
AAMS

(Automatic Assignment Management System)

Group 21

Ajanth Thangavelu

Roberto Castañeda Lozano

Tony Karlsson

Love Jäderg̊ard

1

Requirements document

Contents

1 Preface 4

1.a Expected readers . 4

1.b Version history . 4

2 Introduction 5

2.a Users and problems that the system solve for them 5

2.b Main uses of the system . 5

2.c Context/environment in which the system is to be used 6

2.d Scope of the system . 7

2.e Main factors . 8

2.f Technologies and Risks . 8

3 Glossary 10

4 User requirements definition 13

4.a User requirements . 13

Definition and management of the courses 13

Collection and organization of assignments 14

Editing and grading of assignments . 15

Answer to the assignments . 15

Reporting . 16

RES system link . 17

General non-functional requirements . 18

4.b Use cases . 19

Definition and management of the courses 19

2

Collection and organization of assignments 21

Edition and grading of assignments . 22

Answer to the assignments . 24

Reporting . 25

RES system link . 27

5 System architecture 30

5.a Control-flow model . 30

5.b Data-flow model . 30

6 System requirements specification 31

Definition and management of the courses 31

Collection and organization of assignments 32

Edition and grading of assignments . 34

Answer to the assignments . 35

Reporting . 37

RES system link . 39

7 System evolution 41

8 Appendices 42

8.a Logical organization of data . 42

data.xml . 42

settings.xml . 43

unsentemails.xml . 44

8.b Structure and interface of the RES system . 44

9 Index 45

3

1 Preface

1.a Expected readers

If this would be a real project this document would be read by the developer team of this system
and developers of systems that use this system. Other people interested in this document would
be administrative personnel that have to decide on using this system in their organization or not.
This is not a manual so end users would probably not be interested in this document. However,
this is not a real project: it is a part of the Software Engineering course, so the expected readers
are just the members of group 21 and the teachers of the course.

1.b Version history

� Version 1.0 (first version): 2008-01-04

4

2 Introduction

2.a Users and problems that the system solve for them

University teachers usually have to deal with courses with a very large number of students. Col-
lecting assignments from all of them by e-mail can be very time-consuming and can even lead to
mistakes made by the teacher (forgetting to open some e-mail, etc.). Furthermore, the manual
processing of all assignments (reading, commenting and marking them) is a task that requires a
lot of extra-concentration, thus making the teachers waste their time with organizing instead of
focusing on the homework itself.

It is in the interest of universities to streamline the handling of assignments so that teachers
can allocate time to other tasks than organizing files on their computers and figure out what to do
with bad formatted e-mails from students. it is also important that the handling of assignments is
safe so that students get the right grade. We believe that a system like ours will reduce the need
for sedative and caffeine for both students and teachers.

Although our system will be designed with the needs of teachers in mind, AAMS could also
be used in a more general way: not just by teachers but by anyone who needs to collect and review
documents from a large group of people. For example project managers.

The solutions to some common problems that our system will solve are:

� The interaction with the e-mail server, in order to collect all the assignments, will be auto-
mated.

� The assignments will be automatically organized in a folder system to every student and
course.

� Some tools will be given in order to attach comments and marks to each assignment.

� There will be the possibility of creating reports in order to make a general vision of the state
of the course and relevant information.

� The communication with the RES system (used to register students in courses, add marks to
their assignments, etc.) will be automated, letting the possibility of expanding the automa-
tion to other university systems opened.

2.b Main uses of the system

The main use of system is to let the university teachers manage the collection and administration
of course assignments easily. The system is able to download from an e-mail account and organize
the assignment deliveries, showing a clear vision of the state of the delivery to the user. The

5

system allows the user to add comments to the assignments, grade them, and send easily the
feedback to the students. Some reports, showing clearly the general state of the course and the
different deliveries, can be quickly generated. In order to make the workload lighter, the system can
synchronize with the RES system. These are three usage narratives that exemplify some possible
applications of our system:

� “Gunnar is a university professor at the institution for anthropology. He is back at his office
feeling a bit dizzy. He just returned from a party held for one of his colleagues that is going
to central Sahara for six months, studying ceremonial dances for young females. Gunnar
is very jealous of his colleague. He decides to do some work to clear his mind from the
dark thoughts. Yesterday was the last day for the students to submit their latest homework
assignment. Gunnar starts AAMS (Automatic Assignment Management System) and the
program downloads the students assignments from the e-mail server, presenting him with
a list of all the students that have submitted their work. He cannot focus on the list, the
letters are just dancing in front of him. He decides he is too drunk to work and that he
would be better off if he got some sleep. He thinks it would be better if he stays the night at
the office, his wife would probably agree with him. In the morning, after a quick “shower”
using wet tissues, he resumes work. He starts AAMS and some late assignments drop in.
He starts to work through the list, reviewing and commenting all students. His comments
are automatically sent back to the students. Finally he instructs the program to update the
university database using the RES system. Gunnar likes AAMS because it provides him with
the tools he needs to manage the students homework assignments in a consistent way. And
there is no risk of loosing any student work no matter how drunk he is.”

� “Stina-Britta is a student at the Center for Gender Studies, today she is going to submit her
paper on Early feminism in northern Finland. She is late, she has too many boyfriends and
too little time. The teacher must have her paper before 18.00. She prepares an e-mail to her
teacher. In the subject line she writes her name, the code for the course and the name of the
assignment. She attaches a pdf-file, containing her work, to the e-mail. 17:30 she pushes the
send button and says a prayer that her e-mail will arrive before 18:00. 18:15 she receives a
confirmation e-mail from the AAMS. It tells her that her teacher received her paper at 17:58.
Stina-Britta is relieved and to calm down she decides to go and watch a movie with her fifth
boyfriend.”

� “John Doe works as a project manager for a consulting company. John is the middleman
between clients and consults. Neither John nor the consults has the time to have face to face
meetings so often, therefore he once a week receives email reports from his consults.

John uses Automatic Assignment Manage System (AAMS) to organize and manage all re-
ports for each project the consults has been assigned. AAMS makes sure John does not miss
to handle any report and allows him to give individual feedback to the consults.”

2.c Context/environment in which the system is to be used

AAMS is a stand-alone application that will run on the teachers personal computer. It is not a
service that runs on a server. The supported operating systems will be Windows XP, GNU/Linux
(Ubuntu 7.x) and FreeBSD 6.2. It will probably run under a broader range of Linux-like systems.
The hardware needed will be any personal computer that can run any of the supported operating
systems. AAMS requires a connection to the Internet and an e-mail account supporting SMTP
(Simple Mail Transfer Protocol) and POP3 (Post Office Protocol version 3).

6

The software system will be used in environments like university, office or other environments
where someone have to handle electronic documents submitted by a large group of people, giving
them feedback from these.

2.d Scope of the system

Topic In Out
Importing students information from student list files x
Importing homework assignments from an e-mail account x
Editing comments and marking assignments x
Sending results and comments to the students by e-mail x
Producing reports about the state of the course or the grades for a specific student
or assignment

x

Calculating statistics and mark averages x
Exporting marks to student grades files x
Importing and exporting information from the RES system through intermediate
files

x

Supporting shared management for several teachers x
Graphical user interface x
Secure e-mail communication x
Password protection for locally stored information x
Cross-platform compatibility (Windows and some UNIX based operative systems) x
Complete e-mail client functionality x

Figure 1: Scope of the system

In principle, our system will be able to import lists of students in order to define courses.
These lists could be made manually or extracted from the specific course management system that
every institution usually has. In our system, we will just develop the link with the RES system,
letting it opened to future additions. Likewise, the system will be able to export lists of marks
for assignments: the link with the RES system will be developed as well. The statistics and mark
averages calculations are too particular for each course, so we have decided to let them out of the
scope of our system. However, some general information will be provided about the status of each
delivery, etc.

Another reasonable feature that will be out of the boundaries of our system is the shared
management of a course. A course managed by several teachers sharing the evaluation of as-
signments could be emulated, for example, splitting the course into several virtual courses, one
for each teacher; so this functionality, although could be useful in some cases, is not completely
indispensable in the context in which the system is used.

Last, we have decided not to provide encryption for the local stored information that the sys-
tem will manage, because the application is mostly intended for personal computing environments,
without public access.

7

2.e Main factors

� If the system receives the expected assignment from a student, a receipt must be sent back to
her. If something is wrong (for example, there is some required file missing), the system will
automatically send a notification to the student. It is important, in general, to ensure that
the students can receive all the needed feedback from the teacher (related to the assignments)
without the help of an external application.

� The teacher must be able to use his or her usual e-mail account to receive the assignments
in. The system will only react to the expected homework e-mails (recognizing them by
the content of the “subject” field). However, it is suggested to work with a dedicated e-mail
account in order to prevent coordination errors (e.g., an assignment e-mail that is accidentally
marked as “read” with an external e-mail client).

� The system must include some flexibility in order to manage usual “exceptions” in the as-
signments collection task (e.g., if a student gives his or her homework to the teacher by
hand).

� Security features will be implemented in the e-mail communication and in the communication
with the RES system.

� The user interface shall be clean and easy to use (e.g presenting previous e-mails in case of
a follow up from an incomplete assignment instead of letting the user of the system search
manually). As the aim of the system is to save time for the user, the user interface must be
also focused in this way.

� The data will be stored locally, combining a folder structure with a XML (eXtensible Markup
Language) file system.

� The system must be cross-platform compatible, in order to do not limit the number of users
by this reason: it must compile and run in some of the most currently representative operative
systems.

� The system must be usable enough to allow a user with the minimal computer user knowledges
use it without requiring too much learning time.

2.f Technologies and Risks

The software will be written in the programming language C++. C++ is a widely used program-
ming language supported by most platforms. The familiarity of the C++ language in the group is
good, therefore the risk of using the language itself is small. A possible risk is the group’s lack of
familiarity with cross-platform development.

wxWidgets is going to be used to develop the GUI (Graphical User Interface). WxWidgets is
an API (Application Programming Interface) that is used to write cross-platform GUI applications.
The supported platforms are Windows and some Unix-based operative systems. A possible risk is
the group’s lack of knowledge in developing wxWidgets software. And since the system is going
to be used on different platforms another possible risk is the group’s lack of knowledge in cross
platform development with GUI applications.

8

For the integrated email-client in our system we are going to use an open source email-library
or parts of an existing open source email-client. The protocols we are going to use are POP3 (Post
Office Protocol version 3) for retrieving emails of the server and the SMTP (Simple Mail Transfer
Protocol) for sending emails to the server. Both of these protocols are going to use secure transfer
using an encryption protocol. A possible risk for using a library or parts of an existing client is
that we do not know how well the code is written, which could affect the stability of the entire
system.

We will use the XML (eXtensible Markup Language) standard to store information used in
the system. XML is a widely used standard for storing of information on files. For implementing
this into our system we will use an open source library. Since the know-how exists in the group
there is a low risk using this technology.

Our system is going to be able to communicate with the RES system. The RES system is
a system used at KTH for handling the grading of student’s homework assignments and exams.
A possible risk is the limit in testing the communication between our system and the RES sys-
tem because the files used to store the information (the students and their grades for homework
assignments and exams) in the RES system have restricted access.

9

3 Glossary

Glossary

API: Application Programming Interface, source code interface that an operating system or li-
brary provides to support requests for services to be made of it by computer programs.
8

assignment: course work with a defined deadline. The system assumes that the assignment must
be handed in electronic format, corresponding to a single student. 5, 13–15, 20–24, 27, 31–36,
38, 42

attachment: in the system context, file that is included in an outgoing e-mail. 5, 13, 16, 22, 24,
25, 34, 36

e-mail account: in the system context, e-mail address that identifies a location to which e-mail
messages can be delivered, usually provided to the user by a company or institution (e.g. the
university of the teacher). 5–8, 14, 21–23, 25, 32, 36, 37

C++: general-purpose, imperative programming language, regarded as a mid-level language, as
it comprises a combination of both high-level and low-level language features. 8

course: in the system context, a set of assignments related to some students and a professor. 5–7,
13, 14, 16, 19–21, 25, 28, 31, 37, 39, 42

e-mail client: In the system context, front-end computer program used to manage e-mail. 7–9,
14, 24, 34

e-mail server: computer running a program that transfers electronic mail messages from one
computer to another. 5, 6, 9, 14, 16, 32, 36

e-mail (electronic mail): method of composing, sending, storing, and receiving messages over
electronic communication systems. In the context of this document we will always refer to
it as the Internet based system. 5, 14, 16, 21, 24, 32, 36, 42

subject line: field of the header of an e-mail that contains a brief summary of the contents of the
message. 6, 8, 13, 32, 43

FreeBSD 6.x: Unix-like free operating system descended from UNIX via the Berkeley Software
Distribution. 6, 18

feedback: in the system context, information about an assignment that is given back from the
professor to the student. 6–8, 16, 21, 22, 36, 37

GNU/Linux Ubuntu 7.x: predominantly desktop-oriented Linux distribution based on Debian
GNU/Linux. 6, 18

GPL: General Public License, widely used free software license, originally written for the GNU
project. It is a strong copyleft license that requires derived works to be available under the
same copyleft. 18

GUI: Graphical User Interface, type of user interface which allows people to interact with a
computer presenting graphical icons, visual indicators or special graphical elements called
”widgets”, instead of offering only text menus, or requiring typed commands. 8

10

grade: in the system context, teacher’s standardized evaluation of a student’s work. 5, 15, 18, 23,
28, 35, 39, 40

header: section of an e-mail that consists of fields such as summary, sender, receiver, subject, and
other information about it. 25, 32, 43, 44

homework: see assignment. 5, 13–15, 20–24, 27, 31–36, 38, 42

Integer: In the system context, data type that represents some finite subset of the mathematical
integers. 42–44

Internet: worldwide, publicly accessible series of interconnected computer networks that transmit
data by packet switching using the standard Internet Protocol. 6, 21, 25, 32, 36, 37

mailbox: In the system context, folder where messages are delivered and stored, e-mail equivalent
of a Letter box. 36

mark: see grade. 5, 15, 18, 23, 28, 35, 39, 40

POP3: Post Office Protocol version 3, Internet standard protocol used to retrieve e-mail from a
remote server. 6, 9, 25, 32

plain text: ordinary ”unformatted” sequential file readable as textual material without format
processing. 16, 36

professor: in the system context, the person in charge of collecting, commenting and grading the
assignments from a course. 5–8, 13, 14, 19–23

RES system: system used in the CSC (Computer Science and Communications) department
from the KTH (Kungliga Tekniska Högskolan) university for the storage and management of
courses information (grades, attending students...). 5, 17, 18, 27–29, 39, 40, 44

SMTP: Simple Mail Transfer Protocol, Internet standard for e-mail transmissions across the
Internet. 6, 9, 21, 37

Secure Shell: Secure Shell, network protocol that allows data to be exchanged over a secure
channel between two computers. 44

String: In the system context, data type that represents an ordered sequence of characters. 42–44

student: in the system context, the person that must elaborate and send the assignments of the
course to the professor. 5, 6, 13, 14, 16, 17, 19, 21, 24, 26, 31, 33, 35, 36, 38, 42

teacher: see professor. 5–8, 13, 14, 19–23

UTF-8: 8-bit UCS/Unicode Transformation Format, variable-length character encoding for Uni-
code, an industry standard allowing computers to consistently represent and manipulate text
expressed in most of the world’s writing systems. 16, 36

user: see professor. 5–8, 13, 14, 19–23

Windows XP: Windows eXPerience, line of operating systems developed by Microsoft for use
on general-purpose computer systems, including home and business desktops, notebook com-
puters, and media centers. 6, 7, 18

11

wxWidgets: widget toolkit for creating graphical user interfaces (GUIs) for cross-platform appli-
cations, enabling a program’s GUI code to compile and run on several computer platforms
with minimal or no code changes. 8

XML: eXtensible Markup Language, general-purpose markup language that provides a way to
combine a text and extra information about it. 8, 9, 18, 39, 40, 42

12

4 User requirements definition

4.a User requirements

Definition and management of the courses

Creation of a course

1.1.1. Creation of a course

The system shall provide a mean of creating a course. The course will contain the list
of students and all the necessary information about assignments (grade and some possible
comments). There can exist many different courses at the same time.

Rationale: This is needed because there can exist assignments from a range of courses and
students associated with different courses. This will help in organizing the courses and the
homework.

Importing students list

1.2.1. Importing students list

The system shall allow the user to import a list of students from an external
system into a created course.

Rationale: The amount of students attending a course can be very large, adding all of these
students by hand into the system can be very time consuming. Adding a way of importing
a list of students will help.

Defining an assignment

1.3.1. Defining an assignment

The system shall provide a mean of defining an assignment that will be associated
with an existing course. There shall be a way to assign rules to each defined assignment.
The rules that can be defined are the number of files attached in the e-mail, the format of
these files and the expected e-mail subject associated with the assignment.

Rationale: Since there can be many assignments in a course there need to be a way of
representing this in the system.

13

Collection and organization of assignments

Importing assignments

2.1.1. Input from students

The system shall allow students to submit their assignments by e-mail.

Rationale: E-mail is a widely spread and convenient way of communication. All students reg-
istered on a course should have access to a computer with e-mail capability. Most universities
provide computers for the students to use at school.

2.1.2. Downloading assignments

The system shall download only those e-mails that relate to defined assignments,
and respect the consistence of the used e-mail account.

Rationale: The user shall be able to use the e-mail account for other purposes. E-mails that
do not relate to an assignment can be handled using his or her normal e-mail client.

2.1.3. Identifying e-mails

The system shall identify which e-mail corresponds to a defined assignment and
which not.

Rationale: Identify which e-mails are actually assignments can be a very time consuming
task, so this process is very convenient to be automated.

2.1.4. Manual handling of assignments

The system shall provide a way to manually import assignments from students.

Rationale: Students may submit their work without using e-mail. There might be a good
reason for this so, the system must provide some flexibility.

2.1.5. Non-functional product requirement

The e-mail receiving process shall be secure, so the communications with the e-mail server
shall be encrypted.

Organization of the assignments

2.2.1. Deleting assignment

The system shall provide a method to delete assignments that have been already
stored in it.

Rationale: A teacher can be, for many reasons, interested in removing the assignment of a
specific student (for example, the teacher can detect some problem, remove the assignment
and ask the student to send it again).

2.2.2. Organizing assignments

The system shall organize downloaded assignments into a folder hierarchy.

Rationale: A simple folder hierarchy is a natural and convenient way to organize files on a
computer. With this organization it can be easy, for example, to create a CD backup with
all the assignments of a course.

14

Editing and grading of assignments

Opening files

3.1.1. Opening files

The user shall be able to open any documents fetched by the system. The user
shall inform the people sending documents what file format to use.

Rationale: To be able to open any kind of documents the system should not put any con-
strains on specific file formats. There will be a problem if the user receives a document which
the users system does not have support for, thus informing solves the problem.

Commenting files

3.2.1. Commenting files

The user shall be able to make and store comments on any documents fetched
by the system.

Rationale: Commenting documents excludes the edition of the document itself. Instead, the
comments will be stored by the system with the corresponding assignment.

Grading assignments

3.3.1. Grading assignments

The system shall provide a mean of grading the assignments associated with the
students.

Rationale: Since homework assignments usually are graded, this needs to be represented in
the system as well.

3.3.2. Non-functional product requirement

The grading format shall be general enough to accept grades in a very different
formats. The system shall allow the user to enter the grades in alpha-numerical code.

Rationale: There are a lot of different grading formats in different countries, and the system
should not be limited to a specific one.

Answer to the assignments

Delivery confirmation

15

4.1.1. OK confirmation

The system shall notify the sender of an assignment of the reception of this.
The system shall automatically send an e-mail to the sender of the assignment as a delivery
confirmation at the moment his assignment is received by the system.

Rationale: Delivery confirmations help the students that have sent their assignments to verify
that these have really arrived to their destination, and can be used as a receipt in case there
is some problem with the delivery.

4.1.2. Error notification

The system shall notify the sender of an assignment of possible errors when the e-
mail does not fit the expected pattern. In this case, the system shall send automatically
an e-mail to the sender of the assignment warning him that the received e-mail either does
not contain the expected number of attached files or the format of some of these is not the
expected one.

Rationale: This basic error notification can save a lot of work to the user of the system, that
otherwise should notify the errors manually, and gives a chance to the sender to realize early
of his error and fix them.

4.1.3. Non-functional product requirement

The delivery confirmation and error notification e-mails shall be encoded as plain text, using
the encoding standard UTF-8.

4.1.4. Non-functional product requirement

The e-mail sending process shall be secure, so the communications with the e-mail server
shall be encrypted.

Sending feedback to students

4.2.1. Sending feedback to students

The system shall provide a method to send feedback to students by e-mail.

Rationale: Students submit their assignments by e-mail, so it is reasonable to send feedback
using the same way of communication.

4.2.2. Composition of feedback

The system shall automatically compose the feedback e-mails. The feedback will
be composed from teachers comments and grading. The system shall only send the feedback
on request from user.

Rationale: The information is already in the system. If the teacher would have to manually
compose feedback e-mails it would be unnecessarily time consuming, and a possible source
of errors.

Reporting

General state of a specific course

16

5.1.1. Reports about the general state of a specific course

The system shall create reports with information about the general status of a
specific course. These reports shall include a list of students and assignments, and basic
information about each assignment.

Rationale: A general status report is useful to give the user an overview of the course, the
assignments that have been already submitted, etc.

State of a specific student

5.2.1. Reports about the state of a specific student

The system shall create reports with information about the status of a specific
student attending a course. These reports shall include a list of all the assignments of
the student, with some detailed information about each of them.

Rationale: A report on the status of a student can be useful to justify a student’s grade at
the end of the course, and to keep track of the individual work of each student during the
course.

State of a specific assignment

5.3.1. Reports about the state of a specific assignment

The system shall create reports with information about the status of specific
assignments. These reports shall include a list of all the students implied in the assignment,
with some detailed information about each of them.

Rationale: The user needs this functionality to manage assignments at an individual level
(keep track of the percentage of submitted assignments, etc.).

RES system link

Importing from the RES system

6.1.1. List of students import

The system shall provide a mean of creating a list with the needed data of all
the students registered in a course from the RES system. The system shall obtain
the data from the students that are registered in the desired course, and create a list with
this information that, finally, can be used to define a course.

Rationale: In a large course, with tens or even hundreds of students, the task of introducing
manually their names, e-mails, etc. can be so tedious that it could even discourage the
potential users of the system. As in almost every university there is an internal system as
RES where teachers can extract the list of students from, it is important to provide a way
to automate this task and coordinate both systems.

17

6.1.2. Non-functional product requirement

The imported list of students must be stored as an XML (Extensible Markup Language) file
that can be directly recognized and used in the definition of a course.

Exporting to the RES system

6.2.1. List of grades export

The system shall provide a mean of updating the grades of the students in the RES system
with the information obtained from a specific course.

Rationale: It is essential to avoid the need to repeat the task of manually setting all the
assignment grades twice, for the same reason as given in the user requirement 6.1.1.

6.2.2. Non-functional product requirement

The exported list of grades must be stored as an XML file.

General non-functional requirements

Product requirements

7.1.1.

The files created by the system shall be implemented using XML.

7.1.2.

The system shall compile and run, at least, in the next operative systems: Windows XP,
GNU/Linux (Ubuntu 7.x distribution) and FreeBSD 6.x.

Organizational requirements

7.2.1.

A first stable version of the system shall be ready to use in April 2008.

External requirements

7.3.1.

The system shall be licensed under a GPL (General Public License).

18

4.b Use cases

Definition and management of the courses

1.1. Create a course

� Primary Actor: Teacher

� Stakeholders and interests:

– Teacher: to create a course in the system.

– Student: to ensure a safe handling of the assignments.

� Precondition: None

� Minimal Guarantee: The system remains stable.

� Success Guarantee: The course is created.

� Trigger: The teacher tells the system to create a course.

� Main Success Scenario:

1. The teacher tells the system to create a course.

2. The teacher selects the name for the course.

3. The system validates the course name.

4. The system creates the course.

� Extensions:

3a. The name for the course is invalid:

3a1. The system notifies the teacher

3a2. The system repeats from step 2 in Main Success Scenario.

1.2. Import students list

� Primary Actor: Teacher

� Stakeholders and interests:

– Teacher: to import the student list.

– Student: to ensure a safe handling of the assignments.

� Precondition: A course have been created

� Minimal Guarantee: The course data remains stable.

� Success Guarantee: The list of students is imported.

19

� Trigger: The teacher tells the system to import a list of students.

� Main Success Scenario:

1. The teacher tells the system to import a list of students.

2. The teacher selects which course the students in the list should be added to.

3. The teacher selects the location of the list of students.

4. The system validates the format of the list of students.

5. The system adds the students in the list to the selected course.

� Extensions:

3a. The location of the list of students is invalid.

3a1 The system notifies the teacher and terminates proceedings.

4a. The format of the list of students is invalid.

4a1. The system notifies the teacher and terminates proceedings.

1.3. Define an assignment

� Primary Actor: Teacher

� Stakeholders and interests:

– Teacher: to successfully define an assignment in the system

– Student: safe handling of assignments.

� Precondition: A course have been created

� Minimal Guarantee: The course data remains stable.

� Success Guarantee: An assignment is defined.

� Trigger: The teacher tells the system to define an assignment.

� Main Success Scenario:

1. The teacher tells the system to define an assignment.

2. The teacher selects an existing course.

3. The teacher names the assignment.

4. The system validates the assignment name.

5. The teacher sets up rules about the assignment.

6. The system adds the assignment to each student in the course.

� Extensions:

4a. The assignment name is invalid:

4a1. The system notifies the teacher.

4a2. The system repeats from step 3 in Main Success Scenario.

20

Collection and organization of assignments

2.1. Import an assignment manually

� Primary Actor: Teacher

� Stakeholders and Interests:

– Teacher: to import a student assignment that has not been received by e-mail.

– Student: to submit homework assignment.

� Precondition: At least one course defined with students and assignments. A selected
student and a selected assignment.

� Minimal Guarantees: An assignment is marked.

� Success Guarantees: An assignment is marked and their files are registered.

� Trigger: Teacher tells the system to import an assignment.

� Main Success Scenario:

1. Teacher tells the system to import an assignment.

2. The teacher selects files to import.

3. The system copies the files to the student assignment directory.

4. The system marks the assignment.

� Extensions:

2a. There are no files to import:

2a1. The system terminates import process.

2.2. Send feedback to student by e-mail

� Primary Actor: Teacher

� Stakeholders and Interests:

– Teacher: to send feedback on student homework assignment.

– Student: to receive feedback on homework assignment.

� Precondition:

A selected student.

A selected assignment with comments and a grade.

Connection to the Internet.

E-mail account with SMTP support.

21

� Minimal Guarantees:

An attempt to connect to the e-mail account.

A e-mail is composed and saved for later sending.

� Success Guarantees: A e-mail is composed and sent to the student.

� Trigger: The teacher tells system to send feedback.

� Main Success Scenario:

1. The teacher tells system to send feedback.

2. The system composes an e-mail message from comments and grade.

3. The system connects to the e-mail account.

4. The system sends the e-mail.

� Extensions:

3a. A connection to the e-mail account could not be established.

2a1. The system saves the message for later sending and terminates process.

Edition and grading of assignments

3.1. Open a file

� Primary actor: Teacher

� Stakeholders and interests:

– Teacher: needs to review the assignment, which is in the file.

– Student: to ensure a safe handling of the assignments.

� Preconditions: The filename must be specified, the file must exist.

� Minimal guarantee: The file remains uncorrupted.

� Success guarantee: The specified file is opened.

� Trigger: The teacher choose one of the documents attached in a email.

� Main success scenario:

1. The teacher choose one of the documents attached in the email.

2. The system reads the file format of the document.

3. The system executes the appropriate application to view the file.

� Extensions:

3a. The file format is not a known to the users system.

3a1. The system notifies teacher and terminates proceedings.

3.2. Comment a file

22

� Primary actor: Teacher

� Stakeholders and interests:

– Teacher: wants to add comments to the documents.

– Student: wants to get his or her documents reviewed.

� Preconditions: A selected assignment for a defined student.

� Minimal guarantee: The course data remains stable.

� Success guarantee: The document is commented.

� Trigger: The teacher tells system to add comments to an assignment.

� Main success scenario:

1. The teacher tells system to add comments to an assignment.

2. The teacher writes comments.

3. The system saves the comments to the assignment.

3.3. Grade an assignment

� Primary Actor: Teacher

� Stakeholders and interests:

– Teacher: to grade the assignment that belong to the student in mind

– Student: to ensure a safe handling of the assignments.

� Precondition: A course have been created. An assignment have been created. The student
who is going to be graded have to exist in the system.

� Minimal Guarantee: The course data remains stable.

� Success Guarantee: The student’s assignment is graded.

� Trigger: The teacher selects a course.

� Main Success Scenario:

1. The teacher selects a course.

2. The teacher selects a student.

3. The teacher selects an assignment.

4. The teacher inputs the grade.

5. The system validates the grade format.

6. The system registers the grade for the assignment.

� Extensions:

5a. The grade is invalid:

5a1 The system notifies the teacher.

5a2. The system repeats from step 4 in Main Success Scenario.

23

Answer to the assignments

4.1. Send an assignment

� Primary actor: Student

� Stakeholders and Interests:

– Student: to ensure that his assignment will be received.

– Teacher: to ensure that all assignments are correctly built before reviewing them.

� Preconditions:

– The student knows the e-mail address where he must send his assignment.

– The student knows the expected format (number of files and type of these) of the e-mail.

� Minimal Guarantee: The e-mail is received and the system tries to identify it.

� Success Guarantees:

– The system registers the assignment of the student.

– The student receives a receipt confirming that the assignment has been registered.

� Main success scenario:

1.The student sends his assignment (e-mail with some attached files) to the teacher’s e- mail
address via his usual e-mail client.

2 The system verifies that the e-mail corresponds to some defined assignment.

3 The system verifies that the e-mail comes from some defined student.

4 The system verifies that the e-mail respects the expected format.

5 The system verifies that the e-mail has been sent in time.

6 The system stores the assignment and replies the student with a receipt confirming that
the assignment has been registered.

� Extensions:

2a The e-mail cannot be identified as a defined assignment delivery:

2a1 The e-mail is ignored by the system and no reply is given to the student.

3a The sender cannot be identified as a registered student:

3a1 The e-mail is ignored by the system and a warning e-mail is sent to the student.

4a The number of attached files in the e-mail or the expected format of these does not fit
the expected pattern:

4a1 The e-mail is ignored by the system and a warning e-mail is sent to the student.

5a The e-mail has been sent after the set deadline for the assignment:

5a1 A warning e-mail is sent to the student, the delay is registered by the system and the
sequence continues.

4.2. Import assignments from e-mail

24

� Primary Actor: Teacher

� Stakeholders and Interests:

– Teacher: to receive students homework assignments.

– Student: to submit homework assignment.

� Precondition:

At least one course defined with students and assignments.

Connection to the Internet.

E-mail account with POP3 support.

� Minimal Guarantees: An attempt to connect to the e-mail account.

� Success Guarantees: A connection to the e-mail account is established, the account is
checked for unread messages, the assignments are marked and stored, e-mail confirmations
are sent.

� Trigger: The teacher tells the system to download new assignments

� Main Success Scenario:

1. The teacher tells the system to download new assignments

2. The system connects to the e-mail account.

3. The system checks the account for unread messages.

4. The system validates headers for unread messages.

5. The system downloads unread messages with valid header.

6. The system copies downloaded messages and attachments to students assignment direc-
tories.

7. The system marks the assignments.

8. The system sends confirmation e-mails to students.

� Extensions:

2a. A connection to the e-mail account could not be established.

2a1. The system notifies it to the teacher and terminate import process.

3a. No unread messages in the e-mail account

3a.1 The system terminates import process.

4a. Header is not valid.

4a.1 The system marks header as non valid.

4a.2 The system continues validating headers.

8a A message does not have the expected files attached

8a.1 The system appends an error report to the confirmation e-mail

Reporting

5.1. View the general state of a specific course

25

� Primary actor: Teacher

� Stakeholders and interests:

– Teacher: wants to read relevant information of an ongoing course.

� Preconditions: None

� Minimal guarantee: The course data remains stable.

� Success guarantee: The information of the specified course is retrieved.

� Trigger: The teacher tells system to show course status.

� Main success scenario:

1. The teacher tells system to show course status.

2. the teacher selects a course

3. The system retrieves the information.

4. The system converts the information to the right format.

5. The system displays the information..

� Extensions:

3a. The system fails to find the course in the database.

3a1. The system notifies teacher and terminates proceedings.

5.2. View the state of a specific student

� Primary actor: Teacher

� Stakeholders and interests:

– Teacher: wants to read relevant information about an student.

� Preconditions: None

� Minimal guarantee: The course data remains stable.

� Success guarantee: The information about the specified student is retrieved.

� Trigger: The teacher tells system to show student status.

� Main success scenario:

1. The teacher tells system to show student status.

2. The teacher selects a student.

3. The system retrieves the information.

4. The system converts the information to the right format.

5. The system displays the information.

� Extensions:

3a. The system fails to find the student in the database.

3a1. The system notifies teacher and terminates proceedings.

26

5.3. View the state of a specific assignment

� Primary actor: Teacher

� Stakeholders and interests:

– Teacher: wants to read relevant information about an assignment.

� Preconditions: None

� Minimal guarantee: The course data remains stable.

� Success guarantee: The information about the specified assignment is retrieved.

� Trigger: The teacher tells system to show assignment status.

� Main success scenario:

1. The teacher tells system to show assignment status.

2. The teacher selects assignment.

3. The system retrieves the information.

4. The system converts the information to the right format.

5. The system displays the information.

� Extensions:

3a. The system fails to find the assignment in the database.

3a1. The system notifies teacher and terminates proceedings.

RES system link

6.1. Import list of students of a course from the RES system

� Primary actor: Teacher

� Stakeholders and Interests:

– Teacher: to get the updated list of students for his course, so he does not need to
introduce it manually in the system.

– RES system managers: to ensure that the information stored in the RES system remains
consistent after the operation.

� Preconditions:

– The course have been previously defined in the RES system and the students are registered
there.

– The teacher has authorization to access to the RES system.

� Minimal guarantee: The information in the RES system remains stable.

27

� Success Guarantee:

– The teacher gets a file with a list of information about students that have registered n the
RES system for the desired course.

� Main success scenario:

1. The teacher starts the application that communicates with the RES system and provides
the needed information about the course whose students list he wants to get.

2 The system gets the information from the RES system and creates a file with the list of
students that can be later imported by System.

� Extensions:

1a The RES system does not contain the required course:

1a1 The system warns the teacher and asks for the information about the course again.

1a2 The teacher supplies the needed information.

6.2. Export grades of a course to the RES system

� Primary actor: Teacher

� Stakeholders and Interests:

– Teacher: to copy the grades from System to the RES system, so he does not need to
duplicate them manually.

– RES system managers: to ensure that the information stored in the RES System remains
consistent after the operation.

� Preconditions:

– The course have been previously defined in the RES system and the students are registered
there.

– The graded assignments have been previously defined in the RES system.

– The teacher has authorization to access to the RES system.

� Minimal guarantee: The information in the RES system remains stable.

� Success Guarantees:

– The system stores the grades information, exported from the system to a file, in the RES
system.

� Main success scenario:

1 The teacher starts the system and opens a created course.

2 The teacher tells the system to export the grades of the course to a file and specifies the
file name and path.

3 The system creates the file with all the necessary information in order to be able to store
it in the RES system.

4 The teacher starts the application that communicates with the RES system, providing the
grades file to it.

5 The system stores all the information about grades that the file contained in the RES
system.

28

� Extensions:

2a The system detects that there are not assigned grades for the opened course:

2a1 The system warns the teacher and aborts the export.

4a The RES system does not contain the course specified in the given file:

4a1 The system warns the teacher and aborts the process.

29

5 System architecture

5.a Control-flow model

Figure 2: Control-flow model of the system

5.b Data-flow model

Figure 3: Data-flow model of the system

30

6 System requirements specification

Definition and management of the courses

1.1. Creation of a course

� Function: Creation of a course.

� Description: Create a course in the system.

� Inputs: A course name.

� Source: Course name is an input from the user.

� Outputs: A created course in the system.

� Action: If the course name is valid a course is created from the input name.

� Requires: Nothing.

� Pre-condition: None.

� Side-effects: None.

� Satisfied user requirements: 1.1.1

1.2. Importing students list

� Function: Importing students list.

� Description: Import a student list from the local computer.

� Inputs: Location of the student list. A course.

� Source: Location of the student list is an input from the user. The course is selected by the
user.

� Outputs: Name and e-mail of the students.

� Action: If the location of the list of students is valid and the format of the list is valid the
students are loaded into the selected course.

� Requires: The course in mind have to exist.

� Pre-condition: None.

� Side-effects: None.

� Satisfied user requirements: 1.2.1

1.3. Defining an assignment

31

� Function: Defining an assignment.

� Description: Define an assignment in the system and the possibility to set up rules for the
assignment.

� Inputs: An assignment name. A course. Expected subject of the e-mails. Number of files
and file format.

� Source: All inputs from the user.

� Outputs: A defined assignment.

� Action: Define an assignment in the input course for all the students in the course. The as-
signment is associated with the input rules (number of files and file format) and the expected
subject line in the e-mail.

� Requires: The course in mind have to exist.

� Pre-condition: None.

� Side-effects: None.

� Satisfied user requirements: 1.3.1

Collection and organization of assignments

2.1. Importing assignments

2.1.1. From the e-mail account

� Function: Import an assignment by e-mail.

� Description: Imports an assignment sent to the e-mail account of the teacher.

� Inputs: An e-mail.

� Source: E-mail server.

� Outputs: Assignment extracted from the e-mail.

� Destination: Organize e-mails.

� Action: Connect to e-mail server. Download header from server. Validate e-mail. If email
is valid download e-mail and call Organize e-mails.

� Requires: Connection to the Internet. E-mail account with POP3 support.

� Pre-condition: None.

� Post-condition: None.

� Side effects: None.

� Satisfied user requirements: 2.1.1, 2.1.2, 2.1.3

32

2.1.2. Manually

� Function: Manual importation of an assignment.

� Description: Import assignments manually.

� Inputs: Course, student, assignment and possibly some files.

� Source: User input.

� Outputs: None.

� Action: Mark assignment and copy files to the folder hierarchy. The folder is determined
from course, student and assignment.

� Requires: A defined course with students and assignments.

� Pre-condition: None.

� Post-condition: None.

� Side effects: None.

� Satisfied user requirements: 2.1.4

2.2. Organization of the assignment

2.2.1. Organization of the assignment

� Function: Deleting an assignment.

� Description: Deletes files and messages accidentally associated with an assignment.

� Inputs: Assignment.

� Source: User input.

� Outputs: None.

� Action: Delete files and messages associated with an assignment.

� Requires: A defined course with students and marked assignments.

� Pre-condition: None.

� Post-condition: The selected files and messages are deleted.

� Side effects: None.

� Satisfied user requirements: 2.2.1

2.2.2 Organization of the assignment

33

� Function: Organize assignments.

� Description: Saves files and messages from the assignment in a folder hierarchy.

� Inputs: A received assignment.

� Source: Import assignments by e-mail.

� Outputs: None.

� Action: Save the message and attached files in folder hierarchy. The folder is determined
from course, student and assignment. Mark the assignment.

� Requires: A defined course with students and assignments.

� Pre-condition: None.

� Post-condition: Files are saved to disk.

� Side effects: None.

� Satisfied user requirements: 2.2.2

Edition and grading of assignments

3.1. Opening files

� Function: Opening files.

� Description: Opens the file attached in the given email.

� Inputs: The filename for the attached file.

� Source: E-mail client.

� Outputs: None.

� Destination: None.

� Action: The appropriate application to be used to open the file is launched.

� Requires: That the users system has support to view the file.

� Pre-condition: The user must have informed the email senders of which file format to use.

� Post-condition: None.

� Side effects: File format constrains are dependent on the users system.

� Satisfied user requirements: 3.1.1

3.2. Commenting files

34

� Function: Commenting files.

� Description: The system gives the user the possibility to write comments for the opened
file.

� Inputs: Users comment.

� Source: The user.

� Outputs: None.

� Action: The user writes a comment about the file. The file is saved and closed.

� Requires: the relevant information.

� Pre-condition: A file has been opened.

� Post-condition: The written comment is saved in the storage system with relevant infor-
mation of who the comment was intended to, to which file and assignment.

� Side effects: Only general comments suits best.

� Satisfied user requirements: 3.2.1

3.3. Grading assignments

� Function: Grading assignments.

� Description: To grade a assignment.

� Inputs: A grade. A course, a student in the course and a assignment from the student.

� Source: All are inputs from the user.

� Outputs: A graded assignment.

� Action: Grade the selected assignment (that belongs to a student, who belongs to a course)
with the input grade.

� Requires: The course in mind have to exist in the system, the student have to exist in the
system and the assignment have to exist in the system.

� Pre-condition: None.

� Side-effects: None.

� Satisfied user requirements: 3.3.1, 3.3.2

Answer to the assignments

4.1. Delivery confirmation

� Function: Assignment delivery validation.

35

� Description: Validates a given e-mail as a correct assignment delivery, and notifies the
sender either of the correct validation and reception of this or of the errors that it has.

� Inputs: An e-mail e.

� Source: The mailbox of the e-mail account associated with the user.

� Outputs: Validity of e as a correct assignment delivery.

� Action: e is validated following the steps reflected in the figure 4.

Validation If true If false
1 e corresponds to a de-

fined assignment
Next step Ignore e, return false

2 e comes from a defined
student

Next step Ignore e, reply a warning,
return false

3 e respects the expected
format

Next step Ignore e, reply a warning,
return false

4 e has been sent in time reply a receipt,
return true

Reply a receipt with a
warning, return true

Figure 4: Validation steps of an e-mail

The test that the function applies to e in the step 3 is to check if the number of attached files
and the format of these corresponds to what is expected to be delivered in the assignment
(pattern previously defined by the user).

� Requires: Internet connection, in order to automatically reply to e if necessary.

� Pre-condition: None.

� Post-condition: None.

� Side effects: A receipt e-mail or a warning e-mail can be replied to the sender of e.

� Satisfied user requirements: 4.1.1, 4.1.2, 4.1.3, 4.1.4

� Special requirements: The receipt and warning e-mails shall be encoded as plain text,
using the encoding standard UTF-8.

4.2. Sending feedback

4.2.1. Send feedback to student

� Function: Send feedback to student.

� Description: Sends feedback on an assignment to the student.

� Inputs: Assignment, student, comments and grades.

� Source: User input.

� Outputs: An e-mail.

� Destination: e-mail server.

36

� Action: Compose feedback e-mail and send to student.

� Requires: Connection to the Internet. E-mail account with SMTP support.

� Pre-condition: None.

� Post-condition: None.

� Side effects: None.

� Satisfied user requirements: 4.2.1

4.2.2. Composition of feedback

� Function: Composition of feedback.

� Description: Puts together a feedback e-mail from comments and grade.

� Inputs: Comments, grade.

� Source: User input.

� Outputs: An e-mail.

� Destination: Send feedback to an student.

� Action: Insert comments and grade into predefined template.

� Requires: None.

� Pre-condition: None.

� Post-condition: None.

� Side effects: None.

� Satisfied user requirements: 4.2.2

Reporting

5.1. General state of a course

� Function: Show the general state of a specific course.

� Description: Provides an overview of the course, assignments and students basic statistical
data to the user.

� Inputs: A course code or name.

� Source: Retrieves relevant information from the storage system.

� Outputs: An overview of the specified course.

37

� Destination: None.

� Action: Either the course exist in the storage system and information can be retrieved or
the user is prompted with a “failed to identify course” message.

� Requires: A course identifier.

� Pre-condition: None.

� Post-condition: None.

� Side effects: None.

� Satisfied user requirements: 5.1.1

5.2. State of a specific student

� Function: Show the state of a specific student.

� Description: Retrieves information about a specific student.

� Inputs: A student code or name.

� Source: Retrieves relevant information from the storage system.

� Outputs: Information about the specified student.

� Action: Either the student exist in the storage system and information can be retrieved or
the user is prompted with a “failed to identify student” message.

� Requires: A student identifier.

� Pre-condition: None.

� Post-condition: None.

� Side effects: None.

� Satisfied user requirements: 5.2.1

5.3. State of a specific assignment

� Function: Show the state of a specific assignment.

� Description: Retrieves information about the specified assignment.

� Inputs: An assignment code or name.

� Source: Retrieves relevant information from storage system.

� Outputs: Information about the specified assignment.

� Action: Either the assignment exist in the storage system and information can be retrieved
or the user is prompted with a “failed to identify assignment” message.

38

� Requires: An assignment identifier.

� Pre-condition: None.

� Post-condition: None.

� Side effects: None.

� Satisfied user requirements: 5.3.1

RES system link

6.1. Importing list of students from the RES system

� Function: Get list of students from the RES system.

� Description: Gets the list of students and associated information of a specific course from
the RES system, storing this in a new file that the system is able to recognize.

� Inputs: A course identifier.

� Source: The course identifier is an input from the user.

� Outputs: A list of students (names, identifiers and associated information).

� Destination: Independent application that interacts with the RES system.

� Action: If there exists a course defined with the given identifier, a list of students that have
registered in the RES system for the specified course is obtained.

� Requires: Authorization to access to the RES system.

� Pre-condition: None.

� Post-condition: None.

� Side effects: None.

� Satisfied user requirements: 6.1.1

� Special requirements: The list of students must be stored as an XML (Extensible Markup
Language) file that can be directly recognized and used in the definition of a course.

6.2. Export grades from the system

� Function: Export grades from the system.

� Description: Exports the grades stored for an specific assignment and course into a list of
grades that can be used later to introduce them in the RES system.

� Inputs: An existing course, an existing assignment.

39

� Source: All inputs from the user.

� Outputs: A list of grades for a specific assignment (names of students and grades obtained).

Action: A list with the grades of all the students in the given assignment is created.

� Requires: Nothing.

� Pre-condition: None.

� Post-condition: None.

� Side effects: None.

� Satisfied user requirements: 6.2.1

� Special requirements: The exported list of grades must be stored as an XML file that the
application that interacts with the RES system can recognize.

6.3. Store grades in the RES system

� Function: Store grades in the RES system.

� Description: Stores the given grades of a list of students in a specific assignment.

� Inputs: A list with the grades of all the students in a specific assignment.

� Source: A file provided by the user.

� Outputs: The RES system is updated with the given information.

� Destination: Independent application that interacts with the RES system.

� Action: If the given list is correctly formatted and the given course, assignment and students
are defined in the RES system, the given grades of a list of students in a specific assignment
are stored in it.

� Requires: Authorization to access to the RES system.

� Pre-condition: None.

� Post-condition: None.

� Side effects: None.

� Satisfied user requirements: 6.2.2

� Special requirements: The input (list of grades) must be stored as an XML file.

40

7 System evolution

These are the fundamental assumptions on which the system is based:

� Simplification of organizing, managing and keeping track of course related information such
as assignments.

� The user needs to have a valid and working email address and required data to be able to
receive and send e-mails.

� Information exchange is made through Internet using e-mail.

� Configurable e-mail filter system thus making AAMS to only receive relevant emails.

Anticipated changes will be probably due to:

� Hardware evolution: should only affect AAMS in a positive way such as increased speed
and reliability.

� Changing user requirements: university teachers might want to comment directly into
the document.

� Changing system requirements: by using custom made plug-in modules. AAMS should
be able to interact with various universities internal assignment or homework grading system.

41

8 Appendices

8.a Logical organization of data

The data that is stored by the system will be organized in three different XML files: ”data.xml”,
”settings.xml” and ”unsentemails.xml”.

data.xml

This file contains four sections: CourseList, FileInfoList, StudentInfoList and AssignmentInfoList.

� CourseList section: This section contains an item (name Course) for each course. Each
item is a section itself. The attribute for this item is name.

– The name attribute (String): Name of the course.

– Course section: This section contain an item (named Student) for each student in the
course. Each item is a section itself. The attribute for this item is id.

– The Id attribute (Integer): Each student item has an id number corresponding to
an item in the StudentInfoList section with the same id number.

– Student section: This section contain an item (named Assignment) for each assign-
ment for the student. Each item is a section itself. The attributes for this item are id
and comment.

– The id attribute (Integer): Each assignment item has an id number corresponding
to an item in the AssignmentInfoList section with the same id number.

– The comment attribute (String): A comment on the assignment.

– Assignment section: This section contains an item (named File) for each assignment
for the student. The attributes for this item are id, filename and comment.

– The id attribute (Integer): Each file item has an id number corresponding to an
item in the FileInfoList section with the same id number.

– The filename attribute (String): Name of the file.

– The comment attribute (String): A comment on the file in the assignment.

� FileInfoList section: This section contains items that hold the information for each file
associated with an assignment. The attributes for each item are id and extension.

– The id attribute (Integer): Each item in this section has a unique integer identifying
the file information.

– The extension attribute (String): The extension of the file.

� StudentInfoList section: This section contains items that hold the information for each
student in a course. The attributes for each item are id, e-mail and name.

– The id attribute (Integer): Each item in this section have a unique integer identifying
the the student information.

– The email attribute (String): The e-mail of the student.

– The name attribute (String): The name of the student.

� AssignmentInfoList section: This section contain items that hold the information for
each assignment. The attributes for each item is id, name and emailheader.

42

– The id attribute (Integer): Each item in this section has a unique integer identifying
the assignment information.

– The name attribute (String): The name of the assignment.

– The emailheader attribute (String): The header that is used to identify the e-
emails sent by the student.

The figure 5 contains an example of the data.xml file.

<CourseList>
<Course name=”Advanced computer s c i e n c e ”>

<Student id=”1”>
<Assignment id=”1” comment=””>

<F i l e id=”1” f i l ename=”” comment=”” />
<F i l e id=”2” f i l ename=”” comment=”Good work ! . ” />

</Assignment>
<Assignment id=”2” comment=””>

<F i l e id=”3” f i l ename=”” comment=”” />
</Assignment>

</Student>
<Student id=”2”>

<Assignment id=”1” comment=””>
<F i l e id=”1” f i l ename=”” comment=”” />
<F i l e id=”2” f i l ename=”” comment=”” />

</Assignment>
<Assignment id=”2” comment=””>

<F i l e id=”3” f i l ename=”” comment=” Sect ion 3 needs some more work . ” />
</Assignment>

</Student>
</Course>
<Course name=”Advanced computer s c i e n c e 2”>
</Course>

</CourseList>

<F i l e I n f o L i s t>
<F i l e id=”1” extens i on=”pdf ” />
<F i l e id=”2” extens i on=”pdf ” />
<F i l e id=”3” extens i on=” txt ” />

</ F i l e I n f o L i s t>

<Student In foL i s t>
<Student id=”1” emai l=” kal le@kth . se ” name=” Kal le Karlsson ” />
<Student id=”2” emai l=”david@kth . se ” name=”David Davidsson” />

</ StudentLi s t>

<Ass ignmentIn foLi s t>
<Assignment id=”1” name=”Homework 1” emai lheader=”Homework 1” />
<Assignment id=”2” name=”Homework 2” emai lheader=”Homework 2” />

</ Ass ignmentIn foLi s t>

Figure 5: Example of the data.xml file

settings.xml

This file contains the data for the different settings used in the system. It contains two items, Pop3
and Smpt. Each of these items has three attributes: address, port, login and password.

� The address attribute (String): Address of the server.

� The port attribute (Integer): Port number of the server.

� The login attribute (String): Login name for the e-mail account.

� The password attribute (String): Password for the e-mail account.

43

The figure 6 contains an example of the settings.xml file.

<Se t t i ng s>
<Pop3 adre s s=”pop3 . kth . se ” port=”110” l o g i n=” k a l l e ” password=” ytghs54jh ” />
<Smpt adre s s=”smpt . kth . se ” port=”25” l o g i n=” k a l l e ” password=” ytghs54jh ” />

</ Se t t i ng s>

Figure 6: Example of the settings.xml file

unsentemails.xml

This file contains the data for the unsent e-emails. It contains an item for each of the unsent
e-mails. The attributes for each item are destination, header and content.

� The destination attribute (String): Contains the e-mail address of the receiver.

� The header attribute (String): Contains the header for the e-mail.

� The content attribute (String): Contains the text or content of the e-mail.

The figure 7 contains an example of the unsentemails.xml file.

<UnsentEmails>
<Email d e s t i n a t i on=”kal le@kth . se ” header=”Re: Homework 1” content=”Most l ooks ok , but . . . ” />
<Email d e s t i n a t i on=” l i sa@kth . se ” header=”Re: Assignment 4” content=”Good work ! ” />
<Email d e s t i n a t i on=”david@kth . se ” header=”Re: Report” content=”This a r r i v ed la t e , you . . . ” />

</UnsentEmails>

Figure 7: Example of the unsentemails.xml file

8.b Structure and interface of the RES system

The communication with the RES system implies two basic operations over it: to read the course
information from it, in order to get a list of students, and to write grades corresponding with
assignments in it. The main objective is to make the user able to perform both operations from
the same point where AAMS is working.

The usual way to access RES system is through several terminal commands that must be
executed in some specific machines from the department (those from the networks my, faun and
cyklop). These commands can be executed locally or remotely, for example through a Secure Shell
(SSH). The RES commands have this syntax:

res [<options> ...] <operation> <course> [<additional arguments> ...]

Typical operations are: checkin, view, edit, ... The basic operations needed for our system
could be, in principle, print (to get the list of students) and edit (to edit the course information
and introduce the grades of the assignments).

44

9 Index

List of Figures

1 Scope of the system . 7

2 Control-flow model of the system . 30

3 Data-flow model of the system . 30

4 Validation steps of an e-mail . 36

5 Example of the data.xml file . 43

6 Example of the settings.xml file . 44

7 Example of the unsentemails.xml file . 44

45

Index

AAMS
architecture, 30
context, 6
evolution, 41
introduction, 5
narratives, 6
risks, 8
scope, 7
System Requirements, 31
use cases, 19
user requirements, 13
uses, 5

assignment
answering, 15, 24, 35
collection and organization, 14, 21, 32
definition, 13, 20, 31
editing and grading, 15, 22, 34
get the report of a, 17, 27, 38
problem in the collection of, 5

course
definition and management, 13, 19, 31
get the report of a, 16, 25, 37
representation, 42

e-mail
delivery confirmation, 15, 24, 35
downloading, 14
identification, 14
importing assignments from, 24
sending feedback, 16, 36

RES system, 9, 17, 27, 39, 44

student
get list of, 13, 27, 39
get the report of a, 17, 26, 38

system, see AAMS

XML, 9, 42

46

