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Abstract

A genetic algorithm is a search heuristic that uses the principles of natural
evolution to solve search and optimization problems.

In this report we describe our implementation of a genetic algorithm that
can play the game racetrack. Racetrack is a game traditionally played with
pen and paper. The report also goes through different optimizations and
shows how they affect the performance of the algorithm.



Sammanfattning

En genetisk algoritm &r en s6kheurestik som anvander samma principer som
biologisk evolution for att 16sa sok- och optimeringsproblem.

I den héar rapporten beskriver vi var implementation av en genetisk algoritm
som kan spela spelet racetrack. Racetrack ar ett spel som traditionellt spelas
med penna och papper. Rapporten gar ocksa igenom olika optimeringar och
framstéller hur de paverkar algoritmens prestanda.
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Statement of collaboration

We have designed the algorithm together. The game engine (except the
graphics) and the algorithm part of the code are mainly written by Andreas
while the graphics is mainly written by Robert. This report is written and
proof read by both of us together.



1 Introduction

Artificial Intelligence, or Al, has long been used in games to create the illusion
of smart opponents. In the beginning a game AI could be a predefined
path for a player to use, but in today’s games Al players almost seem to
make their own decisions. As far as we know genetic algorithms is not
something commonly used in game Al In this report we execute experiments
to investigate how well a genetic algorithm can perform in a game commonly
played with pen and paper, racetrack. A detailed description of the game
can be found in section 2.1.

An intelligent agent, or just an agent, is according to Russel and Norvig an
Al term for “anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors”.
[2] In our case each car in the game can be seen as an agent.

2 Problem statement

We have chosen to test the hypothesis that genetic algorithms can be used
to create agents that finish tracks in the game racetrack without the agents
having prior knowledge of the tracks. To test this we will design and imple-
ment an algorithm playing the game. We will also investigate how different
attributes in our algorithm influences the performance.

2.1 Racetrack

Racetrack is a game classically played with pen and paper, but there are also
video game implementations of it. The game is played on a track drawn on
a grid. The track is the racetrack that the cars are supposed to stay inside.



Figure 1: This is an example of a racetrack game. The path shown in the track is
a player’s race path.

Since the game is supposed to illustrate a real race the cars have inertia. The
players take turns moving. Each movement can be seen as a vector, we call
this the movement vector. The movement vector consists of two vectors; an
inertia vector and an acceleration vector (see figure 2). The inertia vector is
always the same as the player’s previous movement vector. The acceleration
vector can be any of the eight vectors in figure 3, or the null vector if the
player does not apply any acceleration. [1]

If a car hits the wall of the track the player loses. The player that reaches
the finish line first wins.



Figure 2: Here a movement vector is illustrated with its inertial and acceleration
components.

Figure 3: These are the possible acceleration vectors. The null vector is also valid.



2.2 Genetic Algorithms

To find a path from goal to start the game shall use a genetic algorithm. Our
Al is supposed to learn by generating individuals that are run through a race-
track and evaluated according to some fitness function. The best performing
individuals will then become the base for the next generation.

3 Background

3.1 Beam search

Local beam search is a search algorithm that runs & parallel searches, and
that in each step selects the &k best successors from the group of all successors.
The advantages of this algorithm is that it quickly abandons unfruitful states
and focus its resources where most progress is being made [2].

The disadvantages of this algorithm is clearly the lack of diversity, it may
quickly become concentrated in a small region of the search space. A variant
of the algorithm called stochastic beam search solves this by selecting &
successors at random, but with the probability of a choosing a given successor
being based on the value of it.

3.2 Genetic algorithm

A variant of stochastic beam search is the genetic algorithm in which suc-
cessor states are generated not from one state but two. The resemblance
to natural selection is clear; the strongest individuals survive and mates to
produce the next generation whose genes are based on the parents’.

Like beam searches, genetic algorithms start with & randomly generated
states, called the population. Each state or individual is represented by a
string of a fix length over a finite alphabet, most commonly 0 and 1, the
genome. What this string represents differs between implementation, but
it must represent the full state of the individual and not change during the
lifetime of an individual [2].

To produce the next generation each individual is rated by a objective func-
tion, called the fitness function. The best individuals are chosen and then
mated, that is to say their genomes are combined to create a new individual.



This is called a crossover. Depending on the implementation the crossover is
made differently, but the number of genes to use from each parent is either
chosen randomly or based on the relative value of the respective fitness func-
tions of the parents. Finally each individual is subject to random mutation
that changes a random number of genes in their genome.

The primary advantage of genetic algorithms comes from the crossover that
combines two independent states into one. This makes the algorithm con-
verge towards a good solution quickly. The problem of all hill-climbing al-
gorithms (algorithms that always choose the best neighboring state) is that
they risk getting stuck on a local maximum that is not a solution. This
is partly prevented in genetic algorithms with the use of random mutation,
but they still risk getting stuck on a local maximum for a large number of
generations.
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4 Approach

We decided to implement our algorithm in C++. We split the implemen-
tation into two separate components, the game engine and the genetic al-
gorithm. We did this because we wanted to be able to easily try different
algorithms.

4.1 Game Engine

To be as flexible as possible the game engine is not involved in any decision
making. Its task is to load track files, handle the graphics and keep track of
the inertia and position of the current running individual. The game engine
uses OpenGL for drawing, and has functions for drawing the track and the
racing line that the agents take. All collision detection is also handled by
the game engine.

4.1.1 Track format

The tracks are simply represented as images and are in our case created in
Photoshop, but can be created in any graphics editing program. Different
parts of the tracks are represented by different colors. The track itself is
white. Red and blue denotes the start and finish zones. The starting point
of the car is marked as a yellow pixel on the track image. Each track also
consists of a .lvl-file with some track-specific attributes for the algorithm.

To make sure the cars go all the way around the track moving from the start

to the finish zone results in a crash. Completion of the track is accomplished
by going from the finish to the start zone.
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Figure 4: The different colors of the track.

4.2 Algorithm idea

For the algorithm we considered the environment for the agent to be deter-
ministic and partly observable. The real game is actually fully observable,
but to simplify the problem we have chosen to limit what the agent can see.

4.2.1 Sensors

In our algorithm the agent has three sensors; ahead, right and left (see figure
5). Each sensor returns either near, normal or far, indicating the distance
to the nearest wall in the given direction. Because the thresholds of these
sensor levels really are dependent of the track (how narrow the track is for
example), they are specified by the sensor near and the sensor normal
attributes in the .lvl-files.
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Right

Ahead |

Left

Figure 5: Tllustration of the three sensors. Because of the corner in the track and
the position of the car, the different sensors are reporting different distances to the
wall.

4.2.2 Genome

The agent is also aware of its current inertia vector. In each state that
the agent reaches it has to make a decision based on the tuple with the
sensor values and the inertia. For this our algorithm looks up this tuple in a
table mapping tuples to movement decisions. Because there are nine possible
movements each is represented by an integer (0-8).

This table is the genome, and each individual has one. To make the size of
the genome fixed we limited the speed of the agent to max speed distance
units per turn in any direction, and therefore also limiting the inertia. We
have used a value of 5 for maxz_speed as it seemed like a good compromise
between speed and genome size. Because of this limit, the inertia in both
axes can range from -5 to 5, giving us a total of 11x11 = 121 possible inertia
vectors. Since we have three sensors that each can return three different
values, we have a total of 33 = 27 different permutations for the sensors.
This gives us a total of 121 % 27 = 3267 different state tuples. The genome
must therefore contain references to 3267 movement decisions. The size of
the genome is 3267 integers in the range 0-8. In our implementation we store
each of these integers, or genes, in bytes making each genome 3267 bytes in
size.

13



3267 genes
|

Figure 6: The genome consists of 3267 genes. Each gene is an integer in the range
0 to 8 and references a movement decision.

To find the index in the genome corresponding to the current state we use
the following hash function:

h(inertia, sensors) = inertia.x + inertia.y * (mazx_speed x 2+ 1)

+(sensors.left+sensors.ahead*3+sensors.right+9)x(mazx_speed+2+1)*

(1)

4.2.3 Crossover

When the algorithm starts it generates 100 random individuals. These indi-
viduals are then tested against the track and given a score using the fitness
function. The ten individuals with the best score are then selected and
each of these individuals are then crossed over with all the other selected
individuals in pairs, giving 100 new individuals; the next generation.

The crossover works by sequentially going through each of the two parents’
genes in pairs. At every gene we decide to pick either the first or the second
parent’s gene in the corresponding position in the child’s gene. This decision
is made randomly for each gene with a probability p; for the first parent
and po for the second. These probabilities have the same ratio as the fitness

function result of the parents (but inverted since the fitness function returns
_ fitness resulty F
— fitness result;’ or

example if the first parent got the fitness result 50 and the second parent
got the result 100, we would get p; = 2/3 and pe = 1/3. The children will
then have approximately 2/3 of the genes from the first parent and 1/3 of
the genes from the second parent. This reduction in reproductive success for
some individuals is called selection pressure. In nature the selection pressure
maybe not exerted on a genome level, but this is to simulate the selection
pressure that might occur during the lifetime of an individual where more
fit individuals may get more reproductive chances.

lower values for better individuals), that is to say %
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During the crossover mutations can also occur. Mutations occurs on gene
level for the child, and each gene has a probability of 0.05 to mutate. This is
a fixed value that we have reached by some testing. When a gene mutates it
just gets a random value in the range 0-8 instead of getting the value from
one of its parents.

Parent1| 1 5 4 8 7 0 4 2 1
| | | |
1 1 1 1

Parent2 | 6 0 3 1 4 1 2 5 8
o L
| 1 1 | 1 | 1 1
| 1 1 | 1 | | |
| 1 1 | 1 | | 1
1 ] ] 1 ] 1 1 1
v Y Y v Y v v Y

Child | 1 0 3 8 4 0 7 2 8

4

/
/

Random mutation

Figure 7: Example of a crossover between two individuals. A mutation is visible
in the child.

The process is then repeated for the new generation; test against track, run
fitness function, select 10 best individuals, crossover and mutate. This is
repeated a given number of times, how many depends on how difficult the
track is and is specified by the generations attribute in each .lvl-file.

4.2.4 The fitness function

We have chosen to judge the individuals in our problem by measuring how
close to goal they came before they crashed and how many moves they re-
quired to get there. Our fitness function (f) is as follows:

f(agent position,num _turns) = goal Distance(agent position)+num_turns

(2)

A lower result on the fitness function means a better individual. By including
the number of turns that the agent takes in the fitness function, we make
sure that once a solution is found (the goalDistance is zero) the individuals
are also evaluated by the number of turns that they have taken to reach the
goal. If we keep on generating new generations after the goal is reached by
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some individuals this means that new generations will continue optimizing
the number of turns required to reach the goal.

For efficiency we precalculate the distance from every position of the track to
the goal using breadth-first search when a track is loaded. These distances
are then put into a distance matrix D, where D, , is the distance from the

point (x, y) to the goal. Using this matrix the fitness function is calculated
in constant time.

4.3 Tracks

During the implementation of the algorithm we created several tracks to
test different aspects of the agent. Below are the different tracks and the
corresponding track specific attributes of our algorithm.

4.3.1 Oval

This was our first and simplest track and just consists of a simple oval.

Table 1: Attributes (the .lvl file) for the oval track.

sensor _near 2
sensor _normal 6
goal distance weight 1.8
generations 100
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Figure 8: The oval track.
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4.3.2 Comb

This track consists of many hairpin turns, and the idea is to challenge the
agents ability to take many varying and sharp corners.

Table 2: Attributes (the .lvl file) for the comb track

sensor _near 2
sensor normal 4
goal distance weight 3
generations 1000

Figure 9: The comb track.
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4.3.3 Choices

This track has several different paths from start to goal and its main purpose
is to test how the agents reacts when they are faced with forks on the track.

Table 3: Attributes (the .lvl file) for the choices track

sensor _near 2
sensor _normal 6
goal distance weight 3
generations 1000

Figure 10: The choices track.

4.4 Optimizations

4.4.1 Genome size

After a time of testing we realized that since the inertia vector used in the
genome is absolute relative to the track, the agent treats two identical states
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different depending on which direction it came from.

Figure 11: Two different states that are treated as identical states by the optimized
algorithm.

Since the decisions and sensors are relative to the agent, the agent should
make the same decision in these two states. To do this we rotate the inertia
vector to be relative to the agent when deciding which state the agent is in.
This reduces the genome size and makes it more relevant.

4.4.2 Better fitness function

During our optimization we also experimented with the fitness function. We
added a weight to the goalDistance part of the function (see formula 3).

flagent _position,num_turns) =

goal _distance _weight* goal Distance(agent _position)+num_turns (3)

The goal distance weight attribute is specified in the .1vl files, and the
reason why we vary the weight is because some more advanced levels benefit
from a higher goal distance bonus. Other simpler levels could instead benefit
if the num _ turns part of the fitness function was dominating, as the agents
will find a way to the goal fast anyway and then could spend time optimizing
the number of steps.
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4.4.3 Clone top individuals

To speed up the evolutionary progress we clone the selected individuals (the
top 10 performing) of each generation and include these clones in the next
generation together with their 100 children. This makes sure that the top
individuals of each generation are at least as good as the last generation’s
top individuals. Doing this allows us to have a higher mutation probability,
speeding up the genome development and the evolutionary progress. If we
have a high mutation probability without cloning the best individuals, too
many of the good genes from the best individuals get mutated during the
crossover, and individuals do not really evolve from generation to generation.

In nature this type of cloning does not really occur, but instead the mutation
probability usually is lower so good genes are passed on to new generations
with a higher probability. In our case the cloning approach gave a much
better performance as generations evolved much faster with respect to the
fitness function.

5 Results

Using our approach we managed to solve all our tracks with a reasonable
number of generations. The implementation can be found at
https://github.com/torandi/racetrack_agent

5.1 Paths

Below are examples of paths that individuals that reached the goal took.
Even though several generations was run after the goal was reached by some
generation, these paths are not optimal in any way:.
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Figure 12: The path of an individual that completed the oval track.
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Figure 13: The path of an individual that completed the comb track.
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Figure 14: The path of an individual that completed the choices track.

5.2 Performance

5.2.1 Fitness over time

These graphs illustrate the fitness function’s value per generation of our final
algorithm implementation. Please note that a lower fitness value is better.
Each graph shows both the average fitness of an entire generation and the
average fitness of the top ten individuals of the generation.

The mutation probability used when nothing else is specified is 0.10.
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Figure 15: Oval: A graph with the fitness per generation.

Fitness per generation

B Avg. fitnass
W Avg. top 10 fitness

T [ I I I T T T T | Generations
100 200 300 400 500 600 700 800 900 1000

Figure 16: Comb: A graph with the fitness per generation
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Figure 17: Choices: A graph with the fitness per generation

5.2.2 Optimizations

The following graphs show how different optimizations affected the algo-
rithm. The figures 18 and 19 correspond to the optimizations in section 4.4.
Figure 20 displays the performance of the algorithm when using different
mutation probabilities.

No graph is present for the fitness optimization (section 4.4.2) since this
optimization modifies the fitness function itself and therefore can not use
the fitness function to measure the relative performance with and without
the optimization.

These graphs shows the average fitness value of the top 10 individuals in each

generation. The mutation probability used when nothing else is specified is
0.10.
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Figure 18: A graph with the average of the top 10 individuals in each generation
on the track Comb with and without the genome size optimization (section 4.4.1).

Fitness
850

800
750

500— Il With optimization
450—| Wl Without optimization

150 )
Generations

0 100 200 300 400 500 800 700 800 800 1000

Figure 19: A graph with the average of the top 10 individuals in each generation on
the track Comb with and without the cloned parents optimization (section 4.4.3).

27



Fitness

80O

750

700— (i1
650
600
550 Il Mutation probability: 10%
500 Il Mutation probability: 5%
450 Il Mutation probability: 1%
400 B Mutation probability: 0.1%

350
300
250
200
150

I I I I I T T T l | Generations
0 100 200 300 400 500 €00  FOD 8OO 900 1000

Figure 20: A graph with the average of the top 10 individuals in each generation
on the track Comb with different mutation probabilities
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6 Discussion

6.1 Results

Oval was the simplest track of the ones that we tested, and was generally
solved under 100 generations. This was expected as it only contains very sim-
ilar right hand turns for the agents, meaning that only parts of the genome
is used. States in the genome corresponding to for example sensor values of
left hand turns becomes irrelevant and only part of the genome has to evolve.
Comb and choices required more generations before individuals reached the
goal because of the higher complexity of the tracks, and the need for bigger
parts of the genome to evolve.

The genome size optimization makes more parts of the genome reusable,
which increases the chance of the agent knowing how to take a curve without
crashing. This can be seen in figure 18 where the optimized algorithm reaches
a lower fitness value faster.

Cloning the parents into the next generation gives a higher stability, pre-
venting the algorithm from loosing ground. This though slightly increases
the risk for the algorithm to get stuck, which occurs if the top 10 individu-
als (the parents) do not produce children that get better fitness values than
themselves. That will result in the same parents’ clones getting passed on
for generations. As can be seen in figure 19 the algorithm is very unstable
without the optimization though (much due to the high mutation probability
of 0.1).

From figure 20 we can see that a mutation probability of 0.1 might not
be optimal (this is the value that have been used in all test except in the
mutation probability test). According to figure 20 a mutation probability
between 0.01 and 0.05 seems optimal.

In our implementation there are some track specific variables; the sensor
distances and the weight in the fitness function (see 4.4.2). The sensor
distances can not be the same on a track with broad roads as on a track
with small narrow roads. The fitness weight could have a high static value
(prefer lesser goal distance), but this would give us a less optimal result (in
terms of number of moves for the agent to reach goal). To have a lower value
would make it less likely for the agents to finish the more difficult tracks.

Some of the track specific attributes, like the sensor settings could probably
be integrated in the genome to make the algorithm able to solve more generic
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tracks without human input. The increase of the genome size this would
cause is negligible.

6.2 Reliability

Since the algorithm contains stochastic elements the results vary between
each run. We have tried to pick statistics from runs that are average when
generating the graphs. The same applies to the optimizations; even though
the two compared runs uses the same seed the given seed could give an unfair
advantage to one of the methods. To prevent this from affecting the result
too much we have run the tests multiple times to make sure the tendency is
correct.

6.3 Applications

Our experiments have shown us that it is possible to use genetic algorithms
in games. Using genetic algorithms would create an opponent that learns
from the environment and becomes better over time, but also gives us an
agent that does not behave deterministic. Other positive effects could be
an agent that learns from the player’s behavior, which would encourage the
player to change strategy when the opposition becomes to difficult.

The downside to genetic algorithms is that it can be difficult to express a
problem as a genetic algorithm. One must be able to describe an entire in-
dividual as a fix sized genome. Another downside might be the performance
as the evolutionary progress can be slow when using big genomes. In our
problem we have quite a simple and limited game making the genomes rela-
tively small. In nature, evolution really is a very slow process that can take
millions of years to adapt a species to new environments.
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