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5.5. Detailed Design 

5.5.1. Class Village 
 
Fields: 
 
Attribute: team 
Type: Team 
Usage: Assigns a village name 
 
Attribute: homeArmy 
Type: Army 
Usage: The stationary army where new built troops are gathered 
 
Methods: 
 
increaseMoney() 
 
Method Name: increaseMoney 
Parameters: - 
Return Value: -  
Description: The method increases the player money production 
Data structures: - 
Pre-conditions: -  
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: The player money amount is increased 
Called by: MainWindow.createThread() 
Calls: Team.addMoney() 
 
 

5.5.2. Interface Building 
 
Fields: 



 
Methods: 
 
getVillage() 
 
Method Name: getVillage() 
Parameters: - 
Return Value: Village 
Description: The method returns the village a building belongs to 
Data structures: - 
Pre-conditions: -  
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: The village is returned 
Called by: TotalCostPanel.buildItemNumberChanged() 
Calls: Team.addMoney() 
 
 
String getName() 
 
Method Name: getName() 
Parameters: - 
Return Value: String name 
Description: The method returns the building name 
Data structures: - 
Pre-conditions: -  
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: The name of the building is returned 
Called by: UpgradeBuildingPanel.buttonUpgradeActionPerformed(), BuildingPanel.update(), 
BuildingButton() 
Calls:  
 
 
int getLevel() 
 
Method Name: getLevel() 
Parameters: - 
Return Value: int 
Description: The method returns the building level 
Data structures: - 
Pre-conditions: -  
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: The level of the building is returned 
Called by: 
UpgradeBuildingPanel.updateButton(),UpgradeBuildingPanel.buttonUpgradeActionPerforme
d(),BuildingPanel.update() 
Calls: - 
 
 
    
isUpgradable() 
 
Method Name: isUpgradable() 
Parameters: - 
Return Value: boolean 
Description: The method checks if the building is upgradable 



Data structures: - 
Pre-conditions: -  
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: A true or false is returned 
Called by: BuildingPanel.update() 
Calls: - 
 
getUpgradeCost() 
 
Method Name: getUpgradeCost() 
Parameters: - 
Return Value: int 
Description: The method checks the upgrade cost of the building 
Data structures: - 
Pre-conditions: - 
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: The cost of upgrade is returned 
Called by: UpgradeBuildingPanel.updateButton() 
Calls: - 
 
 
getUpgradeTime() 
 
Method Name: getUpgradeTime() 
Parameters: - 
Return Value: int 
Description: The method checks the upgrade time of the building 
Data structures: - 
Pre-conditions: - 
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: The time of upgrade is returned 
Called by: UpgradeBuildingPanel.buttonUpgradeActionPerformed() 
Calls: - 
     
getBuildableItems() 
 
Method Name: getBuildableItems() 
Parameters: - 
Return Value: BuildableItem[] 
Description: The returns all buildable buildings for a specified village 
Data structures: - 
Pre-conditions: - 
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: The buildable buildings are returned 
Called by: BuildingPanel.update() 
Calls: - 
 
 

5.5.3. Class Team 
 
Fields 
 
Attribute: name 
Type: String 



Usage: Every team has a unique name to separate them from each other. 
 
Attribute: money 
Type: int 
Usage: This is used to keep track of a teams money they can spend. 
 
Attribute: color 
Type: Color 
Usage: Every team has a unique team color to separate them from other teams. 
 
Attribute moneyListeners 
Type: List<MoneyListener> - List of moneyListeners 
 
Methods: 
 
Method: addMoney(int money) 
Parameters:  money – how much you should add to the team money. 
Return Value: - 
Description: This method is used to add money to the team. The amount of money added is 
told by the parameter. 
Data structures: - 
Pre-condition: A team has gain money in some way and need to add it to there 
team money. 
Validity Checks, Errors, and other Anomalous Situations: - 
Post-condition: The teams money has change. 
Called by: Village.increadeMoney() 
Calls:  - 
 
 

5.5.4. Class Army 
 
Field: 
 
Attribute: unitA 
Type: int 
Usage: Is used to know how many troops of the type unitA this army consist of. 
 
Attribute: unitB 
Type: int 
Usage:  Is used to know how many troops of the type unitB this army consist of. 
 
Attribute: unitC 
Type: int 
Usage: Is used to know how many troops of the type unitB this army consist of. 
 
Attribute: speed 
Type: float 
Usage: Is used to know the speed of the army, the speed is equal to the slowest troop in the 
army. 
 
Method: 
 
Method:  getSpeed() 
Parameters:   -. 



Return Value:  int speedValue 
Description:  This method is used to get the speed of the army 
Data structures: - 
Pre-condition: The army consists of at least 1 unit of any kind. 
Validity Checks, Errors, and other Anomalous Situations: - 
Post-condition: The team has the speed of the slowest unit in the army. 
Called by:   Pathfinder.findPath() 
Calls:  - 
 
Method:  setSpeed(int unitA, int unitB, int unitC) 
Parameters:  unitA – how many troops of the unitA 
  unitB – how many troops of the unitB 
  unitC – how many troops of the unitC 
Return Value: - 
Description: This method is used to set the speed of the army. 
Pre-condition: The speed of the army is set to the slowest unit in this army. 
Called by: Building.trainTroops(), Map.formMergeArmy 
Calls:   Army.addArmy(int unitA, int unitB, int UnitC) 
 
 

5.5.5. Interface BuildableItem 
 
Methods: 
 
getRequiredLevel() 
 
Method Name: getRequiredLevel 
Parameters: - 
Return Value: int - The minimum level of a building required to build this item 
Description: Returns the required minimum level 
Data structures: - 
Pre-conditions: -  
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: The required level is returned 
Called by: BuildingPanel.update 
Calls: - 
 
 
getName() 
 
Method Name: getName 
Parameters: - 
Return Value: String - The name of the item 
Description: Returns the name of the item 
Data structures: - 
Pre-conditions: -  
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: The name is returned 
Called by: BuildingPanel.update, BuildItemPanel constructor 
Calls: - 
 
 
getCost() 
 



Method Name: getCost 
Parameters: - 
Return Value: int - The cost to build this item 
Description: Returns the cost 
Data structures: - 
Pre-conditions: -  
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: The cost is returned 
Called by: TotalCostPanel.getTotalCost, BuildItemPanel.updateCost 
Calls: - 
 
 
getBuildTime () 
 
Method Name: getBuildTime 
Parameters: - 
Return Value: int - The time it takes to build on of this item 
Description: Returns the build time 
Data structures: - 
Pre-conditions: -  
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: The cost build time is returned 
Called by: - 
Calls: - 
 
 

5.5.6. Class Map  
 
Fields 
 
Attribute: grid 
Type: Cell[][] 
Usage: All map cells are stored in this cell-matrix. 
 
Attribute: randomizer 
Type: Random 
Usage: Machine for producing random seeds for the map creation process. This is needed to 
make each game map unique. 
 
Methods: 
 
Method: generateRivers() 
Parameters: - 
Return Value: - 
Description: Generates and randomizes amount of rivers that should exist on the map. 
Also randomizes how long each river should be. 
Data structures: - 
Pre-conditions: A game is launched and a map is needed. 
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: A map with a cell matrix full of different cells is created. 
Called by: Game.generateMap() 
Calls: createRiver(int n) 
 



 
Method: createRiver(int riverSize)  
Parameters: riverSize – specifies how many cells this river should be 
Return Value: - 
Description: Randomizes rivers positioning and generates the related cells in the cell 
matrix. 
Data structures: - 
Pre-conditions: Rivers are being created. 
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: A river is created.  
Called by: generateRivers() 
Calls: - 
 
Method: generateRocks() 
Parameters: - 
Return Value: - 
Description: Generates and randomizes amount of rocks/mountains that should exist on 
the map. Also randomizes how big each rock should be. 
Data structures: - 
Pre-conditions: A game is launched and a map is needed. Rivers are created. 
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: A map with a cell matrix full of different cells is created. 
Called by: Game.generateMap() 
Calls: createRock(int n) 
 
 
Method: createRock(int rockSize)  
Parameters: rockSize – specifies how many cells this rock should be 
Return Value: - 
Description: Randomizes rock positioning and generates the related cells in the cell 
matrix. 
Data structures: - 
Pre-conditions: Rocks are being created. 
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: A rock is created.  
Called by: generateRocks() 
Calls: - 
 
Method: generatePlains() 
Parameters: - 
Return Value: - 
Description: Generates and creates plains cells in the empty cells of the cell-matrix. 
Pre-conditions: A game is launched and a map is needed. Rivers and rocks are created. 
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: A map with a cell matrix full of different cells is created. 
Called by: Game.generateMap() 
Calls: - 
 

5.5.7. Class Combat Calculator 
 
 
Methods: 



 
Method: calculateCombat(Army armyB, Army armyC) 
Parameters: armyB – An army 
  armyC – An army of another player 
Return Value: Army winningArmy 
Description: Calculates who is the combat’s winning army, dependant on army factors, 
troops relations and some random factors. 
Pre-conditions: Two different player’s armies meet at the same map cell. 
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: One army has been eliminated,  
Called by: Cell.calculateCombat(Army armyB, Army armyC) 
Calls: - 
 
 

5.5.8. Interface Race 
 
Methods: 
 
String getName() 
 
Method Name: getName() 
Parameters: - 
Return Value: The name of the race  
Description: The method returns the name of the race 
Data structures: - 
Pre-conditions: -  
Validity Checks, Errors, and other Anomalous Situations: - 
Post-conditions: The name of the race is returned 
Called by: BuildingPanel update  
Calls: - 
 



5.6. Package Diagram 

 
Figur 1. Package Diagram  


