Chapter

USE-CASE MODEL: WRITING
REQUIREMENTS IN CONTEXT

The indispensable first step to getting the things
you want out of life: decide what you want.

—Ben Stein

Objectives
m Identify and write use cases.
m Relate use cases to user goals and elementary business processes.
m Use the brief, casual, and fully dressed formats, in an essential style.

m Relate use case work to iterative development.

Introduction

This is worth studying during a first read of the book because use cases are a
widely used and useful mechanism to discover and record requirements (espe-
cially functional); they influence many aspects of a project, including OOA/D. It
is worth both knowing about and creating use cases.

Writing use cases—stories of using a system—is an excellent technique to
understand and describe requirements. This chapter explores key use case con-
cepts and presents sample use cases for the NextGen application.

The UP defines the Use-Case Model within the Requirements workflow.
Essentially, this is the set of all use cases; it is a model of the system’s function-
ality and environment.

45

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

6.1 Goals and Stories

Customers and end users have goals (also known as needs in the UP) and want
computer systems to help meet them, whether as mercantile as recording sales
or as complex as estimating the flow of oil from future wells. There are several
ways to capture these goals and system requirements; the better ones are sim-
ple and familiar because this makes it easier—especially for customers and end
users—to contribute to their definition or evaluation. That lowers the risk of
missing the mark.

Use cases are a mechanism to help keep it simple and understandable for all
stakeholders. Informally, they are stories of using a system to meet goals. Here
is an example brief format use case:

Process Sale: A customer arrives at a checkout with items to
purchase. The cashier uses the POS system to record each pur-
chased item. The system presents a running total and line-item
details. The customer enters payment information, which the
system validates and records. The system updates inventory.
The customer receives a receipt from the system and then leaves
with the items.

Use cases often need to be more elaborate than this, but the essence is discover-
ing and recording functional requirements by writing stories of using a system
to help fulfill various stakeholder goals; that is, cases of use.l It isn’t supposed to
be a difficult idea, although it may indeed be difficult to discover or decide what
is needed, and write it coherently at a useful level of detail.

Much has been written about use cases, and while worthwhile, there is always
the risk among creative, thoughtful people to obscure a simple idea with layers
of sophistication. It is usually possible to spot a novice use case modeler (or a
serious Type A analyst) by an over-concern with secondary issues such as use
case diagrams, use case relationships, use case packages, optional attributes,
and so forth, rather than writing the stories. That said, a strength of the use
case mechanism is the capacity to scale both up and down in terms of sophistica-
tion and formality, depending on need.

6.2 Background

The idea of use cases to describe functional requirements was introduced in
1986 by Ivar Jacobson [Jacobson92], a main contributor to the UML and UP.

1. The original term in Swedish literally translates as “usage case.”

46

USE CASES AND ADDING VALUE

Jacobson’s use case idea was seminal and widely appreciated; simplicity and
utility being its chief virtues. Although many have made contributions to the
subject, arguably the most influential, comprehensive, and coherent next step in
defining what use cases are (or should be) and how to write them came from
Alistair Cockburn, summarized in the very popular text Writing Effective Use
Cases [Cockburn01], based on his earlier work and writings stemming from
1992 onwards. This introduction is therefore based upon and consistent with the
latter work.

6.3 Use Cases and Adding Value

First, some informal definitions: an actor is something with behavior, such as a
person (identified by role), computer system, or organization; for example, a
cashier.

A scenario is a specific sequence of actions and interactions between actors and
the system under discussion; it is also called a use case instance. It is one par-
ticular story of using a system, or one path through the use case; for example,
the scenario of successfully purchasing items with cash, or the scenario of failing
to purchase items because of a credit card transaction denial.

Informally then, a use case is a collection of related success and failure scenar-
ios that describe actors using a system to support a goal. For example, here is a
casual format use case that includes some alternate scenarios:

Handle Returns

Main Success Scenario: A customer arrives at a checkout with
items to return. The cashier uses the POS system to record each
returned item ...

Alternate Scenarios:

If the credit authorization is reject, inform the customer and ask
for an alternate payment method.

If the item identifier is not found in the system, notify the Cash-
ier and suggest manual entry of the identifier code (perhaps it is
corrupted).

If the system detects failure to communicate with the external
tax calcuator system, ...

An alternate, but similar definition of a use case is provided by the UP:

A set of use-case instances, where each instance is a sequence of
actions a system performs that yields an observable result of
value to a particular actor [RUP].

47

6.4

48

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

The phrasing “an observable result of value” is subtle but important, because it
stresses the attitude that the system behavior should emphasize providing
value to the user.

A key attitude in use case work is to focus on the question “How can using the
system provide observable value to the user, or fulfill their goals?”, rather
than merely thinking of system requirements in terms of a “laundry list” of
features or functions.

Perhaps it seems obvious to stress providing observable user value, but the soft-
ware industry is littered with failed projects that did not deliver what people
really needed. The feature and function list approach to capturing requirements
can contribute to that negative outcome because it does not encourage the stake-
holders to consider the requirements in a larger context of using the system in a
scenario to achieve some observable result of value, or some goal. In contrast,
use cases place features and functions in a goal-oriented context. Hence the
chapter title.2

This is a key idea that Jacobson was trying to convey in the use case concept: do
requirements work with a focus on how a system can add value.

Use Cases and Functional Requirements

Use cases are requirements; primarily they are functional requirements that
indicate what the system will do. In terms of the FURPS+ requirements types,
they emphasize the “F” (functional or behavioral), but can also be used for other
types, especially when those other types strongly relate to a use case. In the
UP—and most modern methods—use cases are the central mechanism that is
recommended for their discovery and definition. Use cases define a promise or
contract of how a system will behave.

To be clear: Use cases are requirements (although not all requirements). Some
think of requirements only as “the system shall do...” function or feature lists.
Not so, and a key idea of use cases is to (usually) reduce the importance or use of
detailed older-style feature lists and rather, write use cases for the functional
requirements. More on this point in a later section.

Use cases are text documents, not diagrams, and use case modeling is primarily
an act of writing, not drawing. However, the UML defines a use case diagram to
illustrate the names of use cases and actors, and their relationships.

2. Originally from the aptly titled Uses Cases: Requirements in Context [GKO00] (chapter
title adapted with permission of the authors).

USE CASE TYPES AND FORMATS

6.5 Use Case Types and Formats

Black-Box Use Cases and System Responsibilities

Black-box use cases are the most common and recommended kind; they do not
describe the internal workings of the system, its components, or design. Rather,
the system is described as having responsibilities, which is a common unifying
metaphorical theme in object-oriented thinking—software elements have
responsibilities and collaborate with other elements that have responsibilities.

By defining system responsibilities with black-box use cases, it is possible to
specify what the system must do (the functional requirements) without deciding
how it will do it (the design). Indeed, the definition of “analysis” versus “design”
is sometimes summarized as “what” versus “how.” This is an important theme in
good software development: During requirements analysis avoid making “how”
decisions, and specify the external behavior for the system, as a black box. Later,
during design, create a solution that meets the specification.

Black-box style Not

The system records the sale. The system writes the sale to a data-
base. ...or (even worse) :

The system generates a SQL INSERT
statement for the sale...

Formality Types

Use cases are written in different formats, depending on need. In addition to the
black-box versus white-box visibility type, there are varying degrees of formal-
ity:

m brief—terse one-paragraph summary, usually of the main success scenario.
The prior Process Sale example was brief.

m casual—informal paragraph format. Multiple paragraphs that cover vari-
ous scenarios. The prior Handle Returns example was casual.

m fully dressed—the most elaborate. All steps and variations are written in
detail, and there are supporting sections, such as preconditions and success
guarantees.

The following example is a fully dressed case for our NextGen case study:

49

6.6

50

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Fully Dressed Example: Process Sale

Fully dressed use cases show more detail and are structured; they are useful in
order to obtain a deep understanding of the goals, tasks, and requirements. In
the NextGen POS case study, they would be created during one of the early
requirements workshops in a collaboration of the system analyst, subject matter
experts, and developers.

The usecases.org Format

Various format templates re available for fully dressed use cases. However, per-
haps the most widely used and shared format is the template available at
www.usecases.org. The following example illustrates this style.

Please note that this is the primary case study example of a detailed use case; it
shows many common elements and issues.

Use Case UC1: Process Sale

Primary Actor: Cashier

Stakeholders and Interests:

— Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer short-
ages are deducted from his/her salary.

— Salesperson: Wants sales commissions updated.

— Customer: Wants purchase and fast service with minimal effort. Wants proof of pur-
chase to support returns.

— Company: Wants to accurately record transactions and satisfy customer interests.
Wants to ensure that Payment Authorization Service payment receivables are
recorded. Wants some fault tolerance to allow sales capture even if server compo-
nents (e.g., remote credit validation) are unavailable. Wants automatic and fast
update of accounting and inventory.

— Government Tax Agencies: Want to collect tax from every sale. May be multiple agen-
cies, such as national, state, and county.

— Payment Authorization Service: Wants to receive digital authorization requests in the
correct format and protocol. Wants to accurately account for their payables to the
store.

Preconditions: Cashier is identified and authenticated.

Success Guarantee (postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Main Success Scenario (or Basic Flow):

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

5. System presents total with taxes calculated.

FULLY DRESSED EXAMPLE: PROCESS SALE

6. Cashier tells Customer the total, and asks for payment.

. Customer pays and System handles payment.

8. System logs completed sale and sends sale and payment information to the external
Accounting system (for accounting and commissions) and Inventory system (to
update inventory).

9. System presents receipt.

10.Customer leaves with receipt and goods (if any).

~

Extensions (or Alternative Flows):
*a. At any time, System fails:
To support recovery and correct accounting, ensure all transaction sensitive state
and events can be recovered from any step of the scenario.
1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.
2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a clean
state.
2. Cashier starts a new sale.
3a. Invalid identifier:
1. System signals error and rejects entry.
3b. There are multiple of same item category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.
3-6a: Customer asks Cashier to remove an item from the purchase:
1. Cashier enters item identifier for removal from sale.
2. System displays updated running total.
3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.
3-6¢. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS terminal.
4a. The system generated item price is not wanted (e.g., Customer complained about
something and is offered a lower price):
1. Cashier enters override price.
2. System presents new price.

5a. System detects failure to communicate with external tax calculation system service:

1. System restarts the service on the POS node, and continues.
1a. System detects that the service does not restart.
1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.

5b. Customer says they are eligible for a discount (e.g., employee, preferred customer):

1. Cashier signals discount request.

2. Cashier enters Customer identification.

3. System presents discount total, based on discount rules.
5c. Customer says they have credit in their account, to apply to the sale:

1. Cashier signals credit request.

2. Cashier enters Customer identification.

3. Systems applies credit up to price=0, and reduces remaining credit.
6a. Customer says they intended to pay by cash but don’t have enough cash:

1a. Customer uses an alternate payment method.

1b. Customer tells Cashier to cancel sale. Cashier cancels sale on System.
7a. Paying by cash:

1. Cashier enters the cash amount tendered.

51

52

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

2. System presents the balance due, and releases the cash drawer.

3. Cashier deposits cash tendered and returns balance in cash to Customer.

4. System records the cash payment.

7b. Paying by credit:

1. Customer enters their credit account information.

2. System sends payment authorization request to an external Payment Authoriza-
tion Service System, and requests payment approval.
2a. System detects failure to collaborate with external system:

1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

3. System receives payment approval and signals approval to Cashier.
3a. System receives payment denial:

1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.

4. System records the credit payment, which includes the payment approval.

5. System presents credit payment signature input mechanism.

6. Cashier asks Customer for a credit payment signature. Customer enters signa-

ture.
7c. Paying by check...
7d. Paying by debit...:
7e. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System reduces
price as appropriate. System records the used coupons for accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier.
9a. There are product rebates:

1. System presents the rebate forms and rebate receipts for each item with a
rebate.

9b. Customer requests gift receipt (no prices visible):
1. Cashier requests gift receipt and System presents it.

Special Requirements:

— Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.

— Credit authorization response within 30 seconds 90% of the time.

— Somehow, we want robust recovery when access to remote services such the inven-
tory system is failing.

— Language internationalization on the text displayed.

— Pluggable business rules to be insertable at steps 3 and 7.

Technology and Data Variations List:

3a. ltem identifier entered by bar code laser scanner (if bar code is present) or key-
board.

3b. ltem identifier may be any UPC, EAN, JAN, or SKU coding scheme.

7a. Credit account information entered by card reader or keyboard.

7b. Credit payment signature captured on paper receipt. But within two years, we pre-
dict many customers will want digital signature capture.

Frequency of Occurrence: Could be nearly continuous.

Open Issues:

FULLY DRESSED EXAMPLE: PROCESS SALE

— What are the tax law variations?
— Explore the remote service recovery issue.

— What customization is needed for different businesses?
— Must a cashier take their cash drawer when they log out?
— Can the customer directly use the card reader, or does the cashier have to do it?

This use case is illustrative rather than exhaustive (although it is based on a
real POS system’s requirements). Nevertheless, there is enough detail and com-
plication here to offer a realistic sense that a fully-dressed use case can record
many requirement details. This example will serve well as a model for many use

case problems.

The Two-Column Variation

Some prefer the two-column or conversational format, which emphasizes the
fact that there is an interaction going on between the actors and the system. It
was first proposed by Rebecca Wirfs-Brock in [Wirfs-Brock93], and is also pro-
moted by Constantine and Lockwood to aid usability analysis and engineering
[CL99]. Here is the same content using the two-column format:

Use Case UC1: Process Sale

Primary Actor: ...
... as before ...

Main Success Scenario:

Actor Intention

1. Customer arrives at a POS checkout
with goods and/or services to pur-
chase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

Cashier repeats steps 3-4 until indi-

cates done.

6. Cashier tells Customer the total, and
asks for payment.

7. Customer pays.

System Responsibility

4. Records each sale line item and pre-
sents item description and running
total.

5. System presents total with taxes cal-
culated.

8. Handles payment.

9. Logs the completed sale and sends
information to the external account-
ing (for all accounting and commis-
sions) and inventory systems (to
update inventory). System presents
receipt.

53

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

The Best Format?

There isn’t one best format; some prefer the one-column style, some the two-col-
umn. Sections may be added and removed; heading names may change. None of
this is particularly important; the key thing is to write the details of the main
success scenario and its extensions, in some form. [Cockburnl] summarizes
many usable formats.

Personal Practice

This is my practice, not a recommendation. For some years, I used the two-
column format because of its clear visual separation in the conversation.
However, I have reverted to a one-column style as it is more compact and
easier to format, and the slight value of the separated conversation does not
for me outweigh these benefits. I find it still simple to visually identify the
different parties in the conversation (Customer, System, ...) if each party and
the System responses are usually allocated to their own steps.

6.7 Explaining the Sections

Preface Elements

Many optional preface elements are possible. Only place elements at the start
which are important to read before the main success scenario. Move extraneous
“header” material to the end of the use case.

Primary Actor: The principal actor that calls upon system services to fulfill a goal.

Important: Stakeholders and Interests List

This list is more important and practical than may appear at first glance. It sug-
gests and bounds what the system must do. To quote:

The [system] operates a contract between stakeholders, with the
use cases detailing the behavioral parts of that contract...The
use case, as the contract for behavior, captures all and only the
behaviors related to satisfying the stakeholders’ interests
[Cockburn01].

This answers the question: What should be in the use case? The answer is: That
which satisfies all the stakeholders’ interests. In addition, by starting with the
stakeholders and their interests before writing the remainder of the use case,
we have a method to remind us what the more detailed responsibilities of the

54

EXPLAINING THE SECTIONS

system should be. For example, would I have identified a responsibility for sales-
person commission handling if I had not first listed the salesperson stakeholder
and their interests? Hopefully eventually, but perhaps I would have missed it
during the first analysis session. The stakeholder interest viewpoint provides a
thorough and methodical procedure for discovering and recording all the
required behaviors.

Stakeholders and Interests:

— Cashier: Wants accurate, fast entry and no payment errors, as cash drawer shortages
are deducted from his/her salary.

— Salesperson: Wants sales commissions updated.

Preconditions and Success Guarantees

Preconditions state what must always be true before beginning a scenario in
the use case. Preconditions are not tested within the use case; rather, they are
conditions that are assumed to be true. Typically, a precondition implies a sce-
nario of another use case that has successfully completed, such as logging in, or
the more general “cashier is identified and authenticated.” Note that there are
conditions that must be true, but are not of practical value to write, such as “the
system has power.” Preconditions communicate noteworthy assumptions that
the use case writer thinks readers should be alerted to.

Success guarantees (or postconditions) state what must be true on success-
ful completion of the use case—either the main success scenario or some alter-
nate path. The guarantee should meet the needs of all stakeholders.

Preconditions: Cashier is identified and authenticated.
Success Guarantee (postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Main Success Scenario and Steps (or Basic Flow)

This has also been called the “happy path” scenario, or the more prosaic “Basic
Flow”. It describes the typical success path that satisfies the interests of the
stakeholders. Note that it often does not include any conditions or branching.
Although not wrong or illegal, it is arguably more comprehensible and extend-
ible to be very consistent and defer all conditional handling to the Extensions
section.

Suggestion

Defer all conditional and branching statements to the Extensions section.

55

56

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

The scenario records the steps, of which there are three kinds:
1. An interaction between actors.3
2. A validation (usually by the system).

3. A state change by the system (for example, recording or modifying some-
thing).

Step one of a use case does not always fall into this classification, but indicates
the trigger event that starts the scenario.

It is a common idiom to always capitalize the actors’ names for ease of identifica-
tion. Observe also the idiom that is used to indicate repetition.

Main Success Scenario:

1. Customer arrives at a POS checkout with items to purchase.
2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. ..

Cashier repeats steps 3-4 until indicates done.

5. ..

Extensions (or Alternate Flows)

Extensions are very important. They indicate all the other scenarios or
branches, both success and failure. Observe in the fully dressed example that
the Extensions section was considerably longer and more complex than the
Main Success Scenario section; this is common and to be expected. They are also
known as “Alternative Flows.”

In thorough use case writing, the combination of the happy path and extension
scenarios should satisfy “nearly” all the interests of the stakeholders. This point
is qualified, because some interests may best be captured as non-functional
requirements expressed in the Supplementary Specification rather than the use
cases.

Extension scenarios are branches from the main success scenario, and so can be
notated with respect to it. For example, at Step 3 of the main success scenario
there may be an invalid item identifier, either because it was incorrectly entered
or unknown to the system. An extension is labeled “3a”; it first identifies the
condition and then the response. Alternate extensions at Step 3 are labeled “3b”
and so forth.

Extensions:
3a. Invalid identifier:

3. Note that the system under discussion itself should be considered an actor when it
plays an actor role collaborating with other systems.

EXPLAINING THE SECTIONS

1. System signals error and rejects entry.

3b. There are multiple of same item category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.

An extension has two parts: the condition and the handling.

Guideline: Write the condition as something that can be detected by the system
or an actor. To contrast:

5a. System detects failure to communicate with external tax calculation system service:
5a. External tax calculation system not working:

The former style is preferred because this is something the system can detect;
the latter is an inference.

Extension handling can be summarized in one step, or include a sequence, as in
this example, which also illustrates notation to indicate that a condition can
arise within a range of steps:

3-6a: Customer asks Cashier to remove an item from the purchase:
1. Cashier enters the item identifier for removal from the sale.
2. System displays updated running total.

At the end of extension handling, by default the scenario merges back with the
main success scenario, unless the extension indicates otherwise (such as by
halting the system).

Sometimes, a particular extension point is quite complex, as in the “paying by
credit” extension. This can be a motivation to express the extension as a sepa-
rate use case.

This extension example also demonstrates the notation to express failures
within extensions.

7b. Paying by credit:
1. Customer enters their credit account information.
2. System requests payment validation from external Payment Authorization Ser-
vice System.
2a. System detects failure to collaborate with external system:
1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

57

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

If it is desirable to describe an extension condition as possible during any (or at
least most) steps, the labels *a, *b, ..., can be used.

*a. At any time, System crashes:
In order to support recovery and correct accounting, ensure all transaction sensitive
state and events can be recovered at any step in the scenario.
1. Cashier restarts the System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.

Special Requirements

If a non-functional requirement, quality attribute, or constraint relates specifi-
cally to a use case, record it with the use case. These include qualities such as
performance, reliability, and usability, and design constraints (often in I/O

devices) that have been mandated or considered likely.

Special Requirements:

— Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.
— Credit authorization response within 30 seconds 90% of the time.

— Language internationalization on the text displayed.

— Pluggable business rules to be insertable at steps 2 and 6.

Technology and Data Variations List

Often there are technical variations in how something must be done, but not
what, and it is noteworthy to record this in the use case. A common example is a
technical constraint imposed by a stakeholder regarding input or output tech-
nologies. For example, a stakeholder might say, “The POS system must support
credit account input using a card reader and the keyboard.” Note that these are
examples of early design decisions or constraints; in general, it is skillful to
avoid premature design decisions, but sometimes they are obvious or unavoid-
able, especially concerning input/output technologies.

It is also necessary to understand variations in data schemes, such as using
UPCs or EANSs for item identifiers, encoded in bar code symbology.

This list is the place to record such variations. It is also useful to record varia-
tions in the data that may be captured at a particular step.

Technology and Data Variations List:

3a. ltem identifier entered by laser scanner or keyboard.

3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.
7a. Credit account information entered by card reader or keyboard.

GOALS AND SCOPE OF A USE CASE

7b. Credit payment signature captured on paper receipt. But within two years, we pre-
dict many customers will want digital signature capture.

Suggestion

This section should not contain multiple steps to express varying behavior
for different cases. If that is necessary, say it in the Extensions section.

6.8 Goals and Scope of a Use Case

How should use cases be discovered? It is common to be unsure if something is a
valid (or more practically, a useful) use case. Tasks can be grouped at many lev-
els of granularity, from one or a few small steps, up to enterprise-level activities.

At what level and scope should use cases be expressed?

The following sections examine the simple ideas of elementary business pro-
cesses and goals as a framework for identifying the use cases for an application.

Use Cases for Elementary Business Processes

Which of these is a valid use case?
m Negotiate a Supplier Contract
m Handle Returns

m Logln

An argument can be made that all of these are use cases at different levels,
depending on the system boundary, actors, and goals. Evaluation of these candi-
dates is presented after an introduction to elementary business processes.

Rather than asking in general, “What is a valid use case?”, a more relevant
question for the POS case study is: What is a useful level to express use cases for
application requirements analysis?

Guideline: The EBP Use Case

For requirements analysis for a computer application, focus on use cases at
the level of elementary business processes (EBPs).

59

60

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

EBP is a term from the business process engineering field4, defined as:

A task performed by one person in one place at one time, in
response to a business event, which adds measurable business
value and leaves the data in a consistent state. e.g., Approve
Credit or Price Order [original source lost].

This can be taken too literally: Does a use case fail as an EBP if two people are
required, or if a person has to walk around? Probably not, but the feel of the def-
inition is about right. It’s not a single small step like “delete a line item” or
“print the document.” Rather, the main success scenario is probably five or ten
steps. It doesn’t take days and multiple sessions, like “negotiate a supplier con-
tract;” it is a task done during a single session. It is probably between a few min-
utes and an hour in length. As with the UP’s definition, it emphasizes adding
observable or measurable business value, and it comes to a resolution in which
the system and data are in a stable and consistent state.

A common use case mistake is defining many use cases at too low a level; that
is, as a single step, subfunction, or subtask within an EBP.

Reasonable Violations of the EBP Guideline

Although the “base” use cases for an application should satisfy the EBP guide-
line, it is frequently useful to create separate “sub” use cases representing sub-
tasks or steps within a base use case. Use cases can exist that fail the EBP test;
many potentially exist at a lower level. The guideline is only used to find the
dominant level of use cases in requirements analysis for an application; that is,
the level to focus on for naming and writing them.

For example, a subtask or extension such as “paying by credit” may be repeated
in several base use cases. It is desirable to separate this into its own use case
(that does not satisfy the EBP guideline) and link it to several base use cases, to
avoid duplication of the text. Chapter 25 explores the issue of use case relation-
ships.

Use Cases and Goals

Actors have goals (or needs) and use applications to help satisfy them. Conse-
quently, an EBP-level use case is called a user goal-level user case, to empha-
size that it serves (or should serve) to fulfill a goal of a user of the system, or the
primary actor.

4. EBP is similar to the term user task in usability engineering, although the meaning
is less strict in that domain.

GOALS AND SCOPE OF A USE CASE

And it leads to a recommended procedure:
1. Find the user goals.
2. Define a use case for each.

This is slight shift in emphasis for the use case modeler. Rather than asking
“What are the use cases?”, one starts by asking: “What are your goals?” In fact,
the name of a use case for a user goal should reflect its name, to emphasize this
viewpoint—Goal: capture or process a sale; use case: Process Sale.

Note that because of this symmetry, the EBP guideline can be equally applied to
decide if a goal or a use case is at a suitable level.

Thus, here is a key idea regarding investigating user goals vs. investigating use
cases:

Imagine we are together in a requirements workshop. We could ask either:
B “What do you do?” (roughly a use case-oriented question) or,
m “What are your goals?”

Answers to the first question are more likely to reflect current solutions and
procedures, and the complications associated with them.

Answers to the second question, especially combined with an investigation to
move higher up the goal hierarchy (“what is the goal of that goal?”) open up
the vision for new and improved solutions, focus on adding business value,
and get to the heart of what the stakeholders want from the system under
discussion.

Example: Applying the EBP Guideline

As the system analyst responsible for the NextGen system requirements discov-
ery, you are investigating user goals. The conversation goes like this: During a
requirements workshop:

System analyst: “What are some of your goals in the context of using a POS
system?”

Cashier: “One, to quickly log in. Also, to capture sales.”

System analyst: “What do you think is the higher level goal motivating log-
ging in?”

Cashier: “I'm trying to identify myself to the system, so it can validate that
I'm allowed to use the system for sales capture and other tasks.”

System analyst: “Higher than that?”

Cashier: “To prevent theft, data corruption, and display of private company
information.”

61

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Note the analyst’s strategy of searching up the goal hierarchy to find higher
level user goals that still satisfy the EBP guideline, to get at the real intent
behind the action, and also to understand the context of the goals.

“Prevent theft, ...” is higher than a user goal; it may be called an enterprise goal,
and is not an EBP. Therefore, although it can inspire new ways of thinking
about the problem and solutions (such as eliminating POS systems and cashiers
completely), we will set it aside for now.

Lowering the goal level to “identify myself and be validated” appears closer to
the user goal level. But is it at the EBP level? It does not add observable or mea-
surable business value. If the CEO asked, “What did you do today?” and you
said “I logged in 20 times!”, she would not be impressed. Consequently, this is a
secondary goal, always in the service of doing something useful, and is not an
EBP or user goal. By contrast, “capture a sale” does fit the criteria of being an
EBP or user goal.

As another example, in some stores there is a process called “cashing in”, in
which a cashier inserts their own cash drawer tray into the terminal, logs in,
and tells the system how much cash is in drawer. Cashing In is an EBP-level (or
user goal level) use case; the log in step, rather than being a EBP-level use case,
is a subfunction goal in support of the goal of cashing in.

Subfunction Goals and Use Cases

Although “identify myself and be validated” (or “log in”) has been eliminated as
a user goal, it is a goal at a lower level, called a subfunction goal—subgoals
that support a user goal. Use cases should only occasionally be written for these
subfunction goals, although it is a common problem that use case experts
observe when asked to evaluate and improve (usually simplify) a set of use
cases.

It is not illegal to write use cases for subfunction goals, but it is not always help-
ful, as it adds complexity to a use case model; there can be hundreds of subfunc-
tion goals—or subfunction use cases—for a system.

Important point: The number and granularity of use cases influences the time
and difficulty to understand, maintain, and manage the requirements.

The most common, valid motivation to express a subfunction goal as a use case
is when the subfunction is repeated in or is a precondition for multiple user
goal-level use cases. This in fact is probably true of “identify myself and be vali-
dated,” which is a precondition of most, if not all, other user goal-level use cases.

Consequently, it may be written as the use case Authenticate User.

Goals and Use Cases Can be Composite

Goals are usually composite, from the level of an enterprise (“be profitable”), to

FINDING PRIMARY ACTORS, GOALS, AND USE CASES

many supporting intermediate goals while using applications (“sales are cap-
tured”), to supporting subfunction goals within applications (“input is valid”).

Similarly, use cases can be written at different levels to satisfy these goals, and
can be composed of lower level use cases.

These varying goal and use case levels are a common source of confusion in
identifying the appropriate level of use cases for an application. The EBP
guideline provides guidance to filter out excessive low-level use cases.

6.9 Finding Primary Actors, Goals, and Use Cases

Use cases are defined to satisfy the user goals of the primary actors. Hence, the
basic procedure is:

1. Choose the system boundary. Is it just a software application, the hardware
and application as a unit, that plus a person using it, or an entire organiza-
tion?

2. Identify the primary actors—those that have user goals fulfilled through
using services of the system.

3. For each, identify their user goals. Raise them to the highest user goal level
that satisfies the EBP guideline.

4. Define use cases that satisfy user goals; name them according to their goal.
Usually, user goal-level use cases will be one-to-one with user goals, but
there is at least one exception, as will be examined.

Step 1: Choosing the System Boundary

For this case study, the POS system itself is the system under design; every-
thing outside of it is outside the system boundary, including the cashier, pay-
ment authorization service, and so on.

If it is not clear, defining the boundary of the system under design can be clari-
fied by defining what is outside—the external primary and supporting actors.
Once the external actors are identified, the boundary becomes clearer. For
example, is the complete responsibility for payment authorization within the
system boundary? No, there is an external payment authorization service actor.

Steps 2 and 3: Finding Primary Actors and Goals

It is artificial to strictly linearize the identification of primary actors before user
goals; in a requirements workshop, people brainstorm and generate a mixture of

63

64

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

both. Sometimes, goals reveal the actors, or vice versa.

Guideline: Emphasize brainstorming the primary actors first, as this sets up the
framework for further investigation.

Reminder Questions to Find Actors and Goals

In addition to obvious primary actors and user goals, the following questions
help identify others that may be missed:

Who starts and stops the system? Who does system administration?

Who does user and security man- Is “time” an actor because the sys-

agement? tem does something in response to a
time event?

Is there a monitoring process that Who evaluates system activity or

restarts the system if it fails? performance?

How are software updates handled? @ Who evalutes logs? Are they
Push or pull update? remotely retrieved?

Primary and Supporting Actors

Recall that primary actors have user goals fulfilled through using services of the
system. They call upon the system to help them. This is in contrast to support-
ing actors, which provide services to the system under design. For now, the focus
is on finding the primary actors, not the supporting ones.

Recall also that primary actors can be—among other things—other computer
systems, such as “watchdog” software processes.

Suggestion

Be suspicious if no primary actors are external computer systems.

The Actor-Goal List

Record the primary actors and their user goals in an actor-goal list. In terms of
UP artifacts it should be a section in the Vision artifact (which is described in
the next chapter).

FINDING PRIMARY ACTORS, GOALS, AND USE CASES

For example:

Actor Goal Actor Goal
Cashier process sales System add users
process rentals Administra- | modify users
handle returns tor delete users
cash in manage security
cash out manage system tables
Manager start up Sales Activ- | analyze sales and per-
shut down ity System? formance data

a. The Sales Activity System is a remote application that will frequently request sales
data from each POS node in the network.

Project Planning Dimension

In practice, this list has additional columns for priority, effort, and risk; this is
briefly covered in Chapter 36.

The Messy Reality

This list looks neat, but the reality of its creation is anything but. Lots of brain-
storming and thrashing about in a requirements workshop goes on. Consider
the earlier example that illustrated applying the EBP rule to the “log in” goal.
During the workshop while creating this list the cashier may offer “log in” as
one of the user goals. The system analyst digs deeper and raises the level of the
goal beyond the low-level mechanism of logging in (the cashier was probably
thinking of using a dialog box on a GUI) up to the level of “identify and authen-
ticate user.” Yet, the analyst then realizes it does not pass the EBP guideline,
and discards it as a user goal. Of course, the reality is even somewhat different
than this because an experienced analyst has a set of heuristics from past expe-
rience or study, one of which is “user authentication is seldom an EBP,” and so is
likely to have filtered this out quickly.

Primary Actor and User Goals Depend on System Boundary

Why is the cashier, and not the customer, the primary actor in the use case Pro-
cess Sale? Why doesn’t the customer appear in the actor-goal list?

The answer depends on the system boundary of the system under design, as
illustrated in Figure 6.1. If viewing the enterprise or checkout service as an

65

66

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

aggregate system, the customer is a primary actor, with the goal of getting goods
or services and leaving. However, from the viewpoint of just the POS system
(which is the choice of system boundary for this case study), it services the goal
of the cashier (and the store) to process the customer’s sale.

I

_--® Sales Tax
Agency

/
/
]

Goal: Collect
taxes on sales

_-® Customer

J

|
I
|

Goal: Buy items

Enterprise Selling Things

g

Sales Activity
e System 9

\
\
\ \

Checkout Service

v

ashier

POS System

\
\
\

Goal: Analyze sales
and performance data

Goal: Process sales

Figure 6.1 Primary actors and goals at different system boundaries.

Actors and Goals via Event Analysis

Another approach to aid in finding actors, goals, and use cases is to identify

external events. What are they, where from, and why? Often, a group of events
belong to the same EBP-level goal or use case. For example:

External Event

From Actor

Goal

enter sale line item

Cashier

process a sale

enter payment

Cashier or Customer

process a sale

Step 4: Define Use Cases

In general, define one EBP-level use case for each user goal. Name the use case
similar to the user goal—for example, Goal: process a sale; Use Case: Process

Sale.

Also, name use cases starting with a verb.

CONGRATULATIONS: USE CASES HAVE BEEN WRITTEN, AND ARE IMPERFECT

A common exception to one use case per goal is to collapse CRUD (create,
retrieve, update, delete) separate goals into one CRUD use case, idiomatically
called Manage <X>. For example, the goals “edit user,” “delete user,” and so forth
are all satisfied by the Manage Users use case.

“Define use cases” has several levels of effort, ranging from a few minutes to
simply record names, up to weeks to write fully dressed versions. The later UP
process section of this chapter puts this work—when and how much—in the con-
text of iterative development and the UP.

6.10 Congratulations: Use Cases Have Been Written, and Are
Imperfect

The Need for Communication and Participation

The NextGen POS team is writing use cases in multiple requirements work-
shops over a series of short development iterations, incrementally adding to the
set, and refining and adapting based on feedback. Subject matter experts, cash-
iers, and programmers actively participate in the writing process. There are no
intermediaries between the cashiers, other users, and the developers; rather,
there is direct communication.

Good, but not good enough. Written requirement specifications give the illusion
of correctness; they are not. The use cases and other requirements still will not
be correct—guaranteed. They will lack critical information and contain wrong
statements. The solution is not the “waterfall” process attitude of trying harder
to record requirements perfect and complete at the start, although of course we
do the best we can in the time available. But it will never be enough.

A different approach is required. A large part of this is iterative development,
but something else is needed: ongoing personal communication. Continual—
daily—close participation and communication between the developers and
someone who understands the domain and can make requirement decisions.
Someone the programmers can walk up to in a matter of seconds and get clarifi-
cation, whenever a question arises. For example, the Extreme Programming
practices [Beck00] contain an excellent recommendation: User full-time on the
project, in the project room.

67

6.11

68

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Write Use Cases in an Essential Ul-Free Style

New and Improved! The Case for Fingerprinting

Investigating and asking about goals rather than tasks and procedures encour-
ages a focus on the essence of the requirements—the intent behind them. For
example, during a requirements workshop, the cashier may say one of his goals
is to “log in.” The cashier was probably thinking of a GUI, dialog box, user ID,
and password. This is a mechanism to achieve a goal, rather than the goal itself.
By investigating up the goal hierarchy (“What is the goal of that goal?”), the sys-
tem analyst arrives at a mechanism-independent goal: “identify myself and get
authenticated,” or an even higher goal: “prevent theft ...”.

This discovery process can open up the vision to new and improved solutions.
For example, keyboards and mice with biometric readers, usually for a finger-
print, are now common and inexpensive. If the goal is “identification and
authentication” why not make it easy and fast, using a biometric reader on the
keyboard? But properly answering that question involves some usability analy-
sis work as well, such as knowing the typical users’ profiles. Are their fingers
covered in grease? Do they have fingers?

Essential Style Writing

This idea has been summarized in various use case guidelines as “keep the user
interface out; focus on intent” [Cockburn01]. Its motivation and notation has
been most fully explored by Larry Constantine in the context of creating better
user interfaces (Uls) and doing usability engineering [Constantine94, CL99].
Constantine calls the writing style essential when it avoids UI details and
focuses on the real user intent.5

In an essential writing style, the narrative is expressed at the level of the user’s
intentions and system’s responsibilities rather than their concrete actions. They
remain free of technology and mechanism details, especially those related to the
Ul

Write use cases in an essential style; keep the user interface out and focus on
actor intent.

All the previous example use cases in this chapter, such as Process Sale, were
written in an essential style.

5. The term comes from “essential models” in Essential Systems Analysis [MP84].

Note that the dictionary defines goal as a synonym for intention [MW89], illus-
trating the connection between the essential style idea of Constantine and the
goal-oriented viewpoint previously stressed in this chapter. Indeed, many actor
intention steps in an essential use case can also be be characterized as subfunc-
tion goals.

Contrasting Examples

Essential Style

Assume that the Manage Users use case requires identification and authentica-
tion. The Constantine-inspired essential style uses the two-column format.
However, it can be written in one column.

Actor Intention System Responsibility
1. Administrator identifies self. 2. Authenticates identity.
3....

In the one-column format this is shown as:

1. Administrator identifies self.
2. System authenticates identity.
3....

The design solution to these intentions and responsibilities is wide open: bio-
metric readers, graphical user interfaces (GUIs), and so forth.

Concrete Style—Avoid During Early Requirements Work

In contrast, there is a concrete use case style. In this style, user interface deci-
sions are embedded in the use case text. The text may even show window screen
shots, discuss window navigation, GUI widget manipulation and so forth. For

example:

1. Adminstrator enters ID and password in dialog box (see Picture 3).
2. System authenticates Adminstrator.

3. System displays the “edit users” window (see Picture 4).

4. ...

These concrete use cases may be useful as an aid to concrete or detailed GUI
design work during a later step, but they are not suitable during the early
requirements analysis work. During early requirements work, “keep the user
interface out—focus on intent.”

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

6.12 Actors

An actor is anything with behavior, including the system under discussion (SuD)
itself when it calls upon the services of other systems.® Primary and supporting
actors will appear in the action steps of the use case text. Actors are not only
roles played by people, but organizations, software, and machines. There are
three kinds of external actors in relation to the SuD:

m Primary actor—has user goals fulfilled through using services of the SuD.
For example, the cashier.

o Why identify? To find user goals, which drive the use cases.

m Supporting actor—provides a service (for example, information) to the
SuD. The automated payment authorization service is an example. Often a
computer system, but could be an organization or person.

o Why identify? To clarify external interfaces and protocols.

m Offstage actor—has an interest in the behavior of the use case, but is not
primary or supporting; for example, a government tax agency.

o Why identify? To ensure that all necessary interests are identified
and satisfied. Offstage actor interests are sometimes subtle or
easy to miss unless these actors are explicitly named.

6.13 Use Case Diagrams

The UML provides use case diagram notation to illustrate the names of use
cases and actors, and the relationships between them.

Use case diagrams and use case relationships are secondary in use case work.
Use cases are text documents. Doing use case work means to write text.

A common sign of a novice (or academic) use case modeler is a preoccupation
with use case diagrams and use case relationships, rather than writing text.
World-class use case experts such as Anderson, Fowler, Cockburn, among oth-
ers, downplay use case diagrams and use case relationships, and instead focus
on writing.

6. This was a refinement and improvement to alternate definitions of actors, including
those in early versions of the UML and UP [Cockburn97]. Older definitions inconsis-
tently excluded the SuD as an actor, even when it called upon services of other sys-
tems. All entities may play multiple roles, including the SuD.

70

USE CASE DIAGRAMS

With that as a caveat, a simple use case diagram provides a succinct visual con-
text diagram for the system, illustrating the external actors and how they use
the system.

Suggestion

Draw a simple use case diagram in conjunction with an actor-goal list.

A use case diagram is an excellent picture of the system context; it makes a good
context diagram, that is, showing the boundary of a system, what lies outside
of it, and how it gets used. It serves as a communication tool that summarizes
the behavior of a system and its actors. A sample partial use case context dia-
gram for the NextGen system is shown in Figure 6.2.

system boundary NextGen _ - communication
N -
S~__e 7 -
//
Process Sale alternate
notation for
a computer
Cashier Payment system actor
Handle Returns - i
. Authorization o -
) Service /
/// //
actor > «actor» ¢
Process Rental Tax Calculator
«actor»
Accounting
System
«actor» y
Sales Activity
System « »
L Analyze Activity HRaSC;IOS:em
Manage Security) o__
/ o >
\ \\ R
System Manage Users N
Administrator use case

Figure 6.2 Partial use case context diagram.

71

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Some prefer to highlight external computer system actors with an alternate
notation, as illustrated in Figure 6.3.

N
NextGen Some UML alternatives to
illustrate external actors that are
Process Sale — «actor» other computer systems.
Payment
«system» Authorization The class box style can be used
Payment Payment Service for any actor, computer or
Authorization Authorization human. Using it for computer
Service Service actors provides visual
distinction.

Figure 6.3 Alternate actor notation.

Diagramming Suggestions

Figure 6.4 offers some diagram advice.

For a use case context Show computer system actors
diagram, limit the use cases to with an alternate notation to
user-goal Igvel use cases. human actors.
N \
N \
h \
AN NextGen N
N
N L J
~ e
«actor»
Authorization
Service
Cashier
primary actors on supporting actors
the left on the right

Figure 6.4 Notation suggestions.

A Caution on Over-Diagramming

To reiterate, the important use case work is to write text, not diagram or focus
on use case relationships. If an organization is spending many hours (or worse,
days) working on a use case diagram and discussing use case relationships,
rather than first focussing on writing text, relative effort has been misplaced.

72

6.14

REQUIREMENTS IN CONTEXT AND LOW-LEVEL FEATURE LISTS

Requirements in Context and Low-Level Feature Lists

As implied by the title of the book Uses Cases: Requirements in Context [GKO0O0],
a key motivation of the use case idea is the consideration and organization of
requirements in the context of the goals and scenarios of using a system. That’s
a good thing—it improves cohesion and comprehension. However, use cases are
not the only necessary requirements artifact. Some non-functional require-
ments, domain rules and context, and other hard-to-place elements are better
captured in the Supplementary Specification, which is described in the next
chapter.

One idea behind use cases is to replace detailed, low-level feature lists (which
were common in traditional requirements methods) with use cases (with some
exceptions). These lists tended to look as follows, usually grouped into func-
tional areas:

ID Feature
FEAT1.9 The system shall accept entry of item identifiers.
FEAT2.4 The system shall log credit payments to the accounts receivable
system.

Such detailed lists of low-level features are somewhat usable. However, the com-
plete list is not a half-page; more likely it is dozens or a hundred pages. This
leads to some drawbacks, which use cases help address. These include:

m Long, detailed function lists do not relate the requirements in a cohesive
context; the different functions and features increasingly appear like a dis-
jointed “laundry list” of items. In contrast, use cases place the requirements
in the context of the stories and goals of using the system.

m If both use case and detailed feature lists are used, there is duplication.
More work, more volume to write and read, more consistency and synchroni-
zation problems.

Suggestion

Strive to replace detailed, low-level feature lists with use cases.

High-Level System Feature Lists Are Acceptable

It is common and useful to summarize system functionality with a terse, high-
level feature list called system features in a Vision document. In contrast to 100

73

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

pages of low-level, detailed features, a system features list tends to include only
a few dozen items. The list provides a very succinct summary of system func-
tionality, independent of the use case view. For example:

Summary of System Features

sales capture
payment authorization (credit, debit, check)

[|
[|
B system administration for users, security, code and constants tables, and so on
B automatic offline sales processing when external components fail

[|

real-time transactions, based on industry standards, with third-party systems, including inventory,
accounting, human resources, tax calculators, and payment authorization services

B definition and execution of customized “pluggable” business rules at fixed, common points in the
processing scenarios
]

This is explored in the next chapter.

When Are Detailed Feature Lists Appropriate?

Sometimes use cases do not really fit; some applications call out for a feature-
driven viewpoint. For example, application servers, database products, and
other middleware or back-end systems need to be primarily considered and
evolved in terms of features (“We need XML support in the next release”). Use
cases are not a natural fit for these applications or the way they need to evolve
in terms of market forces.

6.15 Use Cases Are Not Object-Oriented

There is nothing object-oriented about use cases; one is not doing object-oriented
analysis if writing use cases. This is not a defect, but a point of clarification.
Indeed, use cases are a broadly applicable requirements analysis tool that can
be applied to non-object-oriented projects, which increases their usefulness as a
requirements method.

However, as will be explored, use cases are a pivotal input into classic OOA/D
activities.

74

6.16

USE CASES WITHIN THE UP

Use Cases Within the UP

Use cases are vital and central to the UP, which encourages use-case driven
development. This implies:

m Requirements are primarily recorded in use cases (the Use-Case Model);
other requirements techniques (such as functions lists) are secondary, if
used at all.

m Use cases are an important part of iterative planning. The work of an itera-
tion is—in part—defined by choosing some use case scenarios, or entire use
cases. And use cases are a key input to estimation.

m Use-case realizations drive the design. That is, the team designs collabo-
rating objects and subsystems in order to perform or realize the use cases.

m Use cases often influence the organization of user manuals.

The UP distinguishes between system and business use cases. System use
cases are what have been examined in this chapter, such as Process Sale. They
are created in the Requirements workflow, and are part of the Use-Case Model.

Business use cases are less commonly written. If done, they are created in the
Business Modeling workflow as part of a large-scale business process reengi-
neering effort, or to help understand the context of a new system in the busi-
ness. They describe a sequence of actions of a business as a whole to fulfill a goal
of a business actor (an actor in the business environment, such as a customer
or supplier). For example, in a restaurant, one business use case is Serve a Meal.

Use Cases and Requirements Specification Across the Iterations

This section reiterates a critical idea in the UP and iterative development: The
timing and level of effort of requirements specification across the iterations.
Table 6.1 presents a sample (not a recipe) which communicates the UP strategy
of how requirements are developed.

Note that a technical team starts building the production core of the system
when only perhaps 10% of the requirements are detailed, and in fact, there is a
deliberate delay in continuing with concerted requirements work until near the
end of the first elaboration iteration.

This is the key difference in iterative development to a waterfall process: Pro-
duction-quality development of the core of a system starts quickly, long before
all the requirements are known.

Observe that near the end of the first iteration of elaboration, there is a second
requirements workshop, during which perhaps 30% of the use cases are written
in detail. This staggered requirements analysis benefits from the feedback of
having built a little of the core software. The feedback includes user evaluation,
testing, and improved “knowing what we don’t know.” That is, the act of building

75

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

software rapidly surfaces important assumptions and questions that need clari-

fication.
Workflow | Artifact Comments and Level of Requirements Effort
Incep Elab 1 Elab 2 Elab 3 Elab 4
1 week 4 weeks 4 weeks 3 weeks 3 weeks
Requirements |Use-Case 2-day require- Near the end of |Near the end of |Repeat, com- Repeat with the
Model ments work- this iteration, this iteration, plete 70% of all |goal of 80-90% of
shop. Most use | host a 2-day host a 2-day use cases in the use cases
cases identified |requirements requirements detail. clarified and
by name, and workshop. workshop. written in detail.
summarized in a |Obtain insight Obtain insight Only a small por-
short paragraph. |and feedback and feedback tion of these
Only 10% writ- from th,e imple- |from th_e imple- have been built
ten in detail mentation work, |mentation work, in elaboration:
then complete then complete the remainder
30% of the use 50% of the use d .
in detail cases in detail are cone i con-
cases in detail. . struction.

Design Design Model [none design for a repeat repeat Repeat. The high
small set of high- risk and archi-
risk architectur- tecturally signifi-
ally significant cant aspects
requiremnts should now be

stabilized.

Implementa- Implementa- |none implement these |Repeat. 5% of the |Repeat. 10% of |Repeat. 15% of

tion tion Model final system is |the final system |the final system

(code, etc.) built. is built. is built.

Project Man- SW Develop- |Very vague esti- |Estimate starts |a little better... |a little better... |Overall project

agement ment Plan mate of total to take shape. duration, major

effort.

milestones,
effort, and cost
estimates can
now be rationally
committed to.

Table 6.1 Sample requirements effort across the early iterations; this is not a
recipe.

Timing of UP Artifact Creation

76

Table 6.2 illustrates some UP artifacts, and an example of their start and refine-
ment schedule. The Use-Case Model is started in inception, with perhaps only
10% of the use cases written in any detail. The majority are incrementally writ-
ten over the iterations of the elaboration phase, so that by the end of elabora-
tion, a large body of detailed use cases and other requirements (in the
Supplementary Specification) are written, providing a realistic basis for estima-
tion through to the end of the project.

USE CASES WITHIN THE UP

Workflow Artifact Incep. | Elab. | Const. | Trans.
Iteration-» I1 E1..En | C1..Cn | T1..T2
Business Modeling [Domain Model S
Requirements Use-Case Model S r
Vision S r
Supplementary Specifications S r
Glossary S r
Design Design Model S r
SW Architecture Document s
Data Model s r
Implementation Implementation Model S r r
Project Management |SW Development Plan S r r
Testing Test Model s r
Environment Development Case S r

Table 6.2 Sample UP artifacts and timing. s - start; r - refine

Use Cases within Inception

The following discussion expands on the information in Table 6.1.

Not all use cases are written in their fully dressed format during the inception
phase. Rather, suppose there is a two-day requirements workshop during the
early NextGen investigation. The earlier part of the day is spent identifying
goals and stakeholders, and speculating what is in and out of scope of the
project. An actor-goal-use case table is written and displayed with the computer
projector. A use case context diagram is started. After a few hours, perhaps 20
user goals (and thus, user goal level use cases) are identified, including Process
Sale, Handle Returns, and so on. Most of the interesting, complex, or risky use
cases are written in brief format; each averaging around two minutes to write.
The team starts to form a high-level picture of the system’s functionality.

After this, 10% to 20% of the use cases that represent core complex functions, or
which are especially risky in some dimension, are rewritten in a fully dressed
format; the team investigates a little deeper to better comprehend the magni-
tude, complexities, and hidden demons of the project, through a small sample of
interesting use cases. Perhaps this means two use cases: Process Sale and Han-
dle Returns.

A requirements management tool that integrates with a word processor is used
for the writing, and the work is displayed via a projector while the team collabo-
rates on the analysis and writing. The Stakeholders and Interests lists are writ-
ten for these use cases, to discover more subtle (and perhaps costly) functional
and key non-function requirements—or system qualities—such as for reliability
or throughput.

77

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

The analysis goal is not to exhaustively complete the use cases, but spend a few
hours to obtain some insight.

The project sponsor needs to decide if the project is worth significant investiga-
tion (that is, the elaboration phase). The inception work is not meant to do that
investigation, but to obtain low-fidelity (and admittedly error-prone) insights
regarding scope, risk, effort, technical feasibility, and business case, in order to
decide to move forward, where to start if they do, or if to stop.

Perhaps the NextGen project inception step lasts five days. The combination of
the two day requirements workshop and its brief use case analysis, and other
investigation during the week, lead to the decision to continue on to an elabora-
tion step for the system.

Use Cases within Elaboration

The following discussion expands on the information in Table 6.1.

This is a phase of multiple timeboxed iterations (for example, four iterations) in
which risky, high-value, or architecturally significant parts of the system are
incrementally built, and the “majority” of requirements identified and clarified.
The feedback from the concrete steps of programming influences and informs
the team’s understanding of the requirements, which are iteratively and adap-
tively refined. Perhaps there is a two-day requirements workshop in each itera-
tion—four workshops. However, not all use cases are investigated in each
workshop. They are prioritized; early workshops focus on a subset of the most
important use cases.

Each subsequent short workshop is a time to adapt and refine the vision of the
core requirements, which will be unstable in early iterations, and stabilizing in
later ones. Thus, there is an iterative interplay between requirements discovery,
and building parts of the software.

During each requirements workshop, the user goals and use case list are
refined. More of the use cases are written, and rewritten, in their fully dressed
format. By the end of elaboration, “80-90%” of the use cases are written in
detail. For the POS system with 20 user goal level use cases, 15 or more of the
most complex and risky should be investigated, written, and rewritten in a fully
dressed format.

Note that elaboration involves programming parts of the system. At the end of
this step, the NextGen team should not only have a better definition of the use
cases, but some quality executable software.

Use Cases within Construction

The construction step is composed of timeboxed iterations (for example, 20 itera-
tions of two weeks each) that focus on completing the system, once the risky and
core unstable issues have settled down in elaboration. There will still be some

CASE STUDY: USE CASES IN THE NEXTGEN INCEPTION PHASE

minor use case writing and perhaps requirements workshops, but much less so
than in elaboration. By this step, the majority of core functional and non-func-
tional requirements should have iteratively and adaptively stabilized. That does
not mean to imply requirements are frozen or investigation finished, but the
degree of change is much lower.

6.17 Case Study: Use Cases in the NextGen Inception Phase

As described in the previous section, not all use cases are written in their fully
dressed form during inception. The Use-Case Model at this phase of the case
study could be detailed as follows:

Fully Dressed Causual Brief
Process Sale Process Rental Cash In
Handle Returns Analyze Sales Activity |Cash Out
Manage Security Manage Users
Start Up
Shut Down
Manage System Tables

6.18 Further Readings

The most popular use case guide, translated into several languages, is Writing
Effective Use Cases [Cockburn01].7 This has emerged with good reason as the
most widely read and followed use case book and is therefore recommended as a
primary reference. This introductory chapter is consequently based on and con-
sistent with its content. Suggestion: Do not be put off the book by the author’s
use of icons for different use case levels, or the early emphasis on levels and use
case taxonomy. The icons are optional and minor. And although the discussion of
levels and goals may at first seem a diversion to those new to use cases, those
who have worked with them for some time appreciate that the level and scope of
use cases are key practical issues, because their misunderstanding is a common
source of complication in use case modeling.

“Structuring Use Cases with Goals” [Cockburn97] is the most widely cited paper
on use cases, available online at www.usecases.org.

Use Cases: Requirements in Context [GK00] is another useful text. It emphasizes
the important viewpoint—as the title states—that use cases are not just

7. Note that Cockburn rhymes with slow burn.

79

80

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

another requirements artifact, but that they are the central vehicle that drives
requirements work and information.

Another worthwhile read is Applying Use Cases: A Practical Guide [SW98],
written by an experienced use case teacher and practioner that understand and
communicate how to apply use cases in an iterative lifeycle.

UP ARTIFACTS AND PROCESS CONTEXT

6.19 UP Artifacts and Process Context

As illustrated in Figure 6.5, use cases influence many UP artifacts.

Sample UP Artifacts _
Domain
Business Model
Modeling

*

Partial artifacts,
refined in each
iteration.

terms, attributes
relationships

terms, attributes, validation

/ Use-Case /l\:\;

| Model - Supplementary
R , " | — | Vision | Specification Glossary
equirements L
! 2 poilen=y -
= S = —
N_ | |
requirements requirements, constraints
. requirements
requirements, key scenarios,
I/O events Software
Design Model Architecture Doc.
S
Design %DD Eﬁ
P
requirements,
priorities
Software
Dev. Plan
.
Project
Management
acceptance
tests
Test
Plan
Test —

Figure 6.5 Sample UP artifact influence.

81

6 — USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

In the UP, use case work is a requirements discipline activity which could be ini-

tiated during a requirements workshop. Figure 6.6 offers suggestions on the
time and space for doing this work.

When Where

, Once during inception. Short; do not try to At a requirements workshop.
/ define or polish all requirements.
/ /
/ ,
! Ve
i Several times during elaboration iterations.

/ [

\ o
\ ’ /1
\\ /// /////

\, v /

. January February // /

ol o T\ivo adjacent projections.

S
S

/
S
/ \

I Use Case: Capture a Sale Use Case: Handle Returns

Main Success Scenario: Main Success Scenario:
1. 1.

2.
8
i Extensions:

2.
3. ..
Extensions:

) %
System u
Analyst Customer

End User . Developer

i / How: Tools
! Software:

Many, including, end users and developers, will play
the role of requirements specifier, helping to write use ' . For use case text, use a web-enabled requirements tool
cases. | that integrates with a popular word processor.

N For use case diagrams, a UML CASE tool.

Led by system analyst, who is responsible for . Hyperlink the use cases; present them on the project
requirements definition. \ website.

"Hardware: Use two projectors attached to dual video cards
and set the display width double, to improve the
spaciousness of the drawing area or display 2 adjacenct
word processor windows .

Figure 6.6 Process and setting context.

82

