Settle And Destroy (SAD)
Group 13
Jonas Wikberg
Christofer Hjalmarsson
Daniel Westerberg
Saul Amram
André Sikborn Erixon



a M W bdhE

5.2.
5.3.
5.4.
5.5. Detailed Design

5.5.1. Class Village

Fields:

Attribute: team
Type: Team
Usage: Assigns a village name

Attribute: homeArmy
Type: Army
Usage: The stationary army where new built troops are gathered

Methods:
increaseMoney()

Method Name: increaseMoney

Parameters: -

Return Value: -

Description: The method increases the player money production
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: The player money amount is increased

Called by: MainWindow.createThread()

Calls: Team.addMoney()

5.5.2. Interface Building

Fields:



Methods:
getVillage()

Method Name: getVillage()

Parameters: -

Return Value: Village

Description: The method returns the village a building belongs to
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: The village is returned

Called by: TotalCostPanel.builditemNumberChanged()

Calls: Team.addMoney()

String getName()

Method Name: getName()

Parameters: -

Return Value: String name

Description: The method returns the building name

Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: The name of the building is returned
Called by: UpgradeBuildingPanel.buttonUpgradeActionPerformed(), BuildingPanel.update(),
BuildingButton()

Calls:

int getLevel()

Method Name: getLevel()

Parameters: -

Return Value: int

Description: The method returns the building level

Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: The level of the building is returned
Called by:
UpgradeBuildingPanel.updateButton(),UpgradeBuildingPanel.buttonUpgradeActionPerforme
d(),BuildingPanel.update()

Calls: -

isUpgradable()

Method Name: isUpgradable()

Parameters: -

Return Value: boolean

Description: The method checks if the building is upgradable



Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: A true or false is returned

Called by: BuildingPanel.update()

Calls: -

getUpgradeCost()

Method Name: getUpgradeCost()

Parameters: -

Return Value: int

Description: The method checks the upgrade cost of the building
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: The cost of upgrade is returned

Called by: UpgradeBuildingPanel.updateButton()

Calls: -

getUpgradeTime()

Method Name: getUpgradeTime()

Parameters: -

Return Value: int

Description: The method checks the upgrade time of the building
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: The time of upgrade is returned

Called by: UpgradeBuildingPanel.buttonUpgradeActionPerformed()
Calls: -

getBuildableltems()

Method Name: getBuildableltems()

Parameters: -

Return Value: Buildableltem[]

Description: The returns all buildable buildings for a specified village
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: The buildable buildings are returned

Called by: BuildingPanel.update()

Calls: -

5.5.3. Class Team

Fields

Attribute: name
Type: String



Usage: Every team has a unique name to separate them from each other.

Attribute: money
Type: int
Usage: This is used to keep track of a teams money they can spend.

Attribute: color
Type: Color
Usage: Every team has a unique team color to separate them from other teams.

Attribute moneyListeners
Type: List<MoneyListener> - List of moneyListeners

Methods:

Method: addMoney(int money)

Parameters: money — how much you should add to the team money.

Return Value: -

Description: This method is used to add money to the team. The amount of money added is
told by the parameter.

Data structures: -

Pre-condition: A team has gain money in some way and need to add it to there
team money.

Validity Checks, Errors, and other Anomalous Situations: -

Post-condition: The teams money has change.

Called by: Village.increadeMoney()

Calls: -

5.5.4. Class Army

Field:

Attribute: unitA
Type: int
Usage: Is used to know how many troops of the type unitA this army consist of.

Attribute: unitB
Type: int
Usage: Is used to know how many troops of the type unitB this army consist of.

Attribute: unitC
Type: int
Usage: Is used to know how many troops of the type unitB this army consist of.

Attribute: speed

Type: float

Usage: Is used to know the speed of the army, the speed is equal to the slowest troop in the
army.

Method:

Method: getSpeed()
Parameters: -



Return Value: int speedValue

Description: This method is used to get the speed of the army

Data structures: -

Pre-condition: The army consists of at least 1 unit of any kind.
Validity Checks, Errors, and other Anomalous Situations: -

Post-condition: The team has the speed of the slowest unit in the army.
Called by:  Pathfinder.findPath()

Calls: -

Method: setSpeed(int unitA, int unitB, int unitC)
Parameters: unitA — how many troops of the unitA
unitB — how many troops of the unitB
unitC — how many troops of the unitC
Return Value: -
Description: This method is used to set the speed of the army.

Pre-condition: The speed of the army is set to the slowest unit in this army.
Called by:  Building.trainTroops(), Map.formMergeArmy
Calls: Army.addArmy(int unitA, int unitB, int UnitC)

5.5.5. Interface Buildableltem

Methods:
getRequiredLevel()

Method Name: getRequiredLevel

Parameters: -

Return Value: int - The minimum level of a building required to build this item
Description: Returns the required minimum level

Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -

Post-conditions: The required level is returned

Called by: BuildingPanel.update

Calls: -

getName()

Method Name: getName

Parameters: -

Return Value: String - The name of the item

Description: Returns the name of the item

Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: The name is returned

Called by: BuildingPanel.update, BuildltemPanel constructor
Calls: -

getCost()



Method Name: getCost

Parameters: -

Return Value: int - The cost to build this item

Description: Returns the cost

Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: The cost is returned

Called by: TotalCostPanel.getTotalCost, BuilditemPanel.updateCost
Calls: -

getBuildTime ()

Method Name: getBuildTime

Parameters: -

Return Value: int - The time it takes to build on of this item
Description: Returns the build time

Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: The cost build time is returned

Called by: -

Calls: -

5.5.6. Class Map

Fields

Attribute: grid
Type: Cell[][]
Usage: All map cells are stored in this cell-matrix.

Attribute: randomizer

Type: Random

Usage: Machine for producing random seeds for the map creation process. This is needed to
make each game map unique.

Methods:

Method: generateRivers()

Parameters: -

Return Value: -

Description: Generates and randomizes amount of rivers that should exist on the map.
Also randomizes how long each river should be.

Data structures: -

Pre-conditions: A game is launched and a map is needed.

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: A map with a cell matrix full of different cells is created.
Called by: Game.generateMap()

Calls: createRiver(int n)



Method: createRiver(int riverSize)

Parameters: riverSize — specifies how many cells this river should be
Return Value: -

Description: Randomizes rivers positioning and generates the related cells in the cell
matrix.

Data structures: -

Pre-conditions: Rivers are being created.

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: A river is created.

Called by: generateRivers()

Calls: -

Method: generateRocks()

Parameters: -

Return Value: -

Description: Generates and randomizes amount of rocks/mountains that should exist on
the map. Also randomizes how big each rock should be.

Data structures: -

Pre-conditions: A game is launched and a map is needed. Rivers are created.
Validity Checks, Errors, and other Anomalous Situations: -

Post-conditions: A map with a cell matrix full of different cells is created.
Called by: Game.generateMap()

Calls: createRock(int n)

Method: createRock(int rockSize)

Parameters: rockSize — specifies how many cells this rock should be
Return Value: -

Description: Randomizes rock positioning and generates the related cells in the cell
matrix.

Data structures: -

Pre-conditions: Rocks are being created.

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: A rock is created.

Called by: generateRocks()

Calls: -

Method: generatePlains()

Parameters: -

Return Value: -

Description: Generates and creates plains cells in the empty cells of the cell-matrix.
Pre-conditions: A game is launched and a map is needed. Rivers and rocks are created.
Validity Checks, Errors, and other Anomalous Situations: -

Post-conditions: A map with a cell matrix full of different cells is created.

Called by: Game.generateMap()

Calls: -

5.5.7. Class Combat Calculator

Methods:



Method: calculateCombat(Army armyB, Army armyC)
Parameters: armyB — An army
armyC — An army of another player
Return Value: Army winningArmy
Description: Calculates who is the combat’s winning army, dependant on army factors,
troops relations and some random factors.
Pre-conditions: Two different player's armies meet at the same map cell.
Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: One army has been eliminated,
Called by: Cell.calculateCombat(Army armyB, Army armyC)
Calls: -

5.5.8. Interface Race

Methods:
String getName()

Method Name: getName()

Parameters: -

Return Value: The name of the race

Description: The method returns the name of the race
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situations: -
Post-conditions: The name of the race is returned

Called by: BuildingPanel update

Calls: -



5.6. Package Diagram

sad
game
Settings - AbstractBuilding
t"-. Aty
i Barracks
| BuildEwent
" | BuildEwentListenar
" | BuildableItern
. e _2 Budilding
Sadutil [ . = BuildingListener
o Cornbat
F ) Main L~ EwventManagar
Y I EventManagerlistenar
. A ManeryListener
Yoo Stable
bar Team
qui Yillage
ActionBackButtonPanel o
BuldEvwentHeaderPanel i
BuildEvwentPanel o
BuildEwentsP anel S
BuildIternPanel o
BuildIternPanelistener £
BuildingButton network |
BuildingPanel
DialogManager Session
GarneDialog ,J'T"l Servar
HostGameDialag J_.*‘f Client
HastGarneP anel L
Maintindow .
MapPanel
MeszagePanel
MessagePanel X
MultiplayerModelialag K
MultiplayerfodeP anel "
Multiplayer®aitingReady Dialog N,
roultiplayerdaitingReadyPanel kY
MamePane| i
CnebuttonP anel R b
StartMenulialog 3]
StartMenuP anel Map
TotalCostPanel MapSenerator
UpgradeBuildingPane
YillageInfoPanel
YillagePanel
ZeroLevelBuildingPanel

Figur 1. Package Diagram




