AAMS

(Automatic Assignment Management System)

Group 21
Ajanth Thangavelu
Roberto Castaneda Lozano
Tony Karlsson

Love Jadergard

Design document

Contents

2. System overview
2.2. Overall architecture description L Lo
2.3. Detailed architecture
Student communication component L0000
External communication and RES communication components
GUI/Event handler component
Data storage component L

Report generator componento Lo Lo o Lo

2. System overview

2.2. Overall architecture description

The system will follow the repository model discussed in the course book, where the shared data
will be stored in files (figure 2). As the system will include a User Graphical Interface, the control
style will be the event-driven model, which is also discussed in the course book: all user actions
will be handled by the Event handler, which will process these control requests back and forth
between all four communication component (figure 1). The Event handler is implemented with
the help of the framework wzWidgets.

Student External Data Report
communication| |communication| |storage generator

Event handler

Figure 1: Control-flow model of the whole system

The Data storage component will be used as the main gate to retrieve and send data to every
component, except the RES communication which is a subcomponent depending on data from the
External communication component. The data itself will be saved in three XML files.

2.3. Detailed architecture

A brief description of the architecture that the system will follow, by the explanation of each
component of it, will be given in this subsection. For every component we will show a relaxed
version of the standard data-flow diagrams, where boxes with labels represent subcomponents and
arrows between them represent data flowing in the specified direction. Control-flow diagrams will
be also shown. In these, the arrows represent the control relationship between subcomponents (if
there is an arrow from A to B, then A has the ability of deciding when B should be required). All
the subcomponents that form a whole component will be represented inside an slashed polygon,
and external components to the component that is being represented in each diagram will be
represented by just their names between parenthesis.

Student communication component

The Student communication component will be implemented as two layers. The e-mail library
abstraction layer hides everything library specific from the rest of the system. This will also have
the effect that the e-mail library can be replaced with another library and only the e-mail library

External communication Res communication
-Import list of students » .| -Import list of
from external system - ®- students from the
-Export grades to RES system
external system -Export grades to the
RES system
A
¥
Data storage

-Create courses Report generator

-Create assignments

-Remove courses

™ _Remove assignments I Bz

-Import list of

students

-Add comments

-Grade assignments

A

Y ¥
Student communication GUI/Event handler
-Import assignments from e-mail
-Import assignments manually -Open assignment files
-Send confirmation e-mail -Catch user events
-Send feedback e-mail -Interpret user events

Figure 2: Data-flow model of the whole system

abstraction layer will have to be changed. The AAMS e-mail functionality layer is the part of
the student communication component that interacts with the rest of the system. Any activity
from the student communication component is initiated by the GUI. The student communication
component will control the data storage component to send or receive data.

External communication and RES communication components

The intention of the external communication component is to provide some (limited) synchroniza-
tion capabilities with other systems that are usually implemented in every institution where our
system could work. Therefore, the system will be able to import the list of students for a course
and to export the grades of these through an intermediate representation. This layered structure
has been designed in order to make the system more flexible to new possible ports for different
specific systems, like the RES system.

The External communication component will be decomposed in two basic subcomponents:

Export grades

(GUI/Event handler)

E-mail library »| AAMS e-mail
abstraction = functionality
layer - layer

A

E-mail library (Data storage)

|
|
LA |
|
|

Control
Data flow while sending e-mail
Data flow while receiving e-mail

AAMS student communication component

Figure 3: Control and data-flow model of the student communication component

This subcomponent will be in charge of creating an intermediate representation file, from the
course file, with information about students and grades in one specific assignment that can
be after used to feed an external system through its specific component. It is controlled by
the GUI/Event handler component.

Import list of students

This subcomponent will be in charge of entering in the course file a list of students, with their
basic information, from an intermediate representation file that has been obtained from an
specific external system, through its import component. It is controlled by the GUI/Event
handler component.

The RES communication component will consist of specializations of the two listed subcom-
ponents:

Export grades to RES system

This subcomponent will be in charge of taking an intermediate representation file created by
the Export grades subcomponent and using it to enter the grades of an specific assignment
in the RES system. It is controlled by the generic Export grades subcomponent.

Import list of students from RES system

This subcomponent will be in charge of creating an intermediate representation file, from the
RES system, with a list of students that belong to an specific course. This file will be used
by the generic Import list of students subcomponent in order to enter them in a course file.
This subcomponent is controlled by the generic Import list of students subcomponent.

(GUI { Event handler)

Import list of
students |

Import list of |
students from RES system |

Export grades to
| RES system

(other systems)

Figure 4: Control-flow model of the external communication and RES communication components

(Data storage)

Import list of
students |

Import list of |
students from RES system |

Export grades to
| RES system

(other external systems)

Figure 5: Data-flow model of the external communication and RES communication components

GUI/Event handler component

The Graphical User Interface will be built with the help of the framework wxWidgets, a cross-
platform object-oriented GUI library that provides different tools for an extensive number of ports.
The system will follow the classical event-driven scheme, as it is shown in the overall architecture
description: the application starts by building the starting GUI (GUI creator component), sits in
a loop waiting for events initiated by the user, which are caught by the event catcher component
and managed by the GUI controller.

The GUI/Event handler component will be decomposed in these subcomponents:

GUI creator

This subcomponent will be in charge of defining and drawing, through the wxzWidgets frame-

Ve GUI creator |
- ﬁ
- |

g Event catcher |
r Error manager 4’_/ P
| GUI controller -~
| e

/
| = /
| indow manager Y P
File manager g

| ~ (Rest of components)

Figure 6: Control-flow model of the GUI/Event handler component

work, the starting Graphical User Interface. Internally, the data generated in this subcom-
ponent (information about the GUI structure) flows internally the GUI library towards the
Event catcher subcomponent. This subcomponent is in the top of the control hierarchy,
because it is required at the starting point of the system.

Event catcher

This subcomponent will be almost entirely provided by the wxWidgets framework. It will be
in charge of catching and classifying the user events (and other possible events generated by
the own system or external systems), and sending data (information attached to every event)
to the GUI controller subcomponent. This subcomponent is controlled by the wxWidgets
library, through the GUI creator subcomponent.

GUI controller
This subcomponent will be in charge of handling all the possible events that can be caught

by the Event catcher subcomponent, controlling and sending data to the rest of components
of the system. It is controlled by the Event catcher subcomponent.

s
- GUI creator |
P
. TNy
e Event catcher |
|r/ Error manager GUI controller 4——/ -

Window manager

File manager - (Rest of components)

Figure 7: Data-flow model of the GUI/Event handler component

Error manager

This subcomponent will be in charge of managing (warning the user, saving information,
etc.) all possible errors that can be detected by the GUI controller subcomponent during the
execution of the system. It is controlled by the GUI controller subcomponent.

Window manager

This subcomponent will be in charge of creating and managing the secondary windows or
forms that will be shown during the execution of the system (report forms, etc.). It is
controlled by the GUI controller subcomponent.

File manager
This subcomponent will be in charge of handling the operative system level tasks of open-
ing, creating and closing files that will be possibly processed later by other components of
the system (mainly the Data storage component). It is controlled by the GUI controller
subcomponent.

Data storage component

(GUI/Event handler)

r- - - — = - — = |
| |
| Course data Settings Unse:-nt
storage storage emails |
| storage
|
| |
| k J k J k J Y k J k J
| Save| |Read Save Read Save Read |
|
| Y) J) J) J) J Y |
| File: File: File:
data.xml settings.xml unsentemails.xml |

|]

Figure 8: Control-flow model of the data storage component

The data storage component handles all the data stored by the system. The data storage
component is divided into three parts, each handling the storage of the data associated with it:
“Course data storage” part handles the storing of data from the “data.xml” file. “Settings storage”
part handles the storage of data from the “settings.xml” file. “Unsent emails storage” part handles
the storage of data from the “unsentemails.xml” file. Each part have a save and a read task that
saves and reads from their files.

(GUI/Event handler)

S A R Y

| | Course data Settings Unsent
storage storage emails |
| storage
A A i |
| |
| ¥ A 4 A 4
| Save| (Read Save Read Save Read |
A A A |
| Y Y Y |
| File: File: File:
data.xml settings.xml unsentemails.xml |

\-

Figure 9: Data-flow model of the data storage component

Report generator component

The main and only purpose of this component is to generate reports of students, assignments and
courses. the Report generator component will be executed from an user action which is handled
by the Event Handler/GUI and thereafter retrieval of data from the Data storage is allowed.
Generation of the reports is made in an internal component (Generate), depending on which type
of report is requested.

(Data storage) (Event Handler/GUI)

Report generator

[
¥

A
Y

Generate

Data flow (retrieval/send)

-

Control flow (control input/output)

Figure 10: Control and data-flow model of the report generator component

