
Project Flip Jump

Group 17

Mikael Ahlberg

Daniel Ericsson

Axel Stenkula

Johannes Svensson

Fredrik Vretblad

Contents

1 Preface 4

1.1 Expected readership . 4
1.2 Version history . 4

2 Introduction 5

2.1 The users and their problems . 5
2.2 The main uses of the system . 5

2.2.1 Usage narrative one . 5
2.2.2 Usage narrative two . 6

2.3 The environment in which the system is to be used 6
2.4 The scope of the system . 6

2.4.1 In/Out list . 7
2.5 Factors to take into account . 8
2.6 Technologies and risks . 9

3 Glossary 10

4 User requirements de�nition 12

4.1 Functional requirements . 12
4.1.1 General . 12
4.1.2 Game . 13
4.1.3 High score . 19

4.2 Non-functional requirements . 20
4.2.1 Usability requirements . 20
4.2.2 Performance requirement 20
4.2.3 Space requirement . 21
4.2.4 Portability requirement . 21

4.3 Standards to be followed . 21

5 System architecture 22

5.1 Overview of system architecture . 22
5.1.1 Graphics . 22
5.1.2 Sound . 22
5.1.3 Game logic . 22
5.1.4 Input . 22
5.1.5 File system . 22

5.2 Illustration of the architectural model 23
5.3 Reused components . 23

2

6 System requirements speci�cation 24

6.1 Functional requirements . 24
6.1.1 General . 24
6.1.2 Game . 25
6.1.3 High score . 30

6.2 Non-functional requirements . 32
6.2.1 Usability requirements . 32
6.2.2 Performance requirement 33
6.2.3 Space requirement . 33
6.2.4 Portability requirement . 33

7 System evolution 34

7.1 Fundamental assumptions . 34
7.2 Anticipated changes . 34

7.2.1 Due to hardware evolution 34
7.2.2 Changing user needs . 35
7.2.3 Due to software evolution 35

8 Appendices 36

8.1 Minimal system con�guration . 36
8.2 Optimal system con�guration . 36

9 Index 37

3

1 Preface

1.1 Expected readership

Primarily the stakeholders except the users, such as system architects, developers,
resellers and project leaders.

1.2 Version history

Version Date Rational Changes Authors

1.0 2007/12/20 Initial version. - Mikael Ahlberg
Daniel Ericsson
Axel Stenkula
Johannes Svensson
Fredrik Vretblad

4

2 Introduction

2.1 The users and their problems

Our game idea is a 2D side-scrolling game which is based on a very simple idea.
The player needs to survive by jumping between blocks and avoid falling down. To
make it a little bit more interesting, the screen is moving and forcing the player to
move.

Since the game is based on a very simple idea and has no attribute that excludes
men or women, it has the potential to attract both. These simple games are usually
spread through community sites aimed at a young audience. Because of that, our
game is likely to be played by youngsters spending a lot of time on the Internet.
We're aiming our game at young people in the age of 15 to 25.

To play this game no earlier game experience is required, but it's likely that
our users will have some kind of gaming experience, because these kind of games
are usually shared between friends who plays a lot.

We are convinced that our game is played in a short period of time, say a
10 minute period. We're not expecting people to be playing this game for longer
periods since other more complex games tend to capture players interest in a way
that our game is not expected to do.

Since the game is focused on a short play-time, the game itself needs to be
quick-started and throw the player straight into the action. Also, the player is
probably already sitting by his or her computer when he or she decides to start
playing our game.

Our game is designed to give the user an entertaining time and to let the user
rest from other daily problems, such as homework etc. By playing our game the
users will feel relaxed and more motivated to return to their previous task. Another
reason to play our game is to pass time quickly if the user has some spare time.

2.2 The main uses of the system

The game should be fast to start up and shut down and it will not be possible to
save or pause a game. It should also be fun to play and challenging, therefore we
will o�er di�erent di�culty levels.

2.2.1 Usage narrative one

Dieter, a typical 15 year old German kid, is sitting in front of his computer and
doing some serious homework when suddenly his friend Wolfgang sends him a link
to a game through Facebook (a community site). Dieter feels like taking a break
and opens up the Internet page, downloads the game, and starts it. A new window
on his computer pops up where he can choose di�culty level. Dieter chooses easy
since it's his �rst time playing this game. A quick tutorial/text is displayed on the
screen telling him how to jump and move around. He presses a speci�ed button to

5

begin the game. He starts to jump between the blocks in the game, and notices how
the screen forces him to progress forward at a higher and higher speed. Suddenly
the screen �ips 90 degrees so he's heading upwards instead of forward. He was
quite surprised and almost missed the next block. A bit later he missed the blocks
and falls down outside the screen (due to the speed of the screen was too high,
he wasn't fast enough). The screen �game over� turns up, followed by a new high
score! He enters his name in the high score list. When the game asks him �do you
want to play again?� he answers no and the game shuts down. He felt the game
was really entertaining and now he feels more motivated to return to his homework.

2.2.2 Usage narrative two

Kajsa, who is a 20 years old Swedish girl, has nothing to do for the moment and
wants to do something entertaining. She then remembers a fun game she plays
from time to time (our game), and starts it up. She chooses the hard di�culty
level, of course, since she wants to have some challenge. She begins to play directly
(after pressing a key to start the game) and when the screen �ips 90 degrees for
the �rst time she's not surprised. Of course she can play a bit longer than Dieter,
but since she chose a harder di�culty the screen moves a lot faster. When she gets
�game over� the high score list pops up. This list is locally stored on the computer
and she has just beaten her old record. After writing in her name and quitting the
program she must let all her friends know about her new high score!

2.3 The environment in which the system is to be used

The system will be used in a home or o�ce environment for private use, because
it's a game that we believe people will play during their o�-time or when they need
to relax from work. Since most people today own a computer, this is the platform
that we will focus on for our game. We will use Java to build our game because of
it's portability on the computer platform, like PC and MAC. Because of this, users
who would like to play our game only has to have a Java-runtime software installed
on their system. It will also require a graphics card with OpenGL-support which
all cards since the end of 1990 have. Except this, the game itself will not require a
high-end system to be playable, since it's a very simple game (construction wise).
Because of the simplicity of the game it will be small which also makes it a lot
easier to distribute and for friends to share the game between themselves.

2.4 The scope of the system

Since our time is limited during this project, we have to have this in mind when
we're planning and building our system. But as you can see in our scope-list bellow,
we still have a reasonably amount of functions to be included in our game to make
it fun and playable in our limited time.

6

The scope-list is structured in four di�erent topics: graphics, sound, game rules
and misc. We've done this because it becomes much clearer this way and because
it's easier to structure our comprehensive work later on.

With accelerated di�culty level, we mean that the rate of which the screen is
moving will increase during play time and the frequency of screen �ips will also
escalate with time.

Graphics scalability is the ability to decrease or increase the quality of the
graphics in order to avoid performance drops and have a greater game experience,
which is a functionality we won't implement.

2.4.1 In/Out list

Topic In Out

Graphics

- 3D graphics X

- 2D graphics X

- Graphics scalability X

- Resize-able window X

- In-game menu system X

Sound

- In-game sound e�ects X

- In-game music X

Game rules

- Multiplayer X

- Single player X

- Cooperative play X

- Save game X

- Pause game X

7

- Changeable di�culty level X

- Accelerated di�culty level X

- Changeable controls X

Misc

- Local high score list X

- Tutorial text X

2.5 Factors to take into account

• When talking about games in general we always have the factor that people
don't know how to play the game, a factor that's common for most computer
based games. To solve this problem, most game developers sends an manual
with the game to help the user get started. We will have a short tutorial in
our game and an manual that comes with the game. This manual will not
only explain the game and it's settings, it will also include a FAQ-list con-
taining common problems that can occur during play, and how to solve them.

• To minimize problems and user frustration, we're planning to introduce the
game to a number of test persons before release. Those persons will then give
us important quality feedback so that we can adjust the system and manual
according to these results. Another aspect of the tests are to determine if our
game is entertaining. To measure the entertainment level, our test persons
will rate and comment the game and we will then evaluate the results and
make changes if necessary.

• Another important thing that we need to take into account is computer sys-
tem requirements to run this game, with a reasonable frame-rate and game
experience. With a reasonable frame-rate we mean that the user should not
notice any frame-rate drops which will lower the gaming experience. We need
to list both minimum hardware requirements and software requirements and
what versions of software that's needed (Java version etc.).

• We will do our own background music, and we need to take into account
what type of mood the music should be composed for.

8

2.6 Technologies and risks

The game will be developed for the Java-platform because of it's portability and
our existent knowledge of the Java language. We're planning to use Lightweight
Java Game Library (LWJGL), an open-source library that provides OpenGL and
OpenAL-support to Java in a simple and straight forward Application Program-
ming Interface (API). OpenGL is an API for drawing graphics on the screen while
OpenAL is an API for processing sound. It's released under the BSD-license model
and have reached a stable form. We've chosen to use this library during our game
development because Java itself doesn't provide any good hardware acceleration
for graphic intensive software.

Our problem here might be that our group has very limited knowledge about
OpenGL- and OpenAL-programming, though our Java-experience is at a high level.
This can lead to problems during the development stage but we are reasonable sure
that we can handle this since we've studied courses that will make our learning
progress of this material fast paced.

Another risk could be the closing of LWJGL or Java software that we are using
to build the game. This is however very unlikely to happen, because Java is a
major language today and is actually opening up their underlying source code as
we speak. Since LWJGL is available under the BDS-license it's already out in the
open and everyone is free to redistribute the code with the license attached.

OpenAL have recently been widely accepted and is used in many new big
commercial games, because it's free and open. It's therefore highly unlikely that
they will close access to this software-library in the foreseeable future.

Other risks include changes of product speci�cation and losing a member of the
team, but both of them have a low probability occurring.

9

3 Glossary

2D
Two dimensions.

3D
Three dimensions.

API
Application Programming Interface, an interface that other applications can access
to be able to use functions from the software that provides the API.

Functional requirement
This is a feature or function that should be in the system.

Interface
This is the connection into an application or similar to access and control, for ex-
ample; a graphical user interface has buttons and menus as the interface while a
command line interface has text commands as the interface.

Java
Object oriented programming language that compiles and runs in the Java Virtual
Machine, also known as the Java Runtime Environment, JRE. It's not open source
yet, but is in the process of making it open source. The new version 7 will be
completely free and open source under the GNU General Public License Version 2
(GPLv2).

Linux
A free, open-source and UNIX-like operating system.

Linux distribution
A Linux distribution is comprised of a Linux kernel, utilities from the GNU project
and a lot of packages (applications). All these packages are normally managed by
a packet managing system.

LWJGL
LightWeight Java Game Library, is a free and open-source library that provides an
API for developers to use. This contains game, graphics and sound functionality
that helps developers to faster and easier develop games in Java. The OpenGL and
OpenAL libraries are included in this package.

Mac OS
A UNIX-like operating system from Apple.

10

Non-functional requirement
Expected behaviour or constraint on the system.

OpenAL
Open Audio Library is a free and open-source library for audio output.

OpenGL
Open Graphics Library is a free and open-source library for graphics output.

Open-source
Software which have its source code available for everyone and which everyone can
download and change. Depending on the licence, the source code can be distributed

Operating system
Software that controls the hardware and provides a platform, API, for applications
to run on.

Terminal
It's a text-based command line interface where the user can type in commands to
do di�erent things like starting a program, in contrast to a graphical user interface
where you click on the desired program.

Texture
An image applied to a surface of an object.

Ubuntu Linux
A Linux distribution from Canonical.

UNIX
An operating system from 1969 which was widely used because of its multi-user
and multiprogramming abilities.

Windows
A operating system from Microsoft.

11

4 User requirements de�nition

4.1 Functional requirements

4.1.1 General

1. Tutorial text (High priority)
A tutorial text shall be displayed for the user
Rationale: A tutorial text helps the user to learn how to play the game. This
will also make the user develop his or her skills.

2. Durance of play (High priority)

The user shall be able to play the game until the in-game character falls to
the bottom of the screen, from the characters perspective.
Rationale: No limit of game play (falling down) makes the game more chal-
lenging and not very predictable.

3. Screen size (Medium priority)

The game shall be able to be played in fullscreen or window mode.
Rationale: Di�erent users tend to have di�erent desires of the screen size
and by providing this option to the user we can make those people satis�ed.

UC: Changing screen size

Primary actor: User
Stakeholders and interests: User: Wants to change the screen size.
Preconditions: The game is started.
Minimal Guarantee: The system is still running and the user is in the
menu system.
Success Guarantee (postconditions): The user was able to change the
screen size without any trouble.
Trigger: The user wants to change the screen size.
Main Success Scenario (or Basic Flow):

1. The user selects Options menu alternative options.

2. The user selects Fullscreen menu alternative and the window will go to
fullscreen mode.

3. The user selects the Back menu alternative and returns to the main
menu.

12

Extensions:

1.

1. The user selects the High Score menu alternative.

1. The high score lists is shown.

2. The user selects the Start game menu alternative.

1. The game starts.

3. The user selects the Quit menu alternative.

1. The game shuts down.

2.

1. The user selects the Mute menu alternative.

1. The sound (both in game and menu) turns o�.

2. The user selects the Back menu alternative.

1. The user returns to the main menu (step 2).

Frequency of occurrence: At least once in a gaming career.

4. Appearance of sound (Low priority)

The appearance of sound shall be optional through the menu system.
Rationale: Di�erent users tend to have di�erent desires of the appearance
of sound and by providing this option to the user we can make those people
satis�ed.

4.1.2 Game

1. Sideways movement (High priority)

The user shall be able to move the character to the right and left. When the
character stands still and the user moves the character, it has to accelerate
before reaching a constant speed. When the character is moving and the user
moves character in another direction, it has to de-accelerate before stopping.
Thereafter the character can accelerate in the new direction. The user can
move the character in mid-air as well as on the ground.

UC: Moving the character sideways

Primary actor: User
Stakeholders and interests: User: Wants to move the character sideways.
Preconditions: The user is currently playing the game.

13

Minimal Guarantee: The system is still running.
Success Guarantee (postconditions): The character moves sideways in
the desired direction.
Trigger: The user wants to move the character sideways.
Main Success Scenario (or Basic Flow):

1. The character stands still on the ground.

2. The user moves the character sideways.

3. The character accelerates and then reaches maximum velocity.

Extensions:

1.

1. The character is in mid-air.

Frequency of occurrence: Very often.

2. Character jump (High priority)

The user shall be able to make the character jump. When the character
is standing still and the user jumps, the character leaves the ground and
reaches a maximum jump height. When the character is moving and the
user jumps, the character leaves the ground with the same maximum jump
height in the moving direction.

UC: Jumping in-game

Primary actor: User
Stakeholders and interests: User: Wants to make the character jump.
Preconditions: The user is currently playing the game.
Minimal Guarantee: The system is still running.
Success Guarantee (postconditions): The character jumped in the given
direction.
Trigger: The user wants to make the character jump.
Main Success Scenario (or Basic Flow):

1. The character stands still on the ground.

2. The user makes the character jump in a given direction.

3. The character lands on a block.

Extensions:

1.

1. The character is moving.

14

3.

1. The character misses the block and falls down.

1. The user gets game over.

Frequency of occurrence: Very often.

3. Collect special item (Medium priority)

When the character touches an item, it disappears from the in-game world
and is then ready to be used.

UC: Picking up a special item

Primary actor: User
Stakeholders and interests: User: Wants its character to pick up an item.
Preconditions: The user is currently playing the game and the user sees
an item on the screen.
Minimal Guarantee: The system is still running.
Success Guarantee (postconditions): The character picks up the special
item.
Trigger: An item has appeared and the user wants to have it.
Main Success Scenario (or Basic Flow):

1. The user makes the character jump towards a block, with an item on
it.

2. The user makes the character land on the block and touch the item.

3. The item disappears from the in-game world and is ready to be used.

Extensions: -

Frequency of occurrence: A couple of times during each game session.

4. Use special item (High priority)

When the character is in mid-air and jumps again, a new jump will be made
originating from the current position.

UC: Using a special item

Primary actor: User
Stakeholders and interests: User: Wants its character to make a special
jump.
Preconditions: The user is currently playing the game.
Minimal Guarantee: The system is still running.

15

Success Guarantee (postconditions): The character makes a special
jump.
Trigger: The user wants its character to make a special jump.
Main Success Scenario (or Basic Flow):

1. The user makes the character jump to a block higher up, but realizes
that the jump will not be enough to reach the block.

2. The user makes the character jump once more while still in the air.

3. The character gets an extra push upwards and lands on the aimed
block.

Extensions:

3.

1. The user doesn't have any special items left to use.

1. The extra push doesn't happen.

Frequency of occurrence: A couple of times during each game session.

5. Screen movement (High priority)

The screen shall move upwards (characters point of view) in a certain speed
and the user needs to keep up with the pace or he/she will lose the game.

Rationale: The screen has to move in order for the player to progress in the
game.

6. Ability to jump through blocks (High priority)

The character shall be able to jump through the blocks on his way up, but
he shall not be able to fall through them on his way down.
Rationale: The character has to be able to jump through a block underneath
them to avoid getting trapped.

7. Di�culty level (High priority)

The user shall be able to choose a level of di�culty.

UC: Starting a game and select di�culty level

Primary actor: User
Stakeholders and interests: User: Wants to start a game and play on a
level according to the user skills.
Preconditions: The game is started.
Minimal Guarantee: The system is still running.

16

Success Guarantee (postconditions): A game has started and the user
was able to select the desired di�cult level.
Trigger: The user wants to start a game.
Main Success Scenario (or Basic Flow):

1. The user selects the Start game menu alternative.

2. The user selects the Easy di�culty menu alternative.

3. The user reads the tutorial text which is shown on screen, to learn how
to play the game.

4. The user con�rms that he/she wants to start the game.

5. The game starts.

Extensions:

2.

1. The user selects the Normal di�culty menu alternative.

2. The user selects the Hard di�culty menu alternative.

Frequency of occurrence: At least once every game session.

8. Screen speed (High priority)

The screen speed shall increase if a higher di�culty level is chosen.
Rationale: A faster screen-movement will lead to a bigger challenge for the
user.

9. Screen speed increase indication (Medium priority)

There shall be visual and audible indication when the speed level increase.
Rationale: The user must be aware of the speed increment before it happens
in order to cope with the speed change.

10. Receiving points (High priority)

The user will receive certain amount of points for every block he/she passes.
The user doesn't need to jump to every block to receive points for them, only
pass them in the y-direction.
Rationale: The user needs to something to compare their previous e�orts
with the recently achieved result.

11. Showing score (High priority)

The user shall be able to see his current score while playing.
Rationale: The user needs to know about his or her current progress.

17

12. Flip function (High priority)
After a random amount time the screen shall �ip and the user needs to con-
tinue its journey in the new direction.
Rationale: A �ip function makes the game less predictable and adds a new
dimension to the game.

13. Flip indication (High priority)
One second before the screen �ips an indication of the �ip direction will be
shown on screen. The screen can only �ip 90 degrees at a time.
Rationale: The user must be aware of the screen �ip in order to know which
direction to progress in.

14. Mirroring sideways movement (Medium priority)

When the in-game character jumps outside of the screen (from his view: left
or right), the character will then reappear on the other side of the screen at
the same height.

UC: Moving the character outside the screen

Primary actor: User
Stakeholders and interests: User: Wants to move the character to the
other side of the screen.
Preconditions: The user is currently playing the game.
Minimal Guarantee: The system is still running.
Success Guarantee (postconditions): The character moves to the other
side of the screen.
Trigger: The user wants to move the character to the other side of the
screen..
Main Success Scenario (or Basic Flow):

1. The character makes a jump to a side of the screen.

2. The character disappears.

3. The character is immediately transported to the other side of the screen.

Extensions: -

Frequency of occurrence: Very often.

18

4.1.3 High score

1. Storing of high score (High priority)

The system shall be able to keep track of the high score list so the users can
compare the results with their previous e�orts (locally stored).
Rationale: A high score list lets the user compare their results against pre-
vious results.

2. Enter high score list (High priority)

The user shall be able to enter the high score list when the score is better
than one of the existing scores.

UC: Entering name in high score list

Primary actor: User
Stakeholders and interests: User: Wants to enter his/her name on the
high score if he/she got enough points and then return to the menu.
Preconditions: The user has played the game and lost.
Minimal Guarantee: The user returns to main menu.
Success Guarantee (postconditions): The user has returned to the main
menu and if the user got enough points, he/she has entered his/her name in
the High score list.
Trigger: User gets game over.
Main Success Scenario (or Basic Flow):

1. The user beats at least one score on the High score.

2. The user enter his/her name for the High score list.

3. The new High score results is displayed.

4. The user selects the Back menu alternative and returns to the main
menu.

Extensions:

1.

1. The user didn't beat any score on the High score.

1. Jump to stage 3.

Technology and data variations list: Reads/writes the High score from/to
a �le.

Frequency of occurrence: Every game session.

19

3. Check high score (Medium priority)

The user shall be able to check the current locally stored high score list.
Rationale: An option to view the high score list is important for the serious
gamer as well as the beginner to show about their progress and skills without
having to start a new game.

4. Reset high score (Low priority)

The user shall be able to reset the high score list.
Rationale: The user might want to reset the high score list if the score is too
hard to beat.

5. High score sound (Low priority)

The system shall play a special sound e�ect when the a previous score on
the list has been beaten (when the user has lost the game).
Rationale: A special sound e�ect will alert the user that he or she is now on
the high score list.

4.2 Non-functional requirements

4.2.1 Usability requirements

1. Tutorial text

The user shall be able to learn how to play the game in one minute by reading
the tutorial text.

Rationale: A tutorial text helps the user to learn how to play the game in a
faster way than having to �nd out by themselves.

2. Easy to install

The game shall be easy to install.

Rationale: An easy to install game is important for not losing any potential
user with less computer experience. This is extra important since it's a
small game and the patience of the users is lower than with a larger and
more complex game.

4.2.2 Performance requirement

1. Low start up time

The game shall at most take �ve seconds to start after the user has read the
tutorial text and starts the game.

Rationale: Since it's a small game it has less data to load than a typical
published game and the user then expects our game to load quick.

20

4.2.3 Space requirement

1. Game size

The game shall at maximum take 20MB.

Rationale: The game needs to be small enough to send between friends and
distributed over the Internet.

4.2.4 Portability requirement

1. Multi platform playability

It shall work on OSX, Windows and Linux.

Rationale: To attract as many users as possible at least on OSX, Windows
and Linux.

4.3 Standards to be followed

The product and process standards that we must follow are:

� Easy to follow menu system

� Standardized way of moving the character

� Behaves and looks like an original 2D-game

If we have these factors in mind when constructing the game, the users will feel
welcome and more inclined to play our game.

21

5 System architecture

5.1 Overview of system architecture

5.1.1 Graphics

This object only handles the graphical part and do not a�ect any other part of the
system. It will receive information from the Game logic object for processing and
then display the result on the screen.

5.1.2 Sound

This object only handles the audio and do not a�ect any other part of the system.
It will receive information from the Game logic object for processing and then send
the result to the sound card.

5.1.3 Game logic

This object controls everything. This will contain the main loop of events. It will
control everything from the game physics and game rules to what is to be heard
and seen (sound and graphics). It will receive information from the Input object
about what the user is up to, and acts accordingly. Sends and receives information
to and from the File system object.

5.1.4 Input

This object interprets the input from the keyboard and sends the information to
the Game logic object.

5.1.5 File system

This object controls the input and output from and to �les, such as textures,
sounds, high score list, settings and similar.

22

5.2 Illustration of the architectural model

5.3 Reused components

Everything will be reusable since everything we'll write will be modular.

23

6 System requirements speci�cation

6.1 Functional requirements

6.1.1 General

1. Tutorial text (High priority)
Function: Display a tutorial text.
Description: Displays a tutorial text for the user to learn how to play the
game and to make the user develop his or her skills.
Inputs: None.
Source: The application.
Outputs: The tutorial text is shown.
Destination: The game screen.
Action: The system handles the users choice of di�culty level. Afterwards
the system prints hard coded tutorial text on the gaming screen.
Pre-condition: User has started a new game and selected a di�culty level.
Post-condition: A tutorial text has been shown.
Side e�ects: None.

2. Durance of play (High priority)

Function: Play time.
Description: Allow the user to play until the character falls to the bottom
of the screen.
Inputs: None.
Source: The application.
Outputs: Amount of play time.
Destination: The game screen.
Action: The system lets the user play the game until it notices that the
users character has fallen to the bottom of the screen. When it happens, the
user gets game over.
Pre-condition: A new game has started.
Post-condition: The user gets game over.
Side e�ects: None.

3. Screen size (Medium priority)

Function: Adjusting the screen size.
Description: Changes the size of the screen to oblige the user preferences.
Inputs: Chosen screen size.
Source: The user.
Outputs: Change in screen size.
Destination: The game screen.
Action: The system handles the users choice of screen size and changes

24

the screen accordingly. If the user selects window mode, the game will be
presented in a window drawn on the computer desktop. If the user selects
fullscreen mode, the game will take up the entire screen.
Pre-condition: The system has started and the user is in the menu.
Post-condition: The screen size has changed.
Side e�ects: None.

See user requirement for use case.

4. Appearance of sound (Low priority)

Function: Option of sound
Description: Changes the appearance of sound in the game, muted or full
sound.
Inputs: Chosen sound option.
Source: The user.
Outputs: Sound is played or not played.
Destination: Computer speakers.
Action: The system handles the users choice of the sound option. If the
user has selected mute, no sound will be played. If the user has selected full
sound, music and in-game sound e�ects will be played.
Pre-condition: The system has started and the user is in the menu.
Post-condition: Sound is played if chosen.
Side e�ects: None.

6.1.2 Game

1. Sideways movement (High priority)

Function: Move sideways.
Description: Moves the character sideways as the user commands.
Inputs: User input.
Source: The user.
Outputs: The character moves sideways.
Destination: The game screen.
Action: The system handles input from the user and moves the character
accordingly. If the character stands still, the system will accelerate the char-
acter before reaching maximum speed. This will work even if the character
is in mid-air.
Pre-condition: A new game has started and user is playing.
Post-condition: The character moved sideways.
Side e�ects: The character might fall down to the bottom of the screen.

See user requirement for use case.

25

2. Character jump (High priority)

Function: Character jumping.
Description: The character jumps as the user commands.
Inputs: User input.
Source: The user.
Outputs: The character jumps.
Destination: The game screen.
Action: The system handles input from the user and makes the character
jump accordingly. If the character stands still it can jump upwards. If the
character is running it can jump in the moving direction. The character
leaves the ground with the same hard coded jump height. The system has
to supervise the characters movement to be able to determine how the jump
will a�ect the character.
Pre-condition: A new game has started and the character is on a block.
Post-condition: The character has jumped.
Side e�ects: The character might fall down to the bottom of the screen.

See user requirement for use case.

3. Collect special item (Medium priority)

Function: Pick up item.
Description: The character picks up a special item.
Inputs: User input.
Source: The user.
Outputs: The character picks up an item.
Destination: The game screen.
Action: The system presents an item on a block on the screen. If the user
touches the item, the system has to check if there is a free spot in the charac-
ters inventory. If there is a free spot, the item disappears from the in-game
world and is ready to be used. If there is no empty place in the inventory
list, the item will remain in the world.
Pre-condition: A new game has started and the user is playing.
Post-condition: There is at least one item ready to be used.
Side e�ects: None.

See user requirement for use case.

4. Use special item (Medium priority)

Function: Use item.
Description: The character uses a special item and gets a special jump.
Inputs: User input.
Source: The user.

26

Outputs: The character makes a special jump.
Destination: The game screen.
Action: The system handles input from the user to make a special jump
while the character is in the air. The system checks if the character has an
special item in its inventory list. If it has a new jump will be made originat-
ing from the current position. If there was no item, nothing will happen.
Pre-condition: The character is in mid-air.
Post-condition: The character made a special jump if the character had a
special item.
Side e�ects: The character might fall down to the bottom of the screen.

See user requirement for use case.

5. Screen movement (High priority)

Function: Move the screen.
Description: Moves the screen in a certain speed upwards, pushing the
character forward.
Inputs: None.
Source: The application.
Outputs: The screen is moving.
Destination: The game screen.
Action: The system moves the screen in a certain speed depending on the
current di�culty level.
Pre-condition: A new game has started and the user is currently playing.
Post-condition: The screen has moved.
Side e�ects: None.

6. Ability to jump through blocks (High priority)

Function: Jump through blocks.
Description: The character jumps through blocks on it's way up.
Inputs: None.
Source: The application.
Outputs: None.
Destination: The game screen.
Action: The system allows the character to pass through blocks on it's way
up. If the character lands on a block, the system will not let it pass through.
Pre-condition: A new game has started and the user is currently playing.
Post-condition: The character has passed a block.
Side e�ects: None.

27

7. Di�culty level (High priority)

Function: Choose di�culty level.
Description: The user selects di�culty level for the game.
Inputs: Chosen di�culty level.
Source: The user.
Outputs: The corresponding screen speed to the selected di�culty level.
Destination: The game screen.
Action: The system handles the user's choice of di�culty level and there-
after calculates the proper game screen speed and then sends it forward.
Pre-condition: The user has selected the start new game option in the
main menu.
Post-condition: Adjust the screen speed accordingly.
Side e�ects: None.

See user requirement for use case.

8. Screen speed (High priority)

Function: Speed increment.
Description: The screen speed increases to higher rate.
Inputs: Current speed level.
Source: The application.
Outputs: New speed level.
Destination: The game screen.
Action: The system checks the current speed level and the elapsed time
since the last speed increment. If the elapsed time is high enough, the speed
will change to a higher level.
Pre-condition: A new game has started and the user is currently playing.
Post-condition: The screen speed has changed.
Side e�ects: None.

9. Screen speed increase indication (Medium priority)

Function: Indication of speed change.
Description: Indicates the user that the screen speed has changed to a
higher rate.
Inputs: Speed increment.
Source: The application.
Outputs: Visual and audible indication.
Destination: The game screen and computer speakers.
Action: The system notices a screen speed change and presents a visual and
audible indication to the user that the screen speed has changed.
Pre-condition: The screen speed has increased.
Post-condition: An indication has been occurred.
Side e�ects: None.

28

10. Receiving points (High priority)

Function: Receive points.
Description: The user receives points for every block passed.
Inputs: User input.
Source: The user.
Outputs: The application.
Destination: The game screen.
Action: The system checks if the user has passed a block. If a block has
been passed the collected amount of points will increase with the score based
on the current speed level.
Pre-condition: A new game has started and user is currently playing.
Post-condition: A set of points is received.
Side e�ects: None.

11. Showing score (High priority)

Function: Show current score.
Description: Displays the user's current score in-game.
Inputs: None.
Source: The application.
Outputs: A presented score.
Destination: The game screen.
Action: The system presents the current users score while playing the game.
Pre-condition: A new game has started and the user is currently playing.
Post-condition: The score is shown.
Side e�ects: None.

12. Flip function (High priority)

Function: Flip the screen.
Description: The screen �ips (rotates) in a certain direction.
Inputs: None.
Source: The application.
Outputs: Rotated screen.
Destination: The game screen.
Action: The system will at a randomly selected event rotate the screen 90
degrees to the left or to the right. The game will continue as before in the
new direction.
Pre-condition: A new game has been started and the user is currently
playing.
Post-condition: The screen has rotated.
Side e�ects: None.

29

13. Flip indication (High priority)

Function: Indication of rotate direction.
Description: Indicates the �ip direction that the screen will rotate too.
Inputs: Flip rotation.
Source: The application.
Outputs: Flip indication.
Destination: The game screen.
Action: The system will present an indication of what direction the �ip will
have.
Pre-condition: A �ip rotation will occur.
Post-condition: An indication was shown to the user.
Side e�ects: None.

14. Mirroring sideways movement (Medium priority)

Function: Mirror movement.
Description: Moves the character from one side to the other when crossing
the side of the screen.
Inputs: User input.
Source: The user.
Outputs: A mirror movement.
Destination: The game screen.
Action: The system checks if the character has gone outside the left or the
right sides of the screen. If the character is outside, it will be transported to
the other side of the screen.
Pre-condition: A new game has started and the user is currently playing.
Post-condition: A mirror-movement has happened.
Side e�ects: The character might fall down to the bottom of the screen.

See user requirement for use case.

6.1.3 High score

1. Storing of high score (High priority)

Function: Store the high score list.
Description: Stores the high score list to the local computers hard drive.
Inputs: User input.
Source: The user.
Outputs: Store high score list.
Destination: Computer hard drive.
Action: When one score on the high score list has been beaten and the user
has entered his or her name, the new high score list will be saved to the local
computers hard drive.

30

Pre-condition: High score has been beaten.
Post-condition: The high score was saved to the hard drive.
Side e�ects: None.

2. Enter high score list (High priority)

Function: Enter the high score.
Description: Checks the high score list and lets the user enter a name if a
score was beaten.
Inputs: A high score list.
Source: The computers local hard drive.
Outputs: User name.
Destination: The game screen.
Action: When a game has ended, the system will load the current high score
list. If a score on the high score list was beaten, the system will present an
option to the user to enter a name.
Pre-condition: A game has ended.
Post-condition: A name has been entered.
Side e�ects: None.

See user requirement for use case.

3. Check high score (Medium priority)

Function: Check the high score list.
Description: Presents the current locally stored high score list to the user.
Inputs: High score list.
Source: The computer hard drive.
Outputs: The current high score list.
Destination: The game screen.
Action: The system loads the high score list and prints it to the screen for
the user to view.
Pre-condition: The system has started and the user is in the menu.
Post-condition: The high score was shown.
Side e�ects: None.

4. Reset high score (Low priority)

Function: Reset high score list.
Description: Resets all the scores on the high score list.
Inputs: High score list.
Source: The computer hard drive.
Outputs: The reset high score list.
Destination: The computer hard drive.

31

Action: The system loads the high score list and resets each value in it.
Pre-condition: The system has started and the user is in the menu.
Post-condition: The high score list was reset.
Side e�ects: None.

5. High score sound (Low priority)

Function: Play high score sound.
Description: Plays a sound e�ect when a previous score on the high score
list was beaten.
Inputs: High score list.
Source: The computer hard drive.
Outputs: Special sound e�ect.
Destination: The computer speakers.
Action: When a game is over, the system has loaded the high score list and
the score is good enough to enter the high score list, the system will play a
special sound e�ect to alert the user.
Pre-condition: A game has ended and a score on the high score list has
been beaten.
Post-condition: A special sound e�ect was played.
Side e�ects: None.

6.2 Non-functional requirements

6.2.1 Usability requirements

1. Tutorial text

The user shall be able to learn how to play the game in one minute by
reading the tutorial text. This text will appear right you when start playing
the game and the user will be able to read the text as long as he/she wants.
This will contain instructions on how to move the character and game rules.

Rationale: A tutorial text helps the user to learn how to play the game in a
faster way than having to �nd out by themselves.

2. Easy to install

The game shall be easy to install. It shall only require a double click on the
executable �le for the game.

Rationale: An easy to install game is important for not losing any potential
user with less computer experience. This is extra important since it's a
small game and the patience of the users is lower than with a larger and
more complex game.

32

6.2.2 Performance requirement

1. Low start up time

The game shall at most take �ve seconds to start after the user has read the
tutorial text and started the game. We must make sure that textures and
sound �les can be loaded as fast as possible.

Rationale: Since it's a small game it has less data to load than a typical
published game and the user then expects our game to load quick.

6.2.3 Space requirement

1. Game size

The game shall at maximum take 20MB. We have to make sure that the size
of the textures and audio �les are not to large.

Rationale: The game needs to be small enough to send between friends and
distributed over the Internet.

6.2.4 Portability requirement

1. Multi platform playability

The game shall be able to work on a set of di�erent platforms due to Java's
platform independence. It shall at least work on OSX, Windows and Linux.

Rationale: To attract as many users as possible at least on OSX, Windows
and Linux.

33

7 System evolution

7.1 Fundamental assumptions

� Working computer

The user must have a working computer to start and play the game.

� Keyboard

The user must have a keyboard connected to the computer to be able to play
our game.

� Operating system

The user has one of these operating systems: Windows XP, Mac OS X and
Linux.

� Java >= 1.5

Since we will write the game for Java version 1.5 the user must have version
1.5 or later of the Java Runtime Environment (JRE).

� Know how to start an application

The user needs to know how to start the application, which is done either
by clicking on the game binary or running the game from a terminal.

� Understand a simple menu system

The user needs to know how you usually control a normal menu system.

� Understand English

The user needs to be able to read and understand English, since this game
will only feature English text.

7.2 Anticipated changes

7.2.1 Due to hardware evolution

Our game is so small that the hardware evolution, in a performance viewpoint, will
not have any e�ect on it which means that we will not need to change the game
because of the hardware evolution.

If hardware vendors decides to drop the support for OpenGL or OpenAL we
will have to code around that and use some other libraries. If that happens, there
will probably be layers that will handle those calls since OpenGL and OpenAL are
quite widespread. Otherwise we can use the Java libraries for graphics and audio.

34

7.2.2 Changing user needs

It's very unlikely that the user needs will change in a way that there will not be
any users left that wants to play a game like ours.

7.2.3 Due to software evolution

If Java decides to drop the backward compatibility we will have to modify the code,
if any, where they have made changes.

35

8 Appendices

8.1 Minimal system con�guration

In order to play the game, the user needs to have a computer that is able to run
JRE 1.5 or higher. The user also needs to have a keyboard and a video card with
OpenGL acceleration. This will give the user a adequate gaming experience. If
any of these are missing, the game will not be playable.

8.2 Optimal system con�guration

Same as the minimal system con�guration, but for a greater experience, the user
will also need a sound card. This will enable the user to get the ultimate Flip Jump
experience.

36

9 Index

A

Architectural model, 23

C

Character
Jump, 14, 26
Special item, 15, 26
Special jump, 27
Sideways movement, 25

Compatibility, 35

D

Di�cult level, 16

E

Expected readership, 4

F

Flip function, 18, 29
Flip indication, 18, 30

G

Game size, 21, 33
Graphics scalability, 7

H

Hardware evolution, 34
High score

Check high score, 19, 31
Enter high score, 19, 31
Reset high score, 20, 32
Storing high score, 18, 31

I

Installation, 20, 33

L

LWJGL, 10

O

OpenGL, 11

37

OpenAL, 11

P

Performance, 20, 33

R

Receiving points, 17, 29
Risks, 9

S

Screen movement, 16, 27
Screen size, 12, 24
Screen speed, 17, 28
Showing score, 17, 29
Software evolution, 35
Sound

Appearance of sound, 13, 25
High score sound, 20, 32
Option of sound, 13, 25

Space, 21, 33
System con�guration, 36
System requirements

Non-functional, 11, 32
Functional, 10, 24

System scope, 6

T

Technologies, 9
Tutorial text, 12, 20, 24, 32

U

Usability, 20, 32
User requirements

Non-functional, 11, 20
Functional, 10, 12

V

Version history, 4

38

	Preface
	Expected readership
	Version history

	Introduction
	The users and their problems
	The main uses of the system
	Usage narrative one
	Usage narrative two

	The environment in which the system is to be used
	The scope of the system
	In/Out list

	Factors to take into account
	Technologies and risks

	Glossary
	User requirements definition
	Functional requirements
	General
	Game
	High score

	Non-functional requirements
	Usability requirements
	Performance requirement
	Space requirement
	Portability requirement

	Standards to be followed

	System architecture
	Overview of system architecture
	Graphics
	Sound
	Game logic
	Input
	File system

	Illustration of the architectural model
	Reused components

	System requirements specification
	Functional requirements
	General
	Game
	High score

	Non-functional requirements
	Usability requirements
	Performance requirement
	Space requirement
	Portability requirement

	System evolution
	Fundamental assumptions
	Anticipated changes
	Due to hardware evolution
	Changing user needs
	Due to software evolution

	Appendices
	Minimal system configuration
	Optimal system configuration

	Index

