
XML

XML – Extensible Markup Language

Generic format for structured representation of data.

No predefined tags, but a syntax similar to HTML. Applications:

I Web services, business transactions
I XHTML – HTML on XML syntax
I The graphics format SVG
I Configuration files
I Much more . . .

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 1 / 34

XML

XML – Extensible Markup Language

Generic format for structured representation of data.
No predefined tags, but a syntax similar to HTML.

Applications:

I Web services, business transactions
I XHTML – HTML on XML syntax
I The graphics format SVG
I Configuration files
I Much more . . .

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 1 / 34

XML

XML – Extensible Markup Language

Generic format for structured representation of data.
No predefined tags, but a syntax similar to HTML. Applications:

I Web services, business transactions

I XHTML – HTML on XML syntax
I The graphics format SVG
I Configuration files
I Much more . . .

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 1 / 34

XML

XML – Extensible Markup Language

Generic format for structured representation of data.
No predefined tags, but a syntax similar to HTML. Applications:

I Web services, business transactions
I XHTML – HTML on XML syntax

I The graphics format SVG
I Configuration files
I Much more . . .

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 1 / 34

XML

XML – Extensible Markup Language

Generic format for structured representation of data.
No predefined tags, but a syntax similar to HTML. Applications:

I Web services, business transactions
I XHTML – HTML on XML syntax
I The graphics format SVG

I Configuration files
I Much more . . .

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 1 / 34

XML

XML – Extensible Markup Language

Generic format for structured representation of data.
No predefined tags, but a syntax similar to HTML. Applications:

I Web services, business transactions
I XHTML – HTML on XML syntax
I The graphics format SVG
I Configuration files

I Much more . . .

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 1 / 34

XML

XML – Extensible Markup Language

Generic format for structured representation of data.
No predefined tags, but a syntax similar to HTML. Applications:

I Web services, business transactions
I XHTML – HTML on XML syntax
I The graphics format SVG
I Configuration files
I Much more . . .

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 1 / 34

XML

XML – Strengths

I Open standard from W3C
I Simple text format, easy to parse
I Supported by numerous vendors and platforms
I Excellent for transactions between different systems
I Structure allows for search
I Facilitates separation between content and presentation

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 2 / 34

XML

XML – Strengths

I Open standard from W3C

I Simple text format, easy to parse
I Supported by numerous vendors and platforms
I Excellent for transactions between different systems
I Structure allows for search
I Facilitates separation between content and presentation

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 2 / 34

XML

XML – Strengths

I Open standard from W3C
I Simple text format, easy to parse

I Supported by numerous vendors and platforms
I Excellent for transactions between different systems
I Structure allows for search
I Facilitates separation between content and presentation

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 2 / 34

XML

XML – Strengths

I Open standard from W3C
I Simple text format, easy to parse
I Supported by numerous vendors and platforms

I Excellent for transactions between different systems
I Structure allows for search
I Facilitates separation between content and presentation

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 2 / 34

XML

XML – Strengths

I Open standard from W3C
I Simple text format, easy to parse
I Supported by numerous vendors and platforms
I Excellent for transactions between different systems

I Structure allows for search
I Facilitates separation between content and presentation

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 2 / 34

XML

XML – Strengths

I Open standard from W3C
I Simple text format, easy to parse
I Supported by numerous vendors and platforms
I Excellent for transactions between different systems
I Structure allows for search

I Facilitates separation between content and presentation

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 2 / 34

XML

XML – Strengths

I Open standard from W3C
I Simple text format, easy to parse
I Supported by numerous vendors and platforms
I Excellent for transactions between different systems
I Structure allows for search
I Facilitates separation between content and presentation

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 2 / 34

XML

XML – Example

<?xml version="1.0"?>
<pricelist>

<item>
<name>Pears</name>
<price>12.90</price>

</item>
<item>

<name>Apples</name>
<price>19.90</price>

</item>
</pricelist>

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 3 / 34

XML

XML – Form

I The XML declaration first, perhaps stating the file encoding.
For example one of
<?xml version="1.0" encoding="UTF-8"?>

<?xml version="1.0" encoding="ISO-8859-1"?>

I More declarations may follow.
I Thereafter exactly one XML element on the outermost level. (Pricelist in

the example.)
I End tags required. (Compare with <p> in HTML.)

Special case: An empty element may be abbreviated:
<a> becomes <a/>. (<a /> also allowed.)

I Correct nesting required. <a><bbb></bbb> never allowed.
I Attribute values must be between quote marks. Example (SVG):
<circle cx="10" cy="10" r="5" />.

I As in HTML, ”entities” are used for some characters. Example: < for <
(Starts a tag otherwise).

I A well-formed document – follows the syntactic rules.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 4 / 34

XML

XML – Form

I The XML declaration first, perhaps stating the file encoding.
For example one of
<?xml version="1.0" encoding="UTF-8"?>

<?xml version="1.0" encoding="ISO-8859-1"?>

I More declarations may follow.
I Thereafter exactly one XML element on the outermost level. (Pricelist in

the example.)
I End tags required. (Compare with <p> in HTML.)

Special case: An empty element may be abbreviated:
<a> becomes <a/>. (<a /> also allowed.)

I Correct nesting required. <a><bbb></bbb> never allowed.
I Attribute values must be between quote marks. Example (SVG):
<circle cx="10" cy="10" r="5" />.

I As in HTML, ”entities” are used for some characters. Example: < for <
(Starts a tag otherwise).

I A well-formed document – follows the syntactic rules.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 4 / 34

XML

XML – Form

I The XML declaration first, perhaps stating the file encoding.
For example one of
<?xml version="1.0" encoding="UTF-8"?>

<?xml version="1.0" encoding="ISO-8859-1"?>

I More declarations may follow.

I Thereafter exactly one XML element on the outermost level. (Pricelist in
the example.)

I End tags required. (Compare with <p> in HTML.)
Special case: An empty element may be abbreviated:
<a> becomes <a/>. (<a /> also allowed.)

I Correct nesting required. <a><bbb></bbb> never allowed.
I Attribute values must be between quote marks. Example (SVG):
<circle cx="10" cy="10" r="5" />.

I As in HTML, ”entities” are used for some characters. Example: < for <
(Starts a tag otherwise).

I A well-formed document – follows the syntactic rules.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 4 / 34

XML

XML – Form

I The XML declaration first, perhaps stating the file encoding.
For example one of
<?xml version="1.0" encoding="UTF-8"?>

<?xml version="1.0" encoding="ISO-8859-1"?>

I More declarations may follow.
I Thereafter exactly one XML element on the outermost level. (Pricelist in

the example.)

I End tags required. (Compare with <p> in HTML.)
Special case: An empty element may be abbreviated:
<a> becomes <a/>. (<a /> also allowed.)

I Correct nesting required. <a><bbb></bbb> never allowed.
I Attribute values must be between quote marks. Example (SVG):
<circle cx="10" cy="10" r="5" />.

I As in HTML, ”entities” are used for some characters. Example: < for <
(Starts a tag otherwise).

I A well-formed document – follows the syntactic rules.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 4 / 34

XML

XML – Form

I The XML declaration first, perhaps stating the file encoding.
For example one of
<?xml version="1.0" encoding="UTF-8"?>

<?xml version="1.0" encoding="ISO-8859-1"?>

I More declarations may follow.
I Thereafter exactly one XML element on the outermost level. (Pricelist in

the example.)
I End tags required. (Compare with <p> in HTML.)

Special case: An empty element may be abbreviated:
<a> becomes <a/>. (<a /> also allowed.)

I Correct nesting required. <a><bbb></bbb> never allowed.
I Attribute values must be between quote marks. Example (SVG):
<circle cx="10" cy="10" r="5" />.

I As in HTML, ”entities” are used for some characters. Example: < for <
(Starts a tag otherwise).

I A well-formed document – follows the syntactic rules.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 4 / 34

XML

XML – Form

I The XML declaration first, perhaps stating the file encoding.
For example one of
<?xml version="1.0" encoding="UTF-8"?>

<?xml version="1.0" encoding="ISO-8859-1"?>

I More declarations may follow.
I Thereafter exactly one XML element on the outermost level. (Pricelist in

the example.)
I End tags required. (Compare with <p> in HTML.)

Special case: An empty element may be abbreviated:
<a> becomes <a/>. (<a /> also allowed.)

I Correct nesting required. <a><bbb></bbb> never allowed.

I Attribute values must be between quote marks. Example (SVG):
<circle cx="10" cy="10" r="5" />.

I As in HTML, ”entities” are used for some characters. Example: < for <
(Starts a tag otherwise).

I A well-formed document – follows the syntactic rules.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 4 / 34

XML

XML – Form

I The XML declaration first, perhaps stating the file encoding.
For example one of
<?xml version="1.0" encoding="UTF-8"?>

<?xml version="1.0" encoding="ISO-8859-1"?>

I More declarations may follow.
I Thereafter exactly one XML element on the outermost level. (Pricelist in

the example.)
I End tags required. (Compare with <p> in HTML.)

Special case: An empty element may be abbreviated:
<a> becomes <a/>. (<a /> also allowed.)

I Correct nesting required. <a><bbb></bbb> never allowed.
I Attribute values must be between quote marks. Example (SVG):
<circle cx="10" cy="10" r="5" />.

I As in HTML, ”entities” are used for some characters. Example: < for <
(Starts a tag otherwise).

I A well-formed document – follows the syntactic rules.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 4 / 34

XML

XML – Form

I The XML declaration first, perhaps stating the file encoding.
For example one of
<?xml version="1.0" encoding="UTF-8"?>

<?xml version="1.0" encoding="ISO-8859-1"?>

I More declarations may follow.
I Thereafter exactly one XML element on the outermost level. (Pricelist in

the example.)
I End tags required. (Compare with <p> in HTML.)

Special case: An empty element may be abbreviated:
<a> becomes <a/>. (<a /> also allowed.)

I Correct nesting required. <a><bbb></bbb> never allowed.
I Attribute values must be between quote marks. Example (SVG):
<circle cx="10" cy="10" r="5" />.

I As in HTML, ”entities” are used for some characters. Example: < for <
(Starts a tag otherwise).

I A well-formed document – follows the syntactic rules.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 4 / 34

XML

XML – Form

I The XML declaration first, perhaps stating the file encoding.
For example one of
<?xml version="1.0" encoding="UTF-8"?>

<?xml version="1.0" encoding="ISO-8859-1"?>

I More declarations may follow.
I Thereafter exactly one XML element on the outermost level. (Pricelist in

the example.)
I End tags required. (Compare with <p> in HTML.)

Special case: An empty element may be abbreviated:
<a> becomes <a/>. (<a /> also allowed.)

I Correct nesting required. <a><bbb></bbb> never allowed.
I Attribute values must be between quote marks. Example (SVG):
<circle cx="10" cy="10" r="5" />.

I As in HTML, ”entities” are used for some characters. Example: < for <
(Starts a tag otherwise).

I A well-formed document – follows the syntactic rules.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 4 / 34

XML

XML – Specifying valid content

Different applications expect different content in their XML files. Several
techniques to specify valid content:

I DTD (document type definition). W3C’s first standard.
I XML schemas. W3C’s follow-up standard with data types and name

spaces. Rich but complicated.
I Several private initiatives, including well-supported Relax NG.
I An instance document is valid if it satisfies a specification.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 5 / 34

XML

XML – Specifying valid content

Different applications expect different content in their XML files. Several
techniques to specify valid content:

I DTD (document type definition). W3C’s first standard.

I XML schemas. W3C’s follow-up standard with data types and name
spaces. Rich but complicated.

I Several private initiatives, including well-supported Relax NG.
I An instance document is valid if it satisfies a specification.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 5 / 34

XML

XML – Specifying valid content

Different applications expect different content in their XML files. Several
techniques to specify valid content:

I DTD (document type definition). W3C’s first standard.
I XML schemas. W3C’s follow-up standard with data types and name

spaces. Rich but complicated.

I Several private initiatives, including well-supported Relax NG.
I An instance document is valid if it satisfies a specification.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 5 / 34

XML

XML – Specifying valid content

Different applications expect different content in their XML files. Several
techniques to specify valid content:

I DTD (document type definition). W3C’s first standard.
I XML schemas. W3C’s follow-up standard with data types and name

spaces. Rich but complicated.
I Several private initiatives, including well-supported Relax NG.

I An instance document is valid if it satisfies a specification.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 5 / 34

XML

XML – Specifying valid content

Different applications expect different content in their XML files. Several
techniques to specify valid content:

I DTD (document type definition). W3C’s first standard.
I XML schemas. W3C’s follow-up standard with data types and name

spaces. Rich but complicated.
I Several private initiatives, including well-supported Relax NG.
I An instance document is valid if it satisfies a specification.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 5 / 34

XML

XML – Document Type Definition

DTD for the pricelist example

<!ELEMENT pricelist (item*)>
<!ELEMENT item (name, price)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT price (#PCDATA)>

I A pricelist element contains any number of item elements.
I An item element contains one name and one price element.
I The name and price elements consist of parsed character data.

Reference to external DTD in instance document:
<!DOCTYPE pricelist SYSTEM "pricelist.dtd">

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 6 / 34

XML

XML – Document Type Definition

DTD for the pricelist example

<!ELEMENT pricelist (item*)>
<!ELEMENT item (name, price)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT price (#PCDATA)>

I A pricelist element contains any number of item elements.

I An item element contains one name and one price element.
I The name and price elements consist of parsed character data.

Reference to external DTD in instance document:
<!DOCTYPE pricelist SYSTEM "pricelist.dtd">

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 6 / 34

XML

XML – Document Type Definition

DTD for the pricelist example

<!ELEMENT pricelist (item*)>
<!ELEMENT item (name, price)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT price (#PCDATA)>

I A pricelist element contains any number of item elements.
I An item element contains one name and one price element.

I The name and price elements consist of parsed character data.

Reference to external DTD in instance document:
<!DOCTYPE pricelist SYSTEM "pricelist.dtd">

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 6 / 34

XML

XML – Document Type Definition

DTD for the pricelist example

<!ELEMENT pricelist (item*)>
<!ELEMENT item (name, price)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT price (#PCDATA)>

I A pricelist element contains any number of item elements.
I An item element contains one name and one price element.
I The name and price elements consist of parsed character data.

Reference to external DTD in instance document:
<!DOCTYPE pricelist SYSTEM "pricelist.dtd">

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 6 / 34

XML

XML – Document Type Definition

DTD for the pricelist example

<!ELEMENT pricelist (item*)>
<!ELEMENT item (name, price)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT price (#PCDATA)>

I A pricelist element contains any number of item elements.
I An item element contains one name and one price element.
I The name and price elements consist of parsed character data.

Reference to external DTD in instance document:
<!DOCTYPE pricelist SYSTEM "pricelist.dtd">

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 6 / 34

XML

XML – Schemas

XML schemas offer more flexibility than DTDs.

Data types are supported, with several built-in types such as
I String types
I Numeric types
I Types for date and time

Minimum and maximum values may be specified, sets may be enumerated,
etc. Unlike DTDs, schemas are themselves defined in XML.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 7 / 34

XML

XML – Schemas

XML schemas offer more flexibility than DTDs.
Data types are supported, with several built-in types such as

I String types
I Numeric types
I Types for date and time

Minimum and maximum values may be specified, sets may be enumerated,
etc. Unlike DTDs, schemas are themselves defined in XML.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 7 / 34

XML

XML – Schemas

XML schemas offer more flexibility than DTDs.
Data types are supported, with several built-in types such as

I String types
I Numeric types
I Types for date and time

Minimum and maximum values may be specified, sets may be enumerated,
etc. Unlike DTDs, schemas are themselves defined in XML.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 7 / 34

XML

XML – Name spaces

You may need to combine parts from different schemas.

Together with schemas, name spaces were introduced to avoid name
conflicts.

A name space is identified with a URL, and used with an arbitrary prefix.

Note! The URL only serves as a name. There is no requirement on content.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 8 / 34

XML

XML – Name spaces

You may need to combine parts from different schemas.

Together with schemas, name spaces were introduced to avoid name
conflicts.

A name space is identified with a URL, and used with an arbitrary prefix.

Note! The URL only serves as a name. There is no requirement on content.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 8 / 34

XML

XML – Name spaces

You may need to combine parts from different schemas.

Together with schemas, name spaces were introduced to avoid name
conflicts.

A name space is identified with a URL, and used with an arbitrary prefix.

Note! The URL only serves as a name. There is no requirement on content.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 8 / 34

XML

XML – Name spaces

You may need to combine parts from different schemas.

Together with schemas, name spaces were introduced to avoid name
conflicts.

A name space is identified with a URL, and used with an arbitrary prefix.

Note! The URL only serves as a name. There is no requirement on content.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 8 / 34

XML

XML – Example, name spaces

<ica:pricelist xmlns:ica="http://www.ica.se/">
...

</ica:pricelist>

Here, xmlns stands for XML name space.

Defining a default namespace (no prefix):

<pricelist xmlns="http://www.ica.se/">
...

</pricelist>

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 9 / 34

XML

XML – Example, name spaces

<ica:pricelist xmlns:ica="http://www.ica.se/">
...

</ica:pricelist>

Here, xmlns stands for XML name space.

Defining a default namespace (no prefix):

<pricelist xmlns="http://www.ica.se/">
...

</pricelist>

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 9 / 34

XML

XML – Example, name spaces

<ica:pricelist xmlns:ica="http://www.ica.se/">
...

</ica:pricelist>

Here, xmlns stands for XML name space.

Defining a default namespace (no prefix):

<pricelist xmlns="http://www.ica.se/">
...

</pricelist>

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 9 / 34

XML

XML – Schema for the pricelist element (1/3)

The first part of the schema:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:ica="http://www.ica.se/"
targetNamespace="http://www.ica.se/"
elementFormDefault="unqualified">

...

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 10 / 34

XML

XML – Schema for the pricelist element (2/3)

...
<element name="pricelist">

<complexType>
<sequence>

<element name="item" type="ica:item"
minOccurs="0" maxOccurs="unbounded">

</element>
</sequence>

</complexType>
</element>
...

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 11 / 34

XML

XML – Schema for the pricelist element (3/3)

...
<complexType name="item">

<sequence>
<element name="name" type="string" />
<element name="price" type="string" />

</sequence>
</complexType>

</schema>

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 12 / 34

XML

XML – Comments to the schema

With xmlns="http://www.w3.org/2001/XMLSchema" we choose as
default name space W3C’s schema for schema definition. From there we use
the elements schema, element, complexType and sequence, and the
type string.

With targetNamespace="http://www.ica.se/" we define the name
space of the new pricelist element, as well as the type item. To access
this type ourselves, we also had to define the ica prefix.

Regarding elementFormDefault="unqualified", see the next slide,
and http://www.xfront.com/HideVersusExpose.pdf.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 13 / 34

XML

XML – Comments to the schema

With xmlns="http://www.w3.org/2001/XMLSchema" we choose as
default name space W3C’s schema for schema definition. From there we use
the elements schema, element, complexType and sequence, and the
type string.

With targetNamespace="http://www.ica.se/" we define the name
space of the new pricelist element, as well as the type item. To access
this type ourselves, we also had to define the ica prefix.

Regarding elementFormDefault="unqualified", see the next slide,
and http://www.xfront.com/HideVersusExpose.pdf.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 13 / 34

XML

XML – Comments to the schema

With xmlns="http://www.w3.org/2001/XMLSchema" we choose as
default name space W3C’s schema for schema definition. From there we use
the elements schema, element, complexType and sequence, and the
type string.

With targetNamespace="http://www.ica.se/" we define the name
space of the new pricelist element, as well as the type item. To access
this type ourselves, we also had to define the ica prefix.

Regarding elementFormDefault="unqualified", see the next slide,
and http://www.xfront.com/HideVersusExpose.pdf.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 13 / 34

XML

XML – Using the schema

Refer like this in the instance document:

<?xml version="1.0"?>
<ica:pricelist xmlns:ica="http://www.ica.se/">

<item>
<name>Pears</name>
<price>12.90</price>

</item>
</ica:pricelist>

Note. Only pricelist is name space qualified.

With elementFormDefault="qualified" all elements would have
needed qualification.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 14 / 34

XML

XML – Using the schema

Refer like this in the instance document:

<?xml version="1.0"?>
<ica:pricelist xmlns:ica="http://www.ica.se/">

<item>
<name>Pears</name>
<price>12.90</price>

</item>
</ica:pricelist>

Note. Only pricelist is name space qualified.

With elementFormDefault="qualified" all elements would have
needed qualification.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 14 / 34

XML

XML – Using the schema

Refer like this in the instance document:

<?xml version="1.0"?>
<ica:pricelist xmlns:ica="http://www.ica.se/">

<item>
<name>Pears</name>
<price>12.90</price>

</item>
</ica:pricelist>

Note. Only pricelist is name space qualified.

With elementFormDefault="qualified" all elements would have
needed qualification.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 14 / 34

XML

XML – Best Practices

A schema for an organization should perhaps

I work smoothly with other schemas
I allow updating without making old instance document invalid
I allow instance documents to contain extra information

This is not easy to attain.

See advice at
http://www.xfront.com/BestPracticesHomepage.html

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 15 / 34

XML

XML – Best Practices

A schema for an organization should perhaps
I work smoothly with other schemas

I allow updating without making old instance document invalid
I allow instance documents to contain extra information

This is not easy to attain.

See advice at
http://www.xfront.com/BestPracticesHomepage.html

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 15 / 34

XML

XML – Best Practices

A schema for an organization should perhaps
I work smoothly with other schemas
I allow updating without making old instance document invalid

I allow instance documents to contain extra information

This is not easy to attain.

See advice at
http://www.xfront.com/BestPracticesHomepage.html

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 15 / 34

XML

XML – Best Practices

A schema for an organization should perhaps
I work smoothly with other schemas
I allow updating without making old instance document invalid
I allow instance documents to contain extra information

This is not easy to attain.

See advice at
http://www.xfront.com/BestPracticesHomepage.html

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 15 / 34

XML

XML – Best Practices

A schema for an organization should perhaps
I work smoothly with other schemas
I allow updating without making old instance document invalid
I allow instance documents to contain extra information

This is not easy to attain.

See advice at
http://www.xfront.com/BestPracticesHomepage.html

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 15 / 34

XML

XML – Best Practices

A schema for an organization should perhaps
I work smoothly with other schemas
I allow updating without making old instance document invalid
I allow instance documents to contain extra information

This is not easy to attain.

See advice at
http://www.xfront.com/BestPracticesHomepage.html

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 15 / 34

XML

XML – Relax NG

I A simpler schema definition language than that from W3C.

I Has become an ISO standard (ISO/IEC 19757-2) in sept 2009.
I Two syntaxes: Compact Syntax and an XML syntax.
I See links at the end of
http://www.xmlhack.com/read.php?item=2061

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 16 / 34

XML

XML – Relax NG

I A simpler schema definition language than that from W3C.
I Has become an ISO standard (ISO/IEC 19757-2) in sept 2009.

I Two syntaxes: Compact Syntax and an XML syntax.
I See links at the end of
http://www.xmlhack.com/read.php?item=2061

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 16 / 34

XML

XML – Relax NG

I A simpler schema definition language than that from W3C.
I Has become an ISO standard (ISO/IEC 19757-2) in sept 2009.
I Two syntaxes: Compact Syntax and an XML syntax.

I See links at the end of
http://www.xmlhack.com/read.php?item=2061

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 16 / 34

XML

XML – Relax NG

I A simpler schema definition language than that from W3C.
I Has become an ISO standard (ISO/IEC 19757-2) in sept 2009.
I Two syntaxes: Compact Syntax and an XML syntax.
I See links at the end of
http://www.xmlhack.com/read.php?item=2061

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 16 / 34

XML

XML – Schema with Relax NG Compact Syntax

namespace ica = "http://www.ica.se/"
element ica:pricelist {

element item {
element name {text},
element price {text}

}*
}

The compact form may be translated to the XML form with the java program
trang.
See http://www.abbeyworkshop.com/howto/xml/xml_relax_overview/

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 17 / 34

XML

XML – Schema with Relax NG Compact Syntax

namespace ica = "http://www.ica.se/"
element ica:pricelist {

element item {
element name {text},
element price {text}

}*
}

The compact form may be translated to the XML form with the java program
trang.
See http://www.abbeyworkshop.com/howto/xml/xml_relax_overview/

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 17 / 34

XML

XML – Schema with Relax NG XML Syntax

<?xml version="1.0"?>
<element name="ica:pricelist" xmlns:ica="http://www.ica.se/"

xmlns="http://relaxng.org/ns/structure/1.0">
<zeroOrMore>

<element name="item">
<element name="name">

<text />
</element>
<element name="price">

<text />
</element>

</element>
</zeroOrMore>

</element>

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 18 / 34

XML

XML – Validation

On Unix/Linux xmllint --noout file
check for validity, only show errors

--dtdvalid validate against external DTD
--schema validate against W3C-schema
--relaxng validate against Relax NG schema

Web pages such as
http://tools.decisionsoft.com/schemaValidate.html

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 19 / 34

XML

XML – Validation

On Unix/Linux xmllint --noout file
check for validity, only show errors

--dtdvalid validate against external DTD

--schema validate against W3C-schema
--relaxng validate against Relax NG schema

Web pages such as
http://tools.decisionsoft.com/schemaValidate.html

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 19 / 34

XML

XML – Validation

On Unix/Linux xmllint --noout file
check for validity, only show errors

--dtdvalid validate against external DTD
--schema validate against W3C-schema

--relaxng validate against Relax NG schema

Web pages such as
http://tools.decisionsoft.com/schemaValidate.html

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 19 / 34

XML

XML – Validation

On Unix/Linux xmllint --noout file
check for validity, only show errors

--dtdvalid validate against external DTD
--schema validate against W3C-schema
--relaxng validate against Relax NG schema

Web pages such as
http://tools.decisionsoft.com/schemaValidate.html

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 19 / 34

XML

XML – Validation

On Unix/Linux xmllint --noout file
check for validity, only show errors

--dtdvalid validate against external DTD
--schema validate against W3C-schema
--relaxng validate against Relax NG schema

Web pages such as
http://tools.decisionsoft.com/schemaValidate.html

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 19 / 34

XML

XML – The parse tree

<pricelist>

<price>12.90</price>

</item>
<pricelist>

<item>
<name>Pear</name>

</item>
<item>

<name>Apple</name>
<price>19.90</price>

pricelist

name nameprice price

item item

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 20 / 34

XML

XML – The parse tree

<pricelist>

<price>12.90</price>

</item>
<pricelist>

<item>
<name>Pear</name>

</item>
<item>

<name>Apple</name>
<price>19.90</price>

pricelist

name nameprice price

item item

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 20 / 34

XML

XSL – Extensible Stylesheet Language

For presentation of XML documents.

Compare with HTML, which conveys presentational structure by itself.
Additional style information may be put in a stylesheet.

XML says nothing about presentation. So XSL has three different
components:

I XSLT (XSL Transformation) – selects elements in the XML file. Can sort, perform
tests, etc.

I XPath – syntax for positioning in the XML tree. Similar to path notation in a file
system.

I XSL-FO (XSL Formatting Objects) – Page formatting.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 21 / 34

XML

XSL – Extensible Stylesheet Language

For presentation of XML documents.

Compare with HTML, which conveys presentational structure by itself.
Additional style information may be put in a stylesheet.

XML says nothing about presentation. So XSL has three different
components:

I XSLT (XSL Transformation) – selects elements in the XML file. Can sort, perform
tests, etc.

I XPath – syntax for positioning in the XML tree. Similar to path notation in a file
system.

I XSL-FO (XSL Formatting Objects) – Page formatting.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 21 / 34

XML

XSL – Extensible Stylesheet Language

For presentation of XML documents.

Compare with HTML, which conveys presentational structure by itself.
Additional style information may be put in a stylesheet.

XML says nothing about presentation. So XSL has three different
components:

I XSLT (XSL Transformation) – selects elements in the XML file. Can sort, perform
tests, etc.

I XPath – syntax for positioning in the XML tree. Similar to path notation in a file
system.

I XSL-FO (XSL Formatting Objects) – Page formatting.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 21 / 34

XML

XSL – Extensible Stylesheet Language

For presentation of XML documents.

Compare with HTML, which conveys presentational structure by itself.
Additional style information may be put in a stylesheet.

XML says nothing about presentation. So XSL has three different
components:

I XSLT (XSL Transformation) – selects elements in the XML file. Can sort, perform
tests, etc.

I XPath – syntax for positioning in the XML tree. Similar to path notation in a file
system.

I XSL-FO (XSL Formatting Objects) – Page formatting.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 21 / 34

XML

XSL – Extensible Stylesheet Language

For presentation of XML documents.

Compare with HTML, which conveys presentational structure by itself.
Additional style information may be put in a stylesheet.

XML says nothing about presentation. So XSL has three different
components:

I XSLT (XSL Transformation) – selects elements in the XML file. Can sort, perform
tests, etc.

I XPath – syntax for positioning in the XML tree. Similar to path notation in a file
system.

I XSL-FO (XSL Formatting Objects) – Page formatting.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 21 / 34

XML

XSL – Extensible Stylesheet Language

For presentation of XML documents.

Compare with HTML, which conveys presentational structure by itself.
Additional style information may be put in a stylesheet.

XML says nothing about presentation. So XSL has three different
components:

I XSLT (XSL Transformation) – selects elements in the XML file. Can sort, perform
tests, etc.

I XPath – syntax for positioning in the XML tree. Similar to path notation in a file
system.

I XSL-FO (XSL Formatting Objects) – Page formatting.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 21 / 34

XML

XSL – Example on XSLT and XPath

<?xml version="1.0" ?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:ica="http://www.ica.se/">

<xsl:template match="/">
<html>

<body>
<table border="1" cellpadding="5" cellspacing="0">

<tr><th>Item</th><th>Price</th></tr>
<xsl:for-each select="ica:pricelist/item">

<tr><td><xsl:value-of select="name"/></td>
<td><xsl:value-of select="price"/></td>

</tr>
</xsl:for-each>

</table>
</body>

</html>
</xsl:template>

</xsl:stylesheet>

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 22 / 34

XML

XSL – Comments on the XSLT example

<xsl:template match="/"> says that the template should start matching
from the root of the XML tree.

For each item in pricelist we then create a row in an HTML table.

The row will contain the name and the price of the item.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 23 / 34

XML

XSL – Comments on the XSLT example

<xsl:template match="/"> says that the template should start matching
from the root of the XML tree.

For each item in pricelist we then create a row in an HTML table.

The row will contain the name and the price of the item.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 23 / 34

XML

XSL – Comments on the XSLT example

<xsl:template match="/"> says that the template should start matching
from the root of the XML tree.

For each item in pricelist we then create a row in an HTML table.

The row will contain the name and the price of the item.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 23 / 34

XML

Referring to the stylesheet(s) in the XML file

<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="pricelist.xsl" ?>

<ica:pricelist xmlns:ica="http://www.ica.se/">
<item>

<name>Pears</name>
<price>12.90</price>

</item>
<item>

<name>Apples</name>
<price>19.90</price>

</item>
</ica:pricelist>

See the result on
http://www.csc.kth.se/utbildning/kth/kurser/DD1335/gruint10/test/pricelist.xml

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 24 / 34

XML

Referring to the stylesheet(s) in the XML file

<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="pricelist.xsl" ?>

<ica:pricelist xmlns:ica="http://www.ica.se/">
<item>

<name>Pears</name>
<price>12.90</price>

</item>
<item>

<name>Apples</name>
<price>19.90</price>

</item>
</ica:pricelist>

See the result on
http://www.csc.kth.se/utbildning/kth/kurser/DD1335/gruint10/test/pricelist.xml

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 24 / 34

XML

XSL – Tip

Put the files in your public_html directory and view them in a web browser
the normal way (http://...).

The browser depends on the MIME-type that the server sends in the HTTP
heading.

With “Open File” this information is not obtained.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 25 / 34

XML

XSL – Tip

Put the files in your public_html directory and view them in a web browser
the normal way (http://...).

The browser depends on the MIME-type that the server sends in the HTTP
heading.

With “Open File” this information is not obtained.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 25 / 34

XML

XSL – Tip

Put the files in your public_html directory and view them in a web browser
the normal way (http://...).

The browser depends on the MIME-type that the server sends in the HTTP
heading.

With “Open File” this information is not obtained.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 25 / 34

XML

DOM – Document Object Model

I W3C object oriented APIs for XML documents.
I Access and change a document via the DOM parse tree.
I Methods such as

I documentElement – returns the root node
I childNodes – returns all children of a node
I attributes – returns all attributes of a node
I nodeType, nodeValue, etc.
I removeChild, appendChild, etc.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 26 / 34

XML

DOM – Document Object Model

I W3C object oriented APIs for XML documents.

I Access and change a document via the DOM parse tree.
I Methods such as

I documentElement – returns the root node
I childNodes – returns all children of a node
I attributes – returns all attributes of a node
I nodeType, nodeValue, etc.
I removeChild, appendChild, etc.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 26 / 34

XML

DOM – Document Object Model

I W3C object oriented APIs for XML documents.
I Access and change a document via the DOM parse tree.

I Methods such as

I documentElement – returns the root node
I childNodes – returns all children of a node
I attributes – returns all attributes of a node
I nodeType, nodeValue, etc.
I removeChild, appendChild, etc.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 26 / 34

XML

DOM – Document Object Model

I W3C object oriented APIs for XML documents.
I Access and change a document via the DOM parse tree.
I Methods such as

I documentElement – returns the root node
I childNodes – returns all children of a node
I attributes – returns all attributes of a node
I nodeType, nodeValue, etc.
I removeChild, appendChild, etc.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 26 / 34

XML

DOM – Document Object Model

I W3C object oriented APIs for XML documents.
I Access and change a document via the DOM parse tree.
I Methods such as

I documentElement – returns the root node

I childNodes – returns all children of a node
I attributes – returns all attributes of a node
I nodeType, nodeValue, etc.
I removeChild, appendChild, etc.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 26 / 34

XML

DOM – Document Object Model

I W3C object oriented APIs for XML documents.
I Access and change a document via the DOM parse tree.
I Methods such as

I documentElement – returns the root node
I childNodes – returns all children of a node

I attributes – returns all attributes of a node
I nodeType, nodeValue, etc.
I removeChild, appendChild, etc.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 26 / 34

XML

DOM – Document Object Model

I W3C object oriented APIs for XML documents.
I Access and change a document via the DOM parse tree.
I Methods such as

I documentElement – returns the root node
I childNodes – returns all children of a node
I attributes – returns all attributes of a node

I nodeType, nodeValue, etc.
I removeChild, appendChild, etc.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 26 / 34

XML

DOM – Document Object Model

I W3C object oriented APIs for XML documents.
I Access and change a document via the DOM parse tree.
I Methods such as

I documentElement – returns the root node
I childNodes – returns all children of a node
I attributes – returns all attributes of a node
I nodeType, nodeValue, etc.

I removeChild, appendChild, etc.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 26 / 34

XML

DOM – Document Object Model

I W3C object oriented APIs for XML documents.
I Access and change a document via the DOM parse tree.
I Methods such as

I documentElement – returns the root node
I childNodes – returns all children of a node
I attributes – returns all attributes of a node
I nodeType, nodeValue, etc.
I removeChild, appendChild, etc.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 26 / 34

XML

XML in Java

JAXP – Java API for XML Processing: a common interface to DOM, SAX, and XSLT.
SAX:

I ”Simple” API for XML
I Processes an XML file while reading through it
I Fast, memory efficient
I More complicated than DOM

Many other APIs:

I JDOM, DOM4J – other DOM implementations
I JAXB – converts XML into classes, and vice versa
I JAXM, JAX-RPC for asynchronous and synchronous messaging

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 27 / 34

XML

XML in Java

JAXP – Java API for XML Processing: a common interface to DOM, SAX, and XSLT.
SAX:

I ”Simple” API for XML
I Processes an XML file while reading through it
I Fast, memory efficient
I More complicated than DOM

Many other APIs:

I JDOM, DOM4J – other DOM implementations
I JAXB – converts XML into classes, and vice versa
I JAXM, JAX-RPC for asynchronous and synchronous messaging

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 27 / 34

XML

XML DOM in JAXP

import javax.xml.parsers.*;
import org.w3c.dom.Document;
// Reads an XML file into a DOM structure.
// Usage: java DomExample filename
public class DomExample {

public static void main(String argv[])
throws Exception {

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();
Document document = builder.parse(argv[0]);
// Explore the document here.

}
}

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 28 / 34

XML

Web services

“Applications available over a network via standard protocols.”

Client-server, as well as peer-to-peer.

Typical traditional web service: HTML content, down-loadable with the HTTP
protocol.

New web services: composed of distributed parts that are linked dynamically
to run seamlessly.

XML plays a key role.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 29 / 34

XML

Web services

“Applications available over a network via standard protocols.”

Client-server, as well as peer-to-peer.

Typical traditional web service: HTML content, down-loadable with the HTTP
protocol.

New web services: composed of distributed parts that are linked dynamically
to run seamlessly.

XML plays a key role.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 29 / 34

XML

Web services

“Applications available over a network via standard protocols.”

Client-server, as well as peer-to-peer.

Typical traditional web service: HTML content, down-loadable with the HTTP
protocol.

New web services: composed of distributed parts that are linked dynamically
to run seamlessly.

XML plays a key role.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 29 / 34

XML

Web services

“Applications available over a network via standard protocols.”

Client-server, as well as peer-to-peer.

Typical traditional web service: HTML content, down-loadable with the HTTP
protocol.

New web services: composed of distributed parts that are linked dynamically
to run seamlessly.

XML plays a key role.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 29 / 34

XML

Web services

“Applications available over a network via standard protocols.”

Client-server, as well as peer-to-peer.

Typical traditional web service: HTML content, down-loadable with the HTTP
protocol.

New web services: composed of distributed parts that are linked dynamically
to run seamlessly.

XML plays a key role.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 29 / 34

XML

Protocols for new web services

I SOAP – encodes and transmits messages between programs on the
web.

I WSDL (Web Services Description Language) XML format to describe
web services (operations, messages, types etc).

I UDDI (Universal Description Discovery and Integration) Protocol for
distributed registries over web services. Company information like name,
category and services. Uses WSDL and SOAP. A program should
automatically be able to find and use the services it needs.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 30 / 34

XML

Protocols for new web services

I SOAP – encodes and transmits messages between programs on the
web.

I WSDL (Web Services Description Language) XML format to describe
web services (operations, messages, types etc).

I UDDI (Universal Description Discovery and Integration) Protocol for
distributed registries over web services. Company information like name,
category and services. Uses WSDL and SOAP. A program should
automatically be able to find and use the services it needs.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 30 / 34

XML

Protocols for new web services

I SOAP – encodes and transmits messages between programs on the
web.

I WSDL (Web Services Description Language) XML format to describe
web services (operations, messages, types etc).

I UDDI (Universal Description Discovery and Integration) Protocol for
distributed registries over web services. Company information like name,
category and services. Uses WSDL and SOAP. A program should
automatically be able to find and use the services it needs.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 30 / 34

XML

Protocols for new web services

I SOAP – encodes and transmits messages between programs on the
web.

I WSDL (Web Services Description Language) XML format to describe
web services (operations, messages, types etc).

I UDDI (Universal Description Discovery and Integration) Protocol for
distributed registries over web services. Company information like name,
category and services. Uses WSDL and SOAP. A program should
automatically be able to find and use the services it needs.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 30 / 34

XML

SOAP

Simple Object Access Protocol (a misnomer, not really object oriented).

Smaller and simpler to implement than earlier distributed protocols, which did
not become so wide spread.

Allows programs written in different languages and running on different
platforms to communicate.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 31 / 34

XML

SOAP

Simple Object Access Protocol (a misnomer, not really object oriented).

Smaller and simpler to implement than earlier distributed protocols, which did
not become so wide spread.

Allows programs written in different languages and running on different
platforms to communicate.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 31 / 34

XML

SOAP

Simple Object Access Protocol (a misnomer, not really object oriented).

Smaller and simpler to implement than earlier distributed protocols, which did
not become so wide spread.

Allows programs written in different languages and running on different
platforms to communicate.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 31 / 34

XML

The SOAP format

<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>
...

</soap:Header>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 32 / 34

XML

Use of SOAP

The Body element contains the message in XML. Two common cases are
”document-style” for arbitrary documents, and ”RPC-Style” for function calls.
The Body element may also contain a Fault element to describe that a fault
has occurred.

The Header element is optional, and intended for instructions to
intermediaries on the way to the message destination. Intermediaries may
add information, verify payment, etc.

SOAP is normally sent over HTTP, but other transport protocols (even e-mail)
can be used.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 33 / 34

XML

Use of SOAP

The Body element contains the message in XML. Two common cases are
”document-style” for arbitrary documents, and ”RPC-Style” for function calls.
The Body element may also contain a Fault element to describe that a fault
has occurred.

The Header element is optional, and intended for instructions to
intermediaries on the way to the message destination. Intermediaries may
add information, verify payment, etc.

SOAP is normally sent over HTTP, but other transport protocols (even e-mail)
can be used.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 33 / 34

XML

Use of SOAP

The Body element contains the message in XML. Two common cases are
”document-style” for arbitrary documents, and ”RPC-Style” for function calls.
The Body element may also contain a Fault element to describe that a fault
has occurred.

The Header element is optional, and intended for instructions to
intermediaries on the way to the message destination. Intermediaries may
add information, verify payment, etc.

SOAP is normally sent over HTTP, but other transport protocols (even e-mail)
can be used.

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 33 / 34

XML

XML – Summary

We have looked at
I the XML syntax
I Three ways to specify allowed elements: DTDs, XML schemas and Relax NG
I Name Spaces
I XSL for presentation
I XML support in Java
I SOAP, WSDL and UDDI for flexible web services

DD1335 (Lecture 9) Basic Internet Programming Spring 2010 34 / 34

	XML

