory of relativised calculability and, in turn, to moder 
relativised complexity theory. An Oracle machine (o-machine) is a Turing 
machine having access to an oracle which can, as if by magic, perform a 
non-computable operation in one step; such a machine is not purely 
mechanical. Newman likened an oracle to a mathematician having an idea 
as opposed to a mathematical method. To fix ideas we now define a set A as 
recursive in B, denoted by A < B, if and only if there is an o-machine which 
decides membership of A using B as an oracle. We say a set A is reducible 
to a set B if A < B. The collection of sets X such that A < X and X < A is 
called the degree (Turing degree or degree of unsolvability) of A. Clearly a 
degree is an equivalence class and degrees are partially ordered in the sense 
that dl > d2 if and only if sets in the equivalence class dl are more non- 
recursive than sets in the equivalence class d2. Turing did nothing further 
with his idea of o-machines but Post in [8], as we indicated earlier, took it as 
his basic notion for a theory of degrees of unsolvability and duly credited 
Turing with the result that for any problem about integers there is another of 
higher degree of unsolvability. Yet, again, Turing had hit the target; his idea 
opened up the entire subject of generalised recursion theory with present day 
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ramifications. His thesis, submitted in May 1938, was judged 'excellent' by 
the committee who conducted the viva and in June 1938 Turing received his 
PhD. 

Turing returned to Cambridge in July 1938 even though von Neumann 
had offered him a position as his assistant at the Institute for Advanced 
Study with a healthy stipend. In 1939 he participated in Wittgenstein's 
classes devoted to the foundations of mathematics but, alas, no record of the 
discussions survives. By the time the Second World War began Turing had 
already been recruited to an ongoing project to break the codes used in 
German military communications. Already, at Princeton, possibly in 
connection with his growing concern with cryptanalysis, he designed and 
constructed various parts of an electro-mechanical binary multiplier. Turing 
also had ideas for the design of an 'analogue' device for investigating the 
distribution of the zeros of the Riemann zeta-function, a project never 
completed due to the intervention of the Second World War. 

On the fourth of September, the day after Britain entered the war, 
Turing reported to Bletchley Park where he was to become the chief 
scientific figure in the British cryptological effort with particular 
responsibility for deciphering communications between German submarines 
and their home bases. It was work to which Turing was eminently suited 
given his theoretical and practical talents. We shall not pursue the Bletchley 
story here; it has been comprehensively recorded in, for example, [15, 18, 
19]. Suffice it to say that a crucial role was to be played by Turing whose 
invention of an electro-mechanical machine called a Bombe was to 
revolutionise the way in which the German Enigma code could be broken. 
Gordon Welchman, another brilliant Cambridge mathematician, realised 
how Turing's prototype could be adapted to enhance greatly its performance. 
Yet another improvement by Turing combined with Welchman's suggestion 
were incorporated into an updated version of the original Bombe which was 
called 'the spider'. It worked! However, even these modified Bombes 
would be inadequate if the Germans introduced greater complexity into their 
procedures. This led in 1943 to the construction of the world's first 
electronic automatic calculator device called Colossus which used vacuum 
tube circuits to carry out complex Boolean calculations rapidly. Thus when 
the war ended Turing had a sound basic knowledge of electronics and 
understood that computing machines could be constructed using electronic 
circuits. 

Throughout the war Turing continued to think of constructing a 
universal computer, a machine that, if realized, could play chess, solve 
jigsaw puzzles and even exhibit intelligent behaviour. He was interested in 
something more than a device capable of very rapid calculation. In short, he 
envisaged building a 'brain'. Soon, the National Physical Laboratory (NPL) 
enlisted Turing to design its computer, known as the Automatic Computing 
Engine (ACE). By the end of 1945 he produced his remarkable ACE report 
which presented a design for a machine that called for comparatively little 
hardware but which, therefore, put a greater burden on those writing 
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programs. Unfortunately liaison between Turing and the engineers left 
much to be desired. After the initial designing his main task was to write 
programs for ACE but these inevitably relied on the engineering details so 
that when engineering difficulties arose, such as the problem of storage, 
changes of plans ensued. It needs to be remembered, too, that the work at 
NPL was overshadowed by more powerfully supported American projects. 
Increasingly frustrated Turing quit NPL in 1948 to join, at Newman's 
invitation, the computer laboratory at Manchester University. 

In 1946, as we know now, Turing was ahead of the field. His 
understanding of such issues as microprogramming and the use of a stack 
for a hierarchy of subroutine calls bore testimony to this. It was, however, 
von Neumann who was to be given the credit for the basic architecture of 
the modem computer. In his 1945 preliminary report on EDVAC 
(Electronic Discrete Variable Computer) von Neumann clearly envisaged an 
'all-purpose' computer although the emphasis was on numerical calculation. 
Turing's influence on the report is clearly discernible so it is rather curious 
that his name does not appear in it especially as von Neumann must have 
been aware of Turing's concept of a universal machine by 1939 at the latest. 
It was much later that Turing received due recognition for his contributions. 
One can imagine how bitter he felt about the ineptitude of the NPL 
management that had been so prodigal with his talent and had thwarted his 
aspirations as revealed in his ACE report. 

At Manchester, virtually sidelined from the development in automatic 
computation, Turing did produce a short paper in 1949 entitled 'Checking a 
large routine' which anticipates ideas of program proof not developed until 
the 1960s. With time on his hands he became an accomplished marathon 
runner and launched himself into a variety of projects. He proved the 
unsolvability of the word problem for semi-groups with cancellation. Then 
his thinking took a philosophical turn with the controversial Computing 
machinery and intelligence (1950), published in the leading philosophical 
journal Mind, which addressed the question 'Can machines think?' and 
featured the famous Turing Test. Roughly, if responses from a computer 
when interrogated (via a mechanical link) were indistinguishable from that 
of a human then the computer could be said to be thinking; deemed to have 
passed the test. The Artificial Intelligence debate continues among 
mathematicians and philosophers to this day. In 1951 Turing was elected 
FRS for his 1936 work. 

As a schoolboy, Turing had read and been inspired by D'Arcy 
Thompson's book On Growth and Form [20]. In 1952 he published in the 
Philosophical Transactions of the Royal Society a paper entitled The 
Chemical Basis of Morphogenesis [21], which turned out to be a founding 
paper of moder non-linear dynamical theory. Turing's term 
'Morphogenesis' is now more understandably referred to as 'pattern 
formation'. Turing himself did further important work in the paper A 
Diffusion Reaction Theory of Morphogenesis in Plants [22]. This remained 
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unpublished for many years after his death, and only finally appeared in the 
third volume of Turing's Collected Works [23]. 

The last two years of Turing's life were blighted by his public exposure 
as a homosexual following an act of betrayal. These were pre-Wolfenden 
times. To prevent his incarceration the judge directed that Turing should 
receive oestrogen injections to curb his sex drive. Turing was deemed a 
security risk; as a result he was disqualified from continuing secret 
cryptological work. There is evidence, too, that Turing, who had done so 
much for his country, was hounded by the governing authorities of the land. 
Whatever, on June 7, 1954, he died having bitten into an apple impregnated 
by cyanide. The official verdict was suicide. 

The Post-Turing Legacy. 
In the 1980s information about Turing's vital role in decrypting German 

communications during the war entered the public domain. A play, 
Breaking the Code, by Hugh Whitmore, first staged in London in 1986, and 
later adapted for television, faithfully portrayed his Bletchley contributions, 
the importance of his mathematical ideas and the problems which beset him 
towards the end of his life. In 1999 Time magazine judged him among the 
twenty greatest scientists and thinkers of the 20th century. Bletchley is now 
open to the public. As yet there is no artefact capable of passing the Turing 
test but Turing would have been pleased that Gary Kasparov, the world 
chess champion and arguably the strongest player of all time, was beaten by 
a machine, Deep Blue, in 1997. 

And what of Post? The development of mathematical logic was 
profoundly influenced by him, but it was only in 1994, when his collected 
works appeared [4], that Post duly received the credit for his contributions. 
His theory of degrees led to a spate of papers on the subject and in his study 
of various kinds of recursive reducibility one can discern the source of such 
an important notion as polynomial time reducibility and of studies connected 
with NP - completeness. Even though Post was not interested in machines 
Post productions are ubiquitous in computer science and have influenced, 
for example, Noam Chomsky's work on context-sensitive and context-free 
languages which provide useful models of languages used in computer- 
programming. The unsolvability of the Post Correspondence Problem was 
precisely the requirement to obtain unsolvability results in the theory of 
formal languages. 

In 1936, there was a 'miraculous' confluence of ideas on what 
mathematically characterises the informal idea of effective calculability. 
Turing and Post were among the vanguard then and the amazingly rapid 
development of computer science subsequently has depended much on their 
creativity and insight. Their place in the history of mathematics is now, 
deservedly, assured. 
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Appendix - R.e. sets, the halting problem and the Universal Turing 
machine. 

A set A is r.e. if and only if there is a decidable predicate R (x, y) such 
that x E A if and only if 3yR (x, y) or, equivalently, A is either empty or the 
range of a recursive function. 

Now suppose that for some argument x, a Turing machine Me, encoded 
by a natural number e, which when applied to an argument x, suitably 
presented on its tape, computes fe (x) for some function fe. Define a T 
predicate, T (e, x, y), which holds for e, x, y if and only if there is a y which 
encodes the entire history of one calculation by such a machine from its 
initial state until it halts. T can be shown to be recursive (actually primitive 
recursive). We now show that the function g(x) = fx(x) + 1 if 
3yT (x, x, y) and g (x) = 0 otherwise is not computable. For suppose g (x) 
is computed by a Machine Mp, then g(x) = fp(x) for all x, which gives 
g (p) = fp (p) on substituting p for x. Now Mp computes g (x) so we have, 
for all x, 3yT (p, x, y) and hence 3yT (p, p, y). From the definition of g (x) 
we have g(p) = fp(p) + 1, a contradiction. In fact, the predicate 
3yT (x, x, y) is undecidable (not recursive). For otherwise g (x) would be 
computed, given x, thus: first decide whether 3yT (x, x, y); if so, imitate the 
behaviour of Mx to compute f (x) and add 1; if not write 0. This shows that 
there is a class of quite elementary questions for which there is no decision 
procedure. The above theorem has come to be known as the Unsolvability 
of the halting problem; there is no effective procedure that, given a machine 
M and input x, will decide whether or not this calculation ever terminates. 

In deference to Post we denote the set {x : 3yT(x, x, y)} by K, so 
x E K if and only if 3yT (x, x, y). Clearly K is r.e. so we conclude that K is 
not r.e.. Post refers to K as a creative (complete) set. 

Finally, we note that a machine U which computes fe (x) as a partial 
function of e and x we call a Universal Turing machine since it can be used 
to compute any computable function f (x). To use it to compute f (x), 
suppose that f (x) is computed by a machine whose code number is e. U is 
presented with two numbers e and x as input. It decodes e and proceeds to 
mimic the machine M applied to x. This shows there are programs, namely 
universal programs, which in a sense incorporate all other programs. 

Dedication 
This note is dedicated to my late father who, by way of encouraging my 

scientific studies when I was a sixth former, used to bring home such 
publications as Science News (Penguin Books). One of these led with 
Solvable and Unsolvable Problems by A. M. Turing (February 1954). It 
was not until my last year at Imperial College, when I attended a course of 
lectures in the History and Philosophy of Mathematics by G. J. Whitrow, 
that I became aware of Godel and incompleteness. Only then did I return to 
Turing's typically cogent and concise article, which, at last, was clear to me. 
It was the last of his publications to appear in his lifetime. 
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It all adds up... 

100% off! 50% off Leisure Break 
30% off Golf 
20% off Beauty 

John Sammons, from Southsea, spotted this unusual arithmetic whilst singing 
carols at the Botley Park Hotel, near Portsmouth. 

How many plusses make a minus? 

Hayley Mills: It has its plusses and its less plus plusses. 
Michael Parkinson: That's a minus. 

J H Evans, of Swansea, heard this exchange on Radio 2 on 12th October, 2003. 

Summing that series.... 
In The Guardian of 2nd July, 2003, Frederick Forsyth gave this opinion of Tim 

Henman's chance of winning Wimbledon:- 

"...he's only ranked tenth in the world, so I'd say he has a 1 in 10 chance of 
carrying it off." 

Peter Shiu, who noticed this, comments that Forsyth, whilst good at many 
things, is less good at giving odds, and clearly believes that the harmonic series 

sums to unity. 

15 


	Article Contents
	p. 2
	p. 3
	p. 4
	p. 5
	p. 6
	p. 7
	p. 8
	p. 9
	p. 10
	p. 11
	p. 12
	p. 13
	p. 14
	p. 15

	Issue Table of Contents
	The Mathematical Gazette, Vol. 88, No. 511 (Mar., 2004), pp. 1-192
	Front Matter
	Editorial: It's Voting Time Again [p.  1]
	1936: Post, Turing and 'A Kind of Miracle' in Mathematical Logic [pp.  2 - 15]
	From Integer Lorentz Transformations to Pythagoras [pp.  16 - 21]
	Concerning a Sequence of Gaussian Integrals [pp.  22 - 27]
	Formulae for the Convergents to Some Irrationals [pp.  28 - 38]
	World Order from Chaotic Beginnings [pp.  39 - 45]
	Parity Lights [pp.  46 - 56]
	A Long Game: Racing Random Walkers [pp.  57 - 67]
	Irrational Thoughts [pp.  68 - 78]
	Matter for Debate
	Reply to Hugh Thurston [pp.  79 - 80]

	44th International Mathematical Olympiad, Tokyo, Japan, 11 - 20 July 2003 [pp.  81 - 83]
	Notes
	88.01 Solutions of <tex-math>$x^{3}+y^{3}=z^{3}$</tex-math> [pp.  84 - 85]
	88.02 Some Properties of Odd Terms of the Fibonacci Sequence [pp.  85 - 86]
	88.03 A Curious Identity Which Is Not So Curious [p.  87]
	88.04 More on Solving Non-Linear Matrix Equations [pp.  87 - 90]
	88.05 Cylinders, Cones and Centres of Gravity [pp.  90 - 91]
	88.06 One Hump or Two [pp.  91 - 96]
	88.07 How Can We Tackle <tex-math>$\int_{0}^{1}x^{ax^{\beta}}dx$</tex-math> [pp.  96 - 98]
	88.08 Very Curious Numbers Indeed! [pp.  98 - 101]
	88.09 On a Generalisation of the Limit Definition of the Euler Constant [pp.  102 - 105]
	88.10 On a Series Considered by Srinivasa Ramanujan [pp.  105 - 110]
	88.11 On Monotone Subsequences [pp.  110 - 111]
	88.12 Rationally Approximating Square Roots [pp.  112 - 114]
	88.13 Another Cotangent Identity for the Triangle [pp.  114 - 115]
	88.14 A round Table Problem [pp.  115 - 116]
	88.15 The Return of the Cotangent Rule [pp.  116 - 118]
	88.16 On the Family of Subsets of a Finite Set [pp.  118 - 119]
	88.17 Factorial Factors [pp.  119 - 123]
	88.18 Cycles in Graphs and Derangements [pp.  123 - 126]
	88.19 Latin Squares and Their Inverses [pp.  127 - 128]
	88.20 Pythagoras' Theorem for Quadrilaterals [pp.  128 - 130]
	88.21 Pythagorean Fish [pp.  130 - 133]
	88.22 A Remark on "Steiner-Lehmus and the Automedian Triangle" [pp.  134 - 136]
	88.23 Some Simple Geometric Inequalities [pp.  136 - 137]
	88.24 Truncated Polyhedra and Euler's Formula [p.  138]
	88.25 An Algebraic Proof of Pascal's Theorem [pp.  139 - 140]
	88.26 Spread and Product: Some Further Thoughts [pp.  140 - 141]
	88.27 More on Spreads and Non-Arithmetic Means [pp.  142 - 144]
	88.28 Traversing a Windy Circuit [pp.  144 - 147]
	88.29 Flight Path of an Elastically Tethered Projectile [pp.  147 - 151]
	88.30 The Invariance of the Moment of Inertia of Magic Squares [pp.  151 - 153]

	Obituary: Francis William Kellaway (1913-2003) [pp.  154 - 155]
	Feedback [pp.  156 - 159]
	Correspondence [p.  159]
	Problem Corner [pp.  160 - 165]
	Student Problems [pp.  166 - 168]
	Reviews
	untitled [p.  169]
	untitled [p.  169]
	untitled [p.  170]
	untitled [pp.  170 - 171]
	untitled [pp.  171 - 172]
	untitled [pp.  172 - 173]
	untitled [pp.  173 - 174]
	untitled [pp.  174 - 175]
	untitled [pp.  176 - 177]
	untitled [p.  177]
	untitled [pp.  177 - 178]
	untitled [pp.  178 - 179]
	untitled [p.  179]
	untitled [p.  180]
	untitled [pp.  180 - 181]
	untitled [pp.  181 - 183]
	untitled [pp.  183 - 184]
	untitled [pp.  184 - 185]
	untitled [pp.  185 - 186]
	untitled [pp.  186 - 187]
	untitled [p.  187]
	untitled [pp.  187 - 188]
	untitled [p.  188]
	untitled [pp.  188 - 189]
	untitled [pp.  189 - 190]

	Back Matter [pp.  191 - 192]



