
Multiplayer Platform Game

Martin Petterson
Oskar Kvist

Christoffer Ekeroth
Misael Berrios Salas

January 28, 2008

Contents

1 Introduction 2

2 System Overview 2
2.1 General Description . 2
2.2 Overall Architecture Description 2
2.3 Detailed Architecture . 4

1

1 Introduction

2 System Overview

2.1 General Description

2.2 Overall Architecture Description

The following is a state transition diagram showing the states the game can
be in as well as how the game can change state.

The game can be in any of four states at any given time. These states are:

• Main Menu—This is the initial menu presented to the players upon
startup and before the start of each race. In order to start a race
players select characters and a game stage.

• Game Running—In this state the players play the actual game (some-
times referred to as a “race”).

• Paused—In this state the race is paused and the players are presented
with a menu.

• End-Game Screen—In this state the players are presented with the
positions they finished in and their times.

The following diagram shows the subsystems the game is composed of as
well as data and control flow between the subsystems.

2

• The Input subsystem is responsible for accepting input from the play-
ers.

• The Logic subsystem is responsible for enforcing game rules on the
world objects as well as handling menu navigation.

• The Audio subsystem is responsible for playback of music and sound
effects.

• The Physics subsystem is responsible for calculating the positions and
velocities for game objects as well as detecting collisions between them.

• The Graphics subsystem is responsible for drawing to the screen.

• The Game Objects subsystem is a data repository containing informa-
tion about game objects such as players, traps, monsters, platforms,
etc.

The game runs in a continous loop, in all states of the game. During every
iteration of the loop the following things happen:

1. The Input subsystem checks for player input. Player input is sent to
the Logic subsystem.

2. The Logic subsystem interprets the player input, taking different ac-
tions depending on what state the game is in.

3

3. If the game is in the Game Running state, the Physics subsystem is
used to calculate positions and velocities for all game objects and to
detect collisions between them.

4. After the Logic subsystem has updated the game, the Audio subsys-
tem plays the appropriate sound effects and the Graphics subsystem
updates the graphics on the screen.

2.3 Detailed Architecture

The following diagram shows data and control flow during an iteration of
the game loop in the general case.

The following diagram shows data and control flow during an iteration of
the game loop in the case of a player jumping.

4

5

