Requirements Document
A Computer Program for the Computation of Equilibria
of finite Games and other Game
Theoretical Computations

Group 20

Per Frost
Marcus Lang
Markus Thurlin
Christer Hedberg
Christopher Engelbrektsson

Contents

1. Preface

1.1. Of this document

1.2. Version history

2. Introduction

2.1. The users of the system and the problem the system solves for them
2.2. Briefly on game theory

2.3. The main uses of the system

2.4. Usage narratives

2.4.1. Usage narrative I

2.4.2. Usage narrative II

2.4.3. Usage narrative III

2.5. The context/environment in which the system is to be used

2.6. The scope of the system

2.7. The main factors that need to be taken into account when designing

and building the system

.8. Technologies and risks

Glossary

User requirements definition

.1. Functional requirements

.2. Non-functional requirements

.3. Use cases

System architecture

.1. Overview of the anticipated system architecture
System requirements specification

.1. Functional requirements

.2. Non-functional requirements

.3. Use cases

System evolution

Appendix I, Some of the underlying mathematics
Index

W O 1 00 O O OO U U b i D W DN

1. Preface
1.1. Of this document

This document enumerates the requirements on a system for the
computation of the equilibria of finite games and other game theoretical
computations and sketches the anticipated architecture of the system in
sufficient detail to serve as a model for its implementation. The
expected reader (from which the actual reader can of course deviate
significantly) is (i) a software developer intending to use the document
as a model for an implementation of the system the requirements on which
this document describes (ii) a person intending to determine whether a

system satisfies the requirements on the same.
1.2. Version history
1.2.1. Version I

This is the first version of the requirements document, created as its
authors* intend to use it as a model for the implementation of a system,
the requierments of which this document describes, for which a clear
statement of the requirements on it and an outline of its expected
architechture is beneficial.

* The authors are listed on the first page beneath the title.
2. Introduction
2.1. The users of the system and the problem the system solves for them

Certainly it would be absurd to suggest that a person who is educated in
mathematics and game theory would have any greater interest in a
computer program to solve finite games, having long since lost interest
in the analysis of particular finite games, and being able to transform
any finite game into problems solvable by means of existing numerical
analysis packages.

Game theory is however useful not only to specialists, and the lack of
intuitive software usable by the non-specialist greatly hinder its
application to more trivial matters where it despite the insignificance
of the problems would be of great use.

For these reasons it is intended that the system is to be used by
persons who know of game theory, engineers and accountants alike, but do
not really know how to apply it, and who would make use of it in their
working environment, for example software engineers and people with a
need to analyse situations that can be modelled by game theory but who
either lack the resources to hire specialists or have been placed in
positions in which they are expected to produce analyses of this type.
With access to appropriate documentation of the software such a person
could reasonably easily learn, for example, how to construct game trees,
assign values to coalitions, and make other simple representations of
situations which he has need to analyse. A specialist would probably not
use this software because he would choose more complex approaches to the
problems, however there is nothing that keeps him from doing so for
simple quick results. Despite not knowing how to transform these
representations into linear programming problems and in particular not
knowing how to solve these resulting systems, these persons would only
need to be able to interpret the solutions that the program itself
outputs and then realise that they are valid and nontrivial to find.

2.2. Briefly on game theory

Game theory is a branch of applied mathematics. It studies the
interactions between players or agents in a certain situation and is
hence often used for economic purposes. Depending on the type of game or
situation the agents will act differently to achieve their goal, a
common goal in the economic context would be to maximise profit. The
concept of finite game means that there is a definite beginning and end
of the game as opposed to infinite games where these are unknown and
there is a constant goal to keep playing. Our software will focus only

on finite games. A solution concept to a game is a condition that
determines an equilibrium of a game or the predicted outcome of the
game, the strategy that will be used by the players. An equilibrium is
when competing forces are balanced and in general is of course something
one does not wish to change from. The Nash equilibrium is a solution
concept of a game with multiple players in which the agents individually
have chosen a strategy and have nothing to gain by changing it. Subgame
perfect equilibrium further builds on this and refers to a part of a
larger game and their behaviour for this part represents Nash
equilibrium. Another solution concept is correlated equilibria which is
the distribution in a game where strategies are chosen at random by this
distribution and no player wants to change from this strategy.

2.3. The main uses of the system

The main uses of the system would be the construction and editing of
representations of finite games, the calculation of subgame perfect
equilibria, Nash equilibria, and the development of other computer
programs that need to make use of optimal strategies in finite games.
Provided that the documentation is sufficiently good and includes
examples of modelling real world data, the system would probably not be
(at least purposelessly) used to support bad decisions.

2.4. Usage narratives
2.4.1. Usage narrative I

Consider for a moment Bob, a software engineer who works in a small
software company with a total of about 40 employees. In his line of work
tacit collusion (a kind of untold agreement between companies concerning
a certain market strateqgy) frequently occurs, but is not viable for the
company to hire an professional analyst to calculate the potential
profits.

When dealing with tacit collusion Nash equilibria are highly relevant.
While he may sometimes be able to calculate the Nash equilibria he will
often be faced with games where he simply won't be able to apply the
theory himself.

Bob has a program that can solve these kind of problems for him in an
instant. He starts up the program, and inputs the data for his specific
problem. Given that the data and the game is correct, the program then
presents a solution to the problem. His company then gets a competitive
advantage over other companies who do not make use of these types of
calculations.

2.4.2. Usage narrative II

A student named Mary is studying game theory wishes to find the
solutions to a horrid but mathematically elementary problem and could by
means of the software find equilibria, model the game; and even, due to
the ease of finding equilibria use the system to explain empirical data.
She could then, at a computer in school or at home, use the program to
do exactly this by simply entering the relevant data of the problem. In
this context the program is used in parallel with studying the related
theory. She is now familiar with the program and can after the course
use it for when needed.

2.4.3. Usage narrative III

Joe runs a small company is needs to evaluate a contract, but it is so
complicated that his experience gives him no insight into what
incentives other actors will have to fulfil the terms. The system can
then be represented game theoretically and analysed, perhaps in
preparation for a more detailed analysis by a specialist. If he is in
more equal negotiations he can make use of Mechanism design to make the
contract results in the incentive to the actors that the parties intend.
(Mechanism design in general terms means to try to design and control
the game to acquire the desired outcome.)

2.5. The context/environement in which the system is to be used

The program will normally be used on modern office computers, due to the
target user group being people in small to mid-sized companies with
limited technology. A larger company would most likely hire a specialist
instead. However given a high performance environment it may be used to
solve more extensive and complex problems.

The system will be used both, in the form of its visual frontend as a
tool for analysing data, the editing of game trees, normal form games
and as an aid to the interpretation of equilibria, but will be
insufficient to perform a complete analysis of any more involved
problems, and will therefore by tightly integrated with numerical
analysis software such as Matlab.

Although it would be nice the program will most definitely not be
platform independent, for we wish to leverage the platforms that exist
and to have their rather extensive userbases simply install it almost as
if it were a plugin. The system will be designed to be used on Windows.

2.6. The scope of the system

Constructing/editing representations of finite games x

Calculating subgame perfect equilibria X
Calculating Nash equilibria X

Full support for uncommon solution concepts X
Graphical editing of game trees, normal form games etc. X
Calculating correlated equilibria X

Auction theory X

User defined solution concepts X
Infinite games x

2.7. The main factors that need to be taken in to account when designing
and building the system

* Due to the mathematical nature of the program its correctness is

of great importance and a lot of effort should be directed to assuring
it.

* While some understanding of the theory is necessary to use the
software, it should be a goal to try and make the system understandable

for as many people as possible.

* It should be a design goal to integrate the program with Matlab.

This serves to insure that even specialists may find features to
construct game trees and process the resulting representations useful
with whatever proprietary software they use.

2.8. Technologies and risks

The system would be written in C++ and make minimal use of ad-hoc
numerical algorithms and instead making use of mature libraries and
software such as GNU Multi-Precision Library (GMP), GNU Scientific
Library (GSL) and Multiprecision Polynomial Solver (MPSolwve). Each
subprogram being essentially a reduction between problems in game
theory, the totality which is to be possible to string together either
by means of pipe(a command line function to stream data between
modules), by the planned frontend, or by a software developer using the
modules as black-box solvers.

Possible risks could be using and, as already mentioned, problems with
connecting the different modules due to unfamiliarity with required
third party software and libraries. Another possible risk is the the
need for groupmembers to learn the required mathematics and the need to
study relevant algorithms, which may lead, not necessarily to setbacks,
but to that features that are particularly difficult to implement may
go unimplemented.

3. Glossary

Strategy
A strategy is a way of deciding which moves to choose in a game.

Solution concept
A solution concept is a class of combinations of strategies that can be
considered reasonable.

Information set
An information set is a set of games states between the player to move
in them cannot distinguish.

Transition between game states
A transition between game states is move by a player.

Player
A player is an agent who makes moves in the game.

Game tree

A game tree is essentially the same thing as an extensive form game in
which players make moves and progress through game states until the
reach a game state in which noone is to move.

Normal form game
A normal form game is a game in which each player chooses their moves
simultaneously.

Mixed extension of game

The mixed extension of a game is game in which the players chooses the
probabilities with which the moves in the game of which the mixed
extension is an extension and in which the payoff is the expected
payoff.

Nash equilibrium
A Nash equilibrium is a set of strategies from which it is not
advantageous to deviate lest others also deviate.

Standard input

Standard input is a file from through which a program can read input to
it. Terminals and terminal emulators typically write keyboard input to
them to this file. It exists on POSIX compliant systems.

Standard output

Standard output is a file to which a program can write output. What is
written to this file is commonly displayed by a terminal or terminal
emulator. It exists on POSIX compliant systems.

4. User requirements definition
4.1. Functional requirements

Define information sets
The system shall provide a method for the user to define information
sets.

Define player sets
The system shall provide a method for the user to define player sets.

Define transition between elements
The system shall provide a method for the user to define transitions
between elements.

Associate players with transitions
The system shall provide a method for the user to associate players with
transitions.

Define preferences for game states/payoffs for game states
The system shall provide a method for the user to define
preferences/payoffs for game states.

Tree—-editing tool
The system shall allow for taking graphical input and converting into a
game tree.

Calculate pure Nash equilibrium

The system shall, given a wvalid input, calculate the pure Nash
equilibria and return it in a requested

output form.

Calculate Nash equilibria in the mixed extension of a game (mixed Nash
equilibria)

The system shall, given a valid input, calculate the mixed Nash
equilibria and return it as requested output form.

Calculate correlated equilibria
The system shall, given a valid input, calculate the correlated
equilibria and return it as requested output form.

Calculate sub game perfect equilibria
The system shall, given a wvalid input, calculate the sub game perfect
equilibria and return it as

requested output form.
4.2. Non-functional requirements

Performance

It should not take more than 15 seconds to find Nash equilibria in the
mixed extension of a

normal form game with eight alternatives for each player.

Compatibility
It should run on Windows XP Service Pack 2.

Reliability
The program should not crash or hang more than once per 1000 problems
solved.

Licensing

All external libraries or executables used should as far as possible be
licensed under LGPL,

X11/MIT, UoI/NCSA or similar open source licenses.

Each respective author retains all rights to his source code.

Support
Help on how the program is used should be included. It must enable any
person with some knowledge in computers to install and run the program.

4.3. Use cases

Use case: Calculate a Nash-equilibrium

Primary actor: User

Minimal guarantee: The user is notified if the calculation was
successful or not.

Success guarantee: The user is given an output from the calculation of
the Nash-equilibrium.

Main Success Scenario:
1. The user requests the calculation of Nash-equilibria.

2. The user inputs a representation of a finite game.
3. The user chooses what output format to be used.

4. The system calculates the Nash equilibrium.

5. The user receives a solution output.

Extensions

3a. The user enters an invalid format.

5a. The user aborts the calculation of the Nash-equiibrium before it has
been completed and

therefore the user can not receive a solution output.

Use case: Construct a Game-tree

Primary actor: User

Minimal guarantee: The user is notified if the construction of the game
tree was successful or not.

Success guarantee: A representation of a game tree is constructed.

Main Success Scenario:

1. The user defines sets of players

2. The user defines game states

3. The user creates transitions between game states

The user assigns game states to unique players.

The user assigns game states to information sets.

A representation of a game tree is constructed.

The user defines payoffs for each player at the subset of the game
states from which there are no transitions.

8. The representation of the game tree is presented to the user.

~ o U1

Extensions
5a.1l. The user has entered incorrect data.
2. The user is notified that this does not produce a game tree.

Use case: Create a transition between game states

Primary actor: User

Minimal guarantee: A user-specified transition between game states is
defined.

Success guarantee: A user-specified transition between game states is
defined.

Main Success Scenario:

1. The user selects an ordered pair of game states.

2. The user selects a name for the transition.

3. A transition between the game states in the ordered pair going by the
specified name is created.

Extensions

la. 1. The user selects a pair of game states such that the first
element and the second element

coincides.

2. The user is notified that this is not a transition.

3. The user chooses another pair of game states.

2a. 1. The user enters an invalid name.

2. The user is notified that the name may not be used

3. The user chooses another name for the transition.

5. System architecture

5.1. Overview of the anticipated system architecture

It is anticipated that the system shall be ordered into three modules (i) a
module to edit, create and view

extensive games, normal form games and solution concepts for them, the solution
concepts including for extensive

games, subgame prefect equilibria, pure nash equilibria in the to the extensive
game corresponding normal form game,

mixed n$

game corresponding normal form game and correlated equilibria of the
corresponding normal form game, for normal form

games,

the correlated equilibria, the pure nash equilibria and the mixed nash
equilibria, (ii) a module to transform

extensive games into corresponding normal form games and (iii) a module to
given, a representation of a game in a

format supported by the game tree editor, the format in which the representation
is, a solution concept format

supported by the game tree editor in which the output is desired, and a solution
concept, find the solution on the

desired form.

It is anticipated that the module (ii) will be implemented in the form of a
software library used as an application

program interface by the other modules when it is needed, therefore its input
and output formats are internal to the

system.

It is anticipated that that module (iii) will be implemented as a collection of
computer programs that read

representations of games from standard input and print representations of them
to standard output, and that they will

use of a linear algebra submodule (iv).

It is anticipated that the linear algebra submodule will be an application
programming interface developed by others

satisfying the properties detailed in the section of this document pertaining to
licensing.

6. System requirements specification
6.1. Functional requirements
Functional requirements

Define information sets
The system shall provide a method for the user to define information sets.
This shall be tested by having any person define an information set.

Define player sets
The system shall provide a method for the user to define player sets.
This shall be tested by having some person define an information set.

Define transition between elements

The system shall provide a method for the user to define transitions between
elements.

This shall be tested by having some person define a transition between some pair
of two elements.

Associate game states with players

The system shall provide a method for the user to associate players with
transitions.

This shall be tested by having some person associate a player with some game
State.

Define preferences for game states/payoffs for game states

The system shall provide a method for the user to define preferences/payoffs for
game states.

This shall be tested by having some person associate a player with a game state.

Tree—-editing tool

The system shall allow for taking graphical input and converting into a game
tree.

The tool will provide methods for creating the graphical input and use the
required defined elements to create a game tree.

The tree shall constantly be displayed regardless of its completeness.

The game tree shall be stored as tttt and shall not be larger than tttt.

The user shall be able to write this tree to disk.

Calculate pure Nash equilibrium

The system shall, given a wvalid input, calculate the pure Nash equilibria and
return it in a requested output form.

The time from when the functions receives the input to the time when it returns
the result shall not exceed ten seconds if the game

has two players and they have no more than eight actions each.

The user shall have the option of storing the result to disk.

Calculate Nash equilibria in the mixed extension of a game (mixed Nash
equilibria)

The system shall, given a valid input, calculate the mixed Nash equilibria and
return it as requested output form.

The user shall have the option of storing the result to disk.

Calculate correlated equilibria

The system shall, given a valid input, calculate the correlated equilibria and
return it as requested output form.

The time from when the functions receives the input to the time when it returns
the result shall not exceed ten seconds if the game

has two players and they have no more than eight actions each.

The user shall have the option of storing the result to disk.

Calculate sub game perfect equilibria

The system shall, given a valid input, calculate the sub game perfect equilibria
and return it as requested output form.

The time from when the functions receives the input to the time when it returns
the result shall not exceed ten seconds if the game

has two players and they have no more than eight actions each.

The user shall have the option of storing the result to disk.

6.2. Non—-functional requirements

Performance

It should not take more than 15 seconds to find Nash equilibria in the mixed
extension of a

normal form game with eight alternatives for each player.

Compatibility
It should run on Windows XP Service Pack 2.

Reliability
The program should not crash or hang more than once per 1000 problems solved.

Licensing

All external libraries or executables used should as far as possible be licensed
under LGPL,

X11/MIT, UoI/NCSA or similar open source licenses.

Each respective author retains all rights to his source code.

Support

Help on how the program is used should be included. It must enable any person
with some

knowledge in computers to install and run the program.

The help should include basic descriptions off the functions available to the
user.

7. System evolution

7.1. Fundamental assumptions about of the system

The system is based on the fundamental assumptions that Microsoft Windows
will be installed on the computer on which it is to run, that Matlab will
be installed and that the user has knowledge of game theory.

7.2. Anticipated future changes to the system

Due to the development of software to make use of graphics processing units and
as the module, that the module

(iii) is computationally intensive and will use much vector arithmetic it is
anticipated that the system could be

improved by replacing the linear algebra submodule of (iii) with one that makes
use of the graphics processing unit.

As computing power increases in the future, the limit on how big systems
that can be solved can be raised, and support for more resource demanding game
theory problems can be added.

8. Appendix I, Some of the underlying mathematics

A 3-tuple (P, S, F) is a game if (and since this is a definition precisely if),
P is a set of players, F is a set of

strategies”l is an |S|-tuple of payoff functions, which are functions from the
cartesian product of the strategy set

to the reals.

~1 Not necessarily a pure strateqgy, for the mixed extension of a game is again a
game.

