Multiplayer Platform Game
Group 19

Martin Petterson
Oskar Kvist
Christoffer Ekeroth
Misael Berrios Salas

February 11, 2008

Contents

1

2

Introduction

System Overview

2.1 General Description oL
2.2 Overall Architecture Description
2.3 Detailed Architecture

Design Considerations
Graphical User Interface

Design Details
51 CRCcards i i

5.1.1 Game
5.1.2 Logic
5.1.3 Imput Lo
514 Audio

5.1.5 GameObjects 0oL
5.1.6 GameStage
5.1.7 Graphics
51.8 Camera
5.1.9 GameObject (abstract class)
5.1.10 MovingPlatform (extends GameObject)
5.1.11 PowerupDispenser (extends GameObject)
5.1.12 FinishPoint (extends GameObject)
5.1.13 StartingPoint (extends GameObject)
5.1.14 Springboard (extends GameObject)
5.1.15 Trap (extends GameObject)
5.1.16 BoxingGlove (extends GameObject)
5.1.17 Fetter (extends GameObject)
5.1.18 ShrinkingRay (extends GameObject)
5.1.19 Claw (extends GameObject)
5.1.20 BananaPeel (extends GameObject)
5.2 Class Diagrams oo
5.3 State Charts
5.3.1 Overall system
5.3.2 Main Menu o oo
5.4 Interaction Diagrams

1 Introduction

2 System Overview

2.1 General Description
2.2 Overall Architecture Description

The following is a state transition diagram showing the states the game can
be in as well as how the game can change state.

[Quit Race]

Main menu I-

[Start Race]

[Pause]

Game running

[Exit End-game screen] [Unpause]

[Finish Race]

4@

The game can be in any of four states at any given time. These states are:

o Main Menu—This is the initial menu presented to the players upon
startup and before the start of each race. In order to start a race
players select characters and a game stage.

e Game Running—In this state the players play the actual game (some-
times referred to as a “race”).

e Paused—In this state the race is paused and the players are presented
with a menu.

e End-Game Screen—In this state the players are presented with the
positions they finished in and their times.

Our main goal in designing the system was to divide the responsibilities of
the system across modules in a logical and intuitive manner. The following

diagram shows the modules the game is composed of as well as data and
control flow between them.

- Logic ~

XNA
Input

~a XNA

\ Audio udio

- - o

T
1
1
1
1
1
1
1
1
'

) XNA
. Graphics Graphics

Physics

F. T~ Game Objects |, -
~ (Data repository)

- = = = Data

Control

e The Logic module is responsible for enforcing game rules on the world
objects as well as handling menu navigation.

The Logic module contains the main game loop, and calls upon the
other modules to perform tasks like receiving user input and updating
the screen. The control flow therefore goes from the Logic module to
the other modules and back again.

The Logic module gets button states from the Input module and events
from the Physics module (collisions between objects, etc.) and writes
to the Game Objects module, changing the state of and making new
game objects. The Logic module also calls the Audio module, telling
it when to play sound effects, and the Graphics module, telling it to
update the screen.

e The Input module is responsible for accepting input from the players.
The Input system reads the button states of connected controllers from
the XNA Input module.

e The Audio module is responsible for playback of music and sound
effects. The Audio module calls the XNA Audio module to play music
and sound effects.

e The Physics module is responsible for calculating the positions and
velocities for game objects as well as detecting collisions between them.

The Physics module differs from the Logic module in that the Physics
module applies rules of physics upon the game objects while the Logic
module applies other game rules upon the game.

The reason behind the division into Physics and Logic modules is
twofold—one is that we want to be able to use a physics module de-
veloped by a third party, the other is that dividing responsibilities
accross modules in this way makes each module smaller and more
manageable.

The Graphics module is responsible for drawing to the screen. The
Graphics module reads data about the game world from the Game
Objects repository and utilizes calls to the XNA Graphics module
to draw the appropriate representations of the Game Objects to the
screen. Each Game Object is responsible for keeping track of its graph-
ical representation.

The Game Objects module is a data repository containing information
about game objects such as players, traps, monsters, platforms, etc.

Note, however, that the Game Objects module it not purely a data
repository. It contains objects that have functions associated with
them.

The game runs in a continous loop, in all states of the game. During every
iteration of the loop the following things happen:

1.

The Input module checks for player input. Player input is sent to the
Logic module.

The Logic module interprets the player input, taking different actions
depending on what state the game is in.

If the game is in the Game Running state, the Physics module is used
to calculate positions and velocities for all game objects and to detect
collisions between them.

After the Logic module has updated the game, the Audio module
plays the appropriate sound effects and the Graphics module updates
the graphics on the screen.

2.3 Detailed Architecture

The following diagram shows data and order of execution during an iteration
of the game loop in the general case. Recall that the Logic module calls upon
the other modules during the game loop; the control flow goes from the Logic
module and back again.

Data repositories Input Logic Physics Audio Graphics

Read input

Player - -

Interpret input

Update Game
Objects

Caleulate positions
------------------------- and velocities
for Game Objects

Game Objects

Update Game
Objects

Play sounds

—— Draw screen

. Sequence start
]

O Process

- - -» Data

——» Nextprocess

The following diagram shows data and order of execution during an iteration
of the game loop in the case of a player jumping. Recall that the Logic
module calls upon the other modules during the game loop; the control flow
goes from the Logic module and back again.

Data repositories Input Logic Physics Audio Graphics

Player presses

Player == 2 s ame’ button

Interpret input

Check if the player is
able to jump, and if so,
change state of the player
object to indicate that

she wants to jump

Calculate
position & velocity

Update character
position & velocity
(Give the character
an upwards velocity)

Game Objects

Play jumping
sound

-- Draw screen

. Sequence start
] o

- - -» Data

—— Nextprocess

3 Design Considerations
4 Graphical User Interface

5 Design Details

5.1 CRC cards
5.1.1 Game

Responsibilities:

e To start up the game and keep it running until the user wants to quit.
e Contains the main game loop—updates other modules.
Collaborators:

e Logic

Physics

Input
e Audio
e Graphics

e GameObjects

5.1.2 Logic
Responsibilities:

e Enforcing game rules
Collaborators:

e GameObjects

5.1.3 Input
Responsibilities:

e To retrieve gamepad button presses from XNA and interpret them into
actions that the Logic class can understand.

Collaborators:

e GamePad (XNA)

e Logic

5.1.4 Audio
Responsibilities:
e To load music and sound effects from files.
e To play specified sounds when asked to.
Collaborators:

e AudioEngine (XNA)

5.1.5 GameObjects
Responsibilities:

e To load Game Stages from files.

e To store all objects in the game.
Collaborators:

o GameStage

e Player

e Trap

e MovingPlatform

e Monster

e SpringBoard

e BoxingGloveProjectile

e ClawProjectile

e ShrinkingRayProjectile

e BananaPeelProjectile

e FetterProjectile

5.1.6 GameStage
Responsibilities:

e To represent a Game Stage; keeping track of platforms, finish point
and start points.

Collaborators:
e StartPoint

e FinishPoint

5.1.7 Graphics
Responsibilities:

e To draw everything
Collaborators:

e GraphicsDevice (XNA)

e GameObjects

e GameStage

e Player

e Trap

e MovingPlatform

e Monster

e SpringBoard

e BoxingGlove

e Claw

e ShrinkingRay

e BananaPeel

o Fetter

e Camera

5.1.8 Camera
Responsibilities:
e To store the camera positions

No collaborators.

5.1.9 GameObject (abstract class)
Responsibilities:

e To store the position, rotation, graphical model and physical model of
an object in the game.

Collaborators:

e Geom (Farseer)

5.1.10 MovingPlatform (extends GameObject)
Responsibilities:

e To represent a moving platform; keeping track of position, path, etc.
Collaborators:

e Path

5.1.11 PowerupDispenser (extends GameObject)
Responsibilities:
e Represents a power-up dispenser (see Requirments Document)

No collaborators.

5.1.12 FinishPoint (extends GameObject)
Responsibilities:
e Represents the Finish Point (see Requirments Document)

No collaborators.

5.1.13 StartingPoint (extends GameObject)
Responsibilities:
e Represents a Starting Point (see Requirments Document)

No collaborators.

5.1.14 Springboard (extends GameObject)
Responsibilities:

e Represents a Springboard (see Requirments Document)
No collaborators.
5.1.15 Trap (extends GameObject)
Responsibilities:

e Represents a trap (see Requirments Document).

No collaborators.

10

5.1.16 BoxingGlove (extends GameObject)
Responsibilities:

e Represents a boxing glove that is spawned when the Boxing Glove
Power-up is applied (see Requirments Document).

No collaborators.

5.1.17 Fetter (extends GameObject)
Responsibilities:

e Represents a fetter that is spawned when the Fetter Power-up is ap-
plied (see Requirments Document).

No collaborators.

5.1.18 ShrinkingRay (extends GameObject)
Responsibilities:

e Represents a shrinking ray that is spawned when the Shrinking Ray
Power-up is applied (see Requirments Document).

No collaborators.

5.1.19 Claw (extends GameObject)
Responsibilities:

e Represents a claw that is spawned when the Claw Power-up is applied
(see Requirments Document).

No collaborators.

5.1.20 BananaPeel (extends GameObject)
Responsibilities:

e Represents a banana peel that is spawned when the Banana Peels
Power-up is applied (see Requirments Document).

No collaborators.

11

5.3 State Charts
5.3.1 Overall system

®

1
I
i
! [Starting the game]
I

[Quit race]
[e===——————— Main Menu m——mmmmme———————
[Start race]
[Pause]
[Exit end-game Screen] Game Running | ¢-- _{ Paused
[Unpause]

[Finish race]

End-game
Screen

5.3.2 Main Menu

o

1
i
i
| [Starting main menu]
'
1

Players confim
fo participate

[All players have confimed)

[Player uses game pad to

move amow] <+
e —————— [Player selects
Player points at a ok character] Cgl_:ﬁls:ﬁ%er‘“:o
character to select |t 9
e start race

[All players have confirmed]

andom player
is chosen

[Player uses game
pad to select
another game stage]

Selected player
points at game
stage A

[Player confirms game stage]

13

5.4 Interaction Diagrams

Lome | [wee | [| [me | e | eme || aee |
U update() receive(U :
; gu\GHMsOBin()E H
Lmaleeemeowectfsc) § :

: ' playSounds()
U update() : :

H getGameObjects()

updateGameObjects()

D getGameObjects() '

14

drawGameObjects()

