
Remember to run sudo texconfig pdftex paper letter if
you want to produce letter size instead of a4 size... And
switching back again...



From Theory to Practice:
NP-completeness for Every CS Student

Pilu Crescenzi
Università degli Studi di Firenze

Dipartimento di Sistemi e Informatica
Viale Morgagni 65, 50134, Firenze, Italy

Emma Enström Viggo Kann
KTH Royal Institute of Technology
Schools of Computer Science and

Communication, Education and Communication
in Engineering Science, Stockholm, Sweden

ABSTRACT
NP-completeness is one of the most central concepts in com-
puter science, and has been extensively applied in many di-
verse application areas. Despite this, students have prob-
lems grasping the concept and, more specifically, applying
it to new problems. Independently, we have identified these
problems at our universities in different countries and cul-
tures. In an action research approach we have modified
our courses and studied the effects. We here present some
promising results. Our approach is mainly based on the
idea of making more evident the fact that proving a new
NP-completeness result is not at all different from designing
a new algorithm. Based on this idea, we used tools typi-
cally used to teach algorithms (such as automatic program
assessment and algorithm visualization systems), accompa-
nied by other activities mainly devoted to augmenting the
motivation to study computational complexity and forcing
students to think and adopt a standpoint.

Categories and Subject Descriptors
F.1.3 [Computation by Abstract Devices]: Complexity
Measures and Classes—Reducibility and completeness; K.3.2
[Computers and Education]: Computer and Information
Science Education—Computer science education

General Terms
Algorithms, experimentation, theory

Keywords
Algorithm visualization, assessment, NP-completeness, self-
efficacy

1. INTRODUCTION
In his 1997 invited talk at a theoretical computer sci-

ence conference Christos Papadimitriou [20] observed how
the notion of NP-completeness has become a pervasive and
influential concept in many diverse disciplines, ranging from
“statistics and artificial life to automatic control and nuclear
engineering”, and gave some reasons for this success. One
of these is that NP-completeness is a “valuable intermediary

Copyright is held by the author/owner(s).
ITiCSE’13, July 1–3, 2013, Canterbury, GB.
ACM XXX-X-XXXXX-XXX-X/XX/XX.

between the abstraction of computational models and the re-
ality of computational models.” As a consequence, it is now
a widely accepted fact that NP-completeness is a fundamen-
tal concept that“any CS professional should understand and
be able to apply” [16].

On the other hand, it is also quite well-known that compu-
tational complexity is not easy to teach or to learn and, in
general, the problem of presenting theoretical foundations
of computer science in an integrated and motivating way
has been studied for decades (e.g., [17]) and is still a rich
research area for computer science education (e.g., [11]).

Motivation of the usefulness of a subject is important for
learning. For example, Light et al. [15] write:

In professional courses, the match between
a student’s understanding of what it means to
be an engineer or a doctor and what the course
seems to be providing can be crucial both for
motivation and intellectual development.

So if the students have trouble seeing the usefulness of sub-
jects like computational complexity they might have less in-
centive to learn.

We have seen many students who have trouble grasping
the central ideas and concepts of computational complex-
ity, where the most central concept is the reduction between
problems — the transformation (in polynomial time) of the
input of one problem into the input of another problem.
In our experience, students have trouble with reductions in
computational complexity on three levels: to come up with
the idea for a reduction, to prove that the reduction is cor-
rect, and to describe what the implications of the existence
of a reduction are. For instance, getting the direction of the
reduction right in a proof is considered hard. Now, getting
an idea for a reduction is very similar to getting an idea for
any algorithm that we want to design. Proving it to be cor-
rect is connected to mathematical skills and knowledge of
proof techniques. The implications of a reduction in a NP
completeness proof, which characteristics of a problem are
“transferred” or “preserved” during a reduction, is a separate
set of facts and connections that need separate attention.
The reduction is supposed to be used in a proof, but the
motivation for doing so is the same for all NP completeness
proofs. Many students do not see the purpose of designing a
reduction in this context and end up constructing exhaustive
search algorithms while working on their proofs.

Besides possible failures to expose the rich applications of
reductions, one missing ingredient while teaching these con-
cepts is that the concepts themselves are just another way
of usefully applying the algorithmic way of thinking which



is usually taught to all computer science students. In other
words, a further motivation to learn NP-completeness is that
designing reductions can be, in a certain sense, exactly the
same as designing algorithms: a student enjoying this latter
activity should also enjoy the former one.

If the very specific use of reductions in this context is
causing the trouble, maybe we could pinpoint exactly that
without simultaneously keeping students’ attention on the
algorithmic aspects. Previous research on reductions has
found that when confronted with the task of constructing
an algorithm based on a reduction, students tend to try
reducing abstraction by “opening up the black box” [1, 2],
which leads to algorithms for solving the original problem
instead of reducing it.

Finally, if the hardness is due to lack of experience with
proofs, this is a larger issue that possibly needs a cross-
curricular approach and is better attacked by special courses
like the ones described by [18]. Also the attempt to make
reductions“a habit of mind” [2] might fit into that approach.

We are tackling these issues in our courses at our univer-
sities in Florence and in Stockholm respectively, by mak-
ing the theoretical subject of computational complexity into
something more concrete, inspired by action research. We
decided to make use of two typical tools for teaching the de-
sign and the analysis of computer algorithms; an automated
program assessment system (Kattis) and an algorithm visu-
alization system (AlViE1). It is worth observing that even
though NP-completeness is one of the concepts students typ-
ically struggle with, as far as we know this concept is not
well covered by educational software: the only other experi-
ences we are aware of are the ones described in [6, 21]. We
also supported the use of the two tools with other activi-
ties mainly devoted to highlighting the usefulness of learning
computational complexity and to forcing students to think
and to adopt a standpoint. This paper describes the activi-
ties that we introduced in our courses and how the students
responded to them.

2. THE COURSES
The experiment was performed during 2011 and 2012 as

described below.

2.1 The Florentine course (TCS)
Theoretical Computer Science (TCS) is a third-year course

of the Computer Science bachelor program at the University
of Florence, , given by the first author. The prerequisites for
this course are Algorithms and Data Structures, Computer
Architecture, Discrete Mathematics and Logic, and Program-
ming. The course is formed by three parts: a part devoted
to the theory of computation (approximately, 36 hours), one
devoted to the theory of formal languages (approximately,
24 hours), and the last one devoted to the theory of compu-
tational complexity (approximately, 12 hours). The topics
covered during this latter part were the following: time com-
plexity and the class P (2 hours), 2-satisfiability, polynomial-
time reducibility, and 2-colorability (2 h), the maximum bi-
partite matching and the tower problem (2 h), the class NP,
NP-completeness, and 3-satisfiability (2 h), 3-colorability,
Hamiltonian path, and Subset sum (2 h), the Cook-Levin
theorem (2 h), and the class EXP, the class PSPACE, and
the Savitch theorem (2 h).

1http://alvie.algoritmica.org/

2.2 The Stockholm course (ADC)
Algorithms, Data structures and Complexity (ADC) is a

compulsory third-year course in the 5-year Computer Sci-
ence and Engineering program at KTH in Stockholm. The
prerequisites for this course are the same as for the Floren-
tine course.

ADC consists of 32 lectures (the first three two hours and
the rest one hour each), given by the third author, 12 two
hour tutorials in three groups, given by PhD and master
students, and 4 compulsory computer labs. The assessment
consists of two homeworks and a written theory exam. There
is also an oral exam for students aspiring to get the highest
grades.

The first 18 lectures, 7 tutorials and 3 computer labs cov-
ered construction and analysis of algorithms and data struc-
tures. The following lectures covered reductions (1 h), in-
troduction to complexity (1 h), Turing machines and unde-
cidability (2 h), Cook-Levin theorem (1 h), NP-reductions
and NP-completeness (3 h), approximation algorithms and
heuristics (3 h), other complexity classes (1 h). The tu-
torials in parallel covered reductions and undecidability (2
h), NP-reductions and NP-completeness (4 h), approxima-
tion algorithms (2 h), solution to the complexity homework
(1 h), and complexity classes (1 h).

3. THE ACTIVITIES
We have developed several activities meant to improve the

learning of computational complexity. Some of them were
used before in one of the courses but not in both.

3.1 The usefulness of learning complexity
The main motivational problem could be that the students

do not think that they will benefit from learning complex-
ity, outside of the course. In order to get proof of the in-
dustrial usefulness of computational complexity, we sent the
following questions to some former students now working in
industry:

1. Describe a case where knowledge of computational com-
plexity has helped you in your work.

2. Do you regard algorithmic knowledge and knowledge of
complexity as a qualification when recruiting computer
scientists?

We got several positive answers, leading to a 5 minute
motivational part of the lecture where complexity was in-
troduced in ADC. Three arguments were presented to the
students: future courses, engineering and employability –
at interviews at Vodaphone or Google, it is safe to assume
that some questions will be about complexity. The following
example of attacking an NP-hard real problem was given:

At Racasse we developed the price compari-
son service RedElvis. It was to find the cheapest
way to order books, music and video on the web,
considering delivery terms, discounts etc. We
showed that the complexity of the problem is too
high. Therefore we implemented some heuristics
instead of an optimal algorithm, and found that
simulated annealing gave solutions which in ev-
ery test were equal to or better than the best
solution a human could obtain. [12]



3.2 Implementation of a reduction
Kattis is an automated programming assessment system.

The typical way of using this system in teaching is described
in [10]. The specific exercise that the students were pre-
sented with was a reduction task, where they could choose
between two NP complete problems, and then produce code
that reduces input for that problem to input for a new prob-
lem that was described in their instructions. During the
process of solving the task, students had access to Kattis
24/7. Source code is submitted to Kattis, and the system
runs secret test cases and interprets the output of the sub-
mitted code, and then reports the results to the students
via email and/or a web interface. The feedback from Kattis
for this problem consists of information on whether the so-
lution was working or not, and in case it was not, whether
a “yes” instance had been transformed to a “no” instance or
vice versa and occasionally other hints on what could have
happened. This is a slight change in the feedback compared
to [9], where this particular exercise is described further.

3.2.1 Introduction to Kattis
The ADC students had already used Kattis in two labs

when starting to work on the NP reduction lab. The TCS
students had to be introduced in two steps in order to be-
come acquainted with the system itself and with the way
it specifies the input data. This was done by them first
submitting the tutorial problem Hello World!, and then a
solution to the sorting problem, at the very beginning of the
complexity section of the course.

3.2.2 The reduction computer lab
The students were given the text of the laboratory exer-

cise. The text also contained six theory questions that the
students were asked to answer before solving the exercise.

After the first 10-12 hours of the complexity parts of each
course, the students were asked to perform a peer review of
the answers given to the theory questions included in the
laboratory exercise text. This activity took 15 minutes.

During the next week, the students had to submit to the
Kattis system their solution of the laboratory exercise. In
the ADC course, the students also had to discuss their so-
lution with a TA during the scheduled computer lab hours.

3.3 Visualizations of reductions
As stated in [7], a reduction is, for all purposes, an al-

gorithm transforming instances of a starting problem into
instances of a target problem: it is then natural to use al-
gorithm visualization techniques while teaching reductions.
In both courses we used the AlViE system to present the
visualizations of two reductions in the following way.

Two of the three reductions from 3-satisfiability to Sub-
set sum, 3-colorability and Vertex cover (inspired by [14,
23]) were selected and presented theoretically in a lecture.
During the reduction explanation, the teacher made use of
the visualizations, which were successively made available on
the AlViE web site, so that the students could experiment
themselves. The two visualizations not only show how the
starting instance x is transformed into the target instance x′,
but they also show how a solution of x can be transformed
into a solution of x′.

3.4 Low budget clickers at lectures
The advantages with clicker questions are well-known, es-

A, B, C, D and E are decision problems. Suppose that B
is NP-complete and that there are polynomial-time Karp
reductions between the problems in the following way:

E ← A → B → C
l
D

What will we know about the complexity of A, C, D,
E? Mark with a cross each square that corresponds to
something we know for sure.

in NP NP-complete NP-hard
A
C
D
E

Figure 1: The NP-reducibility assignment(ADC).

pecially for teaching physics [8]. For example, they activate
the students by forcing every student to think and adopt
a standpoint, they reveal misconceptions immediately both
to the teacher and to each student, and the result is often
interesting to discuss: why did some/many students answer
differently than the rest? A goal is to reveal and remedy
misconceptions as early as possible in the learning process.

At KTH, there is no clicker system, so we constructed
our own low-budget system. We divided coloured (yellow
and blue) A4 sheets into four cards and distributed one yel-
low and one blue card to each student at the beginning of
the lecture. During the lecture, questions with two choices,
marked yellow and blue, were presented. Every student was
supposed to answer by showing either the yellow or blue
card. Then the teacher summarized the result in percentage
and discussed it.

The first year, the clicker questions were introduced in
an algorithm lecture before the complexity lectures. At the
end of the lecture, we asked (using the cards) whether we
should continue to ask such questions. Everyone answered
yes! We then used clicker questions in most complexity lec-
tures to reveal and remedy misconceptions on undecidability
and reductions. Some questions required discussion among
the students and some questions required fast response. The
second year clicker questions, with an addition of red cards,
were used throughout the whole course.

3.5 The NP-reducibility assignment
We have introduced a new type of complexity assignment,

which we have used both in the instruction and assessment,
see Figure 1. The assignment hides all details about the
involved problems and makes it impossible to tamper with
the contents of the black box. Just asking the students this
type of question, that they normally are not asked, directs
their attention to the fact that this is important in itself.
We had not used this type of question before, but it was
appreciated by both students and teaching assistants.

4. EVALUATION
We have evaluated the new activities in both courses (TCS

and ADC) in several ways, described below.



4.1 The evaluation surveys
At the end of the courses, all students were asked to fill in

a short questionnaire concerning the new activities and the
usefulness of the teaching material used during the last part
of the course.

4.2 The self-efficacy surveys
The term“self-efficacy”was introduced by Albert Bandura

in the 1970s and is further described by him later, in [4]. It
refers to an individual’s confidence in his or her own ability
to perform actions in order to achieve some desired outcome.
The score on a self-efficacy test is known to be an impor-
tant predictor of success [19]. However, self-efficacy beliefs
are not static, but something that changes with the indi-
vidual’s experiences. Therefore, self-efficacy has long been
used in education. There are studies in how self-efficacy
correlates with performance [13], how self-efficacy changes
during studies [22], and how it correlates with other factors
around the individual [3]. For our purpose, we know of no
established self-efficacy measuring instrument for theoretic
computer science. There are, however, instruments in math-
ematics [13, 19] and for programming [22, 3]. With these
as examples, and guided by [5], we have constructed an 8
items long self efficacy score where we have asked about the
abilities that students judge themselves as having within the
ADC course complexity contents. The same questions were
distributed at the first lecture and after the homework on
complexity 2012. The students could grade their self-efficacy
for each item on a scale between 0 and 100. Our goal was to
compare the change in self-efficacy scores between the two
occasions between the active and less active students. The
magnitude of the changes that would be considered was 25
steps, as this seems large enough to be a non-random size
of a change. The explained marks along the 100 step scale
were located at 25, 50, 75 and 100, respectively.

4.3 Results of the assessments
It is very hard to show that a change in a course has a

positive effect by comparing assessment results, since there
are so many variables involved. We do not believe in denying
some of the students access to activities that we think are
beneficial to them, so we cannot organize control groups.
However, we know which activities the ADC students at-
tended. Thus we can compare the number of activities at-
tended to the student’s performance on the two homework
assignments.

5. RESULTS
Since both courses and evaluation methods differ between

our schools, we report the results for each school separately.

5.1 The Florentine experiment
The experiment took place in May and June 2011, with

twelve participating students. According to statistics over
their grade on previous partial exams, the student sample
was mostly formed by medium/high level students.

The survey contained four questions concerning the use-
fulness of the lectures, the lecture notes, the algorithm re-
duction visualization, and the reduction computer lab. The
questions were to be answered with a score between 0 (not
useful at all) and 4 (very useful). The results are summa-
rized in Table 1.

Score 0 1 2 3 4
Lectures 0 0 1 3 8
Notes 0 2 1 4 5
Visualization 0 0 1 5 6
Computer lab 1 4 3 4 0

Table 1: Usefulness of the activity (Florence).

5.2 The Stockholm experiment
The ADC course ran from September to December 2011

and 2012, and the experiment took place in October and
November each year with about 140 students in 2011 and
150 students in 2012.

5.2.1 The survey results
At the final written theory exam, both years, each stu-

dent received one of two evaluation surveys. The first one
was an open question survey with questions about the ped-
agogical purpose of each activity and whether this purpose
was fulfilled. The second survey, analysed here, consisted
of closed questions on the meaningfulness and usefulness of
the activities. In 2011, all students who got this survey an-
swered it except two students, a total of 59. In 2012, all but
one answered the survey, a total of 70. The results are sum-
marized in Table 2. Each question also had a “don’t know”
alternative, which is not presented in the summary.

The largest difference between the two years is in the an-
swers about the motivational lecture, where more students
were inclined to answer “don’t know” the second year. Af-
terwards, many students expressed confusion over the term
“motivational lecture”, which might have been the reason for
this. Generally, when students were less positive in year 2,
they chose “don’t know”.

In 2012 we also asked the students where they learned
what (multiple choice), see Table 3. This table does not
entirely evaluate the same phenomena as the survey, and
should not be used to decide what activities should be part
of the course. For instance, the students did not perceive
that the visualizations had contributed much to their present
knowledge on the items we asked about here, yet 33% of
the same students stated that they had learned complex-
ity from the visualizations, and that these were meaningful
and contributed to learning. Those answers were given later
and in retrospect, while the results in Table 3 were supplied
together with the homework assignment. Apart from the
visualizations, all activities were considered contributing to
learning.

5.2.2 Comparison to assessments
In the ADC course, there are two homeworks assessing

the problem solving proficiency, the first is on algorithm
construction and the second one is on computational com-
plexity. Both homeworks are graded from A to F, each con-
tributing a third to the final grade.

One of the main reasons for changing the course was to
improve the performance ratio of the first time students at
the complexity homework, that is, the share of the students
passing the homework the first time it is given. The year
before the project started the performance ratio was 73%.
The first year of the project the ratio was the same, but the
second year it was improved to 87%.



1. Was the pedagogical purpose of the activity clear?

yes questionable no
motivational lecture 86/23% 11/16% 4/4%
clicker questions 92/90% 8/6% 0/1%
reduction visualizations 80/81% 16/10% 3/1%
reduction computer lab 90/81% 6/10% 4/0%

2. Did you find the activity meaningful?
yes yes not not
very some- parti- at

what cularly all
motivational lecture 21/10 61/17 7/10
clicker questions 38/59 44/36 13/3 4/0
reduction visualizations 28/40 38/40 26/10 8/1
reduction computer lab 65/67 35/23 0/1

3. Did you learn some computational complexity by working
with the activity?

yes no
clicker questions 50/69% 40/11%
reduction visualizations 45/33% 34/34%
reduction computer lab 94/86% 4/6%

4. Do you think that activities like this one can make it
easier to learn computational complexity?

yes no
clicker questions 69/73% 19/9%
reduction visualizations 95/69% 5/7%
reduction computer lab 96/89% 2/3%

5. Did the activity add something to the course?
yes no

motivational lecture 75/27% 4/13%
clicker questions 83/94% 6/1%
reduction visualizations 76/71% 13/6%
reduction computer lab 94/91% 2/1%

Table 2: Activity survey results (KTH). Answers
are presented as first year/second year percentages.

Where did you learn to. . .
1. . . . tell if a decision problem is in NP?
2. . . . describe the principles for an NP completeness proof?
3. . . . choose a suitable NP-complete problem to reduce?
4. . . . construct a reduction between given problems?
5. . . . prove correctness of an NP reduction?

a
lr
ea

d
y
k
n
ew

o
r
le
a
rn

ed
b
y

m
y
se
lf

le
ct
u
re
s

tu
to
ri
a
l

se
ss
io
n
s

v
is
u
a
li
za

ti
o
n
s

la
b
th

eo
ry

a
ss
ig
n
m
en

ts

re
d
u
ct
io
n
la
b

h
o
m
ew

o
rk

2

st
il
l
h
a
v
en

’t
le
a
rn

ed
th

is

1. 20% 59% 37% 2% 43% 39% 43% 0%
2. 14% 59% 44% 1% 30% 34% 36% 0%
3. 17% 46% 36% 1% 14% 28% 51% 3%
4. 14% 41% 36% 0% 24% 57% 52% 1%
5. 16% 34% 32% 0% 13% 32% 43% 5%

Table 3: Where different tasks were perceived to
have been learned. (N=148)

Activities hw1 grade mean grade
attended <hw2 grade hw1 hw2

>4 41% 3.2 3.6
year 1 >2 and ≤ 4 36% 3.3 2.9

≤ 2 20% 2.4 1.9
>4 49% 2.0 2.7

year 2 >2 and ≤ 4 34% 1.7 2.1
≤ 2 11% 1.7 2.0

Table 4: Comparison of student performances at
homework 1 and 2 (hw1 and hw2) depending on the
number of new activities attended (ADC).

We want to compare the results on the complexity home-
work with the number of attended activities, where the NP
reduction computer lab is counted as 1.5 if submitted early.
Of the students failing the complexity homework, only a
fourth had attended three or more of the six activities.

We have also studied differences in the performances of
the students between the two homeworks: 114 (136 in the
second year) students handed in both homeworks, 34 (57,
respectively) students received a better grade in the second
homework (complexity) than in the first (algorithms), 46/10
students received a better grade in the first homework than
in the second, and 34/69 students received the same grades.
During the first year, the two homeworks had about the
same mean grades, 2.8 and 2.6, in a linear scale where A is
5 and F is 0. The second year one of the assignments of the
first (algorithms) homework was considered harder, so the
mean grades became 1.9 and 2.5.

Our hypothesis was that students attending many activi-
ties should improve their grades to greater extent than stu-
dents not attending the activities. The results, supporting
the hypothesis, can be found in Table 4. For the first year we
do not have full information about the activity attendance
from all students, a few students who should rightly be in
the middle group (between 2 and 4 activities) might have
been counted in the lowest row (≤2) in the table. However,
this will not affect the overall picture. For the second year
we have full attendancy information. Also, we know for the
second year that the correlation between the attendancy of
the algorithm and complexity parts of the course is high.

Of the students (44 first, 86 second year) who attended al-
most all (more than 4) of the activities, almost half improved
their grade on the complexity homework. In the two groups
of students attending fewer activities, the number improv-
ing their grade is considerably lower. Also, the mean grade
is improved most in the top group. This is an indication
that the activities had a positive effect. Another explana-
tion would be that students benefit more from teaching and
activities in complexity than they do in algorithms.

As for the self-efficacy, only 35 students completed both
surveys, and only 4 out of these had attended three or fewer
activities. Hence, comparing their answers to the majority’s
would not have been feasible. The total results are presented
in Table 5. The items 4, 5, 6 and 8 relate closely to the three
difficulties identified by us, and the average score is lower on
these. Item 2 had a high starting score, and has therefore not
increased much. Most students increased their self-efficacy
during the period, but there were three occurrences of de-
creased self-efficacy, one for the item “I could determine that



threshold\item 1 2 3 4 5 6 7 8
25 32 25 31 20 24 28 30 27
50 19 14 24 8 18 16 23 18

Table 5: Number of students increasing their self-
efficacy values for items 1–8. (N=35)

a NP completeness proof is correct”, and two for the item
“I could determine in what direction a reduction should go
in order to be able to use it positively or negatively” (that
is, for problem solving purposes or for impossibility proofs
respectively.) For this item, the self-efficacy still decreased
when the threshold for changes was set to 50. Among the
other students, 20 increased their self-efficacy on this item
with at least 25 and 8 of them with at least 50. This was
the item with lowest frequency of increased self-efficacy be-
liefs. It is worth noticing, that the teaching assistants who
were grading the homework and the oral exam where this
assignment was presented, reported that this year (unlike all
other years) there were no occurrences of reductions in the
wrong direction. The students did not increase their beliefs
in their own abilities on this one as much as on the other
items, but they performed better than students had done
before with respect to this particular item. There has been
no in-depth statistical analysis on the results of these tests,
and the internal reliability of the instrument has not been
evaluated. The results are only used as reported above.

6. DISCUSSION
In order to connect all three parts of reductions that stu-

dents find especially hard, (coming up with an idea, prove
correctness and understand the implications of a reduction),
we believe that we should both teach each item separately,
and show how the parts relate to each other and to other
parts of the students’ knowledge, for instance by showing the
connections to algorithm construction. If a student has the
preconception that everything in the course will be about
algorithms, an exhaustive search would seem just as good
as any other algorithm for any purpose. On the other hand,
if a student clearly likes designing algorithms, it ought to
be relatively easy to learn what specific requirements are
always posed for reductions in the context of proving NP
completeness. By learning that there are such requirements
and by learning them, in a context free from details about
the involved problems, the student could later feel more com-
fortable in designing reductions.

In this study we have mainly addressed the students’ mo-
tivation and the implications of reductions in NP complete-
ness proofs. The assignment type in Figure 1, which was not
considered especially difficult on the exam, shows that this
was maybe not that hard after all. The fact that had been
at the core of many difficulties was not difficult in itself, af-
ter getting proper attention in teaching. The disposition to
reduce abstraction mentioned by [1, 2] also could not affect
the students’ thinking here, since nothing is known about
the problems involved. It is still unknown if this specific
difficulty also disappears in more complicated tasks.

We found that the students liked the new activities and
that most of them thought that the activities helped them
to learn computational complexity. It is hard to prove that
more students now will pass the exam, but the statistics in-

dicate that the students who attended most of the activities
improved their grade by doing this.

It is hard for many students to understand and show cor-
rectness of reductions, at least in Florence and Stockholm.
We think that these problems are universal in complexity
learning, and some of the concepts could be considered as
threshold concepts. In our next study, we will address cor-
rectness proofs and pseudo code. Later we will investigate
possible threshold concepts in computational complexity.

Finally, we would like to emphasize that our cooperative
course development model, where we exchanged activities
and discussed problems and solutions over university and
country borders, was very successful and satisfying.

7. REFERENCES
[1] Armoni, M. (2008). Reductive thinking in a quantitative

perspective: the case of the algorithm course. Proc. ITiCSE
’08, 53–57.

[2] Armoni, M., Gal-Ezer, J., and Hazzan, O. (2006). Reductive
thinking in undergraduate CS courses. Proc. ITiCSE ’06,
133–137.

[3] Askar, P. and Davenport, D. (2009). An investigation of factors
related to self-efficacy for Java programming among engineering
students. Turkish Online J. Educational Tech., 8:26–32.

[4] Bandura, A. (1986). Social foundations of thought and action:
A social cognitive theory. Prentice-Hall series in social learning
theory. Prentice-Hall, Englewood Cliffs, New Jersey.

[5] Bandura, A. (2006). Self-Efficacy Beliefs of Adolescents, ch. 14:
Guide forconstructing self-efficacy scales, pages 307–337.
Adolescence and Education. Information Age Publishing.

[6] Brändle, M.A. (2006). GraphBench: Exploring the Limits of
Complexity with Educational Software. Ph.D. Thesis, ETH.

[7] Crescenzi, P. (2010). Using AVs to Explain NP-completeness.
Proc. ITiCSE’10, 299.

[8] Duncan, D. (2006). Clickers: A new technology with exceptional
promise. Astronomy Education Review, 5(1), 70–88.

[9] Enström, E. and Kann, V. (2010). Computer lab work on
theory. Proc. ITiCSE ’10, 93–97.

[10] Enström, E., Kreitz, G., Niemelä, F., Söderman, P. and Kann,
V. (2011). Five years with Kattis – Using an automated
assessment system in teaching. Proc. FIE ’11.

[11] Goldreich, O. (2006). On Teaching the Basics of Complexity
Theory. Essays in Memory of Shimon Even, 348–374.

[12] Grundin, G. (2011). Personal communication.

[13] Iannone, P. and Inglis, M. (2010). Self efficacy and
mathematical proof: are undergraduate students good at
assessing their own proof production ability? Proc. 13th Conf.
on Research in Undergraduate Math. Education.

[14] Kleinberg, J. and Tardos, E. (2006). Algorithm Design.
Addison Wesley.

[15] Light, G., Calkins, S., and Cox, R. (2009) Learning and
Teaching in Higher Education: The Reflective Professional.
SAGE Publications Ltd.

[16] Lobo, A.F. and Baliga, G.R. (2006). NP-completeness for All
Computer Science Undergraduates: A Novel Project-based
Curriculum. J. Comput. Small Coll., 21(6), 1937–4771.

[17] Mandrioli, D. (1982). On Teaching Theoretical Foundations of
Computer Science. SIGACT News, 14(4), 58–69.

[18] Muller, O., Rubinstein, A. (2011). Work in Progress - Courses
Dedicated to the Development of Logical and Algorithmic
Reasoning. Proc. FIE’11.

[19] Pajares, F. and Miller, M.D. (1994). Role of Self-Efficacy and
Self-Concept Beliefs in Mathematical Problem Solving: A Path
Analysis. J. Educational Psychology, 86(2):193–203.

[20] Papadimitriou, C.H. (1997). NP-Completeness: A
Retrospective. Proc. ICALP’97, 2–6.

[21] Pape, C. (1998). Using Interactive Visualization for Teaching
the Theory of NP-completeness. Proc.
ED-MEDIA/ED-TELECOM, pages 1070–1075.

[22] Ramalingan, V. and Wiedenbeck, S. (1998). Development and
validation of scores on a computer programming self-efficacy
scale and group analyses of novice programmer self-efficacy. J.
Educational Computing Research, 19(4):367–381.

[23] Sipser, M. (2006). Introduction to the Theory of Computation.
Thomson.


